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ABSTRACT This paper describes a general framework for the optimization of very large reflectarrays for
space applications. It employs the generalized Intersection Approach (IA) as optimizing algorithm, integrat-
ing a number of techniques that substantially improve the baseline algorithm by accelerating computations
while preserving the accuracy of the electromagnetic analysis. In particular, a learning algorithm based on
Support Vector Machines (SVMs) is used to obtain a surrogate model of the reflectarray unit cell accelerating
the analysis more than three orders of magnitude. For the optimization, the gradient computation is
accelerated by employing the technique of differential contributions on the radiated field, which avoids
the use of the Fast Fourier Transform (FFT) in the computation of the far field. Finally, to improve the
cross-polarization performance, instead of optimizing the crosspolar pattern, the crosspolar discrimination
or crosspolar isolation are optimized, improving both the antenna and algorithm performance. Relevant
numerical examples are provided to show the capabilities of the proposed framework for a Direct Broadcast
Satellite (DBS) mission, showing how to design a contoured beam reflectarray with a European footprint
with two different coverage zones. In addition, a complete study of computing time is carried out to analyse
the impact of each technique in the optimization process.

INDEX TERMS Very large reflectarray, radiation pattern synthesis, contoured beam, crosspolar op-
timization, machine learning technique, support vector machines, gradient-based algorithm, crosspolar
discrimination (XPD), crosspolar isolation (XPI), Direct Broadcast Satellite (DBS)

I. INTRODUCTION

The constant development of communication technologies
has resulted in the need of systems which fulfil increasing
tighter requirements in order to improve their quality and per-
formance. In particular, communications through satellites
are commonplace in modern society, including applications
such as television broadcast, mobile telephone networks and
data transmission. In addition to communication satellites,
other space applications include radar, navigation and remote
sensing [1]. In all of them, the antenna is a very important
subsystem, since it allows wireless communications, convert-

ing guided waves into radiating waves propagating in free
space, and vice versa. Depending on the application, different
parameters may be optimized, including but not limited to
efficiency, size, matching and radiation pattern. Specifically,
radiation pattern synthesis is important for both terrestrial
and space application, since non-canonical beam patterns
are not easy to achieve [2]. Furthermore, within antenna
pattern synthesis, copolar shaped patterns are easier to obtain
compared with crosspolar far field optimization. Some appli-
cations that demand shaped beams include global Earth cov-
erage, which requires an isoflux pattern providing constant
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FIGURE 1. Illustration of a satellite in geostationary orbit providing DBS
service with a European footprint having several coverages zones with
different requirements.

energy flux on the surface of the Earth [3]; Direct Broadcast
Satellite (DBS) applications, which require a shaped beam to
fulfil a given footprint on the Earth Surface (see Fig. 1); etc.
DBS applications are particularly challenging since they also
require a high polarization purity, working with very large
antennas. Traditionally, shaped parabolic reflectors have been
used for this kind of applications [1]. However, they are bulky
and expensive, and with the popularization of the microstrip
technology reflectarrays have become a potential substitute
to parabolic reflector dishes [2].

A reflectarray consists of a primary feed, typically a horn
antenna, and an array of radiating elements, which add a
certain phase-shift on the reflected wave (see Fig. 2). They
are usually comprised of hundreds or even thousands of
elements, making antenna pattern synthesis a very challeng-
ing task when dealing with very large reflectarrays. This is
especially true for applications with very stringent require-
ments, such as Direct Broadcast Satellite (DBS) missions
[1], [2]. In addition, current applications such as multibeam
[4] or Synthesis Radar Aperture (SAR) [5] are proposing
ever-larger reflectarrays, with very high gain and narrow
beams which are driving current analysis and optimization
techniques to face memory and computational limitations
due to the large number of elements involved and the high
resolution necessary to correctly characterize the radiation
pattern.

The optimization of reflectarray antennas has been a chal-
lenge in recent years. The dominant synthesis approach
consists in a Phase-Only Synthesis (POS) that employs a
simplified analysis of the reflectarray unit cell to accelerate
computations. In POS, the unit cell is considered an ideal
phase-shifter with no losses and no cross-polarization [6].
These simplifications barely affect the copolar pattern [7],
but the crosspolar pattern computed is not valid. Thus, POS
techniques are only able to deal with copolar requirements
[6]–[8]. The goal of the POS is to obtain a phase distribution
that generates the desired copolar pattern according to certain
requirements. Then, the reflectarray layout is obtained using

a Full-Wave analysis tool based on Local Periodicity (FW-
LP), usually a Method of Moments (MoM-LP) and a zero-
finding routine which adjusts the geometry of each unit cell
to match the required phase-shift [2]. The simulated layout
using a FW-LP will produce the desired copolar pattern as
obtained from the POS plus a small gain loss which depends
on the selected substrate. However, since the crosspolar
pattern was not taken into account during the synthesis, it
may not comply with the expected cross-polarization perfor-
mance, which will depend on the application.

The crosspolar optimization was first handled at a unit
cell level [9]–[13] since the direct optimization of the whole
reflectarray was considered impractical [14]. An early work
[9] proposed an arrangement of the reflectarray elements in
four quadrants with mirror symmetry to reduce the crosspolar
pattern. This approach was later improved in [10], where
the mirror-like arrangement was imposed among neighbour
elements, and showed better performance than that of [9].
Another technique was presented in [11] and later imple-
mented in [12]. It consists in enforcing a null in the amplitude
of the reflection cross-coefficients that contribute more to the
crosspolar pattern. Element rotation was employed in [13]
to minimize the crosspolar tangential field at the reflectarray
aperture, thus reducing the crosspolar pattern indirectly. For
this reason, working at the element level provides suboptimal
results.

A more flexible approach to the crosspolar optimization is
to work at the radiation pattern level, optimizing all the reflec-
tarray elements at the same time. In this regard, some tech-
niques have been developed that allow the direct optimiza-
tion of reflectarray antennas considering both copolar and
crosspolar requirements. One of the first works to perform
direct optimization was presented in [15]–[17]. However, it
only considered single-polarized reflectarrays with very few
elements (a total of 225) and the algorithm was slow. In [18],
an efficient extension of the Intersection Approach algorithm
was presented, giving as a result a distribution of reflection
coefficient matrices (instead of a phase distribution). The
main drawback was to obtain a reflectarray layout from such
matrices, which is a challenging task. Nevertheless, a similar
approach was followed in [19], and the layout was obtained
by applying trapezoidal transformations to the unit cell. In
[20] a gradient minimax algorithm was used, accelerating
computations with the use of a database of the scattering ma-
trix of the reflectarray unit cell. In [21] the direct optimization
employs a full-wave analysis based on local periodicity, in
particular a MoM-LP, making computations slow. However,
the algorithm is able to handle thousands of optimizing
variables with success and a number of techniques were
introduced to minimize the number of calls to the MoM-LP
routine and to accelerate computations.

