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Abstract. In the first part of this work, we analyzed an unconstrained Dirichlet boundary con-
trol problem for an elliptic convection diffusion PDE and proposed a new hybridizable discontinuous
Galerkin (HDG) method to approximate the solution. For the case of a 2D convex polygonal domain,
we also proved an optimal superlinear convergence rate for the control under certain assumptions
on the domain and on the target state. In this work, we revisit the convergence analysis without
these assumptions; in this case, the solution can have low regularity and we use a different analysis
approach. We again prove an optimal convergence rate for the control, and present numerical results
to illustrate the convergence theory.
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1. Introduction. In Part I of this work [26], we considered the following un-
constrained Dirichlet boundary control problem: Minimize the cost functional

1 gl
(1) J(w) = 5lly = yallze0) + S llullzz), v >0,
subject to the elliptic convection diffusion equation

—Ay+B3-Vy=f inQ,

2
@ y=u on 02,

where ¢ is a positive constant, f € L?(9), the vector field 3 satisfies
(3) V-B8<0,

and Q C R? (d > 2) is a Lipschitz polyhedral domain with boundary I' = 9.

Many researchers have considered the numerical approximation of optimal con-
trol problem for convection diffusion equations [4, 24, 6, 20, 7, 40] and also opti-
mal Dirichlet boundary control problems for the Poisson equation and other PDEs
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[9, 19, 30, 39, 34, 14, 5, 8, 25, 37, 11, 21, 1, 23, 22, 3]. However, the authors are un-
aware of any theoretical and numerical works in the literature concerning the above
problem. Progress on this problem is an important step towards the analysis and
approximation of Dirichlet boundary control problems for fluid flows.

Only in the last ten years have researchers developed thorough well-posedness,
regularity, and finite element error estimation results for Dirichlet boundary control
problems for the Poisson equation. Casas and Raymond in [9] obtained an optimal
finite element error estimate of order h!~1/% even for some semilinear elliptic PDEs,
where s > 2 depends on the largest angle of the boundary polygon. May et al. in [30]
investigated the Poisson problem without constraints and improved the convergence
rates obtained by Casas and Raymond for the state and the dual state. Deckelnick et
al. in [19] considered domains in 2D and 3D with smooth boundary and proved an error
estimate of order hv/In h for the control based on a variational discretization, and also
obtained a superlinear convergence rate in the 2D case for special meshes. Apel et al.
in [1] recently considered polygonal domains and obtained a superlinear convergence
rate for the control for special meshes or higher order elements. In addition to standard
finite element methods, Gong and Yan also obtained O(h'~1/%) error estimates for a
mixed finite element method [21].

Formally, the optimal control u € L*(T) and the optimal state y € L?(Q2) mini-
mizing the cost functional satisfy the optimality system

(4a) —eAy+03-Vy=f in Q,
(4b) y=u on 09,
(4c) —eAz—V-(B2)=y—yqs inQ,
(4d) z=0 on 02,
(4e) eVz-n—yu=0 on ON.

In Part I, we showed in the 2D case that the optimal control is indeed determined
by a weaker formulation of the above optimality system and we proved a regularity
result for the solution.

We also introduced a new hybridzable discontinuous Galerkin (HDG) method
to approximate the solution of the optimality system, and obtained an optimal su-
perlinear convergence rate for the control when € = 1. However, there are two main
restrictions for our convergence results in Part I. First, we assumed the largest interior
angle w of the convex polygonal domain belongs to [r/3,27/3). Second, we assumed
the desired state yq is in H*(2) for some s > 1/2. When one of these conditions
is not satisfied, the problem can have low regularity, i.e., ¢ = —Vy € H"(Q) for
some 7q < 1/2. In this case, g does not have a well-defined boundary trace and the
analysis technique used in Part I is not applicable. Hence a different proof technique
is required for this case. We briefly review the regularity theory and the new HDG
algorithm in Section 2.

In this work, we use techniques from [28, 29] to remove the restrictions on the
largest interior angle w of the convex domain €2 and the desired state y, in the diffusion
dominated case. Specifically, in Section 3 we obtain optimal convergence rates for the
control when ¢ = 1, w € [7/3,7), and yq € H*(Q2) for some s > 0. We illustrate the
low regularity convergence theory with numerical results in Section 4. Furthermore,
we also present numerical results for convection dominated problems with ¢ < 1 to
demonstrate the performance of the HDG method in this difficult case.
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2. Background: Regularity and HDG Formulation. To begin, we briefly
review the regularity results for the optimal control problem and the new HDG method
from Part I. We set € = 1 throughout this section.

2.1. Optimal Control Problem: Regularity. As in Part I, we use the stan-
dard notation W™ (Q) for Sobolev spaces on 2, and let || - ||;n,p.0 and |- |m p.o denote
the Sobolev norm and seminorm. We let H™(£2) denote the Sobolev space when p = 2
with norm |||/ .o and seminorm |-|,,, . Also, set H} () = {v € H(Q) : v = 0 on 9Q}
and H(div,Q) = {v € [L*(Q)]?,V - v € L*(Q)}. We denote the L*-inner products on
L?(Q) and L?(T") by

(v,w)g = / vw Yo, w € L*(Q),
Q

(v,w)p = /vw Vo, w € L*(T).
r

For the analysis of the optimal control problem, we considered the following sce-
nario in Part I. Suppose € is a convex polygonal domain, and let w denote its largest
interior angle. We have 1 < m/w < 3. We assume 3 satisfies

(5) Be[L>Q]Y, V-BeL®(Q), V-B<0, VV-Bel[L*)"
The mixed weak form of the formal optimality system (4a)-(4e) is

(6a) (@;m)e— (4, V- 7r)o+ (u, 7 -n)r =0,
(6b) (V-(g+By),w)a— (yV-B,w)a = (
(6¢) (p,r)a—(2,V-1r)g =0,
( (
(

for all (r,w, u) € H(div, Q) x L?(Q) x L*(T"). Also, we assume f = 0 for the theoretical
result below; nonzero forcing can be treated by a simple change of variables as in [2,
pg. 3623].

