Lethal management may hinder population recovery in Iberian wolves

https://doi.org/10.1007/s10531-018-1668-x

Mario Quevedo¹, Jorge Echegaray², Alberto Fernández-Gil³, Jennifer A. Leonard², Javier Naves³, Andrés Ordiz⁴, Eloy Revilla³, Carles Vilà²

¹ Dpt. Biología de Organismos y Sistemas, and Research Unit of Biodiversity (UMIB, UO-CSIC-PA), Universidad de Oviedo, 33006 Oviedo, Spain. Email: <u>quevedomario@uniovi.es</u>.

² Conservation and Evolutionary Genetics Group. Department of Integrative Ecology. Estación Biológica de Doñana (EBD-CSIC), Avd. Americo Vespucio 26, 41092 Seville, Spain

³ Departament of Conservation Biology. Estación Biológica de Doñana (EBD-CSIC), Avd. Americo Vespucio 26, 41092 Seville, Spain

⁴ Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Postbox 5003, NO-1432 Ås, Norway

1 Acknowledgments

- 2 This study was partially supported by the Spanish Agencia Estatal de Investigación from the Ministry of
- 3 Economy, Industry and Competitiveness (project CGL2017-83045-R AEI/FEDER UE, co-financed with
- 4 FEDER). Thanks to those managers from the Spanish regional administrations that answered our
- 5 information requests. Fernando Jubete, Rubén Portas and Juan Ángel de la Torre helped us compiling and
- 6 interpreting lethal management data.

7 Abstract

8 In previous centuries, wolves were extirpated across much of their range worldwide, but they started to 9 recover in Europe since the end of last century. A general pattern of this recovery is the expansion of the 10 range occupied by local populations. The Iberian wolf population, shared by Portugal and Spain, reached its 11 lowest extent and abundance around the middle of the 20th century. Unlike other populations in Europe, its 12 range recovery and pack counts seem to have stalled since the first Spanish country-wide census of 1986-13 88. The population shows low effective population size and remains isolated from other European wolves. 14 This is unexpected given the protection offered by European legislation, i.e., the Habitats Directive, and the 15 apparent availability of habitat outside its present range. We compiled records of wolves killed legally in 16 Spain, reviewed the legislative and management framework for the Iberian wolf population, and discussed 17 potential implications of a policy of lethal management for the ecology, genetics and conservation status of 18 wolves in the Iberian Peninsula. Wolves are strictly protected in Portugal. Meanwhile, they are subject to 19 culling and hunting in Spain. No wolf was legally removed by culling or hunting during the study period in 20 Portugal, whereas 623 wolves were legally killed in Spain between 2008 and 2013. Twenty-nine of those 21 wolves were killed in areas under strict protection according to European legislation. Despite the 22 transboundary nature of this wolf population, we are not aware of coordinated conservation plans. 23 Management is further fragmented at the sub-national level in Spain, both due to the authority of Spanish 24 autonomous regions over their wildlife, and because wolves were listed in multiple annexes of the Habitats 25 Directive. Fragmentation of management was apparent in the uneven adherence to the obligations of the 26 Habitats Directive among Spanish regions. A similar situation is found for other large predator populations in 27 Europe. We suggest that lethal management as carried out in Spain is a hindrance to transit and settlement 28 of wolves, both within and beyond the Iberian wolf population. Reducing the pressure of lethal management 29 appears a feasible policy change to improve the conservation status of the population and foster 30 transboundary connectivity.

31 Keywords

Extirpation; favorable conservation status; grey wolf; Habitats Directive; lethal management; range
 recovery; transboundary populations.

34 Introduction

The key role of large carnivores in the functioning of ecosystems has been demonstrated in a variety of environments (Estes et al. 2011). Grey wolves (*Canis lupus*) are particularly important apex predators because of their large natural distribution across the entire Holarctic, and the ability of wolf packs to take down large prey (Mech and Peterson 2003; Wallach et al. 2015). Given their importance in the functioning of ecosystems, several international agreements rule their conservation and management. At the European level, those include the Convention on the Conservation of European Wildlife and Natural Habitats (the Bern Convention; Council of Europe 1979), and the Habitats Directive (European Union 1992).

42 Awareness of their ecological role is relatively recent. Historically, wolves were extirpated in much of their range, mostly during the last few centuries (Breitenmoser 1998; Leonard 2014). More recently, changes in 43 44 economic drivers and human land uses have had a generally positive impact on wolf conservation status. 45 Despite the historical persecution that has deeply altered the genetic structure and long-term viability of 46 European wolf populations (Hindrikson et al. 2017), wolves have recolonized in the last decades some of 47 their lost range, both in North America (Leonard et al. 2005) and in Europe (Chapron et al. 2014a; Gippoliti et 48 al. 2018). Recolonization has been documented in Italy, Switzerland, and France (Galaverni et al. 2016). The 49 eastern wolf population in the southern Baltic and Carpathians has expanded into Poland, spreading to 50 Denmark through Germany (Wagner et al. 2012; Andersen et al. 2015). The northern population in Russia 51 and Finland triggered the recovery in Scandinavia (Vilà et al. 2003). This overall positive trend led the IUCN 52 to change the listing of wolves from Vulnerable in 1994 to Lower Risk in 1996 and to Least Concern in 2008.

53 Meanwhile, the Iberian wolf population shared by Portugal and Spain has not shown an analogous 54 recovery from past bottlenecks. In Portugal, which nowadays includes approximately 16% of the range of the 55 Iberian wolf population (Chapron et al. 2014b), wolves declined through the 20th century in both range and 56 numbers (Petrucci-Fonseca 1990; Kaczensky et al. 2012; Torres and Fonseca 2016). The Spanish wolf 57 population reached its lowest point ca. 1970s (Deinet et al. 2013) from a widespread presence in the second 58 half of the 19th century (Rico and Torrente 2000). From its nadir, and probably in association with changes in 59 its legal status, the population started to recover, extending their range in northwest Spain. In 1986-1988, 60 294 packs were estimated in Spain in the first country-wide census, occupying about 100,000 km², mostly in 61 the northwestern guarter (Blanco et al. 1992). The second country-wide Spanish census tallied 297 packs 62 between 2012 and 2014 (MAGRAMA 2016), largely in the same NW area of the first census. Between those

63 census, other estimates mentioned 250 to 263 packs (Palomo et al. 2007; Blanco and Cortés 2012), 64 although these are not methodologically comparable to the country-wide censuses. The 2012-2014 census 65 found comparatively more wolf packs in the northern parts of the range, but did not find packs in Sierra 66 Morena (Fig. 1A), from where wolves had been reported in a small detached nucleus following the rapid contraction of their range in the first three quarters of the 20th century (Padial et al. 2000; Rico and Torrente 67 68 2000; López-Bao et al. 2015). Besides the Spanish survey, wolves dispersing from the Alpine-Italian 69 population (Valière et al. 2003; Fabbri et al. 2007; Louvrier et al. 2017) have also been detected in the 70 eastern Pyrenees about 350 km east of the present range of the Iberian wolf population, although 71 reproduction has not been confirmed.

72 In the light of the recovery of some European wolf populations, the relative stability in the current range in 73 the Iberian Peninsula is striking because they are under the same international, protective legislation. The 74 details of such protection, however, vary substantially among signatory countries and even within them 75 (Trouwborst 2014a). Species of community interest in the Habitats Directive are listed in different annexes, 76 which confer varying degrees of protection, and varying levels of commitment from signatory states. Wolves 77 in Portugal are included in Annex II of the Habitats Directive as 'species of community interest whose 78 conservation requires the designation of special areas of conservation', and in Annex IV as 'animal and plant 79 species of community interest in need of strict protection'. In contrast, in Spain the Habitats Directive 80 established the Douro River as the boundary for different schemes of protection (Fig. 1A). North of the Douro 81 River wolves are in Annex V of the Habitats Directive, as 'species of community interests whose taking in the 82 wild and exploitation may be subject to management measures'. Wolves in the Spanish territories located 83 south of River Douro are in the same annexes II and IV as in Portugal (Fig. 1A). However, if they roam east 84 outside the southward projection of River Douro, they enter a legal vacuum (Fig. 1A; Trouwborst 2014a). In 85 addition, wolves in territories under Annex II and IV in Spain can be killed as exceptions to the Habitats 86 Directive.

