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Abstract: Scheduling the charging times of a large fleet of Electric Vehicles (EVs) may be a hard
problem due to the physical structure and conditions of the charging station. In this paper, we tackle
an EV’s charging scheduling problem derived from a charging station designed to be installed in
community parking where each EV has its own parking lot. The main goals are to satisfy the user
demands and at the same time to make the best use of the available power. To solve the problem,
we propose an artificial bee colony (ABC) algorithm enhanced with local search and some mating
strategies borrowed from genetic algorithms. The proposal is analyzed experimentally by simulation
and compared with other methods previously proposed for the same problem. The results of the
experimental study provided interesting insights about the problem and showed that the proposed
algorithm is quite competitive with previous methods.
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1. Introduction

Electric Vehicles (EVs) are increasingly important nowadays for environmental reasons. However,
their sustainable deployment requires new technology and infrastructures as, for example, specialized
charging stations to accommodate large fleets of EVs. There have been considerable research effort on
different aspects related to EV charging as, for example, the location of EV charging stations [1–4] or
electricity price forecasting [5], among others. Charging scheduling is particularly interesting due to
the large charging times often required by batteries and also to the power and physical constraints of
the charging stations. Only with the use of smart scheduling algorithms is it possible to make the best
use of the available resources and to satisfy the user requirements at the same time [6,7].

In this paper, we tackle the problem raised in [8], which is motivated by a charging station
designed to be exploited in a residential parking where each vehicle must be parked in its owner’s
space. This physical constraint, together with others derived from the electric characteristics of the
charging station, makes the problem of scheduling the EV’s charging times over periods of large
demand difficult. For this reason, a number of metaheuristics were proposed to solve the problem,
in particular dispatching rules [8], memetic algorithm [9] and artificial bee colony (ABC) algorithm [10].

In this paper, we build on the work presented in [10] and include a number of new contributions,
in addition to a thorough updating of the literature review: (1) We introduce several new strategies
for both employed and onlooker bee phases, which contribute to improving the performance of the
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ABC algorithm so that it is able to reach much better solutions; (2) We hybridize the algorithm with an
additional local search step, which allows the algorithm to further improve the final solution; (3) We
performed a much more comprehensive experimental study using a larger set of instances than that
used in previous studies, in which we compare our proposals and show that the new hybrid algorithm
was able to improve the quality of the results reported in [8–10].

The remainder of this paper is organized as follows: in Section 2, we review the literature on EV
charging scheduling. In Section 3, we present the characteristics of the charging station considered
herein. Section 4 defines the scheduling problem. In Section 5, we describe the artificial bee colony
algorithm and the proposed enhancements. The results of the experimental study are reported and
analyzed in Section 6. Finally, Section 7 summarizes the main contributions of this paper and proposes
some ideas for further work.

2. Literature Review

EV charging raises challenging scheduling problems. Indeed, the research community has
proposed a number of EV charging scheduling models in the last years. Some comprehensive reviews
of such problems and solving techniques are given in [6,7,11].

There are two main strategies for scheduling EV charging. The first one is distributed or
decentralized strategy [12–14], which offers great flexibility to EV owners, allowing them to decide
about when and how to charge their EVs. This may give rise to some security problems and overload in
the power grid. Some of these inconveniences may be avoided to some extent by imposing some price
incentives that stimulate EV owners to charge their EVs in off-peak hours (see, for example, [15,16]).
However, it is generally difficult to achieve an optimal charging strategy [17].

The second strategy is centralized charging, in which an aggregator makes all the scheduling
decisions as starting time and charging rate of the EVs. In order to build a schedule, the aggregator
receives the status of all EVs along with their desired departure times (provided by EV owners) and tries
to optimize both the customers satisfaction and the use of the available power [18]. Most papers in the
literature recommend this strategy over the decentralized one. Indeed, some studies demonstrate that a
coordinated charging scheme with some valley-filling strategy significantly outperforms uncoordinated
charging by suppressing elevated peak load demands on the power grid [19].

Regarding the objectives pursued, there are a number of strategies. Some papers perform
single objective optimization of total cost [20,21], total tardiness [22] or the use of renewable energy
sources [23]. It is also usual to minimize peak demands or grid congestion [17,24]. Other approaches
consider three-phase power flows and try to minimize the imbalance between phases [8,25].
Clearly, in these types of problems, there may be many relevant objectives, and therefore multi-objective
optimization is often considered. For example, in [26], the optimization of the total load variance and
EV owners’ preferences is considered. Another interesting example can be found in [27], where the
objectives are the minimization of the costs incurred from being parked, maximization of the revenues
offering secondary regulation and the maximization of the vehicle fleet charging station efficiency.

It is important to mention that each environment and EV charging station present particular
characteristics, so each of them gives rise to a different model and poses its own scheduling problem.
For example, some systems consider varying the charging rate of the EVs [24], varying power of the
charging station [28], or varying electricity prices [29,30]. Other models consider uncertainty and
stochastic parameters [31,32]. Another issue is whether [33] or not [8] the scheduler can decide to
which dock each EV is assigned. Some models even consider charging/discharging strategies to
optimize the overall process [34].

Due to the complexity of these problems, many existing optimization techniques have been
applied to solve them—for example, linear programming [35], ant-based swarm algorithm [12],
genetic algorithm [27], particle swarm optimization [21,36], multi-agent based system [37], estimation
of distribution algorithm [30], moving window optimization [29], tabu search and GRASP [38],
among others.
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As mentioned, the model considered in this work is that proposed in [8]. This model corresponds
to the charging station described in [39], which is designed to be installed in community parking.
In this station, a parking lot has a charging point connected to one of the lines of a three-phase feeder.
This, together with the fact that each user must use his own parking lot, gives rise to the main constraint
of the model: the load imbalance on the three lines must be limited. The solution proposed in [8] relies
on the use of dispatching rules to meet online scheduling requirements. For this reason, the quality
of the solutions is moderate and may be improved as demonstrated in further studies [22] by means
of offline algorithms. Hence, two new approaches were proposed in order to obtain better solutions,
memetic algorithm [9] and artificial bee colony algorithm [10]. We argue that the results of the later
could still be improved with some intensification step. To this end, we propose incorporating problem
domain knowledge by local search and some other improvements in different phases of the artificial
bee colony algorithm.

