
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 10, 2018

Data Modeling Guidelines for NoSQL
Document-Store Databases

Abdullahi Abubakar Imam1,a,b, Shuib Basri2,a, Rohiza Ahmad3,a, Junzo Watada4,a, Maria T. Gonzlez-Aparicio5,c,
Malek Ahmad Almomani6,a

aCIS Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31570, Perak, Malaysia
bCS Department, Ahmadu Bello University, Zaria-Nigeria

cComputing Department, University of Oviedo Gijon, Spain

Abstract—Good database design is key to high data avail-
ability and consistency in traditional databases, and numerous
techniques exist to abet designers in modeling schemas appropri-
ately. These schemas are strictly enforced by traditional database
engines. However, with the emergence of schema-free databases
(NoSQL) coupled with voluminous and highly diversified datasets
(big data), such aid becomes even more important as schemas in
NoSQL are enforced by application developers, which requires a
high level of competence. Precisely, existing modeling techniques
and guides used in traditional databases are insufficient for big-
data storage settings. As a synthesis, new modeling guidelines for
NoSQL document-store databases are posed. These guidelines
cut across both logical and physical stages of database designs.
Each is developed based on solid empirical insights, yet they are
prepared to be intuitive to developers and practitioners. To realize
this goal, we employ an exploratory approach to the investigation
of techniques, empirical methods and expert consultations. We
analyze how industry experts prioritize requirements and analyze
the relationships between datasets on the one hand and error
prospects and awareness on the other hand. Few proprietary
guidelines were extracted from a heuristic evaluation of 5 NoSQL
databases. In this regard, the proposed guidelines have great
potential to function as an imperative instrument of knowledge
transfer from academia to NoSQL database modeling practices.

Keywords—Big Data; NoSQL; Logical and Physical Design;
Data Modeling; Modeling Guidelines; Document-Stores; Model
Quality

I. INTRODUCTION

With the rise in data sizes, types and rates of generation,
i.e., big data, traditional datastores have become less capable
for many reasons, such as structural rigidity and untimely
response due to high access latency [1], [2], [3], [4], [5]. This
unacceptable performance has led to a reevaluation of how
such data can be efficiently managed in a new generation of
applications where performance and availability are paramount
[5], [6]. As a result, NoSQL (Not Only SQL) databases were
introduced to augment the features of Traditional Databases
(TD) with new concepts such as schema flexibility, scalability,
high performance, partition tolerance, and other new extended
features [7]. The schemas of such databases are enforced by
client-side application developers rather than database engines,
as in the case of TD [2], [8].

Consequently, several giant organizations, such as Google,
Facebook, and Amazon, have adopted NoSQL technology
for data management and storage [5]. However, the inherent
complexity and unpredictable nature of todays data [9], along
with the low competence level of data modelers [3], [10],

[11], developer autonomy [1], [12] and inadequate modeling
guidelines [13], have posed numerous challenges in NoSQL
schema best-practice implementation. This has increasingly led
to erroneous database modeling and designs [1], [14], [15],
[16], [17], which defeats the notion of robustness in NoSQL
databases and results in the production of low-performance,
non-secure and less-durable systems.

For example, consider the security aspect of NoSQL
document-oriented databases. The databases offer a query
language or an Application Program Interface (API) that has
the ability to retrieve the contents of any document in a
collection. These APIs, although they provide flexibility in
data access across heterogeneous platforms, can be used as
breaking points by hackers when incorrectly implemented
[18], [19]. Recently, Flexcoin, a United States bank, was
attacked, and more than a half-million USD was lost [20].
In addition, an airport was completely shut down due to
a system failure [21] in the UK, resulting in several flight
cancelations. These tragic events were strongly attributed to
improper database design, as discussed in Section 3. However,
some of the latest reported security breaches are as follows:
1) schema: because of its flexibility, mere record insertion
can automatically create a new schema within a collection, 2)
queries: unsafe queries can be created via string concatenation,
and 3) JavaScript (JS): the clause of db.eval(), $where takes
in JS functions as parameters [18]. Such types of issues are
what drew the attention of researchers to provide viable and
substantial solutions. However, many of the solutions come in
as testing tools for already developed databases [4], [22], [23]
or are proprietary [10], [17], [24], [25], which opposes our
understanding that the solutions should come at the earliest
stage of design (data modeling). Clearly, there is a need for a
standard guide in practice.

As such, a set of NoSQL modeling guidelines for the
logical and physical design of document-store databases is
proposed. In these guidelines, all possible relationships are
retrieved, analyzed, categorized and prioritized. The result-
ing guidelines are expected to serve as an important tool
of knowledge for beginners, intermediates or even advanced
NoSQL database developers. For the actualization of this goal,
we employ an exploratory approach for the investigation of
existing works, empirical methods and expert consultations.
We analyze how industry experts prioritize the guidelines and
analyze the relationships between datasets on the one hand
and error prospects and awareness on the other hand. Few
proprietary guidelines were extracted and harmonized from a

www.ijacsa.thesai.org 544 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 10, 2018

heuristic evaluation of 5 different existing NoSQL databases.
In this regard, the proposed guidelines have great potential
to function as an imperative instrument of knowledge transfer
from academia to NoSQL database modeling practices.

The remainder of this paper is structured as follows.
Section II reviews and analyzes existing works. Section III
puts forward the proposed guidelines and their application
scenarios. Section IV prioritizes guidelines in 3 different
categories. Section V discusses the findings (limitations and
potentials). Finally, Section VI concludes and highlights the
future focus.

II. RELATED WORKS

The origin of Data Modeling (DM) in databases can be
traced back to the mid-20th century as a technique for struc-
turing and organizing data [33]. The exercise is astonishingly
similar to construction designs where walls are planned, flows
are optimized, and materials are chosen based on the type of
utility that it will accommodate and the level of interaction
needed between sections [34]. DM gained the attention of
researchers in the field of information systems and data vi-
sualizations in the 1970s (see [35], [36]). In the late 1990s,
a Unified Modeling Language (UML) [34] was introduced to
consolidate the data modeling symbols and notations invented
by [35], [36] into one standardized language, all for the
purpose of simplifying data visualization and modeling in
relational databases.