We proved the following well-posedness and regularity theorem in Part I [26].

THEOREM 2.1. Ifyy € HY (Q) for some 0 < t* < 1, then the optimal control prob-
lem has a unique solution u € L*(T') and u is uniquely determined by the optimality
s

system (6a)-(6e). Moreover, for any s > 0 satisfying s < 2+t* and s < min{3, Z—1},
we have uw € H*(T') and

(q,p,y,2) € [H2(Q)]% N H(div,Q) x [H*F2(Q)]? x H*"2(Q) x H*"2(Q).

Theorem 2.1 implies the regularity of the solution of the optimality system (6a)-
(6e) depends on the desired state yq and the domain Q. As is known, solutions to
Dirichlet boundary control problems can have low regularity; this causes difficulty for
numerical analysis.

In Part I [26], for the numerical analysis of the new HDG method we assumed €2 is
convex, yq € H* () for some t* € (1/2,1), and 7/3 < w < 27/3. These assumptions
give high regularity for the optimal control, i.e., u € H™(T") for some r, € (1,3/2).
Furthermore, the assumptions give ¢ € H"e(Q2) with r4 > 1/2, which guarantees
q has a well-defined trace on the boundary I'. We used this property in the HDG
convergence analysis.
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In this paper we again assume (2 is convex, but we remove the restrictions on the
desired state and the largest interior angle for the numerical analysis; i.e., we only
require t* € [0,1) and 7/3 < w < 7. In this case, the regularity of the optimal control
can be low, i.e., u € H™(T") for some r,, € [1/2,1), and q is no longer guaranteed to
have a well-defined L? boundary trace; however, the optimality system (6a)-(6e) can
be understood in a standard weak sense.

2.2. The HDG Formulation. For the HDG method, we assume 2 is a poly-
hedral domain with d > 2. We use the same notation from Part I [26] to describe the
method. For more information about HDG methods, see, e.g., [15, 16, 31, 32, 33, 10,
13, 18, 38, 17, 12, 35, 36].

Let 7;, be a collection of disjoint elements that partition €2, and let 97 be the
set {x € OK : K € Tp}. For the analysis, we assume 7}, is a conforming triangulation
of Q2. Denote the elements of 7, by K and the faces of K by e. Denote &, the set of
all faces, 5;? the set of faces such that e C T', and €2 = &), \5}‘?. The mesh dependent
inner products are denoted by

(’w,’U)Th = Z (’U),'U)K, <Cap>87'h = Z <C7p>8K .

KeTy, KeTn

Let P*(D) denote the set of polynomials of degree at most k on a domain D. As
in Part I, we use the discontinuous finite element spaces

(7) Vi, = {v € [L*(Q)]¢ : v|k € [PF(K)]? VK € Ty},
(8) Wy = {w e L*(Q) : w|x € P""HK),VK € T},
(9) My, :={p € L*(0T3) : ple € P*T1(e),Ve € &}

for the flux variables, scalar variables, and boundary trace variables, respectively.
Note that the polynomial degree for the scalar and boundary trace variables is one
order higher than the polynomial degree for the flux variables. We discussed this
unusual choice for M}, in Part 1.

Define My (0) and M;(9) in the same way as Mp,, but with £ and &7 replacing
En, respectively. For any functions w € Wy, and r € V;, we use Vw and V - r to
denote the gradient of w and the divergence of r taken piecewise on each element
KeT,.

To approximate the solution of the mixed weak form (6a)-(6¢) of the optimality
system, the HDG formulation considered here is modified from Part I to avoid the
estimation of g on the boundary. In the 2D case, recall from Subsection 2.1 that q is
not guaranteed to have a well-defined L? boundary trace since we consider a solution
of the optimal control problem with low regularity.

The HDG method seeks approximate fluxes qn,prn € Vi, states yn,zn, € W,
interior element boundary traces ¥y, z; € My(0), and boundary control u;, € Mp(9)
satisfying

(10a)  (qn:r1)7: = (Yn, V- 1) 75 + (Ui, 71 M)arep + (Un,T1-n)go =0,
(V- qn,w1)7, = (Byn, Vwi)7, — (V- Byn, w1)7,
(W™ + 1)yn, wi)or, +{((B-n — 1 — KT, wi)ag e
(10b) H(B-n =71 —h™up,wi)eo = (f,w1)7,
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for all (rq,wy1) € Vj, x Wy,