3. The Charging Station

The design and operation modes of the charging station is detailed in [39]; Figure 1 shows its
general structure. The station is fed by three-phase electric power with voltage between phases of
400 V. Each charging point is connected to one single-phase at 230 V and 7.3 kW (32 A). In principle,
we follow a so-called Mode 3 in the regulation UNE-EN 61851-1 [40], which considers charging at a
constant rate. As pointed in [41], this is the most suitable method for domestic environments.
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Figure 1. Components of the charging station: (1) power source; (2) three-phase electric power;
(3) charging points; (4) masters; (5) server with database; (6) asynchronous serial connections; (7)
communication TCP/IP (Transmission Control Protocol/Internet Protocol); (8) slaves. The Gantt Chart
on the right shows the charging intervals of the vehicles in each line in a feasible schedule for n = 3
and ∆ = 1/3.

As shown in Figure 1, the station is controlled by a server together with a number of masters and
slaves. Each slave controls two charging points of type 2/AC IEC 62196-2. A master is connected to
eight slaves and has a user interface. The server centralizes the control and receives signals from the
slaves regarding events as connection or disconnection of EVs. The server also sends orders to the
slaves to activate and deactivate charging points in accordance with the schedule.

Even though there are many spaces available (180 in our experimental study), not all the charging
points in these spaces can be active at the same time due to the available power being limited.
For example, if electricity supply of 50 kW three phase power (3/AC) were contracted and each EV
requires 7.3 kW, at most 21 EVs can be charging simultaneously in a line at the maximum power.
To avoid energy losses, the imbalance among the three lines must be limited. To this end, a hard
maximum imbalance between every two lines is established.
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4. Problem Definition

As it was done in [10], we consider the static and dynamic versions of the problem. The first one
is not realistic, but it helps to better understand the problem and to establish performance limits to
the solution to the dynamic problem, which models the real scenario. Finally, we comment on some
model extensions.

4.1. The Static Problem

We have three lines Li, 1 ≤ i ≤ 3 with ni charging points each. Each line Li receives Mi vehicles,
denoted by vi1, . . . , viMi . We denote by n the total number of vehicles, i.e., n = M1 + M2 + M3. For each
vehicle, we are given the arrival time tij ≥ 0, the charging time pij > 0 and the due date dij ≥ tij + pij,
namely the time at which the user is expected to take the vehicle away. In this static version, it is
assumed that all these data are known in advance at the beginning of the scheduling horizon (t = 0).

The objective is to build up a feasible schedule; i.e., to establish starting times stij, 1 ≤ i ≤ 3,
1 ≤ j ≤ Mi, for charging the EVs so that the following constraints are satisfied:

∀vij, stij ≥ tij, (1)

∀vij, Cij = stij + pij, (2)

Ni(t) ≤ N, t ≥ 0; 1 ≤ i ≤ 3, (3)∣∣Ni(t)− Nj(t)
∣∣

N
≤ ∆, t ≥ 0; 1 ≤ i, j ≤ 3, (4)

where Cij is the completion time of charge of the EV vij, n is a parameter that fixes the maximum
number of EVs that can be charging in a line at the same time (due to the contracted electricity supply,
as described in Section 3), Ni(t) is the number of EVs charging at the same time in the line i over the
interval [t, t + 1) and ∆ ∈ [0, 1] is a parameter.

Equation (1) forbids EVs to start charging before their arrival time. Equation (2) ensures that EVs
cannot be disconnected until they finish charging. Equation (3) establishes that the number of EVs
charging in a line cannot exceed n . Finally, Equation (4) establishes the maximum imbalance between
any two lines by means of the parameter ∆.

The objective function is the total tardiness defined as:

3

∑
i=1

Mi

∑
j=1

max(0, Cij − dij), (5)

which should be minimized.
The right-hand side of Figure 1 shows the Gantt chart of a possible schedule for the small problem

represented in the charging station on the left-hand side, larger examples of feasible schedules for
real-size instances with 180 vehicles are shown in Section 6.

4.2. The Dynamic Problem

In the dynamic problem, we do not know in advance the due dates, charging and arrival times of
the vehicles. Therefore, following [8], it is modeled as a sequence P1, P2, . . . of static instances at times
T1, T2, . . .. The instance Pk is given by the EVs in the system arriving by Tk that have not completed
charging. Some of them have started to charge before Tk and we know their completion times Cij,
while others have not yet started to charge. For these last ones, we know the charging times pij and
due dates dij. The goal is to obtain a feasible schedule for these EVs that minimize the total tardiness
and that satisfy all the constraints naturally derived from the static problem.

At each time point Tk, a supervisor program running on the server checks for new EV arrivals since
Tk−1 = Tk − ∆T. If some EV arrived, a new instance Pk is created and solved; otherwise, the current
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schedule remains valid until the next time point. Notice that the stij may be modified in further Pk
instances as long as vij does not start charging. The time interval ∆T is set at two minutes in order to
not overload the server in situations where many EVs arrive at almost the same time and also to make
the best use of the charging resources. For more detailed definition of the dynamic problem, we refer
the interested reader to [8].