In this paper, we present a general framework for the
efficient optimization of very large reflectarrays including
copolar and crosspolar requirements, focusing on space ap-
plications where the specifications are very tight. The chosen
algorithm is the generalized Intersection Approach, which
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integrates a number of techniques that substantially improve
the baseline algorithm from the point of view of the antenna
and algorithm performances. First, the reflectarray analysis is
presented, with an efficient formulation taking into account a
spatial shift which may cause a pointing error in the far field
if it is not considered. Then, the MoM-LP is replaced with a
machine learning algorithm, SVM, to greatly accelerate the
analysis time while keeping a high degree of accuracy with
regard to the electromagnetic tool simulations. Thanks to the
use of the SVM, the analysis and layout design of a very
large reflectarray comprised of several thousand elements are
accelerated more than three orders of magnitude. Next, the
computation of the gradient is considerably accelerated by
employing differential contributions to the far field, thanks to
the linearity of Maxwell’s equations, which provides a linear
relationship between the tangential field at the aperture and
the radiated field (either near or far field). This approach is
most useful when the radiation pattern employs fine grids,
which is necessary in very large arrays with high directiv-
ity. In addition, most space applications impose very tight
cross-polarization requirements. By directly optimizing the
cross-polarization figure of merit instead of the crosspolar
far field (for instance, the crosspolar discrimination in DBS
applications), the optimization is accelerated and the antenna
performance is improved. Finally, the presented framework
is used to design a reflectarray for a DBS application with
European coverage, starting from an efficient phase-only syn-
thesis and layout design using SVM, to a cross-polarization
performance optimization using the generalized Intersection
Approach, employing all the techniques previously intro-
duced. A thorough computational time study is carried out
to assess the impact of the techniques in the crosspolar
optimization algorithm.

The paper is organized as follows. Section II presents
the efficient analysis of reflectarray antennas, including the
formulation for the displacement of phase-shifters and cell
modelling with SVM. Section III presents the optimization
algorithm and the technique of differential contributions to
accelerate the gradient computation. Section IV shows an ef-
ficient procedure to design a contoured beam reflectarray for
DBS applications. In Section V, the results of the crosspolar
optimization using all previous techniques are presented, as
well as a thorough computing time study to asses the impact
of those techniques in the optimization algorithm. Finally,
Section VI contains the conclusions.

II. EFFICIENT ANALYSIS OF REFLECTARRAYS
A. CLASSIC APPROACH
Fig. 2 shows a sketch of the single-offset reflectarray geom-
etry under consideration. It consists of a planar reflectarray
illuminated by a feed, usually a horn antenna, which gener-
ates a tangential incident field on the reflectarray surface:

~EX/Y
inc (x,y) = EX/Y

inc,x(x,y) x̂+EX/Y
inc,y(x,y) ŷ, (1)

where the superscript indicates the linear polarization of
the horn antenna, the subscript the component of the field

ŷr

x̂r

ẑr

®rf
ẑf

−ŷf

x̂f

FIGURE 2. Sketch of the single-offset reflectarray geometry under study.

with regard to the reflectarray coordinate system (see Fig. 2)
and (x,y) is a point in the reflectarray surface. Only the
tangential field at the aperture is of interest to later compute
the radiation pattern. On the other hand, the reflected field is
obtained, at each reflectarray element, as:

~EX/Y
ref (xk,yk) = Rk ·~EX/Y

inc (xk,yk), (2)

where (xk,yk) are the coordinates of the k th element and Rk
is a 2×2 matrix known as the reflection coefficient matrix:

Rk =

(
ρxx,k ρxy,k

ρyx,k ρyy,k

)
. (3)

The reflection coefficients do not depend on the polarization
of the feed. For a given feed polarization and oblique inci-
dence, the incident field presents two tangential components
x̂ and ŷ as expressed by (1), which then will be multiplied
by (3) to obtain the tangential reflected field. The reflection
coefficients are complex numbers that characterize the be-
haviour of the unit cell in a periodic environment. ρxx and
ρyy are known as the direct coefficients, and they control the
shape of the copolar pattern through their phases and the
losses through their magnitude. On the other hand, ρxy and
ρyx are the cross-coefficients and considerably contribute to
the crosspolar pattern. Matrix Rk is computed with a FW-LP
tool [2] and the value of the reflection coefficients depends on
several parameters, such as the unit cell geometry, frequency,
periodicity, angle of incidence of the impinging wave and
substrate properties. The magnetic tangential field is easily
obtained from (2) following [21].

Once the tangential reflected field has been obtained with
(2), the far field in spherical coordinates may be computed
according to the first principle of equivalence in electromag-
netics, also known as Love’s equivalence principle [22]. For
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this purpose, the spectrum functions are computed as the
Fourier transform of the tangential field at the aperture:

PX/Y
x/y (u,v) =

∫∫
S

EX/Y
ref,x/y(x,y)e jk0(ux+vy) dxdy,

QX/Y
x/y (u,v) =

∫∫
S

HX/Y
ref,x/y(x,y)e jk0(ux+vy) dxdy,

(4)

where u = sinθ cosϕ , v = sinθ sinϕ; S is the surface of the
aperture and k0 is the wavenumber in vacuum. The reflected
magnetic field can be obtained from (2) assuming a locally
incident plane wave coming from the feed as in [21]. In
addition, the integrals in (4) may be efficiently evaluated with
the FFT algorithm [2]. Finally, the copolar and crosspolar
components are obtained using Ludwig’s third definition
of cross-polarization. Explicit transformation matrices from
spherical to copolar and crosspolar components for both
linear polarizations may be found in [18].

B. ANALYSIS CONSIDERING UNIT CELLS WITH
PHYSICAL DISPLACEMENT OF PHASE-SHIFTERS
The unit cell is an important factor for the reflectarray per-
formance. In particular, the unit cell should provide enough
phase-shift to perform a layout design, low losses and low
cross-polarization. In addition, decoupling between polar-
izations would facilitate the design, since each polarization
could be controlled independently. An adequate unit cell is
the one proposed in [23] and shown in Fig. 3. This cell is
comprised of two sets of four parallel dipoles in two different
layers, one for each linear polarization. The set of four
dipoles oriented in x̂ controls the phase shift for polarization
X, while the set oriented in ŷ controls the phase shift for po-
larization Y. In addition, both sets of dipoles are shifted half a
period in order to give enough room for the dipoles to provide
a large phase shift by increasing their length while avoiding
overlapping. The FW-LP tool which analyses the cell is the
Method of Moments based on Local Periodicity (MoM-LP)
described in [24], which has been extensively validated by
full-wave simulations of the whole antenna [13] as well as
with prototype measurements [23], [25]–[27]. This unit cell
has been chosen since it provides low cross-polarization and
a large phase-shift range with enough degrees of freedom to
perform reflectarray optimization [21], [23].