Now, with the emergence of unstructured, voluminous and
complex datasets, i.e., big data, requirement to have more flex-
ible and higher-performance databases have become essential
[27], [28], [33], [37], which has given rise to the concept of
NoSQL databases. The high flexibility of NoSQL databases
makes data modeling even more challenging, as schemas are
written and enforced by the client-side application developers
rather than database engines, as in the case of RDBMS [12],
[38], [26], [29]. This raises the question of competence, which
may lead to the production of high- or low-quality models
[10], [12]. A recent report by [20] shows how a low level of
competence in NoSQL data modeling cost a United States-
based company called Flexcoin a half-million US dollars.
A hacker was able to make several transactions before the
account-balance-document was updated (low consistency). In
another case, an airport was completely shut down as a result of
a major IT system failure in London [21], for which the experts
assigned the blame to the poor back-end system design. These
are officially reported instances, while several other cases, such
as those discussed in [39], [40], do exist.

To mitigate these challenges, experts shared their experi-
ences on the most common questions asked by the client-side
application developers online. Some of these questions are (i)
how to model one-to-N relationships in document databases,
(ii) how to know when to reference instead of embedding a
document, and (iii) whether document databases allow Entity
Relationship modeling at all. In an attempt to address these and
similar questions, experts highlighted the necessity of having
a standardized modeling guide for these powerful data stores
[10], [12], [17], [30]. This is partly because many of the
questions keep reappearing repeatedly on multiple platforms
or even the same platform.

In the words of William (Lead Technical Engineer at
MongoDB) [10], guidance is strongly required for MongoDB
developers, upon which few guidelines were produced to ease
the modeling process. Moreover, Ryan CrawCuor and David
Makogon [17] created a comprehensive presentation on how to
model data in JSON. In addition, eBay [24] and Netflix [25]
produced some guidelines for schema design in Cassandra.
However, these guidelines, though comprehensive, are complex
and designed for the referenced databases only, i.e., they are
proprietary. Consequently, straightforward and more general
guidelines are needed in practice.

In [8] and [12], reuse of existing modeling expertise (from
RDBMS) is allowed to minimize the high level of competence
required to model NoSQL databases. This was achieved using
Idef1X (a standard data-modeling language) and Formal Con-
cept Analysis (FCA). However, an experiment conducted by
[13] evidently showed the limitation of the existing modeling
expertise when applied to new-generation complex datasets
(big data). Clearly, NoSQL databases need a different modeling
approach to efficiently manage big data due to its diverse
characteristics [32].

In [1], a cost-based approach for schema recommendation
is proposed with the aim of replacing the rules of thumb
currently followed by less competent NoSQL database design-
ers. In this approach, the expected performance of the target
application is estimated, upon which a candidate schema is
recommended. The approach made schema modeling more
stable and secure than before. However, more stages are added
to the design processes, such as data analysis, application of
the tool to propose schema, and then translation of the schema
into real application. Moreover, the approach is applicable to
column family databases only. In addition, the tool focuses
only on the expected performance of candidate schema, despite
the fact that NoSQL schema design is largely driven by the
nature of the target data [16]. Alternately, an interactive,
schema-on-read approach was proposed in [41] for finding
multidimensional structures in document stores. [42] proposed
a data migration architecture that migrates data from SQL to
NoSQL document-stores while taking into account the data
models of both the two categories of databases. Although these
approaches yielded relatively good findings, more generic,
simple, and data-driven guidance prepared for at least one
category of NoSQL databases [12], [31], [32] is still needed
for practitioners.

The heterogeneity of todays systems, data complexity
growth, and lack of modeling expertise have been stated as
motivations of the aforementioned works. These claims have
been confirmed by error-rate reports [20], [21], [39], [40] in
real-world of NoSQL-driven projects. Undoubtedly, there is a
need for well-founded guidelines in practice. The following
section presents the proposed guidelines, which were synthe-
sized from empirical research and professional involvements.

III. PROPOSED GUIDELINES

In this section, the proposed guidelines which were syn-
thesized from empirical work are introduced. The section is
divided into four subsections. In Section 3.1 an example model
from university social media networking system is described
which was used for this research. Section 3.2 highlights, in

www.ijacsa.thesai.org 545 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 10, 2018

summary, the empirical research upon which the proposed
guidelines are built. Section 3.3 presents the guidelines and
their respective explanations. Section 3.4 shows how the pro-
posed guidelines can improve the model presented in Section
3.1.

A. An Example Model

To illustrate the proposed guidelines, a running example
shown in Fig. 1 was used. The model describes entities and
their connections of a university social media networking
system which was developed by the university programmers.
The modeling was done without considering the proposed
guidelines and, as will be seen later, will improve when the
proposed guidelines are applied.

The model shown in Fig. 1 follows the Entity Relationship
Diagram (ERD) notations and symbols proposed by [35] and
[36] which are the most popular relational database modeling
technique in both the academia and industry.

Although a Unified Modeling Language (UML) [43] was
introduce to standardize approaches and notations, the model
in Fig. 1 adopted few fundamental symbols and notations from
[35], [36], [43] for demonstration purposes. Rectangle, arrows,
and curly and square brackets were used to show, conceptually,
the activity flow. Generally, in ERD, rectangles are used to
indicate entities while arrows correspond to data flows or
connections between the entities. Moreover, notations such as
curly and square brackets were used to indicate attribute and
arrays of keys respectively.

The given model in Fig. 1 roughly describes a user entity
and user-dependent entities. A user has direct entities such
as contact info, basic info, friends and family, messages, and

education and work. Each of these entities has other sub-
entities which, as the tree expands; many entities repeatedly
appear in different parent entities. For example, likers and
commenters entities contain the same list of people as in
friends & family entity. Furthermore, the list of people in
friends and family entity are also the system users who are
recorded in the User entity. Now, these repetitions might
improve data availability but at the expense of consistency or
speed during inserts, updates or deletes. This will be further
explained later when the model in Fig. 1 is improved using
our guidelines.

B. Empirical Research Background

The research background upon which the proposed guide-
lines are defined is described in this section. The widely
acceptance and adoption of ERD model in relational databases
is connected with its ease of comprehension and application
onto structured datasets. In prior research, we thoroughly
investigated the new generation datasets (big data) while taking
into account the connection between NoSQL databases and the
factors leading to their comprehension and proper modeling.
Factors such as understanding, error probability, and ambiguity
are experimented as well as other factors that motivated
the guidelines propositions. The findings are summarized as
follow.

• Understanding relates to the degree to which datasets
and system requirements can be easily understood. Its
a strong basis on which data is classified, categorized
and modeled. In an experiment reported in [13] we
introduced new cardinality notations and relationship
styles for NoSQL databases. From our engagement
with programmers regarding the new notations and

Fig. 1. A section of social media database model.

www.ijacsa.thesai.org 546 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 10, 2018

styles, we found a negative correlation with under-
standing how the new notations should be best imple-
mented.

