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The ability to detect and distinguish quantum interference signatures is important for both 

fundamental research and for the realization of devices including electron resonators1, 

interferometers2 and interference-based spin filters3. Consistent with the principles of subwavelength 

optics, the wave nature of electrons can give rise to various types of interference effects4, such as 

Fabry-Pérot resonances5, Fano resonances6 and the Aharonov-Bohm effect7. Quantum-interference 

conductance oscillations8 have indeed been predicted for multiwall carbon nanotube shuttles and 

telescopes, and arise from atomic-scale displacements between the inner and outer tubes9,10. Previous 

theoretical work on graphene bilayers indicates that these systems may display similar interference 

features as a function of the relative position of the two sheets11,12. Experimental verification is, 

however, still lacking. Graphene nanoconstrictions represent an ideal model system to study 

quantum transport phenomena13–15 due to the electronic coherence16 and the transverse confinement 

of the carriers17. Here, we demonstrate the fabrication of bowtie-shaped nanoconstrictions with 

mechanically controlled break junctions (MCBJs) made from a single layer of graphene. We find 

that their electrical conductance displays pronounced oscillations at room temperature, with 

amplitudes that modulate over an order of magnitude as a function of sub-nanometer displacements. 

Surprisingly, the oscillations exhibit a period larger than the graphene lattice constant. Charge-
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transport calculations show that the periodicity originates from a combination of quantum-

interference and lattice-commensuration effects of two graphene layers that slide across each other. 

Our results provide direct experimental observation of Fabry-Pérot-like interference of electron 

waves that are partially reflected/transmitted at the edges of the graphene bilayer overlap region.  

We use mechanically controlled break junctions (MCBJs)18 made from single-layer graphene to measure 

the electrical conductance of the junction during uniaxial deformation. The MCBJ device consists of a 

lithographically-defined graphene bridge supported on a flexible metal substrate. The substrate is bent, 

inducing stretching of the graphene bridge until it ruptures. The bending direction can be reversed, causing 

the graphene edges to approach each other such that electrical contact can be re-established and thereby 

allowing multiple  (>103) measurements to be performed on a single junction.  

Figures 1a-d show the nanofabrication process for the devices: (1a) Graphene transfer onto a polymer-

coated metal substrate; (1b) Patterning and etching of the graphene bowties (constriction width of 400 nm 

and length of 750 nm); (1c) Evaporation of Ti/Au leads (1d); Removal of the polymer regions surrounding 

the bowtie. The sample is mounted in a 3-point bending configuration (1e) with a central pushing rod 

beneath the sample and two counter supports on top of the substrate at both ends. Fig. 1f shows a scanning 

electron microscope image of a device before performing the measurements, with a magnified view of the 

junction area in which the graphene bowtie is supported by the polymer structure beneath it. Without the 

support structure, the edges of the broken junction cannot reform a contact upon unbending (see Fig. S1).  

A typical experiment consists of breaking the graphene bridge at room temperature in air by gradually 

bending the substrate until a sharp decrease in conductance is observed, dropping from an initial 

conductance of ~1 G0, down to the noise level of the setup (~1×10-6 G0). Here, G0 is the quantum of 

conductance defined as 2e2/h = 77 µS. For a detailed discussion of the conductance calibration see Fig. S2. 

We fabricated twelve junctions that displayed a conductance >1 G0 before bending: these were used for the 

MCBJ experiments and four of which exhibited clear conductance oscillations. Examples of first breaking 

traces for different samples (C, D, E) are shown in Fig. 2a. Our results are in line with conductance values 

reported in the literature for monolayer graphene flakes exfoliated in situ with a conductive tip, which are 
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close to 1 G0 immediately prior to rupture19. 