4.3. Model Extensions

In previous descriptions of the charging model, we have done some simplifying assumptions
for the sake of clarity, namely, all EVs charge at the same constant rate, the user never takes the EV
away before the completion time of charging, the batteries never get fully charged before this time,
and the contracted power in the charging station is constant over time. However, the model may
be extended to deal with these situations as well. For example, variable contracted power may be
modeled by considering that the capacity of each line is organized into slots whose number varies over
time. Therefore, charging at a variable rate is possible by assigning an EV a different number of slots
at different time intervals. In addition, situations such as EVs going out or EVs completing charging
before their charging times may be managed by events that the slaves can identify and communicate to
the server, much in the same way as when a new EV arrives. With all of these, the energy requirement
of an EV should be given as the number of time slots required to reach the desired state of charge of
the battery. Of course, with these extensions, the scheduling problem will be harder to solve, but the
proposed algorithms could be naturally adapted.

5. Artificial Bee Colony Algorithm

The Artificial Bee Colony algorithm (ABC) is a swarm population-based metaheuristic introduced
in [42], which is inspired by the intelligent foraging behavior of honey bees. The method mimics the
search for food of three types of foraging bees: employed, onlooker and scout. ABC is often used to
solve scheduling problems because of its effectiveness and its good balance between diversification
and intensification. A review of its fundamentals and some applications can be found in [43]. The ABC
algorithm was proposed for numerical optimization and so, in principle, the food sources should be
encoded by vectors of real numbers in a given interval. However, unlike other similar metaheuristics
as Particle Swarm Optimization (PSO), whose variation operators strongly rely on accurate distance
metrics between solutions, ABC is easy to adapt to discrete; i.e., combinatorial, optimization. This was
done, for example, in [44] where the authors tackled a variant of the Flow Shop Scheduling problem
and encode food sources by permutations of jobs. We use similar coding schema for the EV charging
scheduling problem herein.

As shown in Algorithm 1, the proposed ABC algorithm starts creating a number of SN initial
solutions or food sources. Then, it iterates over a number of cycles. In each cycle, several steps are
performed: employed bee phase, onlooker bee phase and scout bee phase. The termination criterion is
satisfied when the best solution is not improved for a consecutive number of cycles, or if a solution
with zero tardiness is reached. Finally, local search is applied to the best solution found so far. The main
features and steps of this algorithm are described below.

Algorithm 1 The Artificial Bee Colony algorithm

Input An EV charging scheduling problem instance P
Generate the initial population;
while Termination criterion is not satisfied do

Apply employed bee phase;
Apply onlooker bee phase;
Apply scout bee phase;

end while
Apply local search to the best solution;
return The schedule from the best solution reached;
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5.1. Food Source Representation and Evaluation

We encode solutions; i.e., food sources, as permutations of EVs. In the static problem, all EVs of
the problem are considered as the algorithm is applied only once to solve the problem. However, in the
dynamic problem, the algorithm is applied to solve each instance Pk and so the permutation contains
only the EVs at Tk that do not start to charge. Each solution has an associated value, num_trials, which
is the number of times it was tried to improve without success.

To evaluate a food source, a schedule S is built from the permutation by sequentially scheduling
the EVs at the earliest possible starting time such that all the constraints defined in Section 4 are met
with respect to the EVs previously scheduled. The amount of nectar (the measure of quality of a
solution) is the value 1/tardS, where tardS is the tardiness of the solution calculated by Equation (5).
Abusing the language, in the following, we will use the symbol S to denote both the schedule and the
permutation of EVs corresponding to a given solution.

5.2. Initial Population

We propose combining two dispatching rules with some random food sources to create an initial
population. The goal is to achieve good balance among quality and diversity. The first dispatching
rule is the Due Date Rule (DDR), which sorts all vehicles in increasing order of their due dates dij.
The second is the Latest Starting Time (LST) rule, which sorts all vehicles in increasing order of their
latest starting times, defined as lstij = dij − pij. Both rules are deterministic, so we follow the approach
proposed in [22] to create diverse food sources. To add the next vehicle to the permutation V, we sort
the vehicles not yet added to V using the corresponding dispatching rule and then we perform a
tournament selection: a number tsize of vehicles is selected uniformly and the best of them according to
the ordering given by the dispatching rule is added to V. As we will see, the parameter tsize is actually
relevant: too large values generate too similar food sources, whereas too small values generate almost
random ones. To build up the initial population, one third of the individuals are generated by each
dispatching rule and the other third at random.

5.3. Employed Bee Phase

Employed bees are in charge of searching for new and hopefully better food sources. To this
end, in the original ABC algorithm, each employed bee generates one new candidate solution in the
neighborhood of the solution in one food source. The new candidate replaces the old solution if it is
better. In our algorithm, we propose exploiting crossover operators borrowed from genetic algorithms
following two different approaches.

In the first one (denoted e_meth1), the best solution found so far is selected, unless it was already
selected in previous cycles. In that case, we choose the food source with the largest num_trials such
that it was never chosen for this role. This requires maintaining the list “common parents” containing
the solutions that were already chosen. Then, the food source in each employed bee is combined with
the selected food source, generating two new offspring. The best of them replaces the food source
in the memory of the employed bee if it is better; in that case, num_trials is set to zero for this food
source; otherwise, the original food source remains in the population with num_trials increased in
one unit. The rationale of this method is that it may produce good solutions as a solution that was
not improved after many trials may be a good solution. At the same time, it may produce reasonable
diversity, as new solutions are always created from different outstanding food sources in successive
cycles of the algorithm.

In the second approach (denoted e_meth2), we randomly shuffle the food sources of the population
and organize them in pairs to be combined. Thus, all food sources in the population are combined.
In this way, the diversity is expected to be larger than in the first method at the cost of lower quality.