(10c) (Prsr2) 7 — (20, V- 2) 73 + (20,72 - M)prne0 = 0,
(V- ph,w2)7, — (Yn, wa)7, + (B2n, Vwa) T,
(10d) (A + 7))z, wa)ar, — (B + 72+ B n)Z, wa) o o0 = —(Ya, w2) T, s

for all (re, wa) € Vi, x Wy,

(@n - m, p)og\e0 + (W' + TU)Yh, 11) o7, \£0
(10e) H(B-n =1 —h™ G, m)ogep =0,

for all 1 € Mp(o),

(P -, p2)ogeo + (B +72) 20, p2) o7y 0
(10f) —((B-n+m7 +h_1)327/i2>afrh\gg =0,

for all py € My, (0), and the optimality condition
(10g) (Pn -1, pis)eo + 7 (uns pa)ep + (WY + 7o) zn, pa)ep = 0,

for all pg € My (0).
Here, 7 and 75 are stabilization functions defined on 97, that satisfy the same
conditions as in Part I:
(A1) 7 is piecewise constant on O7p,.
(A2) m=mn+p3-n.
(A3) For any K € Tp,, min (12 + 38 - n)|ax > 0.
Conditions (A2) and (A3) imply

1
(11) min (1 — 5[3 ‘n)|gx >0 for any K € Tp,.

This completes the formulation of the HDG method.

Notice that formulation (10) is slightly different from formulation (3.4) in Part I;
specifically, equations (b) and (d) are modified. A straightforward computation shows
that both are equivalent; see Part I, Section 3.2. Formulation (10) above allows us to
achieve error estimates in the low regularity case considered here.

3. Error Analysis. Next, we perform a convergence analysis of the above HDG
method in the diffusion dominated case. Therefore, we set € = 1 in this section.

3.1. Assumptions and Main Result. As in Part I, we assume throughout
that Q is a bounded convex polyhedral domain and 3 satisfies

(12)  BelCc®)], V-BeL>Q), V-B<0, VV-Be[L*(Q)"

We assume the solution of the optimality system (6a)-(6e) is unique and has the
following regularity properties:

(13a) ye€ H™(Q), ze€H™=(Q), qc[H*(Q)])'NH(div,Q), pec H™"(Q),
(13b) ry>1, 1,22, 14>0, 7p2>1

In the 2D case, Theorem 2.1 guarantees this condition is satisfied.
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As mentioned in Subsection 2.1, the regularity of g can be low and therefore ¢ may
not have a L? boundary trace. The H(div,2) regularity of q is critically important
for the numerical analysis.

We also require the family of meshes {7} is a conforming quasi-uniform trian-
gulation of 2. This assumption on the meshes is stronger than in Part I; there we
assumed {7} is a conforming quasi-uniform polyhedral mesh. Therefore, the analysis
in Part T allows for a more general family of meshes; however, the analysis here allows
us to treat the low regularity case.

We now state our main convergence result.

THEOREM 3.1. Let

(14) Sq = min{rq, k + 1}, sy = min{ry, k + 2},
sp = min{rp, k + 1}, s, =min{r,, k + 2}.
If the above assumptions hold and sq € [0,1], then

_1
ot hE [yl o

_1
o0tk [yl 0

_1 _3 1
lu—wnllp < 123 pll,, 0 + 1% 12l + R% g,

_1 _3 1
1y = ynlly, S h P72 Pl 0 + 0772 |21, o + A7 "2 g

_1 _3 1 1
Ip = pally, Sh =72 lpll,, o + 0772 ||zl o + 272 lall, o+ R 72 |yl g

Sq

_3 1
Iz = zully, < R |l Q+hSz 2 2l o+ bl gﬁhs@ 2y

S"/

If in addition the inequalities in (13b) are strict and k > 1, then

lg = anlly, S PPl @ + 02 2l o + 25 gl + B ly

81/

Remark 3.2. Note that we assume sq € [0,1]. This is not a restriction since the
case sq > 1 is treated in Part I on a more general family of meshes.

Specializing to the 2D case gives the following result:

COROLLARY 3.3. Suppose d = 2, f =0, sq € [0,1], and yq € H' (Q) for some
*€0,1). Let /3 <w < 7 be the largest interior angle of T, and let r > 0 satisfy

1 3 1
r<rq:=—-+t*€[1/2,3/2), and r<rqg:=min{ -, T _“le (1/2,3/2].
2 27w 2
If k=1, then
lu = unlloo S A" (Pl grrs12(0) + 2l mressrz o) + 1@l r-1/2 () + 1Yl Err1/2 ()
1y = ynllz, S A UPNgrsir2 ) + 12l rssrz @) + 19l r-1r200) + 19l rsir2@)s
Ip —PhHTh Sk (Hp”H'+1/2(Q) + HZHHr+3/2(Q) + llall g~ —12(0) T ||y||H'+1/2(Q))
1z = 2nll7, S A (NPl grv1r2 @) + 12 sz i) + 1@l mr-r2@) + 19l ar2 )

If in addition r > 1/2, then

lg —anlly, < hr71/2(||p||Hr+1/2(Q) 12 a2y + Gl =120y + 19l ez (oy)-
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Furthermore, if k = 0 then
llu —unll.o

Il 10y + 120 20y + il gr-1/2(0) + 1Yl 12 (0))

2 Il 10y + 120 20y + @l gr-1/200) + 1Yl zres1r2 (0

)

1P — pall, 1Pl 10y + 12l 20y + 1@l 1720 + 19l es12(0)

)

S
Hy - yh”Th S
S
< /2

h/3( )
n/3( )
n/3( )
12 = 2nllg, S B2l i ) + 12l a2 0y + a7y + 1l r2(0y)-

As in Part I, when k = 1 the convergence rates are optimal for the control and the
flux g and suboptimal for the other variables. When k& = 0 the convergence rates for
all variables are suboptimal with one exception: If y; € L*(Q) only so that t* = 0,
then u € HY/?(T) only and the convergence rate for the control is optimal. Also, if 4
or ro is near 1/2, then the convergence rate is nearly optimal for the control in the
k =0 case.