After the graphene bridge is broken, the electrode gap is closed by unbending the substrate (i.e. electrical 

contact restored) and can be re-opened by bending the substrate; consecutive breaking-making traces are 

thus recorded as a function of time and displacement of the electrodes. A striking feature of these traces is 

the consistent conductance recovery from ~1×10-6 G0 to ~1 G0 in each cycle, indicating excellent 

mechanical stability and reproducibility of the measurement (Fig. 2b,c). Remarkably, large periodic 

oscillations appear in the high-conductance range, with drops of almost an order of magnitude between 

maxima. These features are similar to the current modulations observed in suspended graphene bilayers 

during indentation with an AFM tip, albeit with much larger amplitudes20. These oscillations are not 

observed for the first breaking trace and only appear during all following cyclings of the junction. In order 

to convert the time axis units into horizontal displacement, we record 20 I-Vs for fixed displacements in the 

conductance regime from the noise level up to ~1×10-4 G0 for this sample. Given that the I-Vs in this range 

display tunnelling characteristics, the curves are fitted with a Simmons model21 from which the gap size 

can be estimated (see Fig. S3 and Fig. S4). Figure 2d shows the alignment of 1,000 consecutive breaking 

measurements as a function of displacement for Sample A. The close similarity of all the traces is evident 

from the vertical lines along the displacement axis, which shows that these oscillations are not merely 

random noise but exhibit a defined periodicity. A two-dimensional (2D) histogram is constructed from the 

aligned breaking traces (Fig. 2e), clearly showing the same modulations present in the individual curves. 

The corresponding alignment and 2D histogram for the making traces are shown in Fig. S5. 

Figure 3a shows representative breaking traces for two different samples that display oscillations. For each 

sample, 1,000 traces are summed and the derivative with respect to the distance is calculated to determine 

the periodicity of the signal. Figure 3b shows the linear fit for the peak number as a function of peak position 

(peaks are identified by the maxima and the minima in the derivative), from which we estimate a typical 

oscillation periodicity of 0.68 nm for Sample A (blue curve) and 0.89 nm for Sample B (magenta curve).  

Figure 3c displays the average of 10 breaking traces at room temperature in air and vacuum (10-6 mbar) for 

Sample F. We observe that the period is increased from 0.60 nm to 0.68 nm going from air to vacuum (Fig. 
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3d). To relate this change to a shift in the Fermi wave vector, kF, and therefore doping level, we fabricated 

similar graphene bowtie structures on SiO2(285 nm)/Si and measured the source-drain current as a function 

of gate voltage for analogous conditions. For the sample in the inset of Fig. 3d, when exposed initially to 

air, the Dirac point (VDirac) is at ~70 V. In vacuum VDirac shifts to ~50 V. We ascribe the higher VDirac in air 

to the well-known p-type doping due to the adsorption of oxygen and water molecules during ambient 

exposure6. From the Fabry-Pérot interference condition dkF = p, we can compare the experimentally derived 

periodicity ratio dvac/dair=1.33 with the ratio !𝑉#$%&',&$%/𝑉#$%&',*&'= 1.84 ± 0.61 as determined from 

measuring seven gated samples (see Table S1). Hence, the periodicity falls within this range. The 

!𝑉#$%&',&$%/𝑉#$%&',*&' values are extracted given kF = √𝑛p,  and n = Cox(Vgate-VDirac)/e, where n is the carrier 

concentration, Cox is the back gate capacitance, and setting Vgate to zero (no gate voltage is applied in the 

MCBJ experiments). Our findings can be understood from the fact that the less doped graphene in vacuum 

has a wave-vector which is smaller than the wave-vector for the air-exposed sample. Using the Fabry-Pérot 

interference condition, this would result in larger oscillation periodicities for the vacuum-exposed sample, 

which is in line with our experiments. We can thus exclude the lattice periodicity effect as the only origin 

of the conductance oscillations. The inset in Fig. 3d shows a schematic of the low energy dispersion relation 

for p-type doped graphene and the relative change in the wave-vector with doping level. 