Here we review the legal status and, where applicable, the policy of lethal management of the Iberian wolf population across the different regions in the Iberian Peninsula. We compiled official numbers on wolf culling and hunting from 2008-2013, the period for which we could gather consistent data from the various autonomous regions in Spain that used lethal management. Records of killed wolves usually included date and county or municipality; further information on age, sex, condition of the individuals, or finer scale location, were generally not available. Since wolf hunting in Spain is used as a management tool, we merged

data on culling and hunting as overall lethal management. Both were indiscriminate with respect to age, sex,
or the involvement of individual wolves in livestock damages. Below we discuss the potential implications of
lethal management on the Iberian wolf population, particularly those related to its effective conservation
status.

97 Legislative framework and management plans

98 In Portugal wolves were strictly protected at the national level ('Lei 88/90 Proteçao do lobo ibérico') before 99 the release of EU's Habitats Directive in 1992. The legal text is unambiguous, targeting the recovery of the 100 population and its natural prey base, and improving the social acceptance of the species. In exceptional 101 cases, individual wolves could be removed by government officials; those exceptions were to be checked 102 against the Bern Convention, so that 'there is no other satisfactory solution and that the exception will not be 103 detrimental to the survival of the population concerned' (article 9). Later, article 16 of the Habitats Directive 104 included similar exceptions. More recently, a decree developed the previous law ('Decreto-Lei 54/2016'), 105 established provisions for the management of compensatory payments of livestock depredations, and 106 mandated the development of an action plan. The latter was recently published ('Despacho 9727/2017') and 107 referred explicitly to the maintenance of a favorable conservation status, and the need for coordination of policy with Spain. The Portuguese action plan mentions illegal persecution and other human causes of 108 109 mortality among the threats for the wolf population.

110 In Spain, the transposition of European directives is the responsibility of the national government, while 111 the actual management of biodiversity, including wolves, is the responsibility of the regional governments 112 (Table 1). Spain implemented the Habitats Directive through a national law ('Ley 42 / 2007') that set the 113 Douro River as the boundary between two management zones. The law also created a national list of 114 protected species, but unlike the transposition of annexes of the Habitats Directive, wolves were included in 115 that list referring only to the regions of Andalucía, Extremadura and Castilla-La Mancha, all located south of 116 the Douro River. The legal and management frameworks became more complex because several Spanish 117 regions include several provinces, which also have some degree of management authority. In addition, the 118 territory of some Spanish provinces spans the Douro River management boundary (Figure 1A). For instance, 119 Zamora harbors about 45 wolf packs, some shared with Portugal, and is divided by Douro River into a 120 'management side' under annex V of the Habitats Directive, and a 'strict protection' side under annexes II 121 and IV (Table 1).

122 Most wolves in Spain are in three neighboring regions: Galicia, Castilla y Leon, and Asturias; the first two 123 share boundaries and wolf packs with Portugal (Figure 1A). Each one has its own management plan (Table 124 1); all three stressed the ecological and cultural importance of wolves, and all three listed extensive livestock 125 practices and the social conflict related to them as the main reasons to include lethal management provisions. Galicia and Castilla y León acknowledged in their plans that they share wolves with Portugal, 126 127 although only the latter suggested connectivity as a goal. Beyond that, plans are quite different in objectives 128 and implementation. Ensuring population viability is explicit in the Galician management plan, whereas in 129 Asturias the wording of the plan emphasizes extensive livestock practices and predator tolerance in rural 130 areas. Castilla y León and Galicia considered wolves as a game species. Castilla y León explicitly set quotas 131 of annual exploitation that varied from 5% to 28%, and planned counting wolf packs every 10 years. Wolf 132 hunting guotas in Galicia were assigned in response to depredations on livestock, and the plan established 133 management zoning that included hunting in some zones, culling in response to specific livestock 134 depredation events in others, and zones with no lethal management at all. The Galician plan mentioned that 135 illegal human actions accounted for at least 20% of wolf mortality in the territory. Asturias did not consider 136 wolves as game species but stated the need to control the population. It planned annual culling quotas 137 based on wolf abundance, complaints on livestock depredations, and social conflict. However, counts of 138 packs were the only available annual metric of wolf abundance, and there were no formal descriptions or 139 measures of that social conflict (Fernández-Gil et al. 2016). Interpreting the legal language of these 140 management plans is not straightforward, but, in practice, lethal management is much less intense in Galicia 141 than in Castilla y León and Asturias (Table 1).

142 Several Spanish regions lack management, recovery or conservation plans for wolves in their territories. 143 For example, Cantabria and La Rioja, in annex V of the Habitats Directive, have relatively high culling and 144 hunting pressure but no plans (Table 1). In contrast, a province in the Basque Country where wolves are 145 barely present (Araba, Table 1), has its own plan, including the goal of culling wolves to restrain them. The 146 lack of recovery plans is striking in regions under annexes II and IV of the Habitats Directive (Fig. 1A; Table 147 1), despite the recognized unfavorable conservation status. For instance, wolves are listed as severely 148 endangered ('en peligro de extinción') in regional lists of Castilla la Mancha, Extremadura and Andalucia, but 149 these regions lack recovery plans (Table 1). Furthermore, in Murcia, southeast Spain, wolves are classified 150 as extinct, but no recovery plans were implemented. We would have expected to find plans for the regions 151 including the Pyrenees, which occasionally receive wolves from France (Valière et al. 2003; Louvrier et al.

2017), bringing an opportunity for the recovery of the once lost genetic flow between southern European wolf
populations (e.g. Hindrikson et al. 2017). However, Catalonia, Aragón and Navarra (see Figure 1A) lack
published action or recovery plans.

155 Management-related mortality

156 No wolf was legally removed by culling or hunting during the study period in Portugal. Conversely, lethal 157 management programs took place yearly in most Spanish regions where wolves were present (Fig. 1A; Table 158 1). The lethal management in the period represented an overview of management schemes, though not so 159 much the exploitation intensity of the various regions, which may show discrete blanks and spikes. For 160 instance, 109 wolves were legally killed in Castilla and León in 2017. The relative intensity of lethal 161 management varied among regions, and among provinces within those regions; several provinces clearly 162 stood out (Table 1). Particularly noticeable was wolf culling in Ávila and Salamanca provinces, both south of 163 Douro River and thus under annexes II and IV of the Habitats Directive, where wolves have a very limited 164 distribution. North of that management boundary, the province of Zamora and regions Cantabria and Asturias 165 showed the highest intensity of lethal management relative to wolf range (Table 1), regardless of their 166 different consideration of wolves as game or non-game species. Lethal management was carried out even in 167 management units with only one wolf pack in recent years (Table 1), and in regions outside the present, 168 contiguous range of the species (Fig. 1).

169 At least 623 wolves were culled or hunted in six Spanish regions during 2008-2013 (Table 1; Fig. 1). Most 170 (594 wolves) were killed north of the Douro River (Annex V of the Habitats Directive). The remaining 29 171 wolves were killed south of Douro River, despite the legal mandate to designate special areas of 172 conservation and strict species protection (Annexes II and IV of the EU's Habitats Directive, respectively; Fig. 173 1). Those wolves killed under Annexes II and IV were exceptions to article 12 of the Habitats Directive. Such 174 exceptions are in principle connected to article 16, which allows member states to ask for them, 'provided 175 that there is no satisfactory alternative and the derogation is not detrimental to the maintenance of the 176 populations of the species and to its favourable conservation status in their natural range' (see also 177 discussion in Rosen and Bath 2009). The Directive provides coverage for several types of exceptions; one of 178 them was removing individuals 'to prevent serious damage, in particular to crops, livestock, forests, fisheries 179 and water and other types of property'. The Directive however does not define 'serious damage' or 180 'satisfactory alternative'. Additionally, what could be detrimental to the favorable conservation status of 181 concerned populations is debatable (Epstein et al. 2015; Trouwborst et al. 2016). Therefore, it remains

182 subjective whether the response - killing wolves - is proportional to the predatory damage, and if it is 183 actually a consequence of lacking proactive alternatives, like appropriate livestock husbandry. Here we seek 184 to improve our understanding of biological aspects of the much quoted 'favorable conservation status', a 185 guidance concept for member states to achieve the goals of the international agreement (Epstein et al. 186 2015), because those aspects were not fully considered when the term started appearing in environmental 187 legislation. As it stands in the Habitats Directive, the favorable conservation status is clearly related to 188 population viability and sustainability (e.g., definitions in Article 1; European Union 1992), hence we use it as 189 reference to discuss implications of Spanish lethal management in the context of conservation biology.

