
ARTICLE TYPE: ORIGINAL RESEARCH ARTICLE

Improving the biomarker diagnostic capacity via functional

transformations
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ABSTRACT
The use of the area under the receiver-operating characteristic, ROC, curve (AUC) as
an index of diagnostic accuracy is overwhelming in fields such as biomedical science
and machine learning. It seems that a larger AUC value has become synonymous
with a better performance. The functional transformation of the marker values has
been proposed in the specialized literature as a procedure for increasing the AUC
and therefore the diagnostic accuracy. However, the classification process is based on
some regions (classification subsets) which support the decision made; one subject
is classified as positive if its marker is within this region and classified as negative
otherwise. In this paper we study the capacity of improving the classification per-
formance of univariate biomarkers via functional transformations and the impact of
this transformation on the final classification regions based on a real-world dataset.
Particularly, we consider the problem of determining the gender of a subject based
on the Mode frequency of his/her voice. The shape of the cumulative distribution
function of this characteristic in both the male and the female groups makes the
resulting classification problem useful for illustrating the differences between having
useful diagnostic rules and obtaining an optimal AUC value. Our point is that im-
proving the AUC by means of a functional transformation can produce classification
regions with no practical interpretability. We propose to improve the classification
accuracy by making the selection of the classification subsets more flexible while pre-
serving their interpretability. Besides, we provide different graphical approximations
which allow us a better understanding of the classification problem.

KEYWORDS
Area under the ROC curve; (Bio)markers; Generalized receiver-operating
characteristic (gROC) curve; Receiver-operating characteristic (ROC) curve.

1. Introduction

The term biomarker generally refers to a measurable indicator of some biological state
or condition (https://en.wikipedia.org/wiki/Biomarker). They have a wide range
of applications in (bio)medical sciences. Once a biomarker is identified, it can be used
as the basis for diagnosing a disease [16]. Frequently, biomarkers are used as surrogate
measures of the studied characteristics, but they are also used with prognostic goals
such as determining the susceptibility to respond to a treatment. Besides some biologi-
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cal desirable properties (usually reliability, interpretability, and feasibility [14]) a good
biomarker should have a strong relationship with the presence/absence of the studied
characteristic, i.e., good diagnostic capacity. That is, the biomarker value should en-
able us to know the real status of the subject with a small (as small as possible) error.
There are two potential errors associated with binary decisions: to classify a subject
within the positive group when it is actually in the negative group (the number of
negative subjects classified as positive out of the total number of negative subjects is
the so-called false-positive rate, FPR), and to classify a subject within the negative
group when it is actually positive (the number of positive subjects classified as neg-
ative out of the total number of positive subjects is the so-called false-negative rate,
FNR). A classification rule is a trade-off between these two potential mistakes. The
receiver-operating characteristic, ROC, curve [19] is a graphical tool routinely used to
represent the biomarker diagnostic capacity for all possible classification rules in the
way [c,∞) with c ∈ R. That is, by assuming (without loss of generality) that larger
values of the biomarker are associated with having a higher probability of being pos-
itive, the ROC curve plots the sensitivity, SE (i.e., the capacity of the biomarker for
detecting positive subjects) against the complementary of the specificity, 1− SP (the
specificity is the ability of the biomarker for detecting negative subjects) classifying as
positive those subjects within the subset [c,∞) for each c ∈ R. That means that the
decision criteria (rules) used by the ROC curve are {[c,∞) with c ∈ R}. Hence, the de-
cision/classification based on a particular ROC curve lies with one of those particular
rules.

Considering the case in which we want to know the gender of a subject
based on acoustic properties of her/his voice and speech, we use the Gender
recognition dataset freely available at https://www.kaggle.com/primaryobjects/

voicegender. It consists of 3,168 recorded voice samples collected from male
(50%) and female (50%) speakers. The voice samples were pre-processed by
acoustic analysis using the R packages seewave and tuneR. An original analysis
of this dataset can be found at http://www.primaryobjects.com/2016/06/22/

identifying-the-gender-of-a-voice-using-machine-learning. Particularly, we
are interested in the variable Mode frequency. Because the mean in the female group is
larger than in the male group (0.178±0.07 vs. 0.152±0.08, respectively), female will be
considered the positive group. Figure 1-A depicts the histograms for both the female
(gray) and the male (black) groups. Figures 1-D and 1-B show the subsets determining
that a subject is classified as positive (that is, female, in gray) for each 1 − SP value
and the resulting ROC curve, respectively.

In this case, the area under the ROC curve (AUC), frequently used for summarizing
the diagnostic capacity by a single number [3], is 0.581 with a 95% confidence interval
of [0.561, 0.602]. Henceforth the 95% confidence interval (based on 5,000 bootstrap
replications) for the AUC of the different curves will be displayed. However, the curve
presents some concavities. The existence of more than one relative maximum (point
around which it is possible to find an interval where that point is a maximum) in
the sum of the sensitivity and the specificity (Figure 1-C stands for the curve I(c) =
SE(c) − 1 + SP (c)) suggests that the decision capacity could be improved by using
more flexible decision criteria. That is, allowing to the decision rules be different to
[c,∞) with c ∈ R (for instance, considering as a possibility those subsets in the way
(−∞, a] ∪ [b,∞) with a < b ∈ R).