We consider different crossover operators to combine solutions. The first one, which is specially
designed for this problem, is the Starting-time Based Crossover (SBX), initially proposed in [22].
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It randomly selects a time t0 ∈ [Tmin, Tmax] (where Tmin is the minimum starting time of all vehicles
in both parents and Tmax is the maximum starting time), and builds the first offspring O1 with all the
EVs in the first parent P1 that are scheduled before t0, in the order they appear in P1, followed by the
remaining EVs in the same order as they appear in P2. The second offspring O2 is created similarly
by exchanging the roles of P1 and P2. The second operator is the classic Partially-Mapped Crossover
(PMX) proposed in [45], which is commonly used in permutations encoding. In addition, we consider
a third option that consists of choosing SBX or PMX at random each time. In [10], it was proven that
this method obtains better results than using each operator separately. In Section 6, we report results
from some experiments carried out to compare all these options.

5.4. Onlooker Bee Phase

Employed bees share their information with onlooker bees waiting in the hive. Then, onlooker
bees probabilistically choose their food sources to go. Once there, they try to find a better neighboring
source. In particular, the probability to choose a food source k in this phase is

probk = (1/tardk)/
SN

∑
j=1

1/tardj. (6)

Notice that, in this case, divisions by zero will not be produced as the algorithm ends as soon as a
solution with zero tardiness is reached.

We propose different ways to apply the onlooker bee phase, which are adapted to the EV charging
scheduling problem. The rationale is trying to schedule a vehicle with tardiness earlier or to delay a
vehicle without tardiness.

The first one, termed o_meth1, is a generalization of the procedure proposed in [10], which
selects at random up to the 10% of the EVs in the permutation (v1, . . . , vn). For each selected EV,
vi, its tardiness is checked. If it is zero, vi could possibly be delayed; therefore we try to swap vi with
all the EVs from its position onwards, until an improving solution is found. However, if the tardiness
is positive vi is swapped with the previous ones instead. In any case, as soon as an improving solution
is reached, it replaces the original one and num_trials is set to zero. Otherwise, the original solution
remains and num_trials is increased in one unit.

In this paper, we enhance this procedure by using two parameters: max_improv and step_size.
As soon as we find a swap that leads to a better solution, we set num_improv← num_improv + 1,
and we repeat the process from this new solution, unless we have reached the maximum of max_improv
improvements. On the other hand, step_size is used so that not all swaps are tried, but only a
swap for every step_size vehicles. This new proposal may be better than that in [10] because the
parameter max_improv allows for increasing the intensification (of course at the cost of increasing the
computational time), whereas the parameter step_size allows the algorithm to reduce the computational
time, as it avoids testing all candidate swaps. The enhanced procedure is denoted o_meth1 and
it is showed in Algorithm 2. The proposal described in [10] would be a particular case taking
max_improv = 1 and step_size = 1.
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Algorithm 2 First type improvement for the onlooker bee phase o_meth1

Input A solution S and parameters step_size and max_improv
chosen_vehicles← 0;
num_improv← 0;
while chosen_vehicles < n ∗ 0.1 and num_improv < max_improv do

Select one vehicle vi randomly;
j← i;
if tardiness of vi = 0 then

j← j + step_size;
else

j← j− step_size;
end if
while j ≥ 1 and j ≤ n and num_improv < max_improv do

Swap vi and vj in S to obtain S′;
if S′ is better than S then

S← S′;
num_improv← num_improv + 1;

end if
if tardiness of vi = 0 then

j← j + step_size;
else

j← j− step_size;
end if

end while
chosen_vehicles← chosen_vehicles + 1;

end while
return The current solution S;

The second way to apply the onlooker bee phase (denoted o_meth2) chooses EVs to move earlier
or to delay depending on the structure of the schedule. Firstly, it considers whether to schedule tardy
EVs earlier or to delay EVs without tardiness. This selection is done with probability proportional to the
number of tardy EVs. For example, if 20% of EVs have zero tardiness, then we have 80% probability of
trying to delay non tardy EVs and only 20% of trying to schedule tardy EVs earlier. The rationale behind
this strategy is that when there are many tardy EVs, delaying some non tardy EV gives the chance for a
large number of tardy EVs get scheduled earlier—while in situations with a small portion of tardy EVs,
it is better trying to schedule earlier one of them each time. Furthermore, an additional control parameter
num_steps determines the maximum number of swaps that we try for each single EV, so that it helps with
further reducing the computational time. The detailed procedure can be seen in Algorithm 3.

5.5. Scout Bee Phase

When a solution cannot be improved after limit trials, its food source is abandoned and a scout
bee is in charge of looking for a new source. To implement the scout phase, we replace all solutions
having num_trials ≥ limit by random ones, and set num_trials = 0 for each of them.
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Algorithm 3 Second type improvement for the onlooker bee phase o_meth2

Input A solution S and parameters step_size, max_improv and max_steps
probability← #tardy_EVs/n;
random_probability← random number in [0..1];
chosen_vehicles← 0;
num_improv← 0;
while chosen_vehicles < n ∗ 0.1 and num_improv < max_improv do

if random_probability < probability then

Select uniformly one non tardy EV vi;
j← i + step_size;

else

Select uniformly one tardy EV vi;
j← i− step_size;

end if
num_steps← 0;
improv = False;
while j ≥ 1 and j ≤ n and num_steps < max_steps and not improv do

Swap vi and vj in S to obtain S′;
num_steps← num_steps + 1;
if S′ is better than S then

S← S′;
improv = True;
num_improv← num_improv + 1;

end if
if random_probability < probability then

j← j + step_size;
else

j← j− step_size;
end if

end while
chosen_vehicles← chosen_vehicles + 1;

end while
return The current solution S;