190 Numerical sustainability of lethal management

191 Lethal management is often discussed in terms of numerical sustainability. A frequent albeit crude 192 approach to the discussion focuses on the percentage of the wolf population taken each year. A 30% 193 exploitation threshold has been often used as benchmark for numerical sustainability of wolf populations, but 194 with a large uncertainty on that threshold (reviewed in Fuller et al. 2003; see also Adams et al. 2008). To 195 apply that benchmark to the Iberian wolf population, we would need to know several population parameters 196 that are just not available. Regarding population size, a recent Spanish estimate counted 297 wolf packs in 197 the period 2012-2014 (MAGRAMA 2016), and about 55 additional packs were reported in Portugal (Torres 198 and Fonseca 2016). Using rough estimates of the average number of wolves per pack, one could get values 199 as disparate as 1400 or 3000 wolves in the Iberian population, using either winter (after dispersal and winter 200 mortality) or summer (including pups) averages, respectively (e.g., Chapron et al. 2016). These figures 201 suggest a relatively large population size in the European context. However, the associated uncertainty is 202 very large, and an average harvest figure cannot be assumed to be representative of the whole Iberian area 203 (Table 1). Some packs are rarely targeted, especially those that hold territories farther away from human 204 interest, or in regions where socio-political pressure is low (Woodroffe 2000; Chapron and López-Bao 2014; 205 Fernández-Gil et al. 2016), whereas packs at the border of the wolf range sustain harvest despite of tenuous 206 wolf presence (Table 1). This variation has many effects, including pack size. In such situations, a framework 207 considering sources and sinks would offer better insights into population dynamics and management 208 implications, e.g., present management of wolves may affect the possibilities of range expansion, a topic 209 further discussed below.

Beyond the 30% threshold mentioned above, it is still debated whether human-caused mortality rates in wolves is additive, super-additive or, on the contrary, compensatory (Creel and Rotella 2010; Gude et al.

212 2012). We suggest that a rough stability in population size may not be considered a valid indicator of
213 sustainability, much less of favorable conservation status. Randomly distributed mortality may be
214 compensated by high birth rates, but the effect of the population turnover on the social organization and
215 behavior, e.g., ability to take down large wild prey, or on the gene flow and connectivity across the
216 population, are difficult to assess. Whereas exploitation may depress the growth rate of wolf populations,
217 should that be the goal, it should not occur at levels incompatible with the obligations of conservation218 oriented legislation.

219 Any management plan including conservation of a favorable population status as a goal needs to take into account that the reported number of wolf deaths are minimum numbers. There is high uncertainty 220 221 around the number of accidental wolf deaths (Colino-Rabanal et al. 2011) and, specially, poaching. The 222 number of cryptic deaths due to poaching can actually reach similar proportions as those of legally killed 223 animals (Liberg et al. 2011; Suutarinen and Kojola 2017). Several studies have stressed recently that legal 224 killing may not be the best approach to reduce illegal mortality of wolves (Chapron and Treves 2016; Suutarinen and Kojola 2018), or to solve livestock depredations (e.g. Treves et al. 2016). Although no legal 225 226 wolf killing occurred in Portugal during the study period, no range expansion was detected, and a large level 227 of illegal mortality is reported to be the driver of the dynamics (Torres and Fonseca 2016). Despite the 228 potential importance of cryptic deaths, the lethal management policies we reviewed here were not based on 229 estimates of whole mortality rates. Such a management scenario is at odds with Articles 11 and 14 of the 230 Habitats Directive, which require that Member States monitor the conservation status of listed species.

231 Intrapopulation differentiation and genetic status

232 Individuals do not contribute equally to population growth rate or gene flow, and such population 233 heterogeneity has to be considered in management (Bolnick et al. 2003; Alexander and Sanderson 2014), 234 although it is not in Spain. Among other key components of population biology, the effective population size 235 (Ne), the number of individuals that contribute to the reproduction every generation (Frankham 1995; Palstra 236 and Fraser 2012), is particularly relevant to evaluate the viability of populations and the outcome of 237 management policies (Shaffer 1981; Laikre et al. 2013; Frankham et al. 2014). The effective population size 238 of Iberian wolves has been estimated, and at Ne < 60 it is much lower than any estimate of census 239 population size, indicating that the population went through severe bottlenecks not too long ago (Sastre et al. 240 2011; Pilot et al. 2014; Gómez-Sánchez et al. 2018).

241 Beyond considerations of population genetics in the evaluation of favorable conservation status, lethal 242 wolf management, as implemented in Spain, does not target specific individuals. Therefore, it does not take 243 into account issues like changes in selective forces (Darimont et al. 2009), social status or pack stability 244 (Wallach et al. 2009; Borg et al. 2014), characteristics of the individuals (age, sex, physical condition etc.), or the source and bearing of killed individuals. Wolves are social animals that live in family groups, and younger 245 246 individuals often disperse from their natal pack (Mech and Boitani 2003), sometimes traveling hundreds of 247 kilometers before eventually settling into a new area (Vilà et al. 2003; Blanco and Cortés 2007; Andersen et 248 al. 2015). As in many other vertebrate species, wolf dispersal can yield range expansion or recovery through 249 settlement of young individuals, and genetic exchange through outbreeding of long-distance dispersers. 250 However, unexpectedly high levels of genetic structure, compatible with lower than expected intra-population 251 dispersal, have been recently reported in Iberian wolves (Silva et al. 2018). Dispersing wolves travel through 252 unfamiliar terrain, and sometimes through already held wolf territories, which increases their risk of being 253 hunted or culled (Mech and Boitani 2003; Schmidt et al. 2017). There is evidence that exploitation reduces 254 local dispersal, emigration, and immigration of wolves, either as direct demographic compensation for human 255 exploitation (Adams et al. 2008) or as a consequence of reduced intraspecific competition (Rick et al. 2017).

256 The recovery and favorable conservation status of wolf populations requires a proper functioning of 257 dispersal. In the Iberian context, dispersal could alleviate the genetic consequences of past bottlenecks (Vilà 258 et al. 2003; Sastre et al. 2011; Pilot et al. 2014; Gómez-Sánchez et al. 2018), providing genetic and 259 demographic rescue to the endangered wolves in Portugal (Torres and Fonseca 2016), and reaching 260 Spanish areas where they were recently extirpated or their presence is sporadic (Echegaray and Vilà 2010; 261 López-Bao et al. 2015; Gómez-Sánchez et al. 2018). Elsewhere, dispersal is helping wolf recovery after 262 historical decline and isolation (Fabbri et al. 2007). Arrival of wolves from the Alps to the eastern Pyrenees 263 (Valière et al. 2003; Deinet et al. 2013; Louvrier et al. 2017) raised the possibility of recovering gene flow between Iberian and other European wolves. However, that possibility also depends on the arrival of Iberian 264 265 wolves to the east of their present contiguous range, which, despite the size of the Iberian wolf population in 266 a western European context, has not been documented (Hindrikson et al. 2017). Such gene flow, which does 267 not necessarily involve many individuals (e.g. Fabbri et al. 2007), could have beneficial effects for the Iberian 268 population after centuries of isolation (Sastre et al. 2011; Hindrikson et al. 2017). Dispersal from Iberia could 269 also benefit inbred Italian wolves (Pilot et al. 2014; Hindrikson et al. 2017), and wolf recovery in France. In 270 theory, dispersal to a species' former natural range is explicitly favored by the Habitats Directive, for example

Articles 1i, 2 and 12 (see also Trouwborst et al. 2015), and is implicit in the inclusion of wolves in Annexes II and IV in the southern Iberian Peninsula.