Two main approaches have been proposed for improving the diagnostic capacity of
a given biomarker. Arguing as in McIntosh and Pepe [15], Johnson [6] suggested to
transform the biomarker values by using a suitable functional transformation which
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Figure 1. Gender recognition data. Top-left, histogram of the Mode frequency by gender. Top-right, receiver-
operating characteristic, ROC, curve. Bottom-left, I(c) = SE(c)−1+SP (c). Bottom-right, classification subsets
(in gray, to classify as a female).
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should enhance the biomarker accuracy in the AUC sense. Recently, Kauppi [7] defined
the efficient ROC curve as the ROC curve resulting from the optimal (in the AUC
sense) functional transformation of a given biomarker. In that paper, two different
procedures (one semi-parametric, one non-parametric) to estimate the optimal trans-
formation are proposed. No real-world examples are provided in those papers. On
the other hand, Mart́ınez-Camblor et al. [11] proposed to increase the performance
of the biomarker by making more flexible the classification rules. They considered
the problem in which both the highest and the lowest biomarker values are asso-
ciated with having more probability of being positive. The parametric estimator of
the resulting ROC curve (called generalized ROC curve, gROC) was considered by
Mart́ınez-Camblor and Pardo-Fernández [12]. For particular real problems, more cus-
tomized criteria have been proposed. For instance, in the context of gene selection,
Pepe et al. [17] proposed to use the partial area under the ROC curve while Li and
Fine [8] considered a criterion based on a weighted area under the ROC curve.

It is worth to note that, when the biomarker is modelled by a univariate random
variable, directly working on the classification regions we preserve the sense and in-
terpretability of the classification process (white-box), while considering functional
transformations provokes a loss of control and interpretability in the derived classifi-
cation rules (black-box).

This paper study the capacity of improving the classification performance of univari-
ate biomarkers via functional transformations and the impact of this transformation on
the final classification regions based on a real-world dataset. Particularly, we considered
a dataset regarding the identification of the individual gender based on his/her voice
Mode frequency. Because of the specially intricate distributional shape of the charac-
teristic considered, the problem allows us to revise the two different aforementioned
approaches for improving the classification performance of a univariate biomarker. Our
results suggest that, even with extremely pathological distributional shapes, in prac-
tice, the obtained improvement by a flexible functional transformation is not relevant,
and indeed this procedure implies to deal with black-box (lack of practical interpre-
tation) classification rules. Rest of the paper is organized as follows. In section 2, we
consider the gROC curve and analyze the reported solution focused on the classifi-
cation rules. Section 3 is devoted to find the optimal functional transformation. We
revise the likelihood ratio argument and report some potential solutions. In section 4,
we compare the classification rules reported by the different solutions. We conclude
with a brief discussion about the topic in the section 5. As Supplementary Material
we provide the R code used for the computations. Some technical proofs are included
as Appendix.

2. gROC curve approach

Despite sometimes the ROC curve is described as a classification tool, it is actually
just a graphical representation of the general diagnostic capacity of the considered
biomarker. Underlying, there are certain classification rules which are the ones really
determining the group in which each subject is going to be allocated. Particularly,
each false-positive rate, t (= 1 − SP ) value within the interval [0, 1], has univocally
associated one region, r(t) (⊆ R), such that the ROC curve is

R(t) = P(ξ ∈ r(t)),
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where ξ stands for the random variable representing the positive subjects. Notice that,
if χ denotes the random variable representing the biomarker values for the negative
subjects, P(χ ∈ r(t)) = t. In the standard ROC curve, assuming that higher values of
the biomarker are associated with a greater likelihood of being positive, the regions are
always in the form r(t) = [c,∞) (c ∈ R). Therefore, if Fξ and Fχ depict the cumulative
distribution functions (CDF) for the positive and the negative subjects, respectively,
then c = F−1

χ (1 − t) (with G−1(·) = inf{y : G(y) ≥ ·}) and R(t) = 1 − Fξ(F−1
χ (1 −

t)). Mart́ınez-Camblor et al. [11] dealt with the case in which extreme values of the
biomarker are associated with having a higher probability of being positive, that is, for
each value of false-positive rate, t (0 ≤ t ≤ 1), they considered classification rules in the
form b(t) = (−∞, uL] ∪ [uU ,∞) with uL, uU ∈ R satisfying that P{χ ∈ b(t)} ≤ t (the
probability of misclassifying a negative subject is, at most, t). This characterization
is not unique. Usually, there exist infinite pairs, {uL, uU} with uL, uU ∈ R, satisfying
P{χ ∈ b(t)} ≤ t so, the one verifying b(t) = arg maxst∈I(t) P(ξ ∈ st) is taken, where
I(t) is a class of subsets satisfying that, for each st ∈ I(t),

i) st = (−∞, uL] ∪ [uU ,∞) with uL, uU ∈ R,
ii) P{χ ∈ st} ≤ t.