5.6. Local Search

It is well known that hybridization with local search usually improves the results of an
evolutionary metaheuristic, providing extra intensification [46–48]. Here, we propose applying a
hill climbing procedure to the final solution reached by a ABC algorithm in the following way:
we iterate over the EVs in the order they are scheduled and if the EV in position i (vi) is tardy, we try to
schedule it earlier, just before each one of the bi ∗max_step_percc previous EVs in the schedule, where
max_step_perc ∈ [0, 1] is a parameter. If an improving solution is reached, it substitutes the previous
one and the iterative process is started again. The local search finishes when no improving solution is
reached in a whole iterative process. The parameter max_step_perc is given a small value for the sake
of efficiency and to introduce reasonably small changes in the neighboring solutions. Notice that the
number of EVs for which vi is swapped depending on the position i; the rationale is that the chances
of a EV being scheduled earlier in an improving schedule is in direct ratio with the position in the
schedule. Algorithm 4 shows the detailed steps. In Section 6, we will see that this additional local
search improves the results of the algorithm, and the extra computational time taken is small due to
the fact that it is only applied to the best solution returned by the ABC algorithm.
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Algorithm 4 The local search

Input A solution S and the parameter max_step_perc ∈ [0, 1]
improvement← True;
while improvement do

improvement← False;
i← 1;
while i ≤ n do

if tardiness of vi > 0 then

j = i− 1;
k = bi ∗max_step_percc;
local_improvement← False;
while j ≥ i− k and not local_improvement do

Swap vi and vj in S to obtain S′;
if S′ is better than S then

S← S′;
improvement← True;
local_improvement← True;

end if
j← j− 1;

end while
end if
i← i + 1;

end while
end while
return The current solution S;

6. Results

We have considered the benchmark proposed in [8] (publicly available in [49]), which consists of
2160 instances organized in 72 sets of 30 instances each. This benchmark is inspired in a prototype
charging station with 180 spaces. The profiles of arrival times, demands and due dates correspond to
the expected behavior of real users under different circumstances. The time horizon is one day and
three different scenarios were considered: scenario 1 represents a normal week day, where vehicles
arrive throughout the day, with two arrival peaks. Scenarios 2 and 3 represent more complex situations
where the arrival time of most of the vehicles is at almost the same time. Scenario 3 having tighter
due dates than scenario 2. Each set is characterized by the tuple (scenario, type, N, ∆); type has two
possible values 1 and 2, in type 1 instances, one third of the vehicles arrive to each line, whereas in
instances of type 2 the loads are unbalanced so that 60% of the vehicles arrive to line 1, 30% to line
2 and 10% to line 3. This unbalance among the lines makes type 2 instances harder to solve due to
the difficulty in maintaining the constraint of maximum imbalance. Three values are considered for n,
20, 30 and 40, and four values for ∆, 0.2, 0.4, 0.6 and 0.8.

The proposed algorithm is implemented in C++ programming language using a single thread,
and the target machine is Xeon E5520 running Scientific Linux 6.0. Due to the stochastic nature of
the ABC algorithm, 30 independent executions were done for each instance to obtain statistically
significant results.

For the purpose of comparison, the main reference is the EVS algorithm proposed in [8]. After
EVS, some new approaches were proposed, namely a Memetic Algorithm (MA) [9] and an Artificial
Bee Colony (ABC) [10], which were able to improve the quality of the solutions from EVS at the cost of
taking more execution time. Here, it is important to remark that there are prototype implementations of
the charging station, but there are no actual implementations in a real parking yet, and so all previous
experimental results considered were obtained by simulations.

To set up the best values of the parameters of the algorithm, we have conducted some experiments
using a set of 24 instances, namely the first instance of each group of scenario 1. For all experiments,
the stopping condition was adjusted so that the computational time of the different configurations
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was similar and comparable to that of other state-of-the-art algorithms. Table 1 summarizes the values
tested for each parameter and the best values of the parameters for the static and dynamic versions of
the problem.

Table 1. Summary of the values tested for the parameters.

Parameter Values Tested Best Static Best Dynamic

Tournament size (tsize) 5, 10, 15 10 15
Number of food sources (SN) 100, 300, 500 300 100
Type of employed bee phase e_meth1, e_meth2 e_meth2 e_meth2
Crossover operator SBX, PMX, At random At random At random
Maximum trials for improving a solution (limit) 25, 50, 75, 100 50 25
o_meth1 :: step_size 1, 2, 5, 10 5 2
o_meth1 :: max_improv 1, 2, 4, 8 2 4
o_meth2 :: step_size 2, 5, 10 5 2
o_meth2 :: max_steps 5, 10, 20 20 10
o_meth2 :: max_improv 2, 4, 8 4 4
Type of onlooker bee phase o_meth1, o_meth2 o_meth1 o_meth1
max_step_perc for the local search 0.05, 0.1, 0.25 0.1 0.1
Final local search step Apply, Do not apply Apply Apply

Using the proposed parameter setting, which is shown in the columns “best static” and “best
dynamic” of Table 1, and considering 25 consecutive iterations without improving the best solution
obtained so far as stopping condition, we see that the convergence pattern is appropriate. As an
example, Figure 2 shows the evolution of the total tardiness in a run of one scenario 1, type 1 instance
with ∆ = 0.2 and n = 20, considering the static version of the problem.

From the results in Table 1, we may draw some interesting conclusions. For example, the
second improvement proposed for the employed bee phase (e_meth2) performed better than the
method e_meth1 proposed in [10]. Perhaps this is due to a larger diversity on the generated
offspring. In addition, the best configuration for the onlooker bee phase (o_meth1 with step_size
and max_improv higher than one) performs better than that proposed in [10] (which uses step_size = 1
and max_improv = 1). It is also worth to mentioning that the final local search step is able to improve
the final results of the ABC algorithm when using similar computational times in the comparison.
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Figure 2. Evolution of the best and average tardiness values along the iterations in one run in an
instance of scenario 1, type 1, ∆ = 0.2 and n = 20, considering the static version of the problem.