As it can be seen in Fig. 3, the phasing cell of the reflec-
tarray element in one polarization is shifted by half a period
with respect to the orthogonal polarization. This shift has to
be taken into account in the illumination of the reflectarray
by considering that the positions of the dipoles oriented in
the ŷ axis are displaced half a period with respect to the
other set of dipoles. If this spacial shift is not taken into
account, the pointing direction of the main beam is not well
predicted when comparing simulations with measurements
[27]. Although the shift in the main beam is small, it may
have a significant impact for highly directive antennas, as it
will be shown later. Taking as reference the phase shifter for
polarization X (in the case of the chosen unit cell, the dipoles
oriented in x̂), let (x,y) be its reference coordinates. Then, the

reference coordinates of the phase shifter for polarization Y
(x ′,y ′) are related to (x,y) through:

x ′ = x+∆x,

y ′ = y+∆y.
(5)

With this correction, (2) is modified as follows [27]:EX/Y
ref,x

EX/Y
ref,y

= Rk

EX/Y
inc,x(xk,yk)

∣∣∣
on pol. X dipoles

EX/Y
inc,y(x

′
k,y
′
k)
∣∣∣
on pol. Y dipoles

 . (6)

Since the incident field is obtained at different spatial coor-
dinates for each component, they cannot be directly added
to form the reflected field. In this regard, (6) incurs on
abuse of notation and this will be fixed shortly. Instead, the
contributions from each phase-shifter will be added in the far
field. Please note that the reflection coefficients in (3) are the
same for both reference coordinates since they are computed
assuming local periodicity.

In this way, using (6) in (4) for the electric field it follows:

PX/Y
x =

∫∫
S1

ρxx EX/Y
inc,x(x,y)e

jk0(ux+vy) dxdy+∫∫
S2

ρxy EX/Y
inc,y(x

′,y ′)e jk0(ux ′+vy ′) dx ′ dy ′,
(7)

PX/Y
y =

∫∫
S1

ρyx EX/Y
inc,x(x,y)e

jk0(ux+vy) dxdy+∫∫
S2

ρyy EX/Y
inc,y(x

′,y ′)e jk0(ux ′+vy ′) dx ′ dy ′.
(8)

Each integral is calculated in different integration surfaces,
S1 and S2 as illustrated in Fig. 4. To compute (7) and (8) with
the FFT as in [2] both integrals need to be related to the same
coordinates. Thus, considering (5) and after a few operations
it follows:

PX/Y
x =

∫∫
S1

ρxx EX/Y
inc,x(x,y)e

jk0(ux+vy) dxdy+

e jk0(u∆x+v∆y)
∫∫

S1

ρxy EX/Y
inc,y(x

′,y ′)e jk0(ux+vy) dxdy,
(9)

PX/Y
y =

∫∫
S1

ρyx EX/Y
inc,x(x,y)e

jk0(ux+vy) dxdy+

e jk0(u∆x+v∆y)
∫∫

S1

ρyy EX/Y
inc,y(x

′,y ′)e jk0(ux+vy) dxdy.
(10)

Now, each spectrum function may be computed with two
FFTs instead of one due to the spatial shift between the two
sets of dipoles. As a consequence, the spectrum functions
computation time is doubled, although a more accurate anal-
ysis of the reflectarray radiation pattern is achieved [27]. It
must be highlighted that now the integrals in (9) and (10) are
only integrated in surface S1 so the FFT may be employed,
but the ŷ component of the incident field is obtained in the
(x ′,y ′) coordinates, which depend on (x,y) through (5).

The procedure for the magnetic field spectrum functions
is analogous. Once they have been obtained, the copolar
and crosspolar components may be readily calculated follow-
ing [18].
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ŷ

®kinc(θ, ϕ)

Tx

Ty

K(®x1, ®x)

K(®x2, ®x)

K(®xNs , ®x)

Σ Rk

b

(α −
1 −

α +
1 )

(α−2 − α+2 )

(α
−

N
s
− α
+

N
s
)

Feature layer of Ns

inner-product kernels

Input
®x = (Tx,Ty)T x

=
L a 4

Ty
=

L a 2

Lb1 = Lb3 = 0.63Tx ; Lb2 = 0.93Tx
La1 = La3 = 0.58Ty ; Lb4 = 0.95Ty

FIGURE 3. Sketch of the reflectarray unit cell and the construction of the reflection coefficients matrix Rk using the SVM. The unit cell is comprised of
two sets of parallel dipoles, one controlling polarization X (dipoles oriented in x̂) and another controlling polarization Y (dipoles oriented in ŷ), in two
different layers (black dipoles in the top layer and gray dipoles in the middle layer) backed by a ground plane (bottom layer). For the SVM training, only
two geometrical variables are considered, Tx and Ty, with the lengths of the dipoles proportional to them as in [26]. Then, Tx and Ty are the input
variables of the SVM, whose output is the electromagnetic response of the unit cell for a given angle of incidence (θ ,ϕ) of the impinging plane wave, i.e.,
the reflection coefficient matrix Rk , whose elements are obtained as a linear combination of the SVM kernels.

S2

x ′

y ′

S1

x

y

(+∆x, +∆y)

FIGURE 4. Illustration of the physical displacement effect of the
phase-shifters on the integration surface to compute the spectrum
functions.

C. SURROGATE MODEL OF THE UNIT CELL

Following the steps detailed above, the calculation of the Rk
matrix in (3) with a FW-LP tool is the most time consuming
step in the radiation pattern computation. Thus, for an ef-
ficient optimization process, where the reflectarray analysis
is performed hundreds or even thousands of times, it is
interesting to accelerate the computation of Rk. In this work,
the chosen strategy is to model the behaviour of the unit cell
with a machine learning algorithm known as Support Vector
Machine (SVM) [28].

SVMs are automatic and supervised learning algorithms

which are used to solve regression and classification prob-
lems. In the present case, the SVM regression characteristics
are adapted to seek a surrogate model of the unit cell. A
complete description of the SVM theory background and
training strategies may be found in [29]. Only the basic
features will be described here for completeness.

Given a training set of inputs and outputs, S =
{~xi,yi}i=1,2,...,Nr , with ~xi ∈ χ ⊆ RL and yi ∈ R, the SVM is
used to obtain a function f which estimates the output ỹ that
corresponds to a new input~x as:

ỹ = f (~x) , (11)

where f follows the expression:

f (~x) = b+
Ns

∑
i=1

[(
α−i −α+

i
)

K(~xi,~x)
]
, (12)

and b is known as the offset, Ns is the total number of support
vectors, α+

i and α−i are the optimal Lagrange multipliers,
and K is the kernel function, which in the present case is a
Gaussian kernel:

K(~x,~x ′) = exp
(
−γ ‖~x−~x ′‖2) , (13)

where ‖ · ‖ is the Euclidean norm and γ a tunable parameter.
Therefore, function f may be interpreted as a linear combi-
nation of Gaussian functions placed at the support vectors
plus an offset, where the width of the Gaussian functions is
inversely proportional to γ .

The obtained function f in (12) minimizes a regular-
ized risk functional that accounts for the empirical errors
(weighted by a tunable parameter C) and for the flatness of
f in the feature space (or its smoothness in the input space).
On the one hand, when the flatness is maximized, f has good
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FIGURE 5. For the reflection coefficient ρρρyx with (((θθθ === 333555°,,,ϕϕϕ === 333555°))),
comparison between (a), (b) the MoM-LP simulation and (c), (d) SVM
simulation for the (a), (c) magnitude in dB and (b), (d) phase in degrees.
Difference of the (e) magnitude is in dB and of the (f) phase in degrees.

generalization properties. On the other hand, the empirical
errors (absolute difference between the value of the output
training samples and the output of the regression function)
are the metric for how well it fits the training samples. Thus
C provides a trade-off between the two. The parameters γ and
C determine the shape of function f and must be carefully
selected through a grid search in the (C,γ) plane [29].