273 Transboundary management and isolation

274 Although in biology it is clear that wildlife heeds no administrative boundaries, the human side of the 275 conservation equation is indeed affected by those boundaries, sometimes creating a mindset that overrides 276 the biological meaning of populations. The issue is increasingly recognized in the scientific literature (Rosen 277 and Bath 2009; Trouwborst 2015; Thornton et al. 2018). Like other large carnivores, wolves in western 278 Europe have a discontinuous range resulting from persecution and habitat loss in recent centuries (Fig. 1B). 279 The contraction resulted in the relatively small and genetically differentiated Iberian and Alpine / Italian 280 populations (Pilot et al. 2014). They have been isolated for a long time from other populations, making them 281 particularly good candidates to provide and receive demographic and genetic rescue with other populations 282 (e.g., Hindrikson et al. 2017). Isolation from other wolf populations is therefore a relevant aspect to consider 283 when evaluating lethal management of Iberian wolves, and the same applies to other populations (Kojola et 284 al. 2009). The scenario is not comparable for those populations used to study numerical sustainability of 285 human exploitation of wolves in North America, or even in specific parts of Europe (Smietana and Wajda 286 1997). The wolf population in eastern Europe is at the edge of the large and less fragmented wolf range 287 towards the Eastern Palearctic (Figure 1B), a situation reflected in the higher genetic diversity of those 288 wolves (Hindrikson et al. 2017). The existence of larger, relatively contiguous wolf range alongside areas 289 where wolves sustain lethal measures may drive a management scenario of source-sink dynamics (Novaro 290 et al. 2005), which at least ought to be considered if discussing numerical sustainability of lethal 291 management within given administrative boundaries. A local population subject to lethal management might 292 appear sustainable if a neighboring one acts as source of incoming individuals (see also Schmidt et al. 293 2017).

Most European wolf populations are transboundary (Figure 1B). The Iberian population is shared by Portugal and Spain; the Alpine-Italian population, by Italy, France, and Switzerland (Fabbri et al. 2007). Norwegian wolves are just a little part of the Scandinavian wolf population (Svensson et al. 2015; Hindrikson et al. 2017), which in turn has partially recovered after the arrival of long-distance dispersers from eastern Europe (Vilà et al. 2003). Further south, the eastern European wolf population extends over lands belonging to more than twelve countries. Any of those countries could use a different approach to wolf management, which would affect not only the wolves that live or traverse their own lands, but the whole shared population.

301 The wolves of the Białowieża Primeval Forest, for example, span the Poland-Belarus border, and sustain 302 heavy hunting on the Belarussian side (Jedrzejewski et al. 2005). As mentioned above, the Iberian 303 population is strictly protected in Portugal since 1988, yet it is subject to culling and hunting just across the 304 border in Spain (Figure 1A; Table 1). Italy does not use lethal management, but France recently programmed 305 annual culling on its portion of the shared population (Ministère de la Transition Écologique et Solidaire 306 2018). This decision could compromise the incipient genetic flux within, towards, and from the population, 307 including the potential contact with the Iberian population (Valière et al. 2003; Louvrier et al. 2017). Even in 308 the larger Eastern-Central wolf population, lethal management of wolves in Slovakia appears to affect their 309 conservation status across the border in the Czech Republic (Kutal et al. 2016). These transboundary 310 problems are not exclusive of wolves but occur at least in other populations of large carnivores. In 311 Scandinavia, for instance, Sweden is a source and Norway a sink for the wolverine population (Gervasi et al. 312 2015), and the eventual recovery of brown bears in Norway depends on the arrival of bears from Sweden 313 (Gilroy et al. 2015). Despite the clear transboundary nature of populations of large carnivores (Linnell et al. 314 2008), the European Union and its legislative instrument the Habitats Directive led to management and 315 conservation plans at a national level (Rosen and Bath 2009).

316 The discussion about transboundary populations seems easier to comprehend, and it is certainly easier 317 to document, at the country level. However, it applies also at the sub-national level. The administrative 318 framework of the Iberian wolf population includes two countries that are member-states of the European 319 Union, and 17 regions in Spain that retain management authority (Table 1). Eight of those regions had 320 wolves in the most recent count of packs (MAGRAMA 2016). The fragmented management of Iberian wolves 321 actually results in uneven adherence to the obligations of the EU Habitats Directive, which are followed 322 closely by some regions, loosely by others, or disregarded completely by other regions that conducted 323 "population control" campaigns despite of minimal wolf presence (Table 1; Fig. 1A). Lethal management in 324 the latter case is especially at odds with article 15 of the Habitats Directive, which required that member 325 states 'shall prohibit the use of all indiscriminate means [of population control] capable of causing local 326 disappearance of, or serious disturbance to, populations'. Another remarkable circumstance is that regional 327 administrations are responsible for the establishment and implementation of lethal management measures, 328 but are not accountable to international agreements, including the Bern Convention and the Habitats 329 Directive, subscribed by the national government. The fragmentation of management strategies could result 330 in regions or states ignoring conservation agendas and implementing aggressive actions, while assuming

that those would have only minor effects on the total population. Thus, the survival of local populations would
depend on the conservation programs in neighboring countries and regions being sufficient to provide
dispersers to fill those population sinks.

334 Administrative fragmentation of wolf management may occur in other European countries, especially 335 those where regional governments hold management responsibilities. That could be the case for instance in 336 Austria, where federal states have the hunting and conservation authority (Schäfer 2012), or Germany, 337 where authority is similarly or even further decentralized (Kaczensky et al. 2012). In addition, several 338 countries where wolf management is in principle centralized still show fragmentation. In Italy, regional 339 administrations vary widely in handling compensation to depredations, irrespective of wolf abundance 340 (Boitani et al. 2010). In Serbia, management is also fragmented, even distinguishing between wolf males and 341 females or pups (Kaczensky et al. 2012). Finland discriminates wolf management in its reindeer zone, where 342 lethal management is more intense (Kaczensky et al. 2012; Trouwborst 2014b). In addition, the EU Habitats 343 Directive splits wolf management in Greece along the 39°N parallel, placing wolves in the south in Annex IV (strict protection), and wolves in the north in Annex V (may be subject to management). 344

345 Other plausible factors limiting range recovery

346 Besides lethal management, there could be additional determinants of the apparent lack of range 347 recovery of wolves in the Iberian Peninsula. For instance, recovery may be hampered if areas outside the 348 current range had become too human-dominated, beyond the ability of wolves to traverse or settle. The 349 Iberian Peninsula has an average human density of about 100 people/km², and it is crisscrossed by 350 numerous linear and often fenced infrastructures (Blanco and Cortés 2007; Rodríguez-Freire and Crecente-351 Maseda 2008). However, human population has been declining in the regions where conflict with predators is 352 most frequent (MARM 2009). In addition, not all landscapes are equally human-dominated. The Iberian 353 Peninsula contains extensive areas outside the present wolf range where human appropriation of primary 354 production (Haberl et al. 2007) is presently comparable to that of areas used by wolves. Habitat suitability 355 analyses recently reported that substantial habitat exists outside the present wolf range, both at a fine spatial 356 scale that would reflect suitability as breeding habitat, and at coarser spatial scales that would indicate 357 presence and traversing suitability (Grilo et al. 2018). In addition to overall habitat availability, an important 358 fraction of wolves' former range in Iberia includes areas listed as candidates to the Natura 2000 network of 359 protected areas (European Environment Agency 2018), especially south of the Douro River and in the central 360 part of the Iberian Peninsula. These sites may provide important stepping stones for wolves dispersing

361 across more developed landscapes, and seem like an appropriate target for Spain and Portugal to meet the 362 requirements of Annex II of the Habitats Directive, 'the designation of special areas of conservation', for 363 those species listed in them. Additionally, the recovery of wild ungulate populations is evident in the Iberian 364 Peninsula, even in agricultural landscapes (e.g., Apollonio et al. 2010), so the availability of wild prey should 365 facilitate the colonization of new areas by wolves without major conflict with human interests. The present 366 combination of available habitat and productivity suggest that the return and settlement of wolves to historical 367 reaches of their range is ecologically feasible. Recent models based on niche analyses, and current and 368 historical distributions of large carnivores in Europe arrived at similar conclusions (Milanesi et al. 2017).