While condition ii) is essential for providing adequate classification rules, condition
i) can be adapted to any particular classification problem. The shape of the selected
subsets should be interpretable, but this point has to be solved for each particular
situation. It is interesting that it can be applied to domains others than R. With
this definition, classifications based on, for instance, multidimensional or functional
objects, among others, can be easily accommodated to the ROC curve context.

Distributions showed in Figure 1-A suggest that positive subjects (remember, fe-
male), are more likely to have medium values of Mode frequency. Hence, it seems
adequate to base the classification on subsets in the form (uL, uU ) with uL < uU ∈ R.
It is remarkable that the observed percentage of zeros was 4.8% in female and 10.1% in
male. Therefore, we are always committing a classification error when these subjects
are allocated within a group. Besides, there also exist other 14 values with ties between
male and female.

Figure 4 shows the non-parametric estimation for the gROC curve (solid-gray line).
Figure 6-A depicts the classification subsets on which the curve is based. The final
gAUC (area under the gROC curve) is 0.741 [0.726, 0.758]. It is remarkable that,
despite the fact that the gAUC can be seen as a measure (index) of the global diagnostic
capacity for the set of rules on the basis of which the gROC curve is built, it does
not share the standard AUC probabilistic interpretation (P(χ < ξ)). Under certain
conditions, particularly that

(C) let b(t1) and b(t2) (t1 ≤ t2 ∈ [0, 1]) be the corresponding eligible subsets such
that R(t1) = P(ξ ∈ b(t1)) and R(t2) = P(ξ ∈ b(t2)), then b(t1) ⊆ b(t2),

Mart́ınez-Camblor and Pardo-Fernández [12] proved that the AUC under continuous
ROC curves defined as R(t) = P(ξ ∈ b(t)) (0 ≤ t ≤ 1) is the probability of selecting
randomly and independently two subjects, one negative and one positive, for which
there exists one classification subset such that both subjects are correctly classified. In
any case, the AUC can always be interpreted as the average sensitivity (specificity)
for all specificity (sensitivity) values and beyond the determined classification rules,
it can always be used to compare the global classification accuracy of two different
biomarkers.
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3. Searching for a functional transformation

Following the celebrated Neyman-Pearson Lemma, McIntosh and Pepe [15] proved
that the optimal classification rules can be obtained from binary regression procedures.
Theoretically, let Y be the random variable representing the biomarker values (that is,
the values of the Mode frequency in the population for both men and women) and D
the binary random variable representing the disease status (in this case, an indicator
of having the studied characteristic: to be a woman), with P(Y ≤ c|D = 1) = Fξ(c)
and P(Y ≤ c|D = 0) = Fχ(c) (c ∈ R), the Neyman-Pearson lemma guarantees that,
for any α (= t), the screening rule with the highest sensitivity based on Y , among all
possible rules based on Y , is the likelihood ratio rule. That is,

c(α) < L(Y ) =
P(Y |D = 1)

P(Y |D = 0)
=
fξ(y)

fχ(y)
, (1)

where α = P(L(Y ) > c(α)|D = 0) and fξ and fχ are the density functions of ξ and χ,
respectively. Of course, last equality requires the existence of such density functions.
Then, directly by the Bayes’ rule,

p(Y ) = P(D = 1|Y )

=
P(Y |D = 1) · P(D = 1)

P(Y |D = 1) · P(D = 1) + P(Y |D = 0) · P(D = 0)
=

L(Y ) · q
1 + L(Y ) · q

, (2)

where q = P(D = 1)/P(D = 0). Therefore, the risk function, p(Y ), is a monotone
increasing function of L(Y ) and then, equation (1) can be written as p(Y ) > c∗(α),
with c∗(α) = c(α) · q/(1 + c(α) · q). Summarizing, if logit(p(Y )) = h(Y ), where h is
a real function, then h(Y ) > k (= k(α)) with k ∈ R, satisfying P(h(χ) > k) ≤ α,
provides the optimal classification rules among those based on Y . Then, the problem
is to estimate the function h. Besides, based on these results, it can be proved that, if
both negative and positive subjects are normally distributed, the gROC curve is based
on the optimal classification rules (see Appendix).