The SVM is used to obtain the surrogate model of the
reflection coefficients matrix Rk for the chosen unit cell (see
Fig. 3). As in [29], only two geometric variables are consid-
ered, Tx and Ty, and the length of the dipoles will be propor-
tional to those variables, as specified in Fig. 3. In addition,

one SVM will be trained per angle of incidence (θ ,ϕ). Due
to the low losses the direct coefficients ρxx and ρyy are smooth
as a function of Tx and Ty, and thus the regression error is
very low. It is more difficult to obtain an accurate surrogate
model of the cross-coefficients. Fig. 5 shows a comparison
in magnitude and phase of the cross-coefficient ρyx for an
oblique angle of incidence (θ = 35°,ϕ = 35°). The magni-
tude difference is very low, always below −40 dB. However,
the phase difference shows high values where there are abrupt
changes which the SVM simulation tends to soften. In any
case, the mean absolute deviation (MAD) is 4° for this case,
and 4.5° for the phase of ρxy, which are considered very low
values for a cross-coefficient (for the phases of ρxx and ρyy
the MAD is lower than 0.6°). The average relative error of
the training for all reflection coefficients is−33 dB following
[29, eq. (11)], which will provide a high degree of accuracy
in the predicted radiation patterns. This average relative error
has been computed for the real and imaginary part of all
trained reflection coefficients over all the considered incident
angles.

Finally, it has been opted for a 2D problem to achieve
a highly accurate SVM model. In light of the results of
other works in the literature dealing with machine learning
algorithms in higher dimensions, it may be possible the use
of SVMs to increase the number of available degrees of
freedom for reflectarray optimization. Nevertheless, as it will
be shown in Section V, the improvement of the achieved
results with two variables per element is significant with
regard to the starting point.

III. OPTIMIZATION FRAMEWORK FOR VERY LARGE
REFLECTARRAYS
A. GENERALIZED INTERSECTION APPROACH
In this section, the optimization algorithm for very large
reflectarrays is presented. It is based on the framework pro-
vided by the generalized Intersection Approach (IA) pre-
sented in [30] and particularized for reflectarray antennas in
[21]. Fig. 6 shows a schematic flowchart of the algorithm.
Starting from the initial layout (or phase distribution for a
phase-only synthesis), it applies iteratively two operations:
the forward and the backward projections. In the forward pro-
jection, the far field is computed and trimmed according to
some specification templates given in the form of upper and
lower masks. Then, in the backward projection the trimmed
pattern is employed as reference for a local optimization
procedure. This process is repeated until the algorithm has
converged.

The generalized IA can be employed either for phase-
only synthesis (POS) or to perform direct optimization of the
layout. For POS, the target is to obtain phase distributions for
the direct coefficients ρxx and ρyy. In this case, the reflectarray
unit cell is modelled as an ideal phase shifter with no losses
and no crosspolarization, in such a way that the optimization
of the copolar far field is independent for both linear polar-
izations, as detailed in [31]. These simplifications made in the
reflectarray unit cell analysis produce a computationally very
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efficient and fast algorithm, which along with the improved
convergence properties of the generalized IA [32] allows to
perform copolar synthesis in a fast and reliable fashion. As
a drawback, the crosspolar pattern is not correctly character-
ized with this methodology, and thus there is no control over
it during the synthesis process. Once the phase distributions
that radiate the required copolar pattern are obtained, the
dimensions of the dipoles are adjusted using Tx and Ty to
match the phase shift of ρxx and ρyy, respectively, using a zero
finding routine [2]. A complete mathematical description of
the generalized IA for reflectarray POS may be found in [6],
using the Levenberg-Marquardt Algorithm (LMA) [31] as the
local optimizer in the backward projection.

On the other hand, the work presented in [21] for crosspo-
lar optimization employed a MoM-LP as analysis technique
to obtain an accurate prediction of the electromagnetic be-
haviour of the unit cell. However, that version of the algo-
rithm increases its computational cost due to the MoM-LP,
and thus makes it unfeasible to optimize very large reflectar-
rays unless workstations are employed. In any case, the good
convergence properties of the algorithm allows to handle
tens of thousands of optimizing variables while obtaining
good results. This is done by minimizing the number of
local minima by working with the squared field amplitude
(or equivalently the gain) and performing the optimization in
several steps, increasing the number of optimizing variables
as suggested in [30].

From a computational point of view, despite the com-
putational improvements introduced to the generalized IA
in [21], [31], there is still room for further improvements.
For instance, the use of SVMs instead of MoM-LP will
substantially accelerate the computation of the cost function
and Jacobian matrix. However, the acceleration of the latter
is limited since each column of the Jacobian only analyses
one reflectarray element, while for the radiation pattern com-
putation several FFTs are needed. For that reason, it is pro-
posed to accelerate the computation of the Jacobian matrix
by employing the technique of differential contributions to
calculate the radiated field in each derivative. This technique
is the subject of the next subsection.

B. ACCELERATING JACOBIAN MATRIX COMPUTATION
WITH DIFFERENTIAL CONTRIBUTIONS
When doing POS, there is a direct expression relating the
optimizing variables and the cost function which is relatively
easy to derive analytically [33], [34]. However, this is not the
case when doing a direct optimization of the layout for cross-
polarization improvement, and finite differences must be
used [20], [21], which slows the computation of the gradient
(Jacobian matrix). Thus, it is interesting to accelerate the
computation of the gradient, which is typically the most time
consuming operation in the optimization process.

There are a number of possibilities to accelerate the
computation of the gradient. The Adjoint Variable Method
(AVM) is a class of techniques that allow to compute the
derivatives with regard to any number of optimizing vari-
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Optimized layout or
phase distribution
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FIGURE 6. Flowchart of the generalized Intersection Approach
particularized for the optimization of reflectarray antennas.

ables with only two simulations of the whole structure [35].
However, it typically deals with S parameters [36], [37], and
it may not still be used for pattern synthesis [36]. Another
technique, specifically developed for array antenna pattern
synthesis, is the technique of differential contributions (DFC)
[38]. It accelerates the computation of the derivative by
only considering the differential contribution of the modified
element. This is possible thanks to the linearity of Maxwell’s
equations, which provides a linear relation between the tan-
gential field at the aperture and the radiated field (either near
or far field).