369 Obviously, the difficulties for range recovery of a large carnivore in the Iberian Peninsula and beyond 370 should not be oversimplified. Despite the protective EU legislation and availability of habitats and prey, a 371 complex mixture of factors is probably behind the difficulties of wolves to effectively disperse out of the 372 present contiguous range. Private land ownership and pressures from special-interest lobbies may 373 undermine an otherwise valid legislation, and certainly complicate management (López-Bao et al. 2015). In 374 addition, dispersing wolves likely have a higher mortality rate due to intraspecific strife, accidents or 375 poaching, as discussed above, and may show habitat-biased dispersal (Pilot et al. 2006; Leonard 2014). 376 Nevertheless, while removing physical and societal barriers to animal movements and alleviating the human 377 footprint are complicated tasks on the short term, reducing lethal management pressure in Spain seems a 378 feasible policy change. This single change could improve the connectivity and thus the conservation status of 379 the Iberian wolf population.

380 Conclusions

381 Multiple facets may be considered to address the implications of lethal management of wolves as 382 implemented in the Iberian Peninsula. However, besides discussing some of those facets, we remain aware 383 of the management mindset (e.g., Ludwig 2001), which seems to center discussions on quotas of 384 exploitation. Removing individuals from wild populations of large carnivores is certainly not mandatory, 385 regardless of the outcome of discussions on its numerical sustainability (Artelle et al. 2013; see also 386 Darimont 2017). Lethal management is instead a policy option, which seems particularly debatable in the 387 case of apex predators (Ordiz et al. 2013; Wallach et al. 2015), often implemented to reduce conflicts 388 (Fernández-Gil et al. 2016; Chapron and Treves 2016; Treves et al. 2016), under the premise of maintaining 389 a favorable conservation status. The goal of conservation biology is not merely keeping a vague notion of 390 enough animals, or the presence of species in a territory, but a functional assemblage of species (e.g., Soulé

391 1985). Managing towards that goal requires incorporation of the full range of ecological characteristics of the 392 populations. Consider for instance how clear it is today that migration corridors and wintering grounds are 393 crucial for bird conservation (e.g., Donald et al. 2007). In the case of wolves, a social structure based on 394 family relations and a tendency for long-distance dispersal are similarly key characteristics, disturbed by 395 hunting and culling. European wolf populations have increased in the last 30 years, both in numbers and 396 range; however, despite its relatively large size, the wolf population in the Iberian Peninsula has remained 397 isolated. Concurrently, the Sierra Morena wolves may have been extirpated, after showing high levels of 398 inbreeding and introgression with dogs (Gómez-Sánchez et al. 2018). Yet we are not aware of effective 399 efforts to coordinate conservation plans across countries, or regions.

400 **Compliance with Ethical Standards**

The authors declare that they have no conflict of interest. This study did not involve any experimentation or handling of human or animal subjects. The consent to submit the manuscript has been received explicitly from all co-authors. We all have consent from the authorities at our respective organizations to conduct this research, and to submit it for publication.

405 References

406 Adams LG, Stephenson RO, Dale BW, et al (2008) Population Dynamics and Harvest Characteristics of

407 Wolves in the Central Brooks Range, Alaska. Wildl Monogr 1–25. https://doi.org/10.2193/2008-012

408 Alexander KA, Sanderson CE (2014) Conserving Carnivores: More than Numbers. Science 343:1199–1199.

409 https://doi.org/10.1126/science.343.6176.1199-a

- 410 Andersen LW, Harms V, Caniglia R, et al (2015) Long-distance dispersal of a wolf, Canis lupus, in
- 411 northwestern Europe. Mammal Res 60:163–168. https://doi.org/10.1007/s13364-015-0220-6
- 412 Apollonio M, Andersen R, Putman R (2010) European ungulates and their management in the 21st century.
- 413 Cambridge University Press.
- 414 Artelle KA, Anderson SC, Cooper AB, et al (2013) Confronting Uncertainty in Wildlife Management:
- 415 Performance of Grizzly Bear Management. PLOS ONE 8:e78041.
- 416 https://doi.org/10.1371/journal.pone.0078041
- 417 Blanco JC, Cortés Y (2007) Dispersal patterns, social structure and mortality of wolves living in agricultural
- 418 habitats in Spain. J Zool 273:114–124. https://doi.org/10.1111/j.1469-7998.2007.00305.x
- 419 Blanco JC, Cortés Y (2012) Surveying wolves without snow: a critical review of the methods used in Spain.

- 420 Hystrix, the Italian Journal of Mammalogy 23:35–48. https://doi.org/10.4404/hystrix-23.1-4670
- 421 Blanco JC, Reig S, de la Cuesta L (1992) Distribution, status and conservation problems of the wolf Canis
- 422 *lupus* in Spain. Biol Conserv 60:73–80. https://doi.org/10.1016/0006-3207(92)91157-N
- 423 Boitani L, Ciucci P, Raganella-Pelliccioni E (2010) Ex-post compensation payments for wolf predation on
- 424 livestock in Italy: a tool for conservation? Wildl Res 37:722–730. https://doi.org/10.1071/WR10029
- 425 Bolnick DI, Svanbäck R, Fordyce JA, et al (2003) The ecology of individuals: incidence and implications of
- 426 individual specialization. Am Nat 161:1–28. https://doi.org/10.1086/343878
- 427 Borg BL, Brainerd SM, Meier TJ, Prugh LR (2014) Impacts of breeder loss on social structure, reproduction
- 428 and population growth in a social canid. J Anim Ecol 84:177–187. https://doi.org/10.1111/1365-
- 429 2656.12256
- 430 Breitenmoser U (1998) Large predators in the Alps: The fall and rise of man's competitors. Biol Conserv
- 431 83:279–289. <u>https://doi.org/10.1016/S0006-3207(97)00084-0</u>
- 432 Chapron G, Kaczensky P, Linnell JDC, et al (2014a) Recovery of large carnivores in Europe's modern
- 433 human-dominated landscapes. Science 346:1517–1519. https://doi.org/10.1126/science.1257553
- 434 Chapron G, Kaczensky, Petra, Linnell, John D. C., et al (2014b) Data from: Recovery of large carnivores in
- 435 Europe's modern human-dominated landscapes. Dryad Digital Repository
- 436 https://doi.org/10.5061/dryad.986mp
- 437 Chapron G, López-Bao JV (2014) Conserving Carnivores: Politics in Play. Science 343:1199–1200.
- 438 https://doi.org/10.1126/science.343.6176.1199-b
- 439 Chapron G, Treves A (2016) Blood does not buy goodwill: allowing culling increases poaching of a large
- 440 carnivore. Proc R Soc B 283:20152939. https://doi.org/10.1098/rspb.2015.2939
- 441 Chapron G, Wikenros C, Liberg O, et al (2016) Estimating wolf (*Canis lupus*) population size from number of
- 442 packs and an individual based model. Ecol Model 339:33–44.
- 443 https://doi.org/10.1016/j.ecolmodel.2016.08.012
- 444 Colino-Rabanal VJ, Lizana M, Peris SJ (2011) Factors influencing wolf Canis lupus roadkills in Northwest
- 445 Spain. Eur J Wildl Res 57:399–409. https://doi.org/10.1007/s10344-010-0446-1
- 446 Council of Europe (1979) Convention on the Conservation of European Wildlife and Natural Habitats (Bern
- 447 Convention). <u>https://www.coe.int/en/web/bern-convention</u>. Accessed 11 November 2018
- 448 Creel S, Rotella JJ (2010) Meta-Analysis of Relationships between Human Offtake, Total Mortality and