Using the best configuration reported in Table 1, we have performed experiments across the full
benchmark with 2160 instances. Tables 2–4 report the results in scenarios 1, 2 and 3, respectively.
For scenario 1, we report the results obtained by MA [9], ABC [10] and hABC. For the EVS algorithm [8],
we only report tardiness values obtained for the dynamic problem, as that paper does not tackle the static
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one. For scenarios 2 and 3, we only show tardiness values from hABC along with those reported for
EVS [8] and MA [9] on the dynamic problem. As in [10], there are no results reported from ABC on these
scenarios. Each value in the Tables represents the sum of the tardiness (in hours) of the 30 instances of
each group. The numbers in bold indicate that the best value for each version of the problem.

As it can be expected, the results reported in Tables 2–4 show that the tardiness values strongly
depend on the problem characteristics (scenario, type, n, ∆). Instances with lower n and ∆ values present
larger tardiness, which seems reasonable as these instances are much more constrained. Type 2 instances
have larger tardiness than those of type 1 because of the bottleneck caused by the unequal distribution
of EVs in the three lines. In addition, instances of scenario 1 have the lowest tardiness due to the EVs’
arrival being evenly distributed along the day, which allows for scheduling many EVs without tardiness.
In addition, the tardiness obtained in static problems are generally much lower than those obtained in
dynamic ones, which suggests that knowing in advance all the information allows the algorithms to
obtain better schedules and that there may still be room to improve the solutions of the dynamic problem.

Table 2. Comparison of hABC to the state-of-the-art methods on the instances of scenario1. The best
values obtained for each set of instances are remarked in bold.

n ∆
Static Problem Dynamic Problem

MA [9] ABC [10] hABC EVS [8] MA [9] ABC [10] hABC

Type 1 instances

20 0.2 5210.8 5331.7 5089.0 8386.3 6981.2 7027.9 6948.1
20 0.4 2509.2 2586.1 2529.7 4120.4 3884.2 3898.1 3877.4
20 0.6 2252.7 2258.2 2250.6 3670.6 3556.7 3558.0 3547.8
20 0.8 2199.0 2200.4 2194.1 3590.9 3503.3 3509.1 3494.5
30 0.2 729.5 771.9 712.6 1959.3 1444.8 1445.7 1445.0
30 0.4 52.5 76.8 75.4 421.2 367.6 366.6 364.8
30 0.6 34.3 34.9 34.4 347.9 316.2 317.7 316.8
30 0.8 33.8 34.1 33.7 347.6 314.7 316.4 315.9
40 0.2 216.9 238.6 221.4 735.0 541.6 545.2 540.3
40 0.4 0.0 0.0 0.0 14.0 7.7 7.8 7.4
40 0.6 0.0 0.0 0.0 3.4 3.4 3.4 3.4
40 0.8 0.0 0.0 0.0 3.4 3.4 3.4 3.4

Type 2 instances

20 0.2 122,615.0 123,409.0 122,690.0 128,185.0 124,075.0 124,168.0 123,934.0
20 0.4 43991.1 44,152.7 44,030.0 46,319.3 45,127.2 45,183.9 45,104.0
20 0.6 20,526.9 20,597.0 20,545.1 22,966.8 21,822.6 21,847.7 21,788.5
20 0.8 12,762.8 12,734.1 12,727.2 14,573.1 14,209.9 14,212.1 14,176.8
30 0.2 69,610.6 69,954.3 69,665.3 72,860.8 70,894.5 70,942.6 70,853.6
30 0.4 20,031.7 20,097.6 20,043.6 21,479.9 21,130.3 21,150.5 21,109.1
30 0.6 7030.5 7033.0 7019.0 8088.9 7921.5 7923.0 7905.2
30 0.8 3527.9 3536.4 3530.8 4486.3 4389.3 4391.0 4384.4
40 0.2 43,981.8 44,146.7 44,024.5 46,135.4 45,139.2 45,192.6 45,113.7
40 0.4 9760.7 9775.7 9753.1 10,869.3 10,654.6 10,669.2 10,635.7
40 0.6 2851.1 2855.7 2850.4 3599.1 3515.6 3515.1 3514.8
40 0.8 872.3 876.3 872.0 1635.5 1572.1 1574.9 1571.7

From Tables 2–4, it is also clear that ABC outperforms ABC [10] and EVS [8] in all groups of
30 instances with the same values of parameters n and ∆, in both the static and dynamic versions
of the problem. hABC also outperforms MA [9] in most cases, although the differences in the static
problem considering scenario 1 are small. In order to assess that the improvement is statistically
significant, following [50], we have performed non-parametric statistical tests for cases where we have
multiple-problem analysis. First of all, a Shapiro–Wilk test confirmed the non-normality of the data.
Then, we used paired Wilcoxon signed rank tests to compare the average results in all instances. In both
the static and dynamic versions of the problem, we have obtained p-values lower than 2.2 × 10−16

against the other three state-of-the-art approaches. These tiny p-values confirm that the improvements
in these instances are statistically significant, and so we can tell that hABC performs better than the



Energies 2018, 11, 2752 13 of 19

other methods. If we perform a more detailed analysis, we find that specifically in type 2 instances
from scenario 1 in the static version, the difference in the results obtained by hABC and MA is not
statistically significant (the p-value when assessing if hABC is better than MA is 0.5735, and it is 0.8531
the other way around). In all other cases, hABC is always significantly better.