With no restrictions on the shape of h and based on a fixed sample of positive
and negative subjects without ties between the positive and negative values, it is
always possible to build a function which provides a perfect classification region. In
the dataset under consideration, let {e1, · · · , e15} be the fifteen different values of the
voice data which are taken for subjects in both the male and the female groups, and let
{u1, · · · , u1457} and {v1, · · · , v1362} be the other 1457 and 1362 different values taken
by subjects within the female and the male groups, respectively. Then, if we define
the function

hof (x) =


1 if x = ui for some i ∈ {1, . . . , 1457}
0 if x = vi for some i ∈ {1, . . . , 1357}
n. females taking the value ei
n. subjects taking the value ei

if x = ei for some i ∈ {1, . . . , 15}

(3)
The function hof (x) over those x out of the sample does not affect the empirical
AUC so it can be defined, without loss of generality, as a linear interpolation of the
points defined by the equation above. Classification based on this transformation is
the optimal one in the AUC sense (see the Appendix section for a rigorous proof).
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Figure 2. Histograms of different functional transformations of the Mode frequency by gender. Top-left,
biomarker crude. Top-right, overfitted (hof ) curve. Bottom-left, 10 knots restricted cubic splines (hsp) curve.
Bottom-right, cubic (hcr) function.
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0.15 and 0.85. Top-left, biomarker crude. Top-right, overfitted (hof ) curve. Bottom-left, 10 knots restricted

cubic splines (hsp) curve. Bottom-right, cubic (hcr) function.

Figure 2 (top-right) depicts the histograms of the biomarker transformed by hof
for both the female (gray) and the male (black) groups. The AUC based on this
transformation is 0.997 [0.996, 0.998]. Figure 4 (dashed-gray line) depicts the obtained
ROC curve. However, regions employed to get these classifications are difficult to
explain from a practical point of view and the overfitting is clear. Figure 3 (top-right)
shows the function hof and the regions of Mode frequency which provide false-positive
rates (FPR) of 0.15 (blue) and 0.85 (red). Figure 6-B stands for the classification
subsets on which the decisions based on hof (·) are taken.

López-Ratón [9] proposed to estimate the function h by using general additive mod-
els (GAM). Particularly, she considered the use of spline smoothing methods to esti-
mate h(·) from a logistic GAM regression model. Other tools such as kernel or P-spline
smoothing techniques [2] are also recommended. All these procedures provide smooth
functions highly adapted to the data shape. Their main handicap is – perhaps – the
lack of a short (and usable) functional expression. For the voice-gender recognition
data, we consider the implementation of the logistic regression of the restricted cu-
bic splines [1] (natural splines) procedure included in the R package rms (Regression
Modeling Strategies) developed by F.E. Harrell (version 5.1-2 uploaded to the CRAN

on 2018-01-07). Figure 3 (bottom-left) depicts the estimated function when 10 knots
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are considered,

hsp(x) = β0 + β1 · x+

9∑
j=2

βj ·

{[
(x− x∗j−1)3

(x∗10 − x∗1)2

]
+

−
[

(x− x∗9)3

(x∗10 − x∗1)2

]
+

·
x∗10 − x∗j−1

x∗10 − x∗9
+

[
(x− x∗10)3

(x∗10 − x∗1)2

]
+

·
x∗9 − x∗j−1

x∗10 − x∗9

}
,

where [u]+ = max{u, 0}, {x∗1, · · · , x∗10} = {0.0007, 0.0153, 0.1038, 0.1475, 0.1752,
0.1919, 0.2054, 0.2225, 0.2424, 0.2708} is the vector of knots and {β0, · · · , β9} = {-
0.9411, 165.99, -7682.35, 9927.90, -4853.82, 456.03, 11816.26, -17863.90, 8858.09,
1809.01} is the vector of coefficients. Figure 2 (bottom-left) shows the histograms
of the biomarker transformed by this function for both the female (gray) and the male
(black) groups. The resulting function reflects the difference in the monotony observed
for J(·) (see Figure 1). The ROC curve based on hsp(·) (solid-black line in Figure 4)
achieves an AUC of 0.786 [0.772, 0.803]. Figure 6-C depicts the classification subsets
which lead to the ROC curve based on the hsp(·) transformation.

Anyway, the most direct solution to estimate the function h is to consider logistic
polynomial regression models. That is, to fix a degree for the polynomial, g, and to
estimate the parameters of the model

p(Y ) =
exp{β0 + β1 · Y + · · ·+ βg · Y g}

1 + exp{β0 + β1 · Y + · · ·+ βg · Y g}
,

where the coefficients βi (0 ≤ i ≤ g) can be directly estimated by using the maximum
likelihood procedure. The main handicap is to select the polynomial degree and the
evident risk of overfitting for too large g-values. Based on the shape of hsp(·), we
consider a logistic cubic regression, g = 3, obtaining the model

p(Y ) =
1

1 + exp{0.188 + 65.4 · Y − 710.6 · Y 2 + 1790.8 · Y 3}
.