- 449 Population Dynamics of Gray Wolves (*Canis lupus*). PLOS ONE 5:e12918.
- 450 https://doi.org/10.1371/journal.pone.0012918
- 451 Darimont CT (2017) Trophy hunting: Science on its own can't dictate policy. Nature 551:565.
- 452 https://doi.org/10.1038/d41586-017-07553-6
- 453 Darimont CT, Carlson SM, Kinnison MT, et al (2009) Human predators outpace other agents of trait change
- 454 in the wild. Proc Natl Acad Sci 106:952–954. https://doi.org/10.1073/pnas.0809235106
- 455 Deinet S, leronymidou C, McRae L, et al (2013) Wildlife comeback in Europe: The recovery of selected
- 456 mammal and bird species. Final report to Rewilding Europe. ZSL, BirdLife International and the European
- 457 Bird Census Council, London
- 458 Donald PF, Sanderson FJ, Burfield IJ, et al (2007) International Conservation Policy Delivers Benefits for
- 459 Birds in Europe. Science 317:810–813. https://doi.org/10.1126/science.1146002
- 460 Echegaray J, Vilà C (2010) Noninvasive monitoring of wolves at the edge of their distribution and the cost of
- 461 their conservation. Anim Conserv 13:157–161. https://doi.org/10.1111/j.1469-1795.2009.00315.x
- 462 Epstein Y, López-Bao JV, Chapron G (2015) A Legal-Ecological Understanding of Favorable Conservation
- 463 Status for Species in Europe. Conserv Lett 9:81–88. https://doi.org/10.1111/conl.12200
- 464 Estes JA, Terborgh J, Brashares JS, et al (2011) Trophic Downgrading of Planet Earth. Science 333:301–
- 465 306. https://doi.org/10.1126/science.1205106
- 466 European Environment Agency (EEA) (2018) Natura 2000 data the European network of protected sites.
- 467 <u>https://www.eea.europa.eu/data-and-maps/data/natura-9</u>. Accessed 11 November 2018
- 468 European Union (1992) Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats
- 469 and of wild fauna and flora. <u>https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:01992L0043-</u>
- 470 <u>20070101</u>. Accessed 11 November 2018
- 471 Fabbri E, Miquel C, Lucchini V, et al (2007) From the Apennines to the Alps: colonization genetics of the
- 472 naturally expanding Italian wolf (*Canis lupus*) population. Mol Ecol 16:1661–1671.
- 473 <u>https://doi.org/10.1111/j.1365-294X.2007.03262.x</u>
- 474 Fernández-Gil A, Naves J, Ordiz A, et al (2016) Conflict misleads large carnivore management and
- 475 conservation: Brown bears and wolves in Spain. PLOS ONE 11:e0151541.
- 476 <u>https://doi.org/10.1371/journal.pone.0151541</u>
- 477 Frankham R (1995) Effective population size/adult population size ratios in wildlife: A review. Genet Res

- 478 66:95–107. https://doi.org/10.1017/S0016672308009695
- 479 Frankham R, Bradshaw CJA, Brook BW (2014) Genetics in conservation management: Revised
- 480 recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol Conserv
- 481 170:56–63. https://doi.org/10.1016/j.biocon.2013.12.036
- 482 Fuller T, Mech L, Cochrane J (2003) Wolf population dynamics. In: Mech L, Boitani L (eds) Wolves: behavior,
- 483 ecology, and conservation. University of Chicago Press, pp 131–160
- 484 Galaverni M, Caniglia R, Fabbri E, et al (2016) One, no one, or one hundred thousand: how many wolves are
- 485 there currently in Italy? Mammal Res 61:13–24. https://doi.org/10.1007/s13364-015-0247-8
- 486 Gervasi V, Brøseth H, Nilsen EB, et al (2015) Compensatory immigration counteracts contrasting
- 487 conservation strategies of wolverines (*Gulo gulo*) within Scandinavia. Biol Conserv 191:632–639.
- 488 https://doi.org/10.1016/j.biocon.2015.07.024
- 489 Gilroy JJ, Ordiz A, Bischof R (2015) Carnivore coexistence: Value the wilderness. Science 347:382–382.
- 490 https://doi.org/10.1126/science.347.6220.382-a
- 491 Gippoliti S, Brito D, Cerfolli F, et al (2018) Europe as a model for large carnivores conservation: Is the glass
- 492 half empty or half full? J Nat Conserv 41:73–78. https://doi.org/10.1016/j.jnc.2017.11.007
- 493 Gómez-Sánchez D, Olalde I, Sastre N, et al (2018) On the path to extinction: Inbreeding and admixture in a
- declining grey wolf population. Mol Ecol 27:3599–3612. https://doi.org/10.1111/mec.14824
- 495 Grilo C, Lucas PM, Fernández-Gil A, et al (2018) Refuge as major habitat driver for wolf presence in human-
- 496 modified landscapes. Anim Conserv. https://doi.org/10.1111/acv.12435
- 497 Gude JA, Mitchell MS, Russell RE, et al (2012) Wolf population dynamics in the U.S. Northern Rocky
- 498 Mountains are affected by recruitment and human-caused mortality. J Wildl Manag 76:108–118.
- 499 https://doi.org/10.1002/jwmg.201
- 500 Haberl H, Erb KH, Krausmann F, et al (2007) Quantifying and mapping the human appropriation of net
- 501 primary production in earth's terrestrial ecosystems. Proc Natl Acad Sci 104:12942–12947.
- 502 https://doi.org/10.1073/pnas.0704243104
- 503 Hindrikson M, Remm J, Pilot M, et al (2017) Wolf population genetics in Europe: a systematic review, meta-
- analysis and suggestions for conservation and management. Biol Rev 92: 1601-1629.
- 505 https://doi.org/10.1111/brv.12298
- 506 Jedrzejewski W, Branicki W, Veit C, et al (2005) Genetic diversity and relatedness within packs in an

- 507 intensely hunted population of wolves *Canis lupus*. Acta Theriol (Warsz) 50:3–22.
- 508 https://doi.org/10.1007/BF03192614
- 509 Kaczensky P, Chapron G, Von Arx M, et al (2012) Status, management and distribution of large carnivores-
- 510 bear, lynx, wolf & wolverine–in Europe. Report by LCIE for the European Commission.
- 511 Kojola I, Kaartinen S, Hakala A, et al (2009) Dispersal Behavior and the Connectivity Between Wolf
- 512 Populations in Northern Europe. J Wildl Manag 73:309–313. https://doi.org/10.2193/2007-539
- 513 Kutal M, Váňa M, Suchomel J, et al (2016) Trans-Boundary Edge Effects in the Western Carpathians: The
- 514 Influence of Hunting on Large Carnivore Occupancy. PLOS ONE 11:e0168292.
- 515 https://doi.org/10.1371/journal.pone.0168292
- Laikre L, Jansson M, Allendorf FW, et al (2013) Hunting Effects on Favourable Conservation Status of Highly
- 517 Inbred Swedish Wolves: Hunting and Swedish Wolves. Conserv Biol 27:248–253.
- 518 https://doi.org/10.1111/j.1523-1739.2012.01965.x
- Leonard JA (2014) Ecology drives evolution in grey wolves. Evol Ecol Res 16:461–473.
- 520 Leonard JA, Vilà C, Wayne RK (2005) Legacy lost: genetic variability and population size of extirpated US
- 521 grey wolves. Mol Ecol 14:9–17. https://doi.org/10.1111/j.1365-294X.2004.02389.x
- 522 Liberg O, Chapron G, Wabakken P, et al (2011) Shoot, shovel and shut up: cryptic poaching slows
- restoration of a large carnivore in Europe. Proc R Soc B Biol Sci rspb20111275.
- 524 https://doi.org/10.1098/rspb.2011.1275
- 525 Linnell J, Salvatori V, Boitani L (2008) Guidelines for population level management plans for large carnivores
- 526 in Europe. A Large Carnivore Initiative for Europe report prepared for the European Commission (contract
- 527 070501/2005/424162/MAR/B2).
- 528 López-Bao JV, Blanco JC, Rodríguez A, et al (2015) Toothless wildlife protection laws. Biodivers Conserv 1-
- 529 4. https://doi.org/10.1007/s10531-015-0914-8
- 530 Louvrier J, Duchamp C, Lauret V, et al (2017) Mapping and explaining wolf recolonization in France using
- 531 dynamic occupancy models and opportunistic data. Ecography 41:647–660.
- 532 https://doi.org/10.1111/ecog.02874
- 533 Ludwig D (2001) The Era of Management Is Over. Ecosystems V4:758–764. https://doi.org/10.1007/s10021-
- 534 <u>001-0044-x</u>
- 535 MAGRAMA (2016) Censo 2012-2014 de lobo ibérico (*Canis lupus*, Linnaeus, 1758) en España. Ministerio de