The Jacobian matrix may be formed with the gradient of a
multidimensional scalar cost function of the form:

∇R(~r, ξ̄ ) =

(
∂R(~r, ξ̄ )

∂ξ1
, · · · , ∂R(~r, ξ̄ )

∂ξi
, · · · , ∂R(~r, ξ̄ )

∂ξP

)
,

(14)
where ξ̄ =(ξ1, . . . ,ξi, . . . ,ξP) is a vector of P optimizing vari-
ables and~r ∈ {~r1, . . . ,~rt , . . . ,~rT} an observation point where
the radiated field is computed. For the case of the far field,
~rt = (u,v)t and since the generalized IA uses the LMA as the
minimizing algorithm, R is the residual of the cost function
[31]. When there is no analytical expression to calculate each
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derivative, they are computed using finite differences. Using
a backward lateral difference, the derivative is:

∂R(~r, ξ̄ )
∂ξi

=
R(~r, ξ̄ )−R(~r, ξ̄ −hêi)

h
+O(h), (15)

where h is a small positive scalar and êi is the i th unit vector.
To alleviate notation, henceforth we drop the dependence on
~r to focus on the optimization variables ξ̄ .

For the computation of the derivative by means of (15), the
residual R(ξ̄ ) depends on the far field ~Eff(ξ̄ ) and it is com-
mon to all P derivatives in (14), so it is only computed once.
On the other hand, R(ξ̄ −hêi) depends on ~Eff(ξ̄ −hêi), and is
computed for each derivative. Since the reflectarray analysis
assumes local periodicity, the modification of one element
(variable) does not affect the others, and the perturbed field
may be computed with the differential contribution:

~Eff(ξ̄ −hêi) = ~Eff(ξ̄ )+∆~Eff(ξi), (16)

where ∆~Eff(ξi) is the differential contribution to the far field
produced by the reflectarray element depending on variable i:

∆~Eff(ξi) = ~Eff(ξi−h)−~Eff(ξi). (17)

Thanks to the linearity of Maxwell’s equations, there exists
a linear dependence of the radiated field (either near or far
field) at each point with respect to each contribution of the
tangential field at the aperture. If we denote by ~Eref,k(ξi)
the reflected tangential field of element k and depending on
variable ξi, (17) can be expressed writing the radiated field as
a function of the tangential field:

∆~Eff(ξi) = ~Eff(~Eref,k(ξi−h))−~Eff(~Eref,k(ξi)). (18)

Since the radiated field is linear with respect to the tangential
field:

∆~Eff(ξi) = ~Eff(∆~Eref,k(ξi)), (19)

where:

∆~Eref,k(ξi) = ~Eref,k(ξi−h)−~Eref,k(ξi). (20)

Thus, (19) indicates that to compute one derivative, only
the differential contribution of one element is necessary. In
practise, this means that, starting from the tangential field,
the time cost of computing the far field is reduced from
O(T logT ) when using the FFT to O(T ) using the Differ-
ential Contributions (DFC) technique in the computation of
each derivative [38]. The impact of this technique in the
optimization process will be analysed in Section V.

IV. DESIGN OF A CONTOURED BEAM REFLECTARRAY
This section employs the generalized IA described in Sec-
tion III to perform the design of a contoured beam reflectar-
ray for DBS application with a European coverage. The SVM
is employed to greatly accelerate the layout design, achieving
speed up factors greater than three orders of magnitude for
the analysis and layout design.
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FIGURE 7. Discretization of the angles of incidence. (a) θθθ . (b) ϕϕϕ.

A. ANTENNA SPECIFICATIONS
A sketch of the antenna geometry is shown in Fig. 2. The
considered reflectarray is elliptical, has a total of 4 068 el-
ements in a regular grid with 74 and 70 cells in its main
axes. The periodicity of the unit cell is 14mm× 14mm and
the working frequency is 11.85 GHz. The feed is modeled
as a cosq θ function with q = 23, generating an illumina-
tion taper of −17.9dB. Also, the feed is placed at ~r f =
(−358,0,1070)mm, while the whole antenna is on a satellite
in geostationary orbit at 10° E longitude. In addition, one
SVM is trained per angle of incidence, which are discretized
as shown in Fig. 7. This discretization guarantees a high accu-
racy in the computation of the radiation pattern with the SVM
[29]. A total of 136 pairs of (θ ,ϕ) angles are obtained, which
are further reduced to 68 pairs using symmetries. For the unit
cell, the bottom layer has a height of hA = 2.363mm and
a complex relative permittivity εr,A = 2.55− j2.295 · 10−3,
while the top layer has a height of hB = 1.524mm and a
complex relative permittivity εr,B = 2.17− j1.953 ·10−3.

Fig. 8 shows the contour requirements for Europe with
two coverage zones. This coverage is specified in the an-
tenna coordinate system, and for the synthesis it must be
transformed to the reflectarray coordinate system shown in
Fig. 2 [2]. The copolar requirements are 28.5 dBi for zone 1
and 25.5 dBi for zone 2. The outer contours for each coverage
zone represent the specifications taking into account typical
satellite pointing errors: 0.1° in roll, 0.1° in pitch and 0.5°
in yaw. The optimization will be carried out in dual-linear
polarization using the same template specifications for both
polarizations.

B. PHASE-ONLY SYNTHESIS
In the first step of the contoured beam reflectarray design,
the generalized IA is used to obtain a phase distribution such
that the desired copolar pattern is obtained for both linear
polarizations. Since this is a local search algorithm, a suitable
starting point is necessary to obtain good results. It has been
demonstrated that a properly focused reflectarray provides a
good starting point [39]. Thus, the initial phase distribution
is given by [2]:

∠ρ(xk,yk) = k0 (dk− (xk cosϕ0 + yk sinϕ0)sinθ0) , (21)
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FIGURE 8. Europe footprint with two coverage zones for DBS
application with (u,v) coordinates in the antenna coordinate system.
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FIGURE 9. For polarization X: (a) starting phase distribution (deg) for the
POS obtained with eq. (21) and (b) synthesized phase distribution (deg)
after the POS with the generalized Intersection Approach.

where ∠ρ(xk,yk) corresponds to the phase of ρxx,k in polar-
ization X or ρyy,k in polarization Y, (θ0,ϕ0) is the pointing
direction of the reflectarray main beam, and dk the distance
between the k th reflectarray element and the phase center of
the feed. Two phase distributions are needed, one for each lin-
ear polarization. In addition, the initial phase distribution will
be different for both polarizations since the phase-shifters of
the unit cell in Fig. 3 are shifted half period, so dk in (21) will
be different for both linear polarizations at the k th element.

The result from this step is two phase-distributions which
generate the desired copolar pattern for both linear polariza-
tions that comply with certain requirements. Fig. 9(a) shows
the initial phase distribution for polarization X obtained
with (21). It generates a pencil beam pointing at (θ0,ϕ0) =
(16.6°,0°), which approximately corresponds to the center
of zone 1 in the reflectarray coordinate system. The phase
distribution for Y polarization is similar. After the POS, the
phase distribution of Fig. 9(b) is obtained for X polarization.
It must be noted that these results were obtained taking into
account the formulation for the spatial displacement of the
dipoles for Y polarization. If this displacement is not taken
into account, the radiation pattern would be shifted. However,
this only occurs to polarization Y, and the copolar pattern
of polarization X would remain the same [27], as shown in
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FIGURE 10. Copolar radiation pattern in dBi for (a) polarization X and
(b) polarization Y when computed not taking into account the
displacement of the unit cell phase shifters.