For standard finite elements for Dirichlet boundary control of the Poisson equa-
tion, May et al. used a duality argument to obtain improved convergence rates for the
state and dual state [30]. We attempted to improve the above error estimates for the
state, dual state, and fluxes using similar ideas, but we were unsuccessful. It appears
entirely new proof techniques may be required to improve the convergence rates for
these variables.

3.2. Preliminary material I. We split the preliminary material required for
the proof into two parts. First, we give a brief overview of material closely related to
the preliminary material in Part I: L? projections, HDG operators B; and B,, and
the well-posedness of the HDG equations.

As in Part I, we use the standard L? projections IT : [L%(Q)]¢ — Vj,, IT : L2(Q2) —
Wiy, and Py : L?(07;,) — My, which satisfy

(Mg, r)rx = (g, 1),  Vr € [Pe(K)]Y,
(15) (Hya w)K = (yaw)K’ Yw € Pk+1(K)7
(Pym, H>e = <m7ﬂ'>e ) Vi € Pra(e).

We have the following bounds:

(16a) lg —Tg||7, < A IICIIlqu’ ly =yl 7, < A Hyllsy,g,
(16b) |y = Myllyr, S A2 |yl 0 ly = Prryllor, S~ llylly, 0
(16¢) [wllgr, Sh72 ]y, Yw € Wi,

and similar projection error bounds for p and z.
In this paper, we do not use the same HDG formulation for the analysis that we
used in Part I. We define the HDG operators B; and By by

B1(qn, yn, U T1, w1, 1)
= (qn:r1)7 = Wn, V1)1 + U, T Maraep + (V- qu,wi) 7,
= (Byn, V)7, — (V- Byn, w1) 7, + (b~ yn + 11yn, wi)or,
+{(B-n—h7h = T)Y, w1) o \e0
(17) —{gn-n+B-ngp, + b (yn = T7) +71(yn — T)s 1) om0
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and
Ba(Phs 2h, 215 T2, W, )
= (Pn:r2) 7 — (20, V- 12) 7 + (Z], 72 M)ar g0 + (V- Pryw2)7,
+ (Bzn, Vwa) 7, + (W™ 2y + oz, wa)oT,
—((B-n+h""+7)z, W2) g7\ £2
(18) —(pr-m—B-nZ + 0 (2 = Z) + 7oz — 21)s H2)om g2

We emphasize that this is an equivalent definition to the one given in Part I that is
more appropriate to obtain error estimates in the low regularity case.

We rewrite the HDG formulation of the optimality system (10) in terms of the
HDG operators By and By: find (qn, Ph, Yn, 2h, Uns 25 Un) € Vi X Vi X Wy, X W, X
My, (0) x Mp(0) x Mp(9) satistying

‘Bl(qhayhagﬁz;rlawlau’l) = (f7 wl)Th - <Uh,’l°1 ! n>$fz

(19a) —{(B-n—-nt = T1)Un, W1)ga,
(lgb) BQ(ph7 Zh72}.;;r25w27,u2) - (Z/h - yd7w2)7_h7
(19¢) Y pn A hT 2 Tazn, pa)ep = —(un, i) ep,

for all (T1,T2,1U1,’LU2,,LL1,,LL2,,U3) eV, x V, x Wy, x Wy x Mh(O) X Mh(o) X Mh(a)
For the convenience of the reader, we recall three results proven in Part I.

LEMMA 3.4 ([26]). For any (vp,wh, pin) € Vi, X Wi, X M}, we have
B1(Vn, Wh, ftn; Uk, Why fin)

_ 1
= (v, o)7;, + (A7 47— 5B m)(wn = ), wh = pn)oriep

1 _ 1
- §(V - Bwp,wp) T, + (B + 71 — 55 M) Wh, Wh) g0
Bo(Vh, Wh, fon; Vh, Wh, fon)

_ 1
= (vn, o) 7, + (W7 + 7o+ 2B - m)(wn = pn), wh — Hn)or\gp

1 _ 1
= (V- Bun, )7, + (71 + 72+ 5B mwn, wh) gp-

LEMMA 3.5 ([26]). If (A2) holds, then

Bl(qh; yh7%§ph7 —Zh, _2.};) + AB2(I)h7 Zhvgz; —qh,Yh, Q\Z) =0.

PROPOSITION 3.6 ([26]). If (A2) holds, there exists a unique solution of the
HDG equations (19).

3.3. Preliminary material II. Next, we discuss preliminary material that is
directly related to the low regularity case considered in this paper: the interpolation
operators I,g, I}, Ij, and their properties.

Recall we assume the primary flux g only satisfies ¢ € [H"(2)]¢ N H(div, Q),
where 74 > 0. Therefore, the quantity ||g - n —Ilg - nl|,7 is not well defined and the
HDG analysis technique used in Part I is not applicable. We use analysis techniques
from [28, 29] to avoid using the L? boundary trace of q. Let us introduce some
notation first.
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Define the H'-conforming piecewise linear finite element space W by

We = {w§ € Hy () : wi|x € P1(K), VK € Tp,}.