• Error probability in our case refers to the extent a
programmer is able to classify datasets based on the
new notations and styles without introducing errors. In
a different experiment we have modeled the new no-
tations using MongoDB database [44] while focusing
on availability and consistency as the measurement
factors. The results of this experiment trace error
probability back to lack of understanding of data sets,
knowledge of modeling, and expertise. We found that,
modeling expertise and datasets complexity are the
most important drivers to error probability in NoSQL
database modeling.

• Ambiguity in relationships between datasets and sys-
tem/business requirements are an important road block
to the understanding NoSQL database design struc-
ture. As such, it was observed during our experi-
ment that, the notations (1:1, etc.) used in relational
databases have been in practice for decades which
shows the level of knowledge of SQL modeling no-
tations among practitioners; therefore, similar gram-
matical representation was adopted and extended for
the new NoSQL notations (1:F, etc.) [13]. Out of
14 postgraduate students from University Technology
PETRONAS, 12 students said that using similar no-
tations will lessen the ambiguity as the focus would
be on datasets analysis rather than introducing entirely
new notations.

• Styles Application Scheduling (SAS) captures the
awareness of most appropriate time to implement any
of the modeling style like embedding, referencing
or bucketing when modeling NoSQL database. We
conducted an experiment on each of the modeling
styles and found that, even though they are less
ambiguously introduced, knowledge of when to apply
which modeling style is still missing.

• Guidelines extraction from a heuristic evaluation of
five different NoSQL databases [45]. We extracted the
available modeling guidelines written by the technical
team of databases such as MongoDB, Couchbase,
Google Cloud Datastore, CouchDB, and MarkLogic.
The extracted guidelines were harmonized and gener-
alized for document-store databases.

• Expert consultations from three different SME com-
panies across the globe were involved. In total, 9
different industry experts were requested to critically
scrutinize and make recommendations on the proposed
guidelines. The experts consisted of one independent
programmer from Sweden, one researcher from Spain,
two from Software Development Company (SDC)
in Malaysia, two from Software Development Com-
mittee (SDC) Ahmadu Bello University Nigeria and
three postgraduate students from Universiti Teknologi
PETRONAS, Malaysia. 2919

Based on these six empirical insights into NoSQL relation-
ship modeling, we define the proposed guidelines as presented
in the next section.

C. The Guidelines

The proposed guidelines provide a set of recommendations
on how to develop NoSQL document-store databases, each of
which builds on empirical research [13], [45] summarized in
the previous section. Modeling NoSQL databases has notice-
ably become more challenging as data increases in volume,
variety and velocity, i.e. big data [10], [12], [17], [22]. The
aim of these guidelines is to ease data modeling process by
improving developers skills towards modeling document-store
databases. This is hoped to maximize data retrieval and storage
efficiency, minimize erroneous modeling, and reduce the time
taken to model database, as well as improve data security.
Hence, it is important to note that, the proposed guidelines
build on insight which might be described differently using a
different approach.

For better understanding and quick mapping, the proposed
guidelines were categorized into four different categories as
illustrated in Fig 2. This includes embedding, referencing,
bucketing and general. In each of the categories, there is at
least one important note which should be taken into account.

Fig. 2. Categorization of guidelines

At first, the notes as presented in Fig 2 are elaborated,
which were followed by the proposed guidelines.

Note 1: Characteristically, embedding provides better read
performance when retrieving data from document-
store databases. However, when writing data to
database, it can be exceedingly slower, unlike refer-
encing which uses the concept of writing data hori-
zontally into smaller files.

Note 2: Typically referencing provides better write perfor-
mance. However reading data may require more round
trips to the server.

Note 3: Bucketing enhances data retrieval by partitioning
document with large contents into smaller affordable
sizes.

Note 4: Normalizing data may help to save some space, but
with the current advancement of technology, space is
not a problem anymore.

Note 5: Finally, understand the data access patterns, the
nature of the data to be used in the application, the rate
of updates on a particular field, and the cardinality re-
lationships between entities. Such information shapes
the design and modeling structure of document-store
databases.

www.ijacsa.thesai.org 547 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 10, 2018

The proposed guidelines are as follows. They adhere to
the categorizations as depicted in Fig. 2. In the beginning,
embedding is put forward.

1) Embedding: This section presents the first set of the
proposed guidelines (G1 — G9) which aim to answer questions
related to embedding (i.e. insertion of one document into
another).

G1: Embed sub documents unless forced otherwise: For
better system performance in terms of saving and
retrieving speed, try to always embed child documents
except when it is necessary to do otherwise. With
embedding, there is no need to perform a separate
query to retrieve the embedded documents [7].

G2: Use array concept when embedding: It is recom-
mended to use array of embedded documents when
modeling few relationships [10], [17].

G3: Define array upper bound in parent document: Avoid
the use of unlimited array of ObjectID references in
the many side of the relationship if it contains a few
thousands of documents [17].

G4: Embed records which are managed together: when
records are queried, operated and updated together,
they should be embedded [13].

G5: Embed dependent documents: dependency is one of
the key indicators to embed a document [17]. For
example, order details are solely dependent to the
order itself; thus they should be kept together.

G6: Embed one-to-one (explained in [13]) relationships:
when modeling one-to-one relationship, embedding
style should be applied.

G7: Group data with same volatility: data should be
grouped based on the rate to which it changes [13]. For
example, persons bio-data and status of several social
media accounts. The volatility of social media status is
higher than the bio-data which does not change quite
often like email address or does not even change at
all, explicitly, date of birth.

G8: Two-way embedding is preferred when N size is
close to the M size in N:M relationship (presented in
[13]): in N:M relationship, try establish a relationship
balance by predicting the maximum number of N and
maximum number of M [7], [13]. Two-way embed-
ding is preferred when the N size is close to the M
size.

G9: One-way embedding is preferred if theres a huge gap
in size between N to M: if gap is for example 3 in N
side and 300,000 in M side, then one-way embedding
should be considered [13].

2) Referencing: Referencing can be explained as a process
of connecting two or more documents together using a unique
identifier [13]. The following guidelines (G10 G15) aim to
answer questions related to referencing.

G10: Reference highly volatile documents: high volatility of
document gives a good signal to reference a document
instead of embedding. For example, lets consider a

post made on a social media (Fig. 1), the likes tag
changes so often; thus unbound it from the main
document so that the main document is not always
accessed each time likes button is hit.

G11: Reference standalone entities: avoid embedding a
child document/object if it will be at one time ac-
cessed alone. Documents, when embedded, cannot be
retrieved alone as a single entity without retrieving the
main entity [10].

G12: Use array of references for the many side of the
relationship: when a relationship is one-to-many as in
[13] or a document is a standalone document, array
of references are best recommended.