Fig. 10. The shift in the radiation pattern is close to 0.3°, and
in the present case causes a significant drop in the minimum
copolar gain, as it will be later evaluated. Another space
application in which it is fundamental to consider this shift
is in multibeam applications, where the spacing between
adjacent beams is very narrow, of the order of 0.5°-0.6° [4].

C. LAYOUT DESIGN
Once the desired phase-shift has been obtained, the next step
consists in finding the element dimensions that produce the
required phase-shift for each linear polarization. The design
procedure followed in this work is summarized in Fig. 11.
For each reflectarray element, it performs the following
steps. First, it generates a table of phase-shifts by varying
Tx and Ty either with the MoM-LP tool or the SVM. This is
done independently for each variable since the phase-shift is
practically uncoupled for both variables [23]. We select two
values for Tx and Ty which provide, for each case, a phase-
shift which is above and below the objective value. Then,
the estimated value of the length that provides the required
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Phase-shift distributions
(X and Y polarizations)

Phase-shift table

Linear equation approx.

2D phase adjustment
using NR method

Design
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k = 1

All RA elements
processed?

Next RA
element

NO

k ← k + 1

Final layout YES

FIGURE 11. Flowchart of the design procedure from the required
phase-shift to the final reflectarray layout.

phase-shift is obtained using a linear equation approximation.
Finally, using a zero-finding routine, for instance the Newton-
Raphson (NR) method, the exact value of Tx and Ty is sought,
taking into account the coupling between phase-shifters that
there may exist.

Following the aforementioned procedure and employing
the unit cell shown in Fig. 3, the layout of Fig. 12 for the
upper layer is obtained. When the layout is simulated with
SVM, the radiation patterns shown in Fig. 13 are obtained
for polarization X. As it can be seen, it perfectly complies
with the specifications for the two coverages. Minimum
copolar gain for zone 1 is 29.29 dBi while for zone 2 is
26.03 dBi. Similar results were obtained for polarization Y,
where the minimum gain for zone 1 and 2 is 29.32 dBi and
26.03 dBi, respectively. These results were obtained taking
into account the physical displacement of the phase-shifter
for Y polarization. Otherwise, the copolar radiation pattern
of Fig. 10 would be obtained, where the minimum copolar
gain for Y polarization drops to 27.72 dBi and 24.00 dBi for
zones 1 and 2, respectively, and thus not complying with the
requirements after the POS.

The design has been carried out in a desktop computer
with an Intel Core i7-7700 at 3.60 GHz with eight CPUs
(four physical plus four virtual using hyperthreading). The
procedure has been parallelized to use all available threads.
With the MoM-LP it took 1 635.6 seconds (27 minutes and
15.6 seconds), while with SVM it took only 0.5 seconds,
which supposes an acceleration factor of 3 271. When
analysing the reflectarray layout comprised of 4 068 elements
to obtain the Rk matrices, using MoM-LP took 57.6 seconds,
while with SVM it took a mean time of 17.56 milliseconds,
which supposes an acceleration factor of 3 279. Thus, both
the analysis and design are accelerated more than three orders
of magnitude using the SVM instead of the MoM-LP tool in
the present case.

FIGURE 12. Initial layout for upper layer obtained from the phase
distribution shown in Fig. 9(b).

V. CROSSPOLAR OPTIMIZATION OF REFLECTARRAY
ANTENNAS

A. CROSS-POLARIZATION PERFORMANCE

The cross-polarization performance of antennas for space ap-
plications such as DBS is usually measured with the crosspo-
lar discrimination (XPD) and the crosspolar isolation (XPI).
The XPD is defined, in linear scale, as the ratio point by point
of the copolar and crosspolar gains for a certain coverage
zone. Sometimes, the worst XPD value is considered, which
corresponds to its minimum (XPDmin). On the other hand,
the XPI is defined in linear scale as the ratio between the
minimum copolar gain and the maximum crosspolar gain for
a given coverage zone. Please note that due to their definition,
the XPI is a stringent parameter than the XPD to evalute the
cross-polarization performance in a coverage zone.

For the reflectarray designed in Section IV, the simulated
layout with SVM gives a XPDmin of 31.46 dB for polar-
izations X and Y in zone 1, while they are 27.98 dB and
28.45 dB in zone 2 for polarizations X and Y, respectively.
The lower value in zone 2 is mainly due to the lower value of
the gain due to the copolar requirements. Similarly, the values
for the XPI are 30.13 dB for polarizations X and Y in zone
1, and 25.92 dB and 26.44 dB in zone 2 for polarizations X
and Y, respectively. Although the specifications for the XPD
and XPI vary with the application, mission and even with
the coverage zone [26], they typically demand values higher
than 30 dB, which is not achieved in zone 2, and by a small
margin in zone 1. Thus, the goal will be to improve the cross-
polarization performance by carrying out an optimization of
the reflectarray layout.
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FIGURE 13. Radiation pattern in dBi for polarization X. (a) Copolar.
(b) Crosspolar.

B. DIRECT OPTIMIZATION OF CROSS-POLARIZATION
PARAMETERS

A direct optimization of the reflectarray layout to improve
the cross-polarization performance presents some challenges
with regard to the POS. First, the number of potential op-
timizing variables considerably grows, since the number of
available degrees of freedom increases. This presents some
drawbacks: although it has the potential to provide better
results, the number of local minima grows exponentially
with the number of variables, making convergence more
difficult; and computationally, the algorithm becomes slower.
In addition, in the POS for two linear polarizations, they can
be synthesized independently, so the number of optimizing
variables is just one per reflectarray element (the phase of ρxx
or ρyy, depending on the polarization). This is not the case
when optimizing the cross-polarization performance, since
the radiation patterns for both linear polarizations depend on
the whole Rk matrix, and thus at least two variables per ele-
ment are required, while considering more components of the
far field. To overcome those issues, a number of techniques

were introduced in Sections II and III. The generalized Inter-
section Approach, with improved convergence properties, is
able to handle tens of thousands of optimizing variables while
achieving good results [21]. Also, SVMs were introduced to
accelerate the reflectarray analysis and the DFC technique to
speed up the computation of the gradient, which is typically
the most time consuming operation in gradient-based local
optimizers.

On the other hand, the usual approach to perform crosspo-
lar optimization is to impose some requirements directly on
the crosspolar pattern with the aim of reducing it [20], [21].
However, in some space applications, such as DBS, the figure
of merit for cross-polarization performance is the XPD or the
XPI. If the crosspolar pattern is optimized, the XPD and XPI
are improved indirectly, providing suboptimal results. Thus,
it is proposed to directly optimize the XPD and XPI in order
to further improve the cross-polarization performance of the
antenna [40].

The next step is to perform the crosspolar optimization
using as starting point the layout designed in Section IV
and shown in Fig. 12. For this task, two approaches will be
employed: optimize the crosspolar pattern on the one hand,
and the crosspolar discrimination or crosspolar isolation on
the other hand. The aim is to show that, when the figure of
merit for the cross-polarization performance of a reflectarray
antenna is the XPD or XPI, it is best to directly optimize the
figure of merit. For the crosspolar optimization, the same ap-
proach presented in [21] is employed, setting the crosspolar
template in the forward projector (see Fig. 6) 40 dB below
the maximum copolar gain. On the other hand, to improve
the minimum value of the XPDmin in both coverage zones,
a minimum template of 40 dB is set in substitution of the
crosspolar template following [40]. The same applies to the
optimization of the XPI.