It can be directly computed by making dummy variables Y2 = Y 2 and Y3 = Y 3

and including the three variables (Y, Y2 and Y3) in a standard multivariate logistic
regression procedure (see the R code provided as supplementary material). Figure 3
(bottom-right) stands for the estimated function,

hcr(x) = −0.188− 65.4x+ 710.6x2 − 1790.8x3,

and the corresponding classification subsets for FPR of 0.15 (blue) and 0.85 (red);
while the histograms of the biomarker transformed by hcr for both the female (gray)
and the male (black) groups are displayed in Figure 2 (bottom-right). The ROC curve
based on the transformed biomarker achieved an AUC of 0.725 [0.707, 0.743]. Figure
4 (dashed-black line) depicts this ROC curve.

While it seems clear that the hof (·) is too close to the fixed sample and the overfit-
ting is immediate, both smooth (restricted cubic splines, in this case) and polynomial
logistic regression provide reasonable and flexible estimates for a functional transfor-
mation. Of course, it is difficult to know if there exists any other theoretical func-
tion which improves the diagnostic capacity of the biomarker. However, to consider
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restricted cubic splines estimator is a consistent method to get this objective. Top
panels of Figure 5 depict, in gray, the functions obtained from 100 bootstrap samples
when both restricted cubic splines and cubic polynomial logistic regression were used
for estimating the functions. Bottom panels of Figure 5 show these functions when the
considered sample size was the 25% of the original one.

4. Classification rules

As it is well-known, the ROC curve plots the sensitivity against the complementary of
the specificity over the unit interval. It reports visually the global diagnostic capacity
of a studied biomarker while the AUC summarizes in a single number this information.
However, the process of allocating a subject within a group given a biomarker value
requires to know if this value is within or outside one particular region. Once the
minimum required specificity (or sensitivity) is fixed (frequently, the point leading the
Youden index [18] is taken, i.e., arg maxc∈R I(c)), in order to make the decision, we
need to know explicit values for this region. Besides, in some particular problems,
these regions can help to understand the problem and to make recommendations (for
instance, for determining the adequate values of serum phosphorus, calcium or PTH
which minimize the mortality risk in dialysis patients [4]).

Based directly on the Mode frequency, for a fixed specificity of 0.85, the region de-
termining that a subject is female is the interval [0.245, 0.28] (0.28 is the maximum
Mode frequency value observed in the dataset) which reaches a sensitivity of 0.079.
When we consider extreme values of Mode frequency as male, for the same speci-
ficity the region determining that a subject is female is (0.156, 0.204), which reaches
a sensitivity of 0.462. By using a three-degree polynomial logistic regression, hcr(·),
the resulting region is (0.187, 0.222) with a sensitivity of 0.365. With more flexibility,
by using the restrictive cubic splines transformation, hsp(·), the region is in the form
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Figure 5. Top panels, in gray, functions estimated from 100 bootstrap samples by using restricted cubic

splines (left) and cubic logistic regression (right). Bottom panels, identical plots but considering 25% of the

values of the original sample.

(0.012, 0.045)∪ (0.160, 0.192)∪ (0.201, 0.212) and reports a sensitivity of 0.417. Figure
6 depicts the classification subsets for the different considered criteria.

5. Discussion

Both the receiver-operating characteristic, ROC, curve and the area under the ROC
curve, AUC, have become so popular that, frequently, the diagnostic capacity of a
biomarker is directly identified with its AUC. Getting a large AUC has become an
objective by itself. In this context, finding an adequate functional transformation of
the biomarker values that reaches an AUC as large as possible seems to be a potential
procedure to improve the biomarker capacity. However, decisions are made based on
some particular regions (classification subsets) and their practical interpretation is
frequently helpful for a better understanding of the problem and used for making
recommendations (white–box). The optimal function can report the largest AUC (see,
for instance, results reported by function hof (·)) but having associated classification
regions which make difficult its interpretation (black-box). Even though the biomarker
behavior should be different in each group in order to be used for diagnostic tasks, a
different behavior does not guarantee its use in such problems [10].

In this paper we study the capacity of univariate biomarkers to improve their classi-
fication performance via functional transformations and the impact of this transforma-
tion on the final classification regions based on a real-world dataset. Particularly, we
based our research on the problem of determining the gender of a subject given some
feature of his/her voice, particularly, the Mode frequency. The distribution functions of
this characteristic in both male and female groups are complex: in both the CDF has
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Figure 6. Classification subsets for the gROC curve (A), for the biomarker with the overfitted transformation,
hof (·) (B), the restrictive cubic splines transformation, hsp(·) (C) and the three-degree polynomial logistic