 

To unveil the physical origin of the observed conductance oscillations, we perform density functional 

theory simulations of two graphene sheets sliding rigidly against each other and calculate the conductance 

for each relative displacement. Figure 4a shows simulated breaking/making cycles where two sheets are 

moved relative to each other in the zigzag direction. Given that the experiments are performed in ambient 

conditions, the sheets are terminated at the contact region by armchair edges that are either passivated by 

hydrogen atoms (blue curve) or carboxyl groups (magenta curve). The shape of these conductance traces 

agrees remarkably well with the experiments; the traces start at ~1´10-6 G0, saturate at around 0.5 G0 and 

show conductance oscillations of very similar shape and period. These quantum interference oscillations 

should appear if the Fabry-Pérot interference condition kF dQI = p is fulfilled20, where kF = 2p/3c is the Fermi 

wave vector along the zigzag direction, dQI is the Fabry-Pérot period and c = 0.246 nm is the graphene 
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lattice constant. The oscillations’ period in the zigzag direction should therefore be dQI = 3/2 c = 0.37 nm. 

These oscillations cannot be seen directly in Fig. 4a because they overlap with those originating from the 

lattice periodicity effect, which have a period equal to c in the zigzag direction (see Figure S11 and Table 

S2). 

 

Figure 4b allows the two types of oscillations to be disentangled by plotting the magnitude of the 

oscillations’ amplitude, measured as the ratio between the maximum and minimum value of the 

conductance of each oscillation (Gmax/Gmin) in Fig. 4a, as a function of the distance between two 

corresponding minima. We find that our data points cluster into three groups. The first group has a 

conductance ratio of ~1-2, and an oscillation period equal to c, which is much smaller than the periods 

measured in our experiments. These oscillations originate from the lattice periodicity effect. The amplitudes 

of the second group of oscillations are larger, with a conductance ratio of ~10. This group clusters around 

dQI = 0.37 nm and corresponds to Fabry-Pérot interferences. The third group clusters at a period of 0.74 nm 

= 3c ≈ 2 dQI. Here, the two shorter oscillations combine, which results in a beating pattern with larger 

oscillation period and very big amplitudes with conductance ratios of ~100. Conductance traces for bilayers 

sliding along the armchair and chiral (4,1) directions are discussed in the Supplementary Information (see 

Figs. S6-S10). The overall picture that emerges is coherent: the length scale of the oscillations due to the 

lattice periodicity effect is of the order of c or a fraction of it, e.g.: much smaller than the period measured 

in our experiments. In contrast, Fabry-Pérot oscillations, as well as the combined effect of the Fabry-Pérot 

and potential oscillations, have longer periods of at least 0.4 nm and even reaching 1 nm, which are 

consistent with our experimental findings. 

 

Figure 4c shows a contour plot of the electron transmission through the junction T, as a function of the 

energy of the impinging electrons E and the displacement d. The plot shows both oscillations and 

interference patterns. A first set of oscillations becomes periodic and independent of energy for sufficiently 

negative d (i.e., for increased bilayer overlap region), with a period equal to the lattice spacing in the zigzag 

direction. These oscillations originate from the periodic nature of the hopping integrals that bridge the two 
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sheets, which modify the sheet band structure. We find a second set of oscillation lines that runs diagonally 

and bends towards the bottom left in the plot (i.e., large bilayer overlap and negative energy). These are 

caused by the destructive interference of waves partially confined in the bilayer region. 

Figure 4d shows the calculated transmission contour plot as a function of E and d based on the one-

dimensional tight binding model in Fig. 4e, where both vertical and curved oscillations are clearly 

discernible, resulting from changes in the lattice commensuration and anti-resonances respectively. We 

model the bilayer system as two oppositely oriented semi-infinite chains that slide on top of each other. An 

algebraic analysis of the model shows that electron waves are partly reflected/transmitted at the edges of 

the chain overlap region of length D = (N+1)c ≈ d, where N and c are the number of atoms in this overlap 

region and the lattice constant, respectively. This results in destructive interference whenever kF (N+1)c = 

n p, where kF is the Fermi wave vector and n is a positive integer. The periodic vertical oscillations in the 

contour vanish when we set the inter-chain hopping integrals tij to be constant (i.e. removing the shifts in 

the lattice commensuration), however, the curved interference pattern remains. Additional one-dimensional 

models and further algebraic details that support this analysis are described in the Supplementary 

Information (see Fig. S14 and Fig. S13). These results are in good agreement with previous theoretical 

studies on the conductance variation in bilayer graphene as a function of overlap length22.  