The different approaches were tested with the generalized
Intersection Approach, which was left to run 80 iterations
until the error stagnated for a better comparison. The evolu-
tion of the XPDmin and XPI on the two coverage zones (see
Fig. 8) for the three optimizations is shown in Fig. 14. As it
can be seen, the presented strategy provides better results in
the final value of XPDmin and XPI, which are better when
they are directly optimized. For instance, for zone 1 the
XPDmin reaches a value of 35.10 dB when optimizing the
crosspolar pattern, but it improves to 39.64 dB and 39.53 dB
when optimizing the XPDmin and XPI, respectively, in po-
larization X. This supposes an increment of more than 4 dB
with the new proposed strategy over the usual approach,
and more than 8 dB over the starting point (31.46 dB). This
improvement occurs for both polarizations and both coverage
zones as shown in Table 1, where the final results for the
three optimization approaches are provided, including the
minimum copolar gain in both coverage zones.

Fig. 15 shows the final radiation pattern for polarization X
when the XPDmin is optimized. Comparing it with the radia-
tion pattern at the starting point of Fig. 13, the copolar pattern
is very similar, in fact it also complies with the requirements
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TABLE 1. Results of the direct optimization using SVM of a reflectarray antenna with a European footprint with two coverage zones comparing different strategies:
the usual approach of optimizing the crosspolar component of the radiation pattern (XP opt.) and the new strategy of directly optimizing the figure of merit (XPDmin
opt. and XPI opt.). Values of CPmin are in dBi and values of XPDmin and XPI are in dB.

Zone 1 (28.5 dBi) Zone 2 (25.5 dBi)

Pol. X Pol. Y Pol. X Pol. Y

CPmin XPDmin XPI CPmin XPDmin XPI CPmin XPDmin XPI CPmin XPDmin XPI

Initial 29.29 31.46 30.13 29.32 31.46 30.13 26.03 27.98 25.92 26.03 28.45 26.44

XP opt. 29.30 35.10 34.57 29.26 35.60 33.38 26.27 31.85 31.11 26.31 31.63 31.07

XPDmin opt. 29.00 39.64 37.46 29.08 39.36 37.46 25.96 35.96 33.46 25.67 36.76 33.81

XPI opt. 29.04 39.53 39.25 29.01 40.32 39.00 25.80 34.78 34.49 26.06 36.29 35.75
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FIGURE 14. Evolution of the (a) XPDmin and (b) XPI for the three different
optimization strategies studied in this work.

after the optimization as shown in Table 1. The crosspolar
pattern is now lower, specially inside the coverage zones
where the XPDmin was considerably improved.

All the results shown in Table 1 were obtained using the
SVM as simulation tool. To compare the SVM simulations
with MoM-LP, the layout obtained after the XPI optimization
using the SVM was also simulated with MoM-LP and the
results are shown in Table 2. Two different MoM-LP simula-
tions were carried out to study the source of discrepancies
between the SVM and MoM-LP, one using the real angle
of incidence at each reflectarray element, and another using
the same discretization of the angles of incidence as the
SVM (see Fig. 7). As it can be seen, when the layout is
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FIGURE 15. Obtained radiation pattern in dBi for polarization X after the
XPDmin optimization. (a) Copolar. (b) Crosspolar.

simulated using the same angles of incidence as the SVM,
the differences between the SVM and MoM-LP predictions
are reduced. In this case, the only source of discrepancy is
the accuracy of the SVM model, which is demonstrated to
be reliable [29]. Nevertheless, even when simulating with the
real angles of incidence, the results are quite close to those
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FIGURE 16. Differences in mm between the initial and optimized layout
of the upper layer for (a) TTT xxx and (b) TTT yyy.

predicted by the SVM simulation. Since the optimization was
carried out with the SVM, it is feasible to accelerate com-
putations with the SVM and finally obtain a more accurate
prediction with a single MoM-LP analysis.

All the optimizations were carried out at a single fre-
quency. However, since reflectarrays have inherently a low
bandwidth, it could be improved by performing optimization
at several frequencies [14], [20] using the techniques pre-
sented in this work to considerably accelerate computations
and improve the performance of the antenna.

Finally, Fig. 16 shows the differences in mm between the
initial and optimized layout (upper layer, see Fig. 12) for
the Tx and Ty variables as defined in Fig. 3. The maximum
variation in Tx is 1.94 mm while in Ty is 2.74 mm. On the
other hand, the mean absolute deviation for Tx is 0.15 mm
while for Ty is 0.17 mm. Similar results were obtained for the
bottom layer.

C. COMPUTATIONAL PERFORMANCE
This section provides a thorough account of the compu-
tational performance of the optimization framework intro-
duced in this work, which employs the generalized IA al-
gorithm and integrates a number of techniques that improve
both, computational performance of the algorithm and cross-
polarization performance of the antenna with regard to the
baseline scenario [21]. On the one hand, the computational
performance is greatly improved by using SVMs instead of
MoM-LP for the reflectarray analysis during the optimiza-
tion loop. In this regard, there is an initial one-time cost
accounting for the 680 SVM trainings (68 angles and 10
coefficients per angle), that for the case at hand took less
than an hour using a workstation; this is the case since the
training of one SVM is independent from the rest and can
be easily parallelized. A new training should be performed if
the reflectarray element is changed, but the obtained SVMs
may be used for multiple designs and optimizations with
different radiation pattern requirements. In addition, the gra-
dient computation is accelerated by using the technique of
differential contributions (DFC). On the other hand, the final
cross-polarization performance of the antenna is improved by

directly optimizing the figure of merit, which it can be the
XPD or XPI, depending on the application. Moreover, the
memory footprint is also reduced with regard to the usual
approach of directly optimizing the crosspolar pattern, and
also the algorithm is slightly accelerated since the Jacobian
matrix multiplication (see Fig. 6) is faster. All the results
for the computational study of the optimization algorithm
were obtained in a workstation with two Intel Xeon E5-
2650v3, each with ten cores that handle a total of 40 threads
at 2.3 GHz.

Table 3 shows the computational results for the building
blocks of the LMA comparing several techniques. The FFT
resolution is 512×512 and the number of points considered
in the UV grid for the pattern optimization is T = 11187.
Since two copolar and two crosspolar patterns are required
for dual-linear polarized reflectarrays, the total number of
points is 4T = 44748. In addition, for the computation of the
radiation patterns with the first principle of equivalence, eight
spectrum functions are required, and two FFTs per spectrum
functions are used using the analysis detailed in Section II,
thus using a total of 16 FFTs in the computation of the far
field.