For any K € Tp, let A1, A2, ..., Ag+1 denote the standard barycentric coordinate
functions defined on the simplex K. Define

(20) S(K) := S1(K) + S2(K) + - + Sy (K),

where

(HA)bpan{Hx\J Za]—k az—()} i=1,2,...,d+ 1.

J#i

Now we define the interpolations operators Ih7 Ih, Tn. First, define mg :

L2(0K) — R by
o[
d+1 S le|

(21) mg () =

where |e| denotes the d—1 dimensional Hausdorff measure of e. Next, the interpolation
operator Z) : L?(g5) — W is defined as follows:

1
Tpp(a) = § #we

Z mg(p) if a is an interior node of Ty,
Kew,
0 if @ is a boundary node of Ty,

where w, := {K € Tj, : a is a vertex of K} and #w, denotes the number of elements
in wg.

Next, the interpolation operator Z} on L?(2) x L?(gy,) is defined elementwise as
follows: for each K,

IflL(waM”K = I}((wvﬂ) = w + w2,
where (w1, w2) € S(K) x ([]; Aj)Px(K) is uniquely determined by
(wi,m)e = (@, m)e,
(wz n)k = (w—wi,n)k,
)

for all (m,n) € Pr(e) X Pr(K) and e € OK.
Finally, for (w,u) € L?(2) x L?(e;), we define the third interpolation operator
Ih by

In(w, p) == Tpp + Ly (w — Tp, pp — Iy p).
It is straightforward to verify that Z;, and Z} have the following properties; see [28, 29].
LEMMA 3.7. For any (w, ) € L*(Q) x L?(ep,) and K € Ty, we have
(22&) (Ih(w,u),n)x = (wvn)Ka
(22b) <Ih (U}, /J’)a m>6K = </’La m>6K7
for all (m,n) € Pr(e) X Pr(K) and e € 0K, and
(23) IZh (w, )15 S lwllse + 2 | plloxc
Moreover, if ulr = 0, we have

(24) Tn(w, 1) € Hy(Q).
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In the next three lemmas, we assume (vp, wp, pup) € Vi, X Wy, x M), satisfy
(25) (V7)1 — (Wi, V- 1) 75 + (i, 7 - o, =0,
for all » € Vj,.
We begin with a key inequality; see Part I [26, Lemma 4.7] and also [35].
LEMMA 3.8. If (vp, wh, pr) € Vi x Wy, x My, satisfy (25), then

_1
(26) IVwnll7 S llonllz + k™2 lwn = palloT,-

The next two results are similar to Lemma 3.4 and Lemma 3.6 in [28]. Here, we
have a different space M}, (with polynomials of degree k + 1 instead of k) and we do
not have a variable diffusion coefficient. However, the proofs of the next two results
are very similar to the proofs in [28] and are omitted.

LEMMA 3.9. If (v, wp, un) € Vi, x Wy, X My, satisfy (25), then

— 1
Rt wn = muc(pn)lle + 772 Y (i = mi () lloxe
KeTn KeTy

(27) < lonll, + B2 lwy, — palloT -
LEMMA 3.10. If (vp, wp, pn) € Vi X Wy, x My, satisfy (25), then

_ 1

(28a) IVZh(wh, pu )75, S Nlvnllr, + 772 lwn — pallaT,
_ _1

(28b) hMlwn — I (wn, pn) 75, S Nlonllg, + B2 [lwn — pnllor, -

3.4. Proof of Main Result. Now we move to the proof of the error estimates.
We follow the strategy of Part I [26] and split the proof into seven steps. In the
first five steps we use the rewriting of operators B; and B, in an explicit way and
the proofs are different from the corresponding ones of Part I. Steps 6 and 7 use the
properties of By and B, recalled in Lemma 3.4 and Lemma 3.5 and are very similar
to Steps 6 and 7 in the high regularity case in Part I. We include these proofs here to
make this paper self-contained.

We first bound the error between the solution of the mixed form (6a)-(6d) of the
optimality system and the solution

(gn(w), pr(w), yn(u), zn(w), yp(u), zp(u) € Vi X Vi, X Wy, x Wi x My (0) x Mp(0)

of the auxiliary problem

~Oo

Buign(w), yn(w), Yy (uw); r1,wi, pn) = (f,wi) 7, — (Pau, 11 mgp
(29a) —((B-n—n"" = 71)Pru, wi)eo,
(29b) Ba(pn(u), zn(u), 25 (u); re, wa, p2) = (yn(u) — ya, wa2)7,,

for all (71, 7o, w1, we, 1, u2) € Vi, X Vi, x Wi X Wy, x Mp(0) X My(0). As in Part I,
we use the notation

69 = q —Ilg, el =TIq — qu(u),
(30) 0¥ =y —1Ily, en = Ty — yn(u),
8 =y — Py, eV = Pory — in(u),

61 =0-n6" + (' + 1) (6Y — ),

where 3, (u) = 7% (u) on & and P (u) = Pyru on 7. This definition gives sg =0 on
&P
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3.4.1. Step 1: The error equation for part 1 of the auxiliary problem
(29a).
LEMMA 3.11. For all (r1, w1, 1) € Vi X W, X My(0), we have

31(5275%7Eg7r17w1>ﬂl)
*(v : 5q, wl)Th - <Hq " n, /‘1>87—h\6;? + (ﬁéy’ vwl)Th,

(31) + (V- B0Y,wi) 7, — (81, w1)om, + (1, 1)o7
Proof. Using the definition of By in (17) gives