regression, hcr(·) (D).
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a non-negligible discontinuity at zero and both densities have two additional modes at
different points (Figure 1-A). We can say that the behavior of the Mode frequency is
different in male and female. However, its use with classification purpose reports a poor
AUC of 0.581 [0.561, 0.602]. The reason seems to be that, although the Mode frequency
mean is larger in female than in male group, intervals in the way [c,∞) (c ∈ R) are not
adequate for reflecting the CDFs complexity. A rapid overview suggests that the Mode
frequency in male is more likely to take extreme values of the spectrum. Considering
classification subsets in the form (a, b) (a ≤ b ∈ R) according to the so-called gROC
curve approach [11, 12] improves the global diagnostic capacity and gets an AUC of
0.741 [0.726, 0.758]. McIntosh and Pepe [15] proved that the optimal classification
criterion among those based on one particular biomarker can be computed from a
binary regression with an adequate functional transformation of the biomarker. This
argument has already been exploited [6, 7, 9]. It is worth noting that no real-world
examples were reported in those papers. In addition, the estimation of this function
has several drawbacks. Some restrictions must be imposed in order to avoid overfitting
(Figure 6-B). Based on the Gender recognition data, we mainly consider a three-degree
polynomial transformation and a cubic restricted splines (with 10 knots). Those re-
port AUCs of 0.725 [0.707, 0.743] and 0.786 [0.772, 0.803], respectively. Besides, both
methods seem to be consistent and report similar resulting functions when different
resampling procedures were considered (Figure 5). Their main handicap is the inter-
pretation of the associated classification subsets which, in this case, sometimes result
in a union of two or even three intervals. Depending on the considered problem, these
regions are not realistic and, in any case, each particular problem should be cautiously
studied in order to provide a reasonable explanation.

Of course, one can design artificial distributions on which the functional transfor-
mation clearly improves the results obtained by the gROC curve. Besides the splines
procedure has proved its capacity for finding this underlying pattern (see, for instance,
Hansen and Kooperberg [5]). However, this kind of distributions are rarely found in
actual practice. In this work, we show that even when the shapes of the distributions
are specially intricate, functional transformations get a slight improvement in terms
of the area under the curve.

In practice, a flexible binary regression can be used in order to get the optimal
(or close to the optimal) AUC based on one particular biomarker. Then, additional
restrictions can be added to this regression (for instance reducing the number of knots
in a penalized cubic splines procedure) and weighing the simplicity of the models and
the improvement in the AUC one can decide what is the adequate criteria for each
model. We also encourage the reader to consider and to prioritize the gROC curve if
the difference between the derived AUCs is not relevant. This curve produces direct
and easy to interpret classification rules.

In short, particular polynomial binary regression and, preferably, some binary flex-
ible functional regression (such as restricted cubic splines) provides a valuable tool to
know the limits in the global classification capacity of a studied marker. When the
resulting classification subsets lack practical interpretation, additional restrictions on
the function can be imposed to simplify their shape. Furthermore, the gROC curve
approach provides the optimal AUC when extreme values of the biomarker are asso-
ciated with having a higher probability of being positive (or negative). The fact that
in the considered Gender recognition dataset, with extremely atypical CDFs for the
Mode frequency in both the male and the female groups, we found only a small differ-
ence between the gAUC (area under the gROC curve) and the AUC provided for the
hsp(·) (just an improvement of 6.1%) suggests that, in most real situations, considering
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the gROC curve would be enough to get both simple classification regions and a good
diagnostic capacity.

Supplementary Material

As supplementary material of this paper we provide the R code used for comput-
ing plots and models reported herein. R packages nsROC (developed by Sonia Pérez-
Fernández) and rms (developed by Frank E. Harrel Jr.) are required. The used Gender-
recognition dataset is freely available at https://www.kaggle.com/primaryobjects/
voicegender.

Appendix: Technical issues

Theorem. If the studied biomarker is normally distributed for both positive and neg-
ative groups, then the classification rules on which the gROC curve is based are the
optimal ones among those based on this biomarker.

Proof. Notice that if ξ and χ (random variables representing the values of the
biomarker in the positive and the negative group, respectively) follow N (µξ, σξ) and
N (µχ, σχ) distributions, respectively (N (µ, σ) stands for a normal distribution with
mean µ and standard deviation σ) the ROC curve derived from ξ and χ is equivalent
to the one derived from ξ∗ = (ξ − µχ)/σχ and χ∗ = (χ − µχ)/σχ. Thus ξ∗ follows a
N (a, b) with a = (µξ − µχ)/σχ and b = σξ/σχ and χ∗ follows a N (0, 1).

Mart́ınez-Camblor and Pardo-Fernández [12] proved that, assuming that extreme
values of the biomarker are associated with having more probability of being positive
(that implies b ≥ 1), for each t ∈ [0, 1], the gROC curve is based on the subsets

b∗(t) =
(
−∞,Φ−1(γt · t)

]
∪
[
Φ−1(1− t+ γt · t),∞

)
, (4)

where Φ stands for the CDF of a standard normal distribution and γt is the solution
to the equation

γt =
1

t
· Φ
(

2 · a
1− b2

− Φ−1(1− t+ γt · t)
)
, (5)

Notice that if σξ = σχ (b = 1), then the equation (5) does not have a real solution
and γt falls on the extremes, γt = 0 for a > 0 (b∗(t) = [Φ−1(1− t),∞)) and γt = 1 for
a < 0 (b∗(t) = (−∞,Φ−1(t)]).