G13: Parent referencing is recommended for large quantity
of documents: for instance, when the many side of a
relationship is squillion (introduced in [13]), parent-
referencing is preferred.

G14: Do not embed sub-documents if they are many: a
key entity with many other sub-entities should adopt
referencing rather than embedding [13]. This will
minimize high-cardinality arrays [41].

G15: Index all documents for better performance: If docu-
ments are indexed correctly and projection spacefarers
like the relationship styles discussed in [13] are used,
the applications level joins are nothing to be worried
about.

3) Bucketing: Bucketing refers to splitting of documents
into smaller manageable sizes. It balances between the rigidity
of embedding and flexibility of referencing [13].

G16: Combine embedding and referencing if necessary:
embedding and referencing can be merged together
and work perfectly [10]. For example, consider a prod-
uct advert on Amazon website, there is the product
information, the price which may change, and a list
of comments and likes. This advert actually combines
reasons to embed as well as to reference, thus merging
the two techniques together can be the best practice
in this case.

G17: Bucket documents with large content: to split a docu-
ment into discreet batches such as days, months, hour,
quantity etc, bucketing should be considered [13]. For
example, the squillions (introduced in [13]) side of
the relationship can be divided into 500 records per
display as the case of pagination.

4) General: There are few guidelines that do not fall into
any of the earlier discussed categories (embedding, referencing
and bucketing). Such guidelines are grouped and presented as
follows.

G18: Denormalize document when read/write frequency is
very low: denormalize document only if it is not
updated regularly. So, access frequency prediction
should guide the decision to denormalize any entity.

G19: Denormalize two connected documents for semi-
combined retrievals: Sometimes two documents are
connected, but only one is to be retrieved and few

www.ijacsa.thesai.org 548 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 10, 2018

fields from the second document, denormalization
can help here [13]. For example, when retrieving a
presentations session, a speakers name would need to
be displayed as well but not all the speakers details,
so, the second document (speaker) is denormalized to
get only the name of the presenter and attach it to
session document.

G20: Use tags implementation style for data transfer: if
information is not sensitive, packaging it within tags
like in XML document is recommended [46].

G21: Use directory hierarchies if security is a priority: apply
role based authorization to each of the directories for
access protection [19]. A user can have the privilege
to access one directory or a collection of directories,
depending on the users role.

G22: Use documents collections implementation style for
better read/write performance: this is the same as G21,
but with addition of better read/write performance.

G23: Use Non-visible metadata for data transfer between
nodes or servers: in many cases, APIs dont have
security mechanisms embedded in them [47]. So,
encoding sensitive information before transfer and
decoding upon arrival is strongly recommended. This
will improve data security on the air.

TABLE I. OVERVIEW OF THE PROPOSED GUIDELINES

Gl Embed sub-documents unless forced otherwise
G2 Use array concept when embedding
G3 Define array upper bound in parent document
G4 Embed records which are managed together
G5 Embed dependent documents
G6 Embed one-to-one relationships
G7 Group data with same volatility
GS Two-way embedding is preferred when N size is close to the M

size in N:M relationship
G9 One-way embedding is preferred if there’s hug gap in size between

N to M
G10 Reference highly volatile document
G11 Reference standalone entities
G12 Use array of references for the many side of the relationship
G13 Parent referencing is recommended for large quantity of entities
G14 Do not embed sub-documents if they are many
G15 Index all documents for better performance
G16 Combine embedding and referencing if necessary
G17 Bucket documents with large content
G18 Denormalize document when read write frequency is very low
G19 Denormalize two connected documents for semi-combined re-

trievals
G20 Use tags implementation style for data transfer
G21 Use directory hierarchies if security is a priority
G22 Use document collections implementation style
G23 Use Non-visible metadata for data transfer between nodes or server

The following section explains the application of the afore-
mentioned guidelines.

D. Application

To demonstrate the proposed guideline, we will show how
the original social media model (Fig. 1) can be transformed
into a more stable model. In Fig. 3, we marked and labeled
some areas of improvement on the same model using guideline
identifies. A transformed model is presented as in Fig. 4 which

results from the application of the proposed guidelines. The
application of each of these guidelines is explained as follows.

In the original model, some modeling problems were
identified such as too much redundancy of information which
of cause leads to inconsistencies among entities. For example,
there exists an entity of user which contains some informa-
tion about users, this entity is fully repeated in places like
“family & friends”, “commenters”, “likers” etc. in different
branches of the model. The problem with this approach is that,
updating a single attribute for instance will require updating
all documents with the same attribute. Now, in a situation
where an attribute changes so frequently and the affected
documents are many, more serious issues like inconsistency,
temporary insecurity (for access authorization) and perfor-
mance deterioration may arise. Such events motivated many
guidelines such as G1 which recommends the embedment
of all documents or G6 which recommends embedding of
a single document. To maintain the availability provided by
duplicating users data even when its embedded into “User”
entity, G17 came in to take the few rarely changed attributes
from the main document to the areas where they are accessed
quite often. However, as “User” entity is bucketed, referencing
became required (G11). Similarly, higher volatile documents
like “Discussions” and “Posts” were bucketed from “User”
entity and grouped based on the rate to which they change
(G7) which allows write/update operations without necessarily
accessing the parent documents. Also, G11 was considered for
independent access of “Discussions” and “Posts ” since they
may be accessed alone in most cases.

While referencing related documents, G2 was used, which
states the use of array concept when referencing documents
using their IDs especially in the M (many) side of the rela-
tionship (G12), besides, upper bound was defined for any array
of IDs (G3). But in a situation of a large number of entities
like “comments”, the spirit of parent referencing (G13) was
followed.

By referring to the original model, since the write
frequency is very high in the entities of “comments”
and “likes”, embedding was avoided (G14), instead we
denormalized “commenters” and “likers” entities (G19)
and reference each of them (G10) such that embedding
and referencing can be combined (G16) using only the
commenters name and ID, leading to achieving both
availability and consistency at the same time. The rationale
behind this is that, only commenters or likers name is often
required for each comment or like. Therefore, for high
availability, only the name of a user should be denormalized
and for the consistency during updates, array of IDs can be
used for more round trips.

On the section of “User” entity again, Basic Info” and
“Contact Info” are not only dependent to “User” entity but
they are also managed together. Since such information has
low read/write frequencies (G18), putting them together based
on their collectivity in management (G4) or based on their
dependencies on one another (G5) will significantly minimize
the number of round trips to the server for a single update.
Given that, the predicted records for all the three entities
(“Basic Info”, “contact info” and “User”) are almost at same
level, two-way embedding is best recommended (G8) to permit
connection from either directions. But in the case of “Posts”

www.ijacsa.thesai.org 549 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 10, 2018

Fig. 3. A section of social media database including markers

and “Likes”, One-way embedding is most preferred (G9) since
the number of “likes” can be more than a million for a
particular post.