B1(I1q, Iy, Pyry, 71, wi, pi1)
= (g, r1)7, — My, V- r1)7, + (Pymy, m1 - n)op\e2
+ (V- g, w1)7, — (Blly, Vwi)7, — (V- Blly, w17,
+ (W™t )y, wi)or, + (B -1 —h ™" —71) Pary, wi) o, \e0
—(Ig-n+ B -nPyy+ (b~ + 1)y — Pary), 1) o7 \e0-

Using properties of the L? projections (15) gives

B1(Ilg, Iy, Pary, 71, w1, fi1)
=(q,r)7 — W,V 1)1 + (¥, 71 N)ar\e0
+ (V- qwi)7, = (V0% wi)7, — (By, Vwi)7, + (8%, Vi),
— (V- By, w1)7,, + (V- B, wi)7, + (B~ + 1)y, wi)aT,
(B ny,wl)an\sa —(B-nd? »w1>afrh\eg —((h "+ Tl)PMva1>c’)Th,\£f
— (TIq - n, ) orneo — (B 1y, i) arep + (8- 187, p)or g0
(Rt )6V - 87 )7:“'1>8Th\£,‘?'

+

The exact state y and flux g satisfy

(qul)Th - (y7 V- rl)'Th + <y7 r1- n>67’h\£’? = —<U,’I"1 . n>£’?7
(v : qvwl)T}L - (Igy’ le)Th - (V : IByawl)Th
+ <ﬂ : ny7w1>67'h\£§ = _<ﬂ : nu,w1>g}? + (f7 wl)Tha

for all (r1,w1) € Vi, x Wj,. This gives

By (H%H%PM%T‘MUJMM)
u, Ty >g@ —(B-nu w1>58 + (fyw)7, — (V0% w1)7;, + (B0Y, Vwi) T,

—{

+ (V- B8Y,w1)7, + (A~ + 7))y, wi)o7;
—(B-nd? 7w1>an\g§ — (™" + 1) Pry, wi)omeo — (1L - 1, 1) o7y g0
(B

+(B-nd?, m)ggner + (W1 +71)(8Y = 6%), ) arep-

Here we used (8- ny, u1) omne2 = 0, which holds since p; is a single-valued function
on the interior edges. Subtracting part 1 of the auxiliary problem (29a) from the
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above equality gives the result:
81(5275Z,52,7‘17w1aﬂl)
—(V - 6%, w1) 7, 4 (B6Y, V)7, + (V- B6Y,w1)7,
+ (™ + )y, wi)ar, — (8- 1%, wi)or, — (W™ +71) Pary, wi)or,
— (Mg n, i) yrneo + (B nd?, ) omines + (R + 1) (6% — 57), 1)o7, \£2
= —(V-6%,w1)7, + (B0, V)7, + (V- B6Y,w1)7,
— (g - n, 1) g\ g0 — (81, w1) o7, + <31’“1>87n\5i?' .

3.4.2. Step 2: Estimate for ¢}.
LEmMA 3.12. We have

_1 7 _
(32) leillz +h72 el — ehllor, S A llall o+ Yl o
Proof. Take (vp,wp, i) = 5‘1,59,5? Since 5 = 0 on €2, the energy identity
h>“h>~h h

for By in Lemma 3.4 gives
31(52582}176%’5%78%76%)
1 1
= (epem)m + (A7 41— *B n)2(eh —p)l3n + SI=ve B)2eplF, -

Take (r1, w1, 1) = (e}, Ez,sg) in the error equation (31) in Lemma 3.11 to obtain

_ 1 1 7 1 1
el eDr + I +7 - POk (et —el3r + SI=V- B)zer |l

(33) ~(V -89, ¢f)7, — (g -m,2])or,

+(B6Y, Vel )7, + (V- B8Y, &)y, — (81, — eo,
= T1 +T2+T3+T4.

We rewrite the term 77 using the interpolation operator Zj:

~(V-0%,¢})7, — (g - m, ] o
~(V-q,&)7, + (V- Tg,&})7, — (g -n,£])or,
~(V-q.& = Tu(e} e 7. — (V- @, Tu(eh, €))7,
+(V Tg.£}) — (g - n.e})or,

(V-q,gh Ih(ghvgh)) (QaVIh(5ha€h))T
+(V'an‘€h) (g - n,))or,

~(V- g, = Tu(eh, )7 + (0%, VIn(el,el))T,

+ (Mg, VIn(ef,})) 7 + (V- Tg,ef)7, — (Mg - n.)or,
~(V- g, = Tu(eh, &) 7 + (0%, VIn(el,el)) 7.
The last step holds since

(Tq,VIu(eY, e])) 7 = (g -1, Tn(e},el)or — (V- Ta, Tn(cl, €))7,
= (Ilq - n,e})or, — (V-Ilq,e})T,
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This implies

Ty <|IV - qlimlley = Zn(ey, ep)llm, + 102171V In(ey, )l
_1 m
S hlleillz +h™2 el —epllor.) + b llqllsaa(ller]

1 mn
S allgllsealllesllz, + R~ lleh — ellom,)-

_ 1 n
7. +h72|el —ellloT,)

Note that we used sq € [0, 1].
Noticing that Lemma 3.8 implies

_1 In
(34) IVey | 7. +h72 ey — €} lloT,

7 S e

and using Young’s inequality, we have for T, T5 and Tj:

1 1 -
T, = (85", Vb, < oY), + Mg, + ok — <hl.
1 1
Ty = (V- B8",e))7, < Cll6Y||7;, + SI=V B)zehl7.