Equation (1) implies that, for the considered context, assuming σξ > σχ, the optimal
classification rules are given by

log(c(α)) < log(L(Y ))

=− log(b) +
b2 − 1

2 · b2
·

{(
x− a

1− b2

)2

− a2 · b2

(1− b2)2

}
. (6)

Equivalently, the classification rules based on the transformation h(x) = (x − a/(1 −
b2))2 are optimal among those based on the considered biomarker. Notice that if
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σξ = σχ, the quadratic factor is cancelled, then: if a > 0, no transformation is needed;
if a < 0, just a change of sign is required. In these cases, the classification subsets are
the same as the ones employed in the gROC curve. For each t ∈ [0, 1] the classification
subset is

a∗(t) = (−∞,−
√
c+ a/(1− b2)] ∪ [

√
c+ a/(1− b2),∞), (7)

with P(h(χ) ≤ c) = 1− t, that is

1− t = Φ

(√
c+

a

1− b2

)
− Φ

(
−
√
c+

a

1− b2

)
.

Making

Φ

(
−
√
c+

a

1− b2

)
= γ · t,

then

−
√
c =Φ−1(γ · t)− a/(1− b2) and,
√
c =Φ−1(1− t+ γ · t)− a/(1− b2).

Directly, a∗(t) =
(
−∞,Φ−1(γ · t)

]
∪
[
Φ−1(1− t+ γ · t),∞

)
where γ is the solution to

the equation,

γ =
1

t
· Φ
(

2 · a
1− b2

− Φ−1(1− t+ γ · t)
)
. (8)

Therefore, a∗(t) = b∗(t) for each t ∈ [0, 1] and both gROC and optimal ROC curves
based on the biomarker defined by ξ∗ and χ∗ are the same. Directly, these curves are
the same as the ones based on ξ and χ, so the theorem is proved.

It is remarkable that the result does not need the normality of ξ and χ but just
that there exists a monotone transformation, H, such that both H(ξ) and H(χ) are
normally distributed.

Next result proves the transformation which gets the optimal AUC in two finite
populations of positive and negative subjects is the one described in the main
manuscript. This results can be applied on empirical samples.

Proposition. Let {xi, · · ·xn} and {y1, · · · , ym} be populations of positive and negative
subjects, respectively. Let {u1, · · · , udn} and {v1, · · · , vdm} be the values taken just by
the positive or the negative subjects, respectively, and let {e1, · · · , ek} be those values
taken by both the positive and the negative subjects with frequencies n1, · · · , nk and
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m1, · · · ,mk, respectively. Then, the transformation

hop(x) =


1 if x = ui for some 1 ≤ i ≤ dn
0 if x = vj for some 1 ≤ j ≤ dm

nl
nl +ml

if x = el for some 1 ≤ l ≤ k

gets the largest AUC among all possible transformations.

Proof. Let In0 and Im0 be the set of indices whose original values are included in
those sets. That is i ∈ In0 if xi = uj for some 1 ≤ j ≤ dn and j ∈ Im0 if yj = vi for some
1 ≤ i ≤ dm. Notice that if n0 and m0 are the cardinality of In0 and Im0 , respectively,
then n = n0 + n1 + · · ·+ nk and m = m0 +m1 + · · ·+mk.

Given any transformation, h, we have that the AUC is defined [13] by

AUC(h) =
1

nm

∑
i∈In0

∑
j∈Im0

W (h(yj), h(xi)) +
1

nm

∑
i∈In0

k∑
l=1

mlW (h(el), h(xi))

+
1

nm

k∑
s=1

ns
∑
j∈Im0

W (h(yj), h(es)) +
1

nm

k∑
s=1

ns

k∑
l=1

mlW (h(el), h(es))

=
1

nm
(S1 + S2 + S3 + S4) , (9)

where if I(A) takes the value 1 if A is true and 0 otherwise, for a, b ∈ R, W (a, b) =
I(a < b) + 1/2 · I(a = b).

S1, S2 and S3 are simultaneously maximized if h satisfies

(C1) h(vj) < h(el) < h(ui) for 1 ≤ j ≤ dm, 1 ≤ l ≤ k and 1 ≤ i ≤ dn.

In addition, S4 is not affected by this condition, only by the order of h(e1), . . . , h(ek),
then we can define

hop(vj) = 0 for all 1 ≤ j ≤ dm and hop(ui) = 1 for all 1 ≤ i ≤ dn (10)

without loss of generality provided that h(el) ∈ (0, 1) ∀1 ≤ l ≤ k.