In view of the fact that, performance is usually a pri-
ority requirement, indexing all documents (G15) is strongly
recommended. Also, considering the node balance challenge
posed by hierarchical data modeling style, document collection
implementation style (G22) is maintained for many reasons
such as horizontal schema flexibility as database scales up and
down.

Although it is not frequently used, interfacing possibili-

ties (data exchange) with other applications is an important
aspect to consider right from modeling stage to avoid using
proprietary data export format, G20 proposes the use of tags
formatting style such as XML which is open source and can
be formatted (G23) and read by almost all programming lan-
guages. In many cases, web-services are allowed to determine
everything including using special characters; this flexibility
creates security vulnerabilities such as NoSQL injections via
restful APIs. Such high expectations of security breaches
motivated the use of hierarchical data modeling (G21) which
ease the application of role based authorization on each node

Fig. 4. The optimized model

www.ijacsa.thesai.org 550 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 10, 2018

of the tree, or G22 which clusters documents into collection
of documents at different stages.

It is important to note that not all the guidelines are
applicable to the original model, some guidelines such as
G20 - G23 were exemplified in a more generic way. This is
because the original model did not interface with other models
or applications. Also, the overall number of entities has been
reduced from 24 in the original model to 17 in the transformed
model as a result of prioritizing guidelines such as G1, G4,
G5, G7 etc. In summary, the original model is restructured and
transformed to less redundant model with high availability and
consistency without changing the model behavior.

IV. PRIORITIZING GUIDELINES
In the preceding section, we illustrated how each element

of the proposed guidelines can be applied on a real datasets.
However, in a situation where two or more guidelines are
applicable, the modeler needs to be guided towards taking
the most appropriate direction based on system requirements.
For instance, while embedding dependent documents (G7)
increases read/write performance, requirement to access doc-
ument independently may necessitate referencing standalone
entities (G11) or bucketing the frequently accessed entities
(G15) into affordable elements. This is because, embedded
child document cannot be retrieved alone without retrieving
the parent document [32]. This situation is explained in the
previous section, which clearly demanded more sensible pri-
orities when applying the proposed guidelines.

Its important to note that, in as much as we tried to simplify
the guidelines; their diverse nature significantly increases the
challenge of resolving conflicts between them. For a given
model, many conflicting guidelines can be applicable in one
section, and many sections can adopt one guideline.

The scope of this paper does not include a more com-
prehensive prioritization which is theoretically motivated and
empirically validated. Nevertheless, we have taken the fol-
lowing approach to arrive at some guidance on guideline
application prioritization. At first, a presentation of the pro-
posed guidelines was made to experts in Universiti Teknologi

PETRONAS, Malaysia which led to comprehensive refinement
of the guidelines. Secondly, SQL and NoSQL professionals in
our network were contacted to take part in reviewing, analyzing
and prioritizing the guidelines based on their expert opinions,
this include five experts from Malaysia one from Sweden, one
from Spain, and two from Nigeria. A total of nine professionals
with an average modeling experience of 4 years complied
with our request and assisted in refining the guidelines and
prioritizing their application under different circumstances.

Each of the professionals contacted, receives a verbal
or written presentation of the proposed guidelines from the
researchers. After that, all professionals were asked to indi-
vidually review each guideline and add or remove to/from the
list. Next, each professional was also asked to rank the refined
proposed guidelines with respect to three different categories,
namely, availability (read operation), consistency (write and
update operations) and cardinality notations using a scale of
1-23. For this scale, the ranking begins from 1 which indicates
a perception of being the highest relative potential, while rank
of 23 in the scale indicates the lowest relative potential. This
inquiry guided the researchers to infer a priority scheme which
can resolve conflicts among rival guidelines.

While ranking the guidelines, all participating experts were
allowed to give equal rank to more than one guideline. How-
ever, for each participant, a constraint of a total number of 276
(= 1 + 2 + 3 + 4 + 23) assigned ranks was expected.

These assigned ranks were accumulated per guideline lead-
ing to results as presented in Table II. It can be seen from this
table that, G6 is considered to have the highest potential to
improve data availability, as it has total rank scores of 12.

While, G21 is deliberated to have the least potential to
improve data availability with an average score of 202. The
total scores of the remaining guidelines fall between these
extremes.

On the other hand, since availability is not always a
priority of all systems [4], the prioritization also considered an
important database concept which is consistency in replicated,
connected or dependent data. As such, another set of priority

TABLE II. PRIORITIZING GUIDELINES BASED ON AVAILABILITY (READ OPERATIONS)

No Description Total Scores (Rank) Priority Level
G6 Embed one-to-one relationships 12 1
G1 Embed sub-documents unless forced otherwise 16 2
G17 Bucket documents with large content 30 3
G15 Index all documents for better performance 34 4
G2 Use array concept when embedding 52 5
G7 Group data with same volatility 54 6
G11 Reference standalone entities 67 7
G9 One-way embedding is preferred if there’s hug gap in size between N to M 69 8
G3 Define array upper bound in parent document 6 9
G19 Denormalize two connected documents for semi-combined retrievals 92 10
G5 Embed dependent documents 97 11
G4 Embed records which are managed together 106 12
G22 Use document collections implementation style 123 13
G8 Two-way embedding is preferred when N size is close to the M size in N:M I26 14
G12 Use array of references for the many side of the relationship 129 I5
G10 Reference highly volatile document 141 16
G13 Parent referencing is recommended for large quantity of entities I57 17
G14 Do not embed sub-documents if they are many 161 18
G18 Denormalize document when read write frequency is very low 168 19
G23 Use Non-visible metadata for data transfer between nodes or server 186 20
G16 Combine embedding and referencing if necessary I87 21
G20 Use tags implementation Style for data transfer 199 22
G21 Use directory hierarchies if security is a priority 202 23

www.ijacsa.thesai.org 551 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 10, 2018

TABLE III. PRIORITIZING GUIDELINES BASED ON CONSISTENCY (WRITE & UPDATE OPERATIONS)