~ ~ - 1 -
Ty = —(d1,55 —ep)om < 40157, + 7 lleh — &hllor.-

Summing the estimates for {7} }?_; and taking into account (30) and (16), we obtain
the desired estimate. a

Remark 3.13. In Part I [26], we defined 81 =09-n+B-nsv+ (=Y 471)(8Y — 7).
It is not meaningful to estimate ||d1]|o7;, if we only assume r4 > 0. In this paper, we
have 8; = B-ndé¥ + (h™' + 11)(6Y — 6Y), and we can estimate |61 o7, -

3.4.3. Step 3: Estimate for ¢} by a duality argument. Next, for any © in
L?(Q) we consider the dual problem

P -VU =0 in €,
(35) V- ®+V-(BY)=06 in Q,
=0 on 0.

Since the domain €2 is convex, we have the regularity estimate
(36) 1@ll1.0+ ¥ll20 < Creg[1Ollg -
We use the following notation in the next proof for the estimate of €} :

(37) P TP, oV =U_T0, 6Y=u_ P,V

LEMMA 3.14. We have

lebllz < h*  llgl a0+ 2 Iyl q-
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Proof. We take © = —¢J in the dual problem (35) and (r1, w1, 1) = (II®, I1¥,
Py ) in the error equation (31) in Lemma 3.11. Since ¥ = 0 on &7, we have
By (e, eV V. TI®, IV, Py, )
= (. )7, — (¢}, V - TI2)7, + (] TI® - m)yr; e
+ (Ve I 7, — (B}, VIIO) 7, — (V- B}, TW) 7, + (A~ +m1)e] , TTV) o,
+((B-m— ™ = m)e] 1)o7,
— (el n+pB- nsg + (R 1) () — 5%) Py,
eh 27— (. V- @)1 + (], V- 6%) 7 + (] TI® - n)or, — (1. VI)7,
(el - n, W)or, — (B}, V)7, + (Be}, VOV )7, — (V- Bep, V),
(V- Bep,6%)7, — (el - m, PuW)or, — (B nefl, 6%)or,
— (07 T (e = ), 6 = 6o

= (e
+
+

Here we used (3 - neg, Uo7, =0 and (8- neg, Py 07, = 0, which both hold since
g7 is a single-valued function on interior edges and £} = 0 on 52 .
By the same argument as in the proof of Lemma 3.12 for the term 77, we have

(4, V- 6%)7, + (e}, I® - n)or,
= (e} = Tn(e},e0), V - @) 7, — (VIu(el,e0), 0%) 7.
Next, integration by parts gives
(Bey, V8" )1, = (B-ney, 6% )or, — (V- Be, 6% ) 7, — (B- Ve, 6%)7,
This implies
By(ed, eV, el TI®, IV, Py, D)
= llehllF, + (8- nlef —€}).6")or, — (Veh, B%)7,
+(ef = Tnlef el). V - 6%) 7 = (VIn(ehoe0), 6%) 7,
— (b7 e — el) + (el — €D, 6" = 0T
Also, since ¥ =0 on S}?, the error equation (31) in Lemma 3.11 gives
By(ed, eV, eV TI®, IV, Py, D)
=—(V- 6% 11V) 7, — (Ilg - n, Py W),
+ (B6Y,VIIV) 7, + (V- B6Y, T1W) 7, — (81, IV — Py ) oy,
—(V-q, V)7, + (V- Igq, V)7, — (IIg - n, V)7,

(B6Y, VH\I/)Th (V- B6Y, I0) 7, — (81, T1¥ — Py U)oy,
V-q,0%)7 — (V-q,9)7, + (V-Tlq, V)7, — (g -n, V)7,
(B6Y,VIIU) 1, + (V- B6Y, TIW) 7. — (61, IV — Py W) |
V-q,8")7, +(q,V¥)7, — (TIig, V)7,

+ (B8, VIIV) 7. + (V- B6Y, 1) 7. — (81, T1¥ — Py W)or.
=(V-q,0%)+ (09,V8Y) 7, + (BdY, VIIV) 1,

+ (V- B6Y, IIW) 7. — (61, TI0 — Py U)o .

/\+/\+
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The two equalities above give

2 =B n(el —),6%)or, + (Vel, B6") 7, + (B6Y, VIIV) 7,
+ (V- B8, W) 7, + (h™t 1) (el —€]) +81,8Y — 6%)or,
— (e} — Tn(l,€)), V - 8%) 75, + (VIn(cl,€]), 6%) 7,
+(V-q,8%)+(69,V5") 7,
9
=) R

i=1

lei 117

Bounds for Ry to Rs have been obtained in Part I [26]; we have

5

DR S (M lgl e o + 2 Myl o) IR 7
i=1

For the terms Rg and R7, Lemma 3.10 and Lemma 3.12 give

Rg = —( — Tn(el, ),V - @),
< lleh = Tuleh, e ImllV - @l
Shledlly +h2 el — efllom )V - @l
< (0 lq] o + 27 Yl o) lEh 7
Ry = (VIn(e},€0), 0%) 7,
< IVZu(el, €))7 116% |17
S (lefllr, +h2 el — elllom)N16% |17