In order to maximize S4 what we should find is the order of h(e1), . . . , h(ek) which
optimizes the following sum depending on the frequencies nl and ml:

S4 =
1

nm

k∑
s=1

ns

k∑
l=1

mlI(h(el) < h(es)) +
1

2nm

k∑
s=1

ns

k∑
l=1

mlI(h(el) = h(es)). (11)

McIntosh and Pepe [15] proved that the optimal h is the likelihood ratio rule (or a
monotone increasing function of it), which in the empirical case over {e1, · · · , ek} is

hop(el) =
P(el|D = 1)

P(el|D = 0)
=

nl/n

ml/m
=
m

n
· nl
ml
.
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Then, the transformation maximizing the term S4 satisfies

(C2) h(el) = g

(
m

n
· nl
ml

)
with g any monotone strictly increasing function.

Since m/n is only a positive constant, the order induced by nl/ml is the one leading
to optimize equation (11). In order to satisfy (C1) and definition in (10) we can define

hop(el) =
nl

nl +ml
for 1 ≤ l ≤ k (12)

because the order of induced by nl/(nl +ml) is that induced by nl/ml but the values
are in the unit interval.

Notice that, since (C2) does not affect (C1) those functions which satisfy both
simultaneously maximize S1, S2, S3 and S4. Since hop defined by (10) and (12) satisfies
them it gets the optimal AUC.

It is remarkable that the result assigns the same h to those el with the same rate
nl/ml. Even if regarding definition of W (a, b) it seems better to make them different
but consecutive since the second term is multiplied by 1/2, it can be seen that the
gain in AUC for being different is lost through the loss in number of ties (h(el), h(es)).
Below we can see a proof of this fact:

Proof. If ni/mi = c for some i ∈ I∗ := {i∗1, . . . , i∗k∗} ⊆ {1, . . . , k}, the loss in AUC

• if h(ei∗1) = · · · = h(ei∗k∗ ) is

1

2nm

∑
i∈I∗

ni ·
∑
i∈I∗

mi =
1

2nm

∑
i∈I∗

nimi +
1

2nm

∑
i∈I∗

ni ·∑
j∈I∗
j 6=i

mj

 (13)

• if h(ei∗1) < · · · < h(ei∗k∗ ) but consecutive is

1

2nm

∑
i∈I∗

nimi +
1

nm

∑
i∈I∗

ni ·∑
j∈I∗
j<i

mj

 (14)

Then it has to be proven that (13) = (14):

(13) = (14) ⇐⇒ 1

2nm

∑
i∈I∗

ni ·∑
j∈I∗
j 6=i

mj

 =
1

nm

∑
i∈I∗

ni ·∑
j∈I∗
j<i

mj



⇐⇒
∑
i∈I∗

ni ·∑
j∈I∗
j>i

mj

 =
∑
i∈I∗

ni ·∑
j∈I∗
j<i

mj


17



Since ni/mi = c for all i ∈ I∗, then substituting ni by cmi:

(13) = (14) ⇐⇒
∑
i∈I∗

mi ·
∑
j∈I∗
j>i

mj

 =
∑
i∈I∗

mi ·
∑
j∈I∗
j<i

mj


But

∑
i∈I∗

mi ·
∑
j∈I∗
j>i

mj

−∑
i∈I∗

mi ·
∑
j∈I∗
j<i

mj

 =
∑
i∈I∗

mi ·

∑
j∈I∗
j>i

mj −
∑
j∈I∗
j<i

mj




=
∑
i∈I∗

mi ·
∑
j∈I∗
j>i

mj

−∑
i∈I∗

mi ·
∑
j∈I∗
j>i

mj

 = 0.

Acknowledgement

This work is supported by the Grants MTM2015-63971-P, MTM2014-55966-P
and MTM2017-89422-P (ERDF support included) from the Spanish Ministerio of
Economı́a y Competitividad, FC-15-GRUPIN14-101 from the Asturies Government
and Severo Ochoa Grant BP16118 (this one for S. Pérez-Fernández).
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Garćıa, J. Sánchez, D. Rodŕıguez-Puyol, and J. Cannata-Andia, Improvement of mineral
and bone metabolism markers is associated with better survival in haemodialysis patients:
the COSMOS study, Nephrology Dialysis Transplantation 30 (2015), pp. 1542–1551.

[5] M. Hansen and C. Kooperberg, Spline adaptation in extended linear models (with com-
ments and a rejoinder by the authors, Statistical Science 17 (2002), pp. 2–51.

[6] N. Johnson, Advantages to transforming the receiver operating characteristic (ROC) curve
into likelihood ratio co-ordinates, Statistics in Medicine 23 (2004), pp. 2257–2266.

[7] H. Kauppi, The generalized receiver operating characteristic curve, Aboa Centre for Eco-
nomics, Discussion paper 114 (2016), pp. 1–50.

18



[8] J. Li and J. Fine, Weighted area under the receiver operating characteristic curve and its
application to gene selection, Journal of the Royal Statistical Society: Series C (Applied
Statistics) 59 (2010), pp. 673–692.
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