No Description Total Scores (Rank) Prioritv Level
G1 Embed sub-documents unless forced otherwise 17 1
G6 Embed one-to-one relationships 25 2
G4 Embed records which are managed together 28 3
G5 Embed dependent documents 35 4
G7 Group data with same volatility 50 5
G18 Denormalize document when read write frequency is way low 70 6
G10 Reference highly volatile document 79 7
G11 Reference standalone entities 91 8
G14 Do not embed sub-documents if they are many 93 9
G12 Use array of references for the many side of the relationship 95 10
G8 Two-way embedding is preferred when N size is close to the M size in X:M 99 11
G15 Index all documents for better performance 101 12
G3 Define array upper bound in parent document 103 13
G9 One-way embedding is preferred if there’s hug gap in size between N to M 118 14
G13 Parent referencing is recommended for iarge quantity of entities 125 15
G16 Combine embedding and referencing if necessary 136 16
G2 Use array concept when embedding 138 17
G21 Use director.’ hierarchies if security is a priority 152 18
G19 Denormalize two connected documents for semi-combined retrievals 169 19
G23 Use Non-visible metadata for data transfer between nodes or server 173 20
G22 Use document collections implementation style 190 21
G20 Use tags implementation style for data transfer 196 22
G17 Bucket documents with large content 201 23

list was debated; results of which is shown in Table III. This
table suggests that, in consistency, G1 has the highest potential
to improve consistency among different clusters, documents or
datasets as it has an accumulated score of 17 ranks. In contrast,
G17 is considered to have the lowest potential to do so with
an accumulated score of 201 ranks. The remaining guidelines
fall between the two extremes.

In addition to prioritizing guidelines for availability and
consistency, cardinality can also be considered as an important
factor for the categorization of the proposed guidelines. There-
after, prioritize their application in each of the categories. To
do so, the new generation cardinalities proposed by [13] were
considered. These cardinalities have the potential to categorize

complex datasets in seven different relationships such as one-
to-one (1:1), one-to-few (1:F) etc. In line with this, our study
reveals that, more than one guideline can be in the same
priority level for a single cardinality as shown in Fig. 5.

In each of the cardinalities (in Fig. 5), guidelines are
prioritize on a scale of seven (priority levels 1 — 7) which
are color coded (light gray to dark gray). As it was mentioned
before, professionals were allowed to allocate the same rank
to more than one guideline, therefore, many guidelines were
given the same level in the same category which indicates their
potential equality in improving design performance.

In general, the suggested use of these rankings in three dif-
ferent categories (availability, consistency and cardinalities) is

Fig. 5. Guideline Prioritization Based on Cardinalities

www.ijacsa.thesai.org 552 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 10, 2018

that guidelines with higher positions should be favored over the
guidelines with lower positions or conflicting guidelines. For
instance, while referencing standalone entities (G11) increases
data availability for independent or round-trip queries, require-
ment to have high consistency may necessitate combining G7
and G15. This means that, in the case of security access,
authorization across cluster can be controlled (consistency) and
the solo records within the main document can be bucketed
into a different smaller document for independent retrieval
(availability). In other words, the application of G7 can in-
terfere with the impact of applying G11 or G15 because it
appears higher, but when categorized (availability, consistency
and cardinalities), their levels of application changes based on
the requirement.

It is worth mentioning that most of the elements in the
presented guidelines were broadly reorganized by the experts
as they have used some of them in their NoSQL modeling
process already which led to better understanding on how best
they can be prioritized.

V. DISCUSSION
In this section, the proposed guidelines are investigated

regarding two different aspects. First, some limitations of the
proposed guidelines are discussed. Thereafter, several aspects
of their potentials are elaborated.

A. Limitations
While the proposed guidelines are stronger in their foun-

dation and more generalized than many existing proprietary
guidelines, some limitations must be noted. The first limitation
relates to the development of the proposed guidelines and
their validity: the fundamental principles and the empirical
insights that ground the introduction of said guidelines would
have been more thorough and evolving if the number of
professionals involved was greater than nine. However, the
scarcity of NoSQL modelers (expert-level) made it difficult to
find the typically used number of professionals. This is because
NoSQL databases are new and used to manage new-generation
datasets (big data), and they thus have not yet matured in
academia and industry.

The second limitation is that the proposed guidelines
assume that all modelers have basic SQL modeling skills. This
means that the symbols, notations and terminologies proposed
by [35] and [36] are prerequisite skills for the effective use of
the proposed guidelines. People with no database modeling
background may find it challenging to start modeling with
the proposed guidelines. However, in the world of diversifi-
cation, such individuals should also be considered in a more
automated manner where a modeler answers a few questions
and a suitable model is automatically produced, subject to
an experts analysis. This will minimize errors in modeling,
thereby producing more stable NoSQL models.

The third limitation relates to the guideline prioritization
described in Section 4. The ranking was derived from a
number of presentations and expert scorings. Although this
could be seen as needing wider expert coverage, it also raises
questions such as what other alternative ranking roots are
available, for instance, through experimentation. Nevertheless,
it seems less attractive at this stage to focus on producing very
perfect guidance on how best the proposed guidelines can be
prioritized and applied. This is why we have high expectations
that the proposed guidelines will be further extended in the
near future to cover more application scenarios, as professional

have already inspired us with a few guidelines to be considered
in the future.

B. Potential
This section continues to discuss the potential of the

proposed guidelines beyond their detailed explanations (see
Section 3.3) and application (see Section 3.4). The first mod-
eling guidelines prepared to guide data modelers for NoSQL
document-store databases, coupled with the increase in com-
plexity of todays data (big data), greatly increase the potential
to widely accept and adopt the proposed guidelines in both
industry for practice and academia for learning.

On the technical side, two potential aspects are identified.
First, the proposed guidelines can be the basis of automating
the modeling process from scratch, which may not require
more technical background. Second, if a model already exists,
improvement might be required, as shown in Fig. 4, which
resulted from applying the guidelines in Fig. 3. Instead of man-
ually transforming the model using the proposed guidelines,
the process can be intelligently automated to identify errors
and mark them such that existing models can be automatically
transformed. Solutions or approaches like these will require
further in-depth and formal research on both aspects, as well
as potentially more.

The proposed guidelines also point to more potentials for
the competence analysis of modelers. This might be achieved
by measuring the structures of the produced models, which
might be based on some assumptions, such as to what extent
the proposed guidelines considered the model requirements.
Modelers with high levels of competence are likely to detect
any model that deviates from the proposed guidelines. In an
experiment that involved designing a complete mini-NoSQL-
based system, a model was repeatedly redesigned for improve-
ments as a result of a low level of competence, which can be
associated with the lack of basic skills [1]. In this manner, the
proposed model offers easier methods with simple language to
identify difficulties associated with complex datasets as well
as the best methods to relate the entities.