- 536 Agricultura, Alimentación y Medio Ambiente, Madrid.
- 537 <u>https://www.miteco.gob.es/en/biodiversidad/temas/inventarios-</u>
- 538 <u>nacionales/censo_lobo_espana_2012_14pdf_tcm38-197304.pdf</u>. Accessed 11 November 2018
- 539 MARM (2009) Población y Sociedad Rural. Análisis y Prospectiva. Serie AgrInfo 12. Subdirección General
- 540 de Análisis, Prospectiva y Coordinación, Subsecretaría. Ministerio de Medio Ambiente y Medio Rural y
- 541 Marino. NIPO: 770-09-195-9
- 542 Mech LD, Boitani L, (IUCN SSC Wolf Specialist Group) (2010) Canis lupus. The IUCN Red List of
- 543 Threatened Species 2010: e.T3746A10049204. http://doi.org/10.2305/IUCN.UK.2010-
- 544 4.RLTS.T3746A10049204.en
- 545 Mech LD, Boitani L (2003) Wolf social ecology. In: Mech LD, Boitani L (eds) Wolves: behavior, ecology, and
- 546 conservation. University of Chicago Press, pp 1–34
- 547 Mech LD, Peterson RO (2003) Wolf-prey relations. In: Mech LD, Boitani L (eds) Wolves: behavior, ecology,
- and conservation. University of Chicago Press, pp 131–160
- 549 Milanesi P, Breiner FT, Puopolo F, Holderegger R (2017) European human-dominated landscapes provide
- ample space for the recolonization of large carnivore populations under future land change scenarios.
- 551 Ecography 40:1359–1368. https://doi.org/10.1111/ecog.02223
- 552 Ministère de la Transition Écologique et Solidaire (2018) Plan national d'actions 2018-2023 sur le loup et les
- 553 activités d'élevage. <u>https://www.ecologique-solidaire.gouv.fr/plan-national-dactions-2018-2023-sur-loup-</u>
- 554 <u>et-activites-delevage</u>. Accessed 11 November 2018
- 555 Novaro AJ, Funes MC, Walker RS (2005) An empirical test of source-sink dynamics induced by hunting. J
- 556 Appl Ecol 42:910–920. https://doi.org/10.1111/j.1365-2664.2005.01067.x
- 557 Ordiz A, Bischof R, Swenson JE (2013) Saving large carnivores, but losing the apex predator? Biol Conserv
- 558 168:128–133. https://doi.org/10.1016/j.biocon.2013.09.024
- 559 Padial JM, Contreras FJ, Pérez J, et al (2000) Análisis de la situación y problemática del lobo (Canis lupus
- *signatus*) en Sierra Morena oriental (sur de España). Galemys 12:37–44.
- 561 Palomo LJ, Gisbert J, Blanco J (2007) Atlas y libro Rojo de los mamiferos terrestres de España. Organismo
- 562 Autónomo Parques Nacionales, Madrid. <u>https://www.miteco.gob.es/es/biodiversidad/temas/inventarios-</u>
- 563 <u>nacionales/inventario-especies-terrestres/inventario-nacional-de-biodiversidad/ieet_mamif_atlas.aspx</u>.
- 564 Accessed 11 November 2018

- 565 Palstra FP, Fraser DJ (2012) Effective / census population size ratio estimation: a compendium and
- 566 appraisal. Ecol Evol 2:2357–2365. https://doi.org/10.1002/ece3.329
- 567 Petrucci-Fonseca F (1990) O lobo (*Canis lupus signatus* Cabrera, 1907) em Portugal. Problemática da sua
 568 conservação. PhD Thesis, Universidade de Lisboa
- 569 Pilot M, Greco C, vonHoldt BM, et al (2014) Genome-wide signatures of population bottlenecks and
- diversifying selection in European wolves. Heredity 112:428–442. https://doi.org/10.1038/hdy.2013.122
- 571 Pilot M, Jedrzejewski W, Branicki W, et al (2006) Ecological factors influence population genetic structure of
- 572 European grey wolves. Mol Ecol 15:4533–4553. https://doi.org/10.1111/j.1365-294X.2006.03110.x
- 573 Rick JA, Moen RA, Erb JD, Strasburg JL (2017) Population structure and gene flow in a newly harvested
- gray wolf (Canis lupus) population. Conserv Genet 18: 1091-1104. https://doi.org/10.1007/s10592-017-
- 575 0961-7
- 576 Rico M, Torrente JP (2000) Caza y rarificación del lobo en España: investigación histórica y conclusiones
- 577 biológicas. Galemys 12:163–179. http://www.secem.es/wp-content/uploads/2013/03/G-12-NE-14-Rico-
- 578 <u>163-179.pdf</u>. Accessed 11 November 2018
- 579 Rodríguez-Freire M, Crecente-Maseda R (2008) Directional Connectivity of Wolf (Canis lupus) Populations in
- 580 Northwest Spain and Anthropogenic Effects on Dispersal Patterns. Environ Model Assess 13:35.
- 581 https://doi.org/10.1007/s10666-006-9078-y
- 582 Rosen T, Bath A (2009) Transboundary management of large carnivores in Europe: from incident to
- 583 opportunity. Conserv Lett 2:109–114. doi: 10.1111/j.1755-263X.2009.00054.x
- 584 Sastre N, Vilà C, Salinas M, et al (2011) Signatures of demographic bottlenecks in European wolf
- 585 populations. Conserv Genet 12:701–712. https://doi.org/10.1007/s10592-010-0177-6
- 586 Schäfer M (2012) The National Wolf Strategy in Austria: An Evaluation of the Wolf Management-Plan and its
- Formulation Process using the Multiple-Streams Framework. Master's Thesis, Swiss Federal Institute of
 Technology Zurich
- 589 Schmidt JH, Burch JW, MacCluskie MC (2017) Effects of control on the dynamics of an adjacent protected
- 590 wolf population in interior Alaska: Population Dynamics of Wolves in Interior Alaska. Wildl Monogr 198:1–
- 591 30. https://doi.org/10.1002/wmon.1026
- 592 Shaffer ML (1981) Minimum Population Sizes for Species Conservation. Bioscience 31:131–134.
- 593 https://doi.org/10.2307/1308256

- 594 Silva P, López-Bao JV, Llaneza L, et al (2018) Cryptic population structure reveals low dispersal in Iberian
- 595 wolves. Sci Rep 8:14108. https://doi.org/10.1038/s41598-018-32369-3
- 596 Śmietana W, Wajda J (1997) Wolf number changes in Bieszczady National Park, Poland. Acta Theriol
- 597 (Warsz) 42:241–252. https://doi.org/10.4098/AT.arch.97-26
- 598 Soulé ME (1985) What is conservation biology? BioScience 35:727–734. https://doi.org/10.2307/1310054
- 599 Suutarinen J, Kojola I (2018) One way or another: predictors of wolf poaching in a legally harvested wolf
- 600 population. Anim Conserv. https://doi.org/10.1111/acv.12409
- Suutarinen J, Kojola I (2017) Poaching regulates the legally hunted wolf population in Finland. Biol Conserv
 215:11–18. https://doi.org/10.1016/j.biocon.2017.08.031
- Svensson L, Wabakken P, Maartmann E, et al (2015) Inventering av varg vintern 2014-15. Rovdata och
 Viltskadecenter, SLU
- Thornton DH, Wirsing AJ, Lopez-Gonzalez C, et al (2018) Asymmetric cross-border protection of peripheral
- transboundary species. Conserv Lett 11:e12430. https://doi.org/10.1111/conl.12430
- 607 Torres RT, Fonseca C (2016) Perspectives on the Iberian wolf in Portugal: population trends and
- 608 conservation threats. Biodivers Conserv 25:411–425. https://doi.org/10.1007/s10531-016-1061-6
- 609 Treves A, Krofel M, McManus J (2016) Predator control should not be a shot in the dark. Front Ecol Environ
- 610 14:380–388. https://doi.org/10.1002/fee.1312
- 611 Trouwborst A (2014a) The EU Habitats Directive and wolf conservation and management on the Iberian
- 612 Peninsula: a legal perspective. Galemys 26. https://doi.org/10.7325/Galemys.2014.A2
- 613 Trouwborst A (2014b) Living with Success And with Wolves: Addressing the Legal Issues Raised by the
- 614 Unexpected Homecoming of a Controversial Carnivore. Eur Energy Environ Law Rev 23:89–101.
- 615 Trouwborst A (2015) Global large carnivore conservation and international law. Biodivers Conserv 24:1567–
- 616 1588. https://doi.org/10.1007/s10531-015-0894-8
- 617 Trouwborst A, Boitani L, Linnell JDC (2016) Interpreting 'favourable conservation status' for large carnivores
- in Europe: how many are needed and how many are wanted? Biodivers Conserv 1–25.
- 619 https://doi.org/10.1007/s10531-016-1238-z
- 620 Trouwborst A, Krofel M, Linnell JDC (2015) Legal implications of range expansions in a terrestrial carnivore:
- 621 the case of the golden jackal (*Canis aureus*) in Europe. Biodivers Conserv 24:2593–2610.
- 622 https://doi.org/10.1007/s10531-015-0948-y