 

In conclusion, we presented graphene mechanically controlled break junctions, and demonstrated that the 

junction conductance can be reversibly switched by almost six orders of magnitude during 1,000 opening-

closing cycles, attesting to the high mechanical stability of the MCBJ device. While electronic switching 

has been demonstrated for electroburned graphene nanoribbons, the switching behaviour was attributed to 

the formation/rupture of carbon chains23,24. We additionally observed large conductance oscillations as a 

function of nanometer displacement between two overlapping graphene sheets during cycling. This is in 

contrast to the featureless conductance traces in twisted graphene tunnelling junctions reported in the 

literature25. Our findings, supported by density functional theory and tight binding calculations, are a direct 

experimental observation of quantum interference of standing waves in sliding bilayer graphene at room 

temperature. 
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Our MCBJ platform allows the intriguing possibility of tuning the junction conductance over a large range 

with a purely mechanical tuning knob, thus finding potential use as a nanoelectromechanical system20,26. 

Furthermore, given that the gap size can be adjusted with exceptionally high precision and stability, we 

envisage that graphene MCBJs can be used as a powerful tool for quantum tunnelling-based sensing of 

(bio)molecules27,28.  
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Figure Captions 

Fig. 1. Nanofabrication of graphene mechanically controlled break junctions. a) Transfer of monolayer 

graphene on top of the phosphor bronze substrate coated with polyimide (PI) and polymethylglutarimide 

(PMGI) insulating layers. b) Reactive ion etching of the graphene into a bowtie shape by O2 plasma (400 

nm constriction width and 750 nm Au electrode separation). c) Evaporation of leads [Ti(5 nm)]/Au(70 

nm)]. d) Development of the sample in ethyl lactate to produce a supported graphene bridge. e) Schematic 

representation of the MCBJ measurement setup. f) False-colour scanning electron microscope image of a 

typical device before performing the measurements and magnified view of the junction. 

 

Fig. 2. Electromechanical measurements reveal conductance oscillations. a) Conductance, plotted on a 

logarithmic scale, as a function of time for the first breaking trace in Samples C, D and E measured at a 

bias voltage of 0.1 V. b) Example of typical breaking and c) making trace as a function of displacement 

and time during cycling of Sample A, showing periodic oscillations in the high-conductance range (100-10-

4 G0, where G0 is the quantum unit of conductance). The arrows indicate the direction of the measurements. 

We define the zero displacement (d = 0) as the position in which the last C atom of the left graphene edge 

is located directly beneath the last C atom of the right graphene edge. From density functional theory 

calculations such a configuration yields a conductance between 10-2-10-4 G0. d) Alignment of 1,000 traces 

using a cross correlation method in which each trace is shifted such that the overlap with all other traces is 

maximised. e) Two-dimensional histogram of conductance as a function of displacement constructed from 

1,000 consecutive traces from Sample A measured at room temperature in air. No trace selection was 

performed. For all data presented in the main text, the contact resistance has been subtracted from the 

measured conductances (see Fig. S2). 