VI. CONCLUSION AND FUTURE WORK
In this paper, the mismatch between proprietary recommen-

dations for NoSQL document-store modeling and technical
insight into NoSQL modeling practice are addressed. Prior
empirical research and expert suggestions were consolidated,
which led to the derivation of the proposed guidelines. Con-
trary to proprietary guidelines, our guidelines were built from
a strong research foundation, which was practically motivated,
empirically derived and conceptually validated. In contrast to
the existing research on database modeling, our guidelines
were made specifically for document-store NoSQL databases
with simple and straightforward explanations. In this manner,
the proposed guidelines addressed the practical modeling prob-
lems that are being faced by many modelers in industry. This
fact among others was emphasized by the low competence
level of casual NoSQL modelers [32], [10] and the high rates
of errors, repetition and insecurity [19], [20].

In addition to these virtues, the proposed guidelines also
revealed some limitations to reflect upon. More significantly,
although the guidelines were prioritized based on three iden-
tified categories (availability, consistency and cardinalities),
we believe that, as big data and NoSQL mature, several
other categories will be harnessed, which may call for re-
prioritization to suit new categories. Furthermore, humans

www.ijacsa.thesai.org 553 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 10, 2018

(who are naturally prone to errors) are, to a large extent,
involved in the application of the proposed guidelines, and as
such, several automations are required to minimize possible
human error, thereby producing more stable models. Such
solutions are slotted into our future research schedule.

In addition to the future focuses mentioned earlier, the
applicability and usability of the proposed guidelines are
another important aspect. While considering other usability
test approaches, such as that in [48], where the applicability of
SEUAL quality was assessed, the proposed guidelines might
be subjected to similar usability assessment in the future,
particularly the use of a standard survey, which may result
in further improvement of the proposed guidelines.

Finally, with high optimism, the proposed guidelines have
great potential to function as an imperative instrument of
knowledge transfer from academia to NoSQL database model-
ing practices, which may bridge the two disconnected commu-
nities (academia and industry) with respect to NoSQL database
modeling.

ACKNOWLEDGMENT
The authors wish to acknowledge the support from Uni-

versiti Teknologi PETRONAS (UTP) for funding this research
through Yayasan and Graduate Assistantship Scheme (UTP-
GA).

REFERENCES
[1] Micheal J. Mior, K. Salem, A. Aboulnaga, and R. Liu, NoSE: Schema

design for NoSQL applications, IEEE Trans. Knowl. Data Eng. From
2016 IEEE 32nd Int. Conf. Data Eng. ICDE 2016, vol. 4347, no. c, pp.
181192, 2016.

[2] H. Zhang, G. Chen, B. C. Ooi, K. L. Tan, and M. Zhang, In-Memory
Big Data Management and Processing: A Survey, IEEE Trans. Knowl.
Data Eng., vol. 27, no. 7, pp. 19201948, 2015.

[3] G. C. Everest, Stages of Data Modeling Conceptual vs . Logical vs .
Physical Stages of Data Modeling, in Carlson School of Management
University of Minnesota, Presentation to DAMA, Minnesota, 2016, pp.
130.

[4] M. T. Gonzalez-Aparicio, M. Younas, J. Tuya, and R. Casado, A
New Model for Testing CRUD Operations in a NoSQL Database, in
2016 IEEE 30th International Conference on Advanced Information
Networking and Applications (AINA), 2016, vol. 6, pp. 7986.

[5] IBM, Why NoSQL? Your database options in the new non-relational
world, Couchbase, no. March, p. 6, 2014.

[6] J. Bhogal and I. Choksi, Handling Big Data Using NoSQL, in Proceed-
ings - IEEE 29th International Conference on Advanced Information
Networking and Applications Workshops, WAINA 2015, 2015, pp.
393398.

[7] MongoDB, How a Database Can Make Your Organization Faster, Better,
Leaner, MongoDB White Pap., no. October, p. 16, 2016.

[8] V. Jovanovic and S. Benson, Aggregate Data Modeling Style, Proc.
South. Assoc. Inf. Syst. Conf. Savannah, GA, USA March 8th9th, pp.
7075, 2013.

[9] H. He and E. A. Garcia, Learning from imbalanced data, IEEE Trans.
Knowl. Data Eng., vol. 21, no. 9, pp. 12631284, 2009.

[10] Z. William, 6 Rules of Thumb for MongoDB
Schema Design, MongoDB, 2014. [Online]. Available:
https://www.mongodb.com/blog/post/6-rules-of-thumb-for-mongodb-
schema-design-part-1. [Accessed: 23-Jan-2017].

[11] X. Wu, X. Zhu, G. Q. Wu, and W. Ding, Data mining with big data,
IEEE Trans. Knowl. Data Eng., vol. 26, no. 1, pp. 97107, 2014.

[12] V. Varga, K. T. Jnosi, and B. Klmn, Conceptual Design of Document
NoSQL Database with Formal Concept Analysis, Acta Polytech. Hun-
garica, vol. 13, no. 2, pp. 229248, 2016.

[13] A. A. Imam, S. Basri, R. Ahmad, N. Abdulaziz, and M. T. Gonzlez-
aparicio, New Cardinality Notations and Styles for Modeling NoSQL
Document-stores Databases, in IEEE Region 10 Conference (TEN-
CON), Penang, Malaysia, 2017, p. 6.

[14] A. Ron, A. Shulman-Peleg, and A. Puzanov, Analysis and Mitigation
of NoSQL Injections, IEEE Secur. Priv., vol. 14, no. 2, pp. 3039, 2016.

[15] M. Obijaju, NoSQL NoSecurity Security issues with NoSQL Database,
Perficient: Data and Analytics Blog, 2015. [Online]. Available:
http://blogs.perficient.com/dataanalytics/2015/06/22/nosql-nosecuity-
security-issues-with-nosql-database/. [Accessed: 21-Sep-2016].

[16] M. J. Mior, Automated schema design for NoSQL databases, Proc. 2014
SIGMOD PhD Symp. - SIGMOD14 PhD Symp., pp. 4145, 2014.

[17] R. CrawCuor and D. Makogon, Modeling Data in Document Databases.
United States: Developer Experience & Document DB, 2016.

[18] M. Chow, Abusing NoSQL Databases, Proceedings of DEF CON 21
Hacking Conference. 2013.

[19] L. Okman, N. Gal-Oz, Y. Gonen, E. Gudes, and J. Abramov, Security
issues in NoSQL databases, in Proc. 10th IEEE Int. Conf. on Trust,
Security and Privacy in Computing and Communications, TrustCom
2011, 8th IEEE Int. Conf. on Embedded Software and Systems, ICESS
2011, 6th Int. Conf. on FCST 2011, 2011, pp. 541547.