Table 3. Comparison of hABC to the state-of-the-art methods on the instances of scenario 2. The best
values obtained for each set of instances are remarked in bold.

n ∆
Static Problem Dynamic Problem

MA [9] hABC EVS [8] MA [9] hABC

Type 1 instances

20 0.2 14,411.5 14,097.9 16,886.0 16,176.3 15,933.8
20 0.4 11,703.6 11,713.9 14,131.2 13,915.9 13,869.9
20 0.6 11,328.3 11,335.7 13,648.3 13,559.1 13,534.8
20 0.8 11,242.1 11,242.9 13,547.9 13,492.7 13,464.7
30 0.2 3920.6 3887.3 6394.7 5821.5 5798.8
30 0.4 2726.2 2717.1 4824.3 4688.4 4687.2
30 0.6 2592.8 2588.3 4668.6 4560.3 4559.3
30 0.8 2591.4 2587.2 4672.6 4559.0 4556.7
40 0.2 638.0 662.1 1951.4 1593.5 1590.0
40 0.4 186.4 186.4 1212.7 1102.0 1101.5
40 0.6 172.2 171.5 1210.7 1103.3 1102.8
40 0.8 171.9 171.6 1210.6 1102.7 1102.5

Type 2 instances

20 0.2 137,204.0 137,271.0 143,883.0 139,192.0 138,961.0
20 0.4 57,453.4 57,295.2 62,246.2 59,194.0 59,065.2
20 0.6 34,548.2 34,499.5 39,869.4 36,298.4 36,231.7
20 0.8 27,735.1 27,711.0 30,887.2 29,791.0 29,747.5
30 0.2 82,970.0 83,224.2 86,392.0 84,470.0 84,297.4
30 0.4 32,714.9 32,659.2 34,475.4 33,936.8 33,891.5
30 0.6 17,077.3 17,069.9 19,355.7 18,709.8 18,682.5
30 0.8 12,364.5 12,359.5 14,375.1 14,201.7 14,182.4
40 0.2 57,652.0 57,630.0 59,775.0 58,714.1 58,591.2
40 0.4 20,786.9 20,765.5 22,254.0 21,984.2 21,947.1
40 0.6 9582.4 9581.7 10,991.3 10,815.9 10,808.5
40 0.8 5806.0 5814.1 7260.5 7178.5 7170.9

Table 4. Comparison of hABC to the state-of-the-art methods on the instances of scenario 3. The best
values obtained for each set of instances are remarked in bold.

n ∆
Static Problem Dynamic Problem

MA [9] hABC EVS [8] MA [9] hABC

Type 1 instances

20 0.2 19,209.6 18,874.0 20,704.7 20,242.4 20,055.1
20 0.4 16,628.5 16,632.1 18,001.7 17,916.8 17,875.2
20 0.6 16,218.8 16,227.3 17,528.2 17,573.4 17,553.6
20 0.8 16,136.2 16,134.3 17,463.3 17,524.5 17,505.9
30 0.2 7791.9 7733.0 9051.1 8569.1 8556.5
30 0.4 6528.0 6524.1 7347.3 7283.5 7276.2
30 0.6 6379.6 6380.1 7150.4 7115.3 7113.5
30 0.8 6371.6 6371.2 7144.5 7106.9 7103.8
40 0.2 2422.5 2438.5 3478.1 3106.7 3108.5
40 0.4 1853.4 1853.4 2373.1 2328.6 2329.6
40 0.6 1810.3 1810.0 2276.7 2247.6 2247.2
40 0.8 1810.2 1810.0 2276.7 2246.7 2246.4



Energies 2018, 11, 2752 14 of 19

Table 4. Cont.

n ∆
Static Problem Dynamic Problem

MA [9] hABC EVS [8] MA [9] hABC

Type 2 instances

20 0.2 129,339.0 129,171.0 138,064.0 131,037.0 130,903.0
20 0.4 56,672.0 56,513.3 62,988.8 58,225.8 58,080.9
20 0.6 37,089.8 37,034.4 42,528.3 38,574.6 38,507.2
20 0.8 31,715.6 31,705.2 33,998.2 33,360.3 33,313.8
30 0.2 79,182.4 79,359.1 83,169.5 80,526.7 80,393.4
30 0.4 33,084.2 33,021.5 34,799.7 34,045.1 33,990.5
30 0.6 19,592.6 19,559.8 21,321.1 20,645.1 20,622.7
30 0.8 15,812.5 15,805.1 16,972.0 16,979.7 16,962.8
40 0.2 55,832.1 55,747.9 58,306.3 56,737.6 56,635.1
40 0.4 21,932.0 21,901.8 22,988.7 22,710.2 22,680.2
40 0.6 11,462.9 11,455.3 12,220.3 12,168.1 12,161.5
40 0.8 8388.2 8387.9 9127.3 9204.6 9198.8

In order to visualize the structure of the schedules and to appreciate how the difficulty of
the problems strongly depend on the different loads of the three lines, we show two complete
schedules (types 1 and 2 respectively, n = 30 and ∆ = 0.4 in both cases) for the dynamic
problem in Figures 3 and 4 (more schedulesare included in the complementary material of the paper).
The schedule in Figure 3 shows a normal situation where the load is balanced in the three lines so
that all EVs are scheduled almost without tardiness and at the same time the maximum imbalance
(∆ = 0.4) is only reached over small periods of time. However, the schedule in Figure 4 represents an
extreme situation (which probably will not happen in the real environment) where EVs are unevenly
distributed on the lines. As a consequence, the imbalance is at a maximum over almost the entire
scheduling horizon and the tardiness in line 1 is very high due to the low load in lines 2 and 3. For this
reason, the charge of EVs in line 1 is delayed up to one day more than in the schedule of Figure 3.
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Figure 3. Example of a feasible schedule of a Type 1 instance of scenario 1, with n = 30 and ∆ = 0.4,
showing in green the charging intervals of the EVs without tardiness, and in yellow and red the EVs that
complete charging after their due dates. The red portion indicates the interval after the corresponding
due date. Blue plots in each of the three lines show the load level Ni(t), which is always lower than or
equal to n = 30. The bottom graph shows the imbalance at each time point in the three lines, which is
always lower than or equal to ∆ = 0.4.
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Figure 4. Example of a feasible schedule of a Type 2 instance of scenario 1, with n = 30 and ∆ = 0.4.