In principle, the most time consuming operation to calcu-
late the cost function is the analysis with MoM-LP to obtain
Rk. The DFC technique does not have any impact, since it
only applies to the computation of the gradient (Jacobian
matrix). Thus, the cost function is only accelerated with the
SVM, which considerably speeds up the unit cell analysis. In
fact, when only considering the computation of Rk, the anal-
ysis is accelerated more than three orders of magnitude with
regard to the MoM-LP simulation, as shown in Section IV. In
the case of the cost function, also the computation of 16 FFTs
needs to be included, which accounts for the remaining time
shown in Table 3 and that are not accelerated by the SVM.

The Jacobian matrix computation is substantially accel-
erated by the combination of the SVM and DFC. By itself,
the DFC technique accelerates the computation of the Jaco-
bian, going from taking almost 91 seconds to approximately
62 seconds. Using only the SVM the computing time is al-
most reduced by half. However, combining both techniques,
the gradient computation is accelerated more than one order
of magnitude, reaching a speed up factor of 22.3 in the
present case.

The matrix multiplication (JT J) and the linear equation
solver are not accelerated neither by the use of SVM nor
DFC, so their computing time remain approximately the
same. The matrix multiplication depends on the size of the
Jacobian (total number of points in the UV grid times the
number of optimizing variables) while the time of the solver
only depends on the number of optimizing variables. The
linear equation solver is based on the Cholesky decomposi-
tion, which is the fastest exact solver [31]. On the other hand,
the matrix multiplication is now the slowest operation in the
optimization process after the acceleration in the Jacobian
matrix computation. However, the computing time shown in
Table 3 corresponds to the classical approach of optimizing
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TABLE 2. Comparison between the SVM and MoM-LP simulations of the layout obtained after the XPI optimization. For the MoM-LP simulation two cases are
considered: using the real angles of incidence (MoM-LP), and the same angles of incidence as the SVM (MoM-LP; SVM angles). Values of CPmin are in dBi and
values of XPDmin and XPI are in dB.

Zone 1 (28.5 dBi) Zone 2 (25.5 dBi)

Pol. X Pol. Y Pol. X Pol. Y

CPmin XPDmin XPI CPmin XPDmin XPI CPmin XPDmin XPI CPmin XPDmin XPI

SVM 29.04 39.53 39.25 29.01 40.32 39.00 25.80 34.78 34.49 26.06 36.29 35.75

MoM-LP 28.78 39.56 38.47 29.02 39.01 38.30 25.85 34.15 33.04 26.05 34.85 34.33

MoM-LP (SVM angles) 29.04 39.55 39.46 29.02 40.91 39.24 25.81 35.17 34.56 26.05 35.71 35.54

TABLE 3. Computational time study of the optimization algorithm for an FFT
resolution of 512×512 (44 748 points considered in the optimization) and
7 993 optimizing variables. All values are in seconds.

Tool Cost function Jacobian JTJ Solver

MoM-LP 30.08 90.73 17.66 1.20
MoM-LP + DFC 30.08 61.77 19.23 1.22
SVM 0.22 48.30 17.73 1.21
SVM + DFC 0.22 4.06 18.77 1.22

the crosspolar pattern. When the XPD or XPI are optimized,
the number of points in the UV are reduced, since only
one cross-polarization parameter is taken into account per
coverage zone. If T is the number of points in which the
copolar pattern is computed and P is the total number of
optimizing variables, the size of the Jacobian is reduced from
4T ×P when optimizing the crosspolar pattern to ∼ 2T ×P
when optimizing the XPDmin or XPI. So not only the memory
footprint is approximately reduced by half, the matrix mul-
tiplication computing time is also reduced. For the present
case, this time is reduced to 9.51 seconds. Thus, the time
per iteration goes from approximately 140 seconds of the
standard approach to 15 seconds, a total acceleration of one
order of magnitude per iteration for the optimization process
when all techniques presented in this work are employed at
the same time.

Finally, Table 4 shows the same computing time study for
a reduced FFT resolution, which is now 128×128. Although
such low number of UV points does not provide enough
resolution for highly directive reflectarrays, it may be enough
for some small or medium sized antennas. Since now the
FFT is considerably faster than in the previous case, the
acceleration provided by the DFC technique has less impact
in the overall acceleration, where the SVM plays a more
important role. In addition, the Jacobian size is considerably
reduced, and thus the matrix multiplication is faster. Since
the number of optimizing variables is the same, the linear
equation solver takes the same time. The time per iteration is
now reduced from 97 seconds to 3.4 seconds, an acceleration
factor close to 30.

TABLE 4. Computational time study of the optimization algorithm for an FFT
resolution of 128×128 (2 800 points considered in the optimization) and 7 993
optimizing variables. All values are in seconds.

Tool Cost function Jacobian JTJ Solver

MoM-LP 30.05 61.20 1.22 1.20
MoM-LP + DFC 29.99 59.22 1.17 1.20
SVM 0.13 3.77 1.42 1.18
SVM + DFC 0.13 0.65 1.38 1.20

VI. CONCLUSIONS

This paper has presented a general and efficient framework
for the optimization of very large reflectarrays for space
applications. It is based on a two-step procedure, both us-
ing the generalized Intersectation Approach. The first step
consists of a Phase-Only Synthesis (POS) which provides a
good starting point for the second step, where the crosspo-
lar optimization is carried out. With the aim of accelerat-
ing computations and improving antenna performance, three
strategies are employed. First, a machine learning algorithm
based on Support Vector Machines (SVMs), is used to obtain
a surrogate model of the reflectarray unit cell. This model
is used in substitution of a full-wave analysis tool based
on local periodicity, accelerating reflectarray analysis by
more than three orders of magnitude without compromising
accuracy. Then, the technique of differential contributions on
the radiated field is employed to substantially accelerate the
computation of the gradient in array optimization. This novel
technique is based on the linearity of Maxwell’s equations,
which provides a linear relation between the tangential field
at the aperture and the radiated field (either near or far field).
In this way, only the contribution of one element is taken
into account for the computation of each column of the
Jacobian matrix, saving time. Finally, antenna performance is
improved by directly optimizing the figure of merit of inter-
est, either the crosspolar discrimination (XPD) or crosspolar
isolation (XPI), instead of the crosspolar pattern, which is the
usual approach.

This framework has been tested on a very large reflectarray
for a DBS mission with a European footprint and two cover-
age zones, working in dual-linear polarization. The first step
provides a layout that fully complies with the copolar gain
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requirements in both coverage zones and polarizations. Then,
a direct optimization of the reflectarray layout is performed
to improve the cross-polarization performance. Three ap-
proaches are compared: optimation of the crosspolar pattern,
XPDmin and XPI. It is shown that directly optimizing the
figure of merit (XPDmin or XPI) provides better results in
less time than the usual strategy of optimizing the crosspolar
pattern. With regard to the starting point, the XPDmin and XPI
are improved more than 9 dB and 7 dB, respectively, while
maintaining the copolar pattern within specifications. Finally,
a study of the computational improvements of the techniques
described in this work is presented. The reflectarray analysis
and design are accelerated more than three orders of magni-
tude thanks to the use of SVMs while keeping a high degree
of agreement with MoM-LP simulations. On the other hand,
when SVMs and DFC are combined, the time per iteration
of the crosspolar optimization is accelerated more than one
order of magnitude.
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