[20] E. G. Sirer, NoSQL Meets Bitcoin and Brings Down Two Exchanges:
The Story of Flexcoin and Poloniex, Hacking, Distributed, 2014.
[Online]. Available: http://hackingdistributed.com/2014/04/06/another-
one-bites-the-dust-flexcoin/. [Accessed: 31-Jul-2017].

[21] J. FORTIN and A. Cruz, System Failure at British Airways Shuts
Down Flights Out of London, The New York Times, 2017. [Online].
Available: https://www.nytimes.com/2017/05/27/world/europe/british-
airways-flights-heathrow-and-gatwick-airports-.html. [RAccessed:
01-Aug-2017].

[22] W. Naheman, Review ofNoSQL Databases and Performance Testing
on HBase, 2013 Int. Conf. Mechatron. Sci. Electr. Eng. Comput., pp.
23042309, 2013.

[23] C. O. Truica, F. Radulescu, A. Boicea, and I. Bucur, Performance
evaluation for CRUD operations in asynchronously replicated document
oriented database, in Proceedings - 2015 20th International Conference
on Control Systems and Computer Science, CSCS 2015, 2015, pp.
191196.

[24] J. Patel, Cassandra data modeling best practices, part 1, ebaytech-
blog, 2012. [Online]. Available: http://ebaytechblog.com/?p=1308. [Ac-
cessed: 02-Aug-2017].

[25] N. Korla, Cassandra data modeling - practical consid-
erations @ Netflix, Netflix, 2013. [Online]. Available:
http://www.slideshare.net/nkorla1share/cass-summit-3. [Accessed:
02-Aug-2017].

[26] N. Jatana, S. Puri, and M. Ahuja, A Survey and Comparison of
Relational and Non-Relational Database, Int. J. , vol. 1, no. 6, pp. 15,
2012.

[27] C. JMTauro, A. S, and S. A.B, Comparative Study of the New
Generation, Agile, Scalable, High Performance NOSQL Databases, Int.
J. Comput. Appl., vol. 48, no. 20, pp. 14, 2012.

[28] R. April, NoSQL Technologies: Embrace NoSQL as a relational
Guy Column Family Store, DBCouncil, 2016. [Online]. Available:
https://dbcouncil.net/category/nosql-technologies/. [Accessed: 21-Apr-
2017].

[29] S. Visigenic, ODBC 2.0 Programmers Manual, Version 2. United States:
TimesTen Performance Software, 2000.

[30] G. Matthias, Knowledge Base of Relational and NoSQL Database
Management Systems: DB-Engines Ranking per database model
category, DB-Engines, 2017. [Online]. Available: https://db-
engines.com/en/ranking categories. [Accessed: 21-Apr-2017].

[31] Gartner and M. Fowler, The NoSQL Generation: Embracing the Doc-
ument Model, MarkLogic Corp. Hype Cycle Big Data, no. May, 2014.

[32] P. Atzeni, Data Modelling in the NoSQL world: A contradiction?, Int.
Conf. Comput. Syst. Technol. - CompSysTech16, no. June, pp. 2324,
2016.

[33] P. Lake and P. Crowther, A History of Databases: Concise guide to
databases: a practical introduction, Springer-Verlag London, vol. 17,
no. 1, p. 307, 2013.

[34] K. Dembczy, Evolution of Database Systems, Intell. Decis. Support
Syst. Lab. Pozna n Univ. Technol. Pol., vol. 16, p. 139, 2015.

[35] P. P.-S. Chen, The Entity-Relationship Unified View of Data Model-
Toward a, ACM Trans. Database Syst., vol. 1, no. 1, pp. 936, 1976.

www.ijacsa.thesai.org 554 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 10, 2018

[36] G. C. Everest, Basic Data Structure Models Explained with a Common
Example, in In Proc. Fifth Texas Conference on Computing Systems,
9176, pp. 1819.

[37] J. Han, E. Haihong, G. Le, and J. Du, Survey on NoSQL database,
Proc. - 2011 6th Int. Conf. Pervasive Comput. Appl. ICPCA 2011, pp.
363366, 2011.

[38] T. A. Alhaj, M. M. Taha, and F. M. Alim, Synchronization Wireless
Algorithm Based on Message Digest (SWAMD) For Mobile Device
Database, 2013 Int. Conf. Comput. Electr. Electron. Eng. Synchroniza-
tion, pp. 259262, 2013.

[39] K. Storm, How I stole roughly 100 BTC from an exchange and
how I could have stolen more!, reddit, 2014. [Online]. Available:
https://www.reddit.com/r/Bitcoin/comments/1wtbiu/how i s
tole roughly 100 btc from an exchange and. [Accessed: 02-Aug-
2017].

[40] G. Khan, Why you should never, ever, ever use documet-
store databases like MongoDB, reddit, 2015. [Online]. Available:
https://www.reddit.com/r/programming/comments/3dvzsl/w
hy you should never ever ever use mongodb. [Accessed: 02-Aug-
2017].

[41] M. L. Chouder, S. Rizzi, and R. Chalal, Enabling Self-Service BI on
Document Stores, Work. Proceed- c ings EDBT/ICDT 2017 Jt. Conf.

Venice, Italy, 2017.
[42] M. Mughees, DATA MIGRATION FROM STANDARD SQL TO

NoSQL, 2013.
[43] T. Halpin, UML data models from an ORM perspective: Part 1 - 10, J.

Concept. Model. 8, no. August, pp. 17, 1999.
[44] V. Abramova and J. Bernardino, NoSQL databases: MongoDB vs

cassandra, Proc. Int. C* Conf. Comput. Sci. Softw. Eng. ACM 2013,
pp. 1422, 2013.

[45] M. Gelbmann, DB-Engines Ranking of Document
Stores, DB-Engines, 2017. [Online]. Available: https://db-
engines.com/en/ranking/document+store. [Accessed: 21-Feb-2017].

[46] A. P. George Papamarkos, Lucas Zamboulis, XML Databases. School
of Computer Science and Information Systems, Birkbeck College,
University of London, 2013.

[47] A. Ron, A. Shulman-Peleg, and E. Bronshtein, No SQL, No Injection?
Examining NoSQL Security, arXiv Prepr. arXiv1506.04082, 2015.

[48] D. L. Moody, S. Guttorm, T. Brasethvik, and A. S. lvberg, Evaluating
the Quality of Process Models: Empirical Testing of a Quality Frame-
work, in S. Spaccapietra, S.T. March, Y. Kambayashi (Eds.), Conceptual
Modeling ER 2002, 21st International Conference on Conceptual
Modeling, Tampere, Finland, October 711, Proceedings, Lecture Notes
in Computer Science, Vol. 2503, Springer, 2002, pp. 380396.

www.ijacsa.thesai.org 555 | P a g e