The EVs charging scheduling algorithm must be run in a real-time setting, and so it is quite
relevant to consider its computational cost. Thus, we should check if hABC requires much lower time
than 120 s to solve any instance of the dynamic problem, as this is the time lapse between consecutive
instances (see Section 4.2). We have seen that the instances requiring the most computational time
are those of type 2, n = 20 and ∆ = 0.2 (see Table 5). The average time required by hABC to solve an
instance having those parameters was 1.88 s, being 12.34 s in the worst case. Clearly, these times are
much lower than two minutes and hence we can conclude that hABC can be used in the real setting.
The other metaheuristic methods require similar computational times: MA [9] took an average of 1.23 s
per instance and 10.26 s in the worst case, and ABC [10] required 1.97 s in average and 15.03 s in the
worst case. On the other hand, EVS [8] is the fastest algorithm, taking less than 0.012 s in all runs,
although it also obtained the worst results; this is reasonable due to using simple dispatching rules.

Regarding the static version of the problem, the computational time required by hABC is also
comparable to that of the other metaheuristic approaches. In Table 5, we report the average running
times for scenario 1 instances, depending on the instance type and the parameters n and ∆, in both the
static and dynamic versions of the problem. We have to remark that the values of the dynamic problem
represent the total execution time for solving all instances (up to 720 in the 24-h period) each one with
the EVs in the station that have not started to charge at the scheduling point, whereas in the static
problem there is only one large instance with all EVs over the whole time horizon. It is also worth to
noting that, in the dynamic problem, all EVs that have not yet started to charge have to be rescheduled,
and so the same vehicle may appear in several consecutive instances, which also justifies larger values
than those of the static version, particularly in type 2 instances. For all the above, the comparison
of the times required to solve the static and dynamic problems lacks real significance. What is really
relevant is the gap between their tardiness, which provides some hints about how much the solution
of the dynamic problem could be further improved with powerful algorithms or just by having some
knowledge on EV arrival.
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Table 5. Comparison of average execution times (in seconds) with the state of the art in scenario 1
instances. The values of the dynamic problem represent the total execution time for solving all instances
(up to 720 in the 24-h period).

n ∆
Static Problem Dynamic Problem

MA [9] ABC [10] hABC MA [9] ABC [10] hABC

Type 1 instances

20 0.2 75.9 111.0 102.6 144.3 136.5 113.4
20 0.4 50.9 57.2 62.4 65.7 63.5 48.6
20 0.6 39.2 43.7 45.0 48.2 48.5 36.1
20 0.8 37.2 41.5 42.8 43.9 45.1 37.5
30 0.2 31.2 47.1 50.0 23.0 28.7 9.5
30 0.4 6.5 11.1 9.4 8.7 12.1 2.7
30 0.6 3.5 7.4 4.6 7.8 10.7 2.2
30 0.8 3.4 7.4 4.4 7.7 10.7 2.2
40 0.2 11.4 18.3 19.9 10.6 13.8 4.0
40 0.4 0.3 0.2 0.2 0.5 0.9 0.2
40 0.6 0.2 0.2 0.2 0.1 0.2 0.1
40 0.8 0.2 0.2 0.2 0.1 0.2 0.1

Averages 21.7 28.8 28.5 30.1 30.9 21.4

Type 2 instances

20 0.2 115.3 271.9 166.2 437.6 1512.2 860.1
20 0.4 101.3 201.5 141.3 236.8 684.1 450.5
20 0.6 89.6 150.9 115.8 200.6 346.7 311.0
20 0.8 78.1 114.4 90.4 161.6 223.2 212.3
30 0.2 107.9 233.2 151.4 311.4 1002.7 608.7
30 0.4 87.6 143.5 109.0 164.2 298.9 223.9
30 0.6 61.7 89.6 75.3 95.3 114.4 85.7
30 0.8 46.6 57.8 55.0 59.5 63.3 43.2
40 0.2 101.6 205.4 140.6 233.2 682.7 439.9
40 0.4 71.9 104.6 85.2 115.1 149.8 115.6
40 0.6 41.9 53.6 51.0 49.3 52.4 32.5
40 0.8 26.8 41.5 28.7 26.6 27.3 10.9

Averages 77.5 139.0 100.8 174.3 429.8 282.9

7. Conclusions

In this paper, we have proposed a new algorithm to solve the electric vehicle charging scheduling
problem proposed in [8]. This algorithm combines artificial bee colony with local search algorithms
and other improvements. By experimental study, we have analyzed our proposal and compared
it with the state of the art on a set of real-world inspired instances. The proper balance between
diversification and intensification allows this hybrid algorithm to obtain very good results on these
instances. Moreover, the reasonable computational time taken by our algorithm allows it to be used in
the real environment for online scheduling.

The main contributions of the paper may be summarized as follows:

• We have devised some strategies to introduce domain knowledge in the artificial bee colony
algorithm proposed in [10], namely a neighborhood structure which was exploited in local search
and some improvements in the employer and onlooker bee phases.

• The new hybrid algorithm outperforms all previous methods in terms of tardiness penalties.
Therefore, it contributes to make the best use of the contracted power in the charging station and
to satisfy the users’ demands at the same time.

• From the experimental study on the static and dynamic versions of the electric vehicle charging
scheduling problem, we have gained interesting insights into the problem structure, which
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will allow for incorporating new features and objective functions in future extensions of the
charging model.

As future work, we will consider more realistic charging models, as those mentioned in Section 4.3,
and incorporate new objective functions as minimizing peak consumption or the imbalance between
the lines, which will require modeling and solving the problem in the frameworks of multi or many
objective optimization.
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The following abbreviations are used in this manuscript:

ABC Artificial Bee Colony
DDR Due Date Rule
EV Electric Vehicle
EVS Electric Vehicle Scheduling
GRASP Greedy Randomized Adaptive Search Procedure
hABC Hybrid Artificial Bee Colony
LST Latest Starting Time
MA Memetic Algorithm
PMX Partially-Mapped Crossover
PSO Particle Swarm Optimization
SBX Starting-time Based Crossover
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