- 623 Valière N, Fumagalli L, Gielly L, et al (2003) Long-distance wolf recolonization of France and Switzerland
- 624 inferred from non-invasive genetic sampling over a period of 10 years. Anim Conserv 6:83–92.
- 625 https://doi.org/10.1017/S1367943003003111
- 626 Vilà C, Sundqvist A, Flagstad O, et al (2003) Rescue of a severely bottlenecked wolf (Canis lupus)
- 627 population by a single immigrant. Proc R Soc Lond Ser B 270:91–97.
- 628 https://doi.org/10.1098/rspb.2002.2184
- 629 Wagner C, Holzapfel M, Kluth G, et al (2012) Wolf (*Canis lupus*) feeding habits during the first eight years of
- its occurrence in Germany. Mamm Biol 77:196–203. https://doi.org/10.1016/j.mambio.2011.12.004
- 631 Wallach AD, Izhaki I, Toms JD, et al (2015) What is an apex predator? Oikos 124:1453–1461.
- 632 https://doi.org/10.1111/oik.01977
- 633 Wallach AD, Ritchie EG, Read J, O'Neill AJ (2009) More than Mere Numbers: The Impact of Lethal Control
- on the Social Stability of a Top-Order Predator. PLoS ONE 4:e6861.
- 635 https://doi.org/10.1371/journal.pone.0006861
- 636 Woodroffe R (2000) Predators and people: using human densities to interpret declines of large carnivores.
- 637 Anim Conserv 3:165–173. https://doi.org/10.1111/j.1469-1795.2000.tb00241.x

Table 1. Wolf management in the Iberian Peninsula. ¹Wolf range (km²) estimated from recent distribution maps (Chapron et al 2014b).²Number of packs (Spain:
 MAGRAMA 2016; Portugal: Torres & Fonseca 2016). 30 packs were counted twice, if they were shared between neighboring regions.³Number of wolves legally
 killed 2008-2013. ⁴Annexes of EU's Habitats Directive that apply in the Iberian Peninsula. ⁵Reference to the official management plan or conservation normative in
 force in 2008-2013.

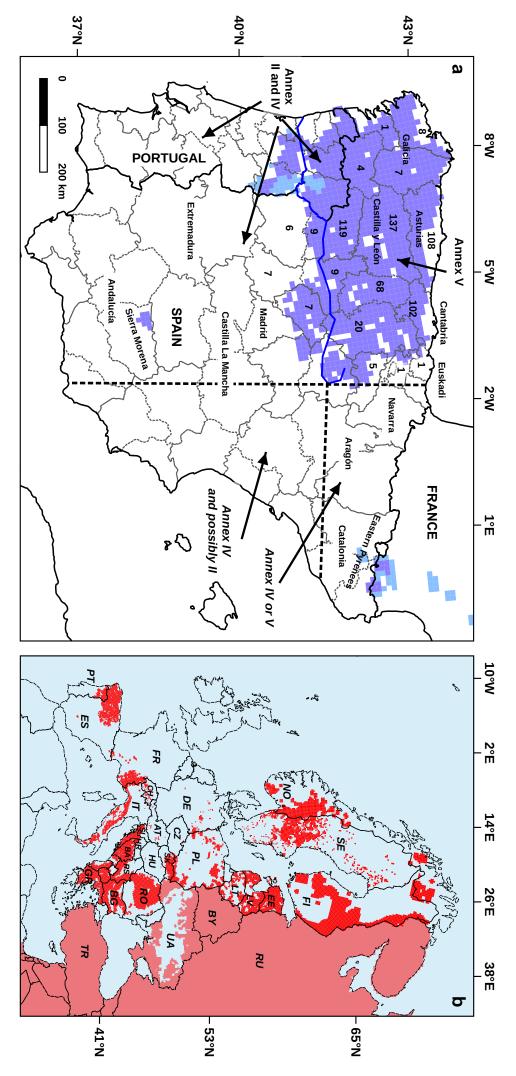

Region	Province / sector	Wolf range ¹	Packs ²	Wolves killed ³	Annex⁴	Plan⁵	Lethal management
Galicia	Lugo	9,285	37	7	V	297 / 2008	culling + hunting
	Ourense	7,093	26	4	V		culling + hunting
	Pontevedra	2,836	11	1	V		culling + hunting
	A Coruña	5,084	20	8	V		culling + hunting
Asturias		7,182	37	108	V	155 / 2002	culling
Cantabria		3,604	12	102	V	-	culling + hunting
La Rioja		1,973	1	5	V	-	culling + hunting
Euskadi	Bizkaia	382	1	1	V	-	culling + hunting
	Araba	757	0	1	V	33 / 2010	culling
Castilla y León	León	14,632	54	137	V	28 / 2008	culling + hunting
	Palencia	7,505	29	68	V		culling + hunting
	Burgos	12,062	17	20	II, IV, V		culling + hunting
	Valladolid	6,391	11	9	II, IV, V		culling + hunting
	Zamora	9,674	45	132	II, IV, V		culling + hunting
	Soria	3,663	4	0	II, IV, V		hunting
	Ávila	169	6	7	II, IV		culling
	Segovia	5,325	10	7	II, IV		culling
	Salamanca	303	3	6	II, IV		culling
Castilla-La Mancha	Guadalajara	1,185	2	0	II, IV	-	-
Madrid		298	1	0	II, IV	-	-
Andalucía		796	0	-	II, IV	-	-
Portugal	North of Douro South of Douro	12,608 4,137	54 9	0 0	II, IV II, IV	90 / 88	-
		4,107	9	U	11, IV		-

Figure 1A Sectors of wolf protection / management in the Iberian Peninsula, and distribution of lethal management.

644 The map shows the administrative units in Spain and Portugal. Shading indicates wolf range in the 645 Iberian Peninsula and southern France; lighter shading indicates sporadic presence (modified from Chapron 646 et al. 2014b; Chapron et al. 2014a). Numbers inside Spanish provinces indicate grey wolves legally killed in 647 2008-2013. The map is divided in sectors of wolf protection under EU's Habitats Directive, following the analysis by Trouwborst (2014a). Dashed lines and text in italics indicate sectors under unclear status in the 648 Habitats Directive. The solid blue line marks the Douro River, which in Spain separates lands where wolves 649 650 are listed in Annex V of the Directive to the north, and in Annexes II and IV to the south. In Portugal, wolves 651 are listed in Annexes II and IV.

652 Figure 1B. Grey wolf distribution in western Eurasia.

53 Shaded areas show the western part of the range of grey wolves in Eurasia. We used the permanent and 54 sporadic distributions datasets from Chapron et al. (2014b) for EU countries, complemented with the IUCN 55 Red List distribution map (Mech and Boitani 2010) for neighboring countries not covered in the former layer 556 (paler shading; note that latter dataset uses coarser spatial resolution).