S (W gl + 1 1yl )lleR |7

For Rg, we have

Rs < ||V -qll7116% |17 S 21920
NG EAT

Applying the triangle inequality for Ry gives

Ro < |69, |IV8Y|

Th T S < hfat! ||‘J||sq a leqllz,-

Using sq € [0,1] and summing the estimates for Ry to Ry completes the proof. ]

The triangle inequality gives optimal convergence rates for ||g — gp(u)|l7;, and
ly — yn(w)ll7;:

LEMMA 3.15.
(38a) lg — gn(w)ll7. < 1697 + el S P llgllag + 0% Yllwq
(38b) Iy — yn(Wll7 < 16117 + llehllT S 2 gl gan + 5 1Yl g -

3.4.4. Step 4: The error equation for part 2 of the auxiliary problem
(29b). Next, we estimate the error between the exact state z and flux p satisfying the
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mixed form (6a)-(6d) of the optimality system and the solutions z,(u) and py(u) of
the auxiliary problem. Define

0P = p —Ilp, e? =TIp — pp(u),
sy LT = Lz — 24(u),
5212’pr2, €i\=PMZ—Eh(U),

8y =—B-né" + (h™ " + 1) (6% — §%),

where 2, (u) = 27 (u) on & and Z(u) = 0 on &Y. This gives e = 0 on &Y.
LEMMA 3.16. For all (79, wa, u2) € Vi, X W), x My(0), we have
32(557 E}Zm Ejfz;u T2, W2, ,u2)
= — (V0P wa)7;, — (IIp - m, pia) o7\ 2 — (867, Vwa);,
(40) + (Y = yn(u), w2) 75, — (82, w2)om, + (82, t2) o7\ e2-
The proof is similar to the proof of Lemma 3.11 and is omitted.

3.4.5. Step 5: Estimate for ¢f. We use the following discrete Poincaré in-
equality from [26] to estimate €%.

LEMMA 3.17. We have
z z -1y 2 z
(41) lerllm < C(IVerllm +h™2llel — exllor,)-
LEMMA 3.18. We have

_1 z
bl +h™2ler, — il
(42a) SEPPllwg + 07 2l o + 2 alla g + 2 Yl 0
(42b) leillz, < 2% lpllie g + 277 Izl e o + 27 gl o g + 2yl g

Proof. Take (vp,wp, ip) = (sﬁ,sz,ei). Since si = 0 on €%, the energy identity
for Bs in Lemma 3.4 gives

P _z _Z P _z _Z
Ba(eh:€hrEhrEsEhs ER)

_ 1 1, ., > 1 1
= (eh e (W +m + B n)z (ef, — &) l37, + 5\\(*V SOEEAES

Take (ra, w2, pu2) = (eF,€7,¢7) in the error equation (40) in Lemma 3.16 to obtain

_ 1 1, ., > 1 1
R e + I+ + 55"’&)2(5;1 —fh)”?)n + §||(—V'5)25h\\%’h

= _(V ’ 6P’E}ZL)Th - <Hp : n7E;ZL\>aTh

— (8%, Ve, — (02,6, — i)om, + (y — yn(u), €5)7,
=T+ T+ T3+ 1}

Next, use Lemma 3.8 to get

1 z
(43) IVeilln < lepllz +h™2 ek, — epllor.-
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By the same argument as in the proof of Lemma 3.12; apply (43) and Young’s in-
equality to obtain

Ty =—(V-6P,¢i) 7 — (IIp - n,ei)or,
= —(V-p.cj — Tuleh,e3) 7 + (67, VI(ei, €2))7
= (V-6 &} — Tu(eh,ei) 7 + (07, VIu(ei, i)
< bV - 6|l h ef — Tule ei) T, + 167173 IV TZn (e 6317

1 1 z z
< ORIV - 571, + CoPI, + Sl + gl — <l

Th

z z z 1 1 z z
Ty = —(B6%,Vey) 7, < C|l6 ||grh + g”ffﬁn% + 87hH5h - Eh”?ﬂ’w
Sz z <12 1 P2 1 z Z(12
T3 = —(d2,¢;, —€p)om, < 8h||52||8Th + §H5h||Th + 871||5h - Eh”(’)Th'
For the term Ty, we have

Ty = (y —yn(w),ei) 7 < lly = yn(wll7 el

< Clly = yu() |7, (IVei I 7 +h™2llef, = <illom)
(
(

_1 z
< Clly = yn(u)| 7 + 072 ef, = gqllo.)

ehl

7 (

1 1 ~
< Clly - ), + 51015, + 22Nk — il

Summing 7 to Ty and using (16), Lemma 3.15, and (39) gives (42a); then (41), (42a),
and (43) together imply (42b). |
The triangle inequality gives optimal convergence rates for ||p — pp(u)| 7, and
Iz = zn()]l7;:
LEMMA 3.19.
(44a) |lp—pu()l7 <27 Pl g + 277 Il o + 2 g + 2 Iyl g
(44b) ||z = za (W)l 7 S 27 pllee g + 277 Izl e o + 2 e g + 2 (1l g

3.4.6. Step 6: Estimates for ||u—us||¢o and ||y — yall7, . To obtain the main
result, we estimate the error between the solution of the auxiliary problem and the
HDG discretized optimality system (19). Define

Ca=an(u) —aqn, & =uyn(w) —yn, CG=yn(u)—"Yn,
Cp =pn(u) —pn, ¢ =zn(u) —2n, (G =2Zn(u) =2,

where g, = g5 on £, §n = up on EY, Z, = 27 on £, and zj, = 0 