 

Fig. 3. Analysis of the oscillation periodicities. a) Typical breaking trace for Samples A and B displaying 

oscillations. The vertical dotted line indicates the displacement, d, at which the graphene contact is broken, 

defined as d = 0. b) Peak position plotted as a function of peak number for the first 6 and 7 peaks in Sample 

A and B respectively. The experimental data points are shown as blue and magenta circles. The line of best 
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fit provides an estimate of the oscillation periodicity: 0.68 nm for Sample A and 0.89 nm for Sample B. c) 

Comparison of the oscillations in the 10-1 G0 to 10-3 G0 conductance regime for Sample F exposed to air 

and vacuum (10-6 mbar) at room temperature. We recorded 100 breaking traces for each experiment. Given 

the measured conductance range, we cannot define the same d = 0 reference as in panels a) and b). We 

have thus arbitrarily set the zero at the start of the traces. Inset: source-drain current as a function of gate 

voltage showing Dirac curves for a graphene bowtie on SiO2/Si exposed to air and vacuum (10-5 mbar 

vacuum with a mild annealing step, see Methods). d) Peak position as a function of peak number (labelled 

1-5 in panel (c)), showing a larger period for the vacuum-exposed sample. Inset: schematic of the energy-

momentum relation, E-k, depicting the change in the Fermi wave vector, kF, with doping level.  

 

Fig. 4. Density functional theory and tight-binding calculations of sliding graphene bilayers. a) 

Examples of two calculated breaking traces for graphene sheets sliding along the zigzag direction and 

terminated with armchair edges. The conductance is plotted on a logarithmic scale as a function of the 

displacement, d. The edges have been passivated by hydrogen (blue) and carboxyl groups (magenta) and 

the intersheet distance is ~0.45 nm. b) Plot of the ratio of the maximum and minimum value of the 

conductance of the oscillations, Gmax/Gmin, as a function of the distance between adjacent minima 

normalized by the lattice constant c for each of the oscillations in Fig. 4a. The labels dP, dQI and dQI+P denote 

the periodicity due to the lattice periodicity effect, to quantum interference effects and to the combination 

of the two effects respectively. The oscillation with the largest amplitude has a period dQI+P ~ 0.74 nm. c) 

Contour plots of the decimal logarithm of the transmission function log10(T(E,d)) as a function of the 

displacement d and of the energy E referenced to the Fermi energy EF for the hydrogen-terminated bilayer 

in Fig 4a. d) Contour plots of log10 (T(E,d)) of the model in c), as a function of d and E where parameters 

have been adjusted to fit the experimental distances, graphene hopping integrals and tunneling decay 

lengths. The plot displays the different types of conductance oscillations: a vertical periodic pattern due to 

shifts in lattice commensuration (white areas) and destructive quantum interferences (dark blue features). 

These are also apparent in c). e) Schematic of the tight-binding model showing the relevant inter-chain (𝑟.) 

and inter-atomic (𝑟$/) distances, the chain (𝜀.) and edge on-site (𝜀1) energies, and intra-chain (𝑡.) and 
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inter-chain (𝑡$/) hopping parameters. D = (N+1)c ≈ d is the overlap length, and N and c are the number of 

atoms in this overlap region and the lattice constant, respectively.  

 

 

  



 14 

Methods 

Nanofabrication of graphene MCBJs 

The MCBJ devices were prepared using the following protocol, based on the work of Rickhaus et al.29. 

Flexible phosphor bronze (PB) chips (1´2 cm2) were cleaned by sonicating 5 min in acetone and 

subsequently IPA. An adhesion promoter (VM651) was spin coated on the PB at 2500 rpm and baked 1 

min at 110 °C. An insulating layer of polyimide (PI) was spin coated on top at 800 rpm and baked in a 

vacuum oven at 300 °C for 30 min. A layer of lift-off resist of (SF7) was spin coated as the topmost layer 

at 4500 rpm and baked 5 min at 180 °C. A PMMA resist layer (A6 495k) was spin coated at 4500 rpm and 

baked at 180 °C for 2 min. Markers were patterned on the chip by e-beam lithography (Raith EBPG 5000+). 

The sample was developed in xylene at room temperature for 30 s and then blow dried in N2. A 60 nm thick 

W layer was sputtered and lift-off was performed in xylene at 80 °C for 10 min, followed by blow drying 

in N2. PMMA-covered monolayer CVD graphene (purchased from Graphenea on Cu foil) was transferred 

using the wet etching process in ammonium persulfate. The PMMA was removed by placing the sample in 

xylene at 80 °C for 10 min. A new layer of PMMA (A6 495k) was spin coated at 4500 rpm and baked at 

180 °C for 2 min. The graphene was patterned into bowtie shapes by exposing the region around it (electron 

dose of 850 µC/cm2). The sample was developed in xylene at room temperature for 30 s. The exposed 

graphene regions were etched by reactive ion etching in an O2 plasma (5 mbar, 20 W, 20 sccm, 30 s). The 

PMMA was removed by placing the sample in xylene at 80 °C for 10 min. A double layer resist (PMMA 

A6 495k and A3 950k) was spin coated at 4500 rpm and baked at 180 °C for 2 min after each layer. Leads 

and pads were patterned (electron dose of 850 µC/cm2) and the sample was developed in xylene at room 

temperature for 30 s. E-beam evaporation was used to deposit Ti(5 nm)/Au(70 nm). Lift-off was performed 

in xylene at 80 °C for 30 min. Lastly, the sample was dipped in ethyl lactate for 30 s to produce an undercut 

and then rinsed twice in DI water. 

 

MCBJ experiments 

Large Au pads connecting the graphene bowties were covered in silver conducting paste and the chip was 

mounted in a custom-made break junction set-up. The conductance was recorded as a function of time at a 
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bias voltage of 0.1 V while a brushless servo motor bent the sample. Once the conductance dropped to the 

noise level, the motor was stopped. A voltage was then applied on the piezo element to verify whether the 

junction could be cycled (i.e., recover a high-G state by decreasing the piezo voltage and breaking once 

more by applying a voltage). Once cycling was confirmed, a conductance histogram measurement 

comprising 1,000 consecutive traces was set up. All experimental plots display the conductance of the 

graphene junction only (i.e., the contact resistance is subtracted by measuring in a 4-point probe scheme). 

Measurements were performed at room temperature in air and in vacuum (10-6 mbar).  

 

Measurements with back-gate 

For the determination of the effect of doping between air and vacuum measurements, graphene bowtie 

samples on silicon backgate substrates (SiO2(285 nm)/Si) were prepared based on a previously published 

protocol6. The samples were measured in air and in vacuum (10-5 mbar) using home-built low-noise DC 

electronics). The gate voltage was swept from -20 V to 90 V, while a bias of 10 mV was applied between 

source and drain electrodes. To account for the very high current per unit width on the order of 0.5-10 

A/mm (using G = G0 and a contact width of about 1-20 nm) that can arise in very narrow constrictions 

formed in the graphene break junction experiments, a current of 100 µA (which corresponds to a current 

per unit width of about 0.5 A/mm in the constriction area) was passed through the junction for several 

minutes in vacuum.  

 

Density Functional Theory simulations 

Ab initio simulations of graphene MCBJs have been carried out with the DFT program SIESTA30. Here, 

two sheets oriented along zigzag, armchair or chiral directions are terminated with armchair, zigzag or 

complementary chiral edges. The edges are passivated by hydrogen or carboxyl groups. Closing MCBJ 

cycles are simulated where the two sheets approach each other in steps of 0.05 Ångström, starting from a 

distance where the tunnelling rate is zero. The conductance and electron transmission calculations have 

been performed with the quantum transport code GOLLUM31. Further details as well as sketches of the 

MCBJ geometries of the simulations can be found in the Supplementary Information (see Figs. S6-S13). 

The DFT code SIESTA is publicly available at https://launchpad.net/siesta 
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Tight Binding modelling 

The electrical transport features of the several one-dimensional models have been analysed algebraically 

and/or numerically as discussed in the main text and in the Supplementary Information (see Fig. S12 and 

Fig. S13).  

GOLLUM is a quantum transport package that is freely available upon request 

at http://www.physics.lancs.ac.uk/gollum/ 

 

Data Availability 

The data that support the plots within this paper and other findings of this study are available from the 

corresponding author upon reasonable request. 
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Figure 4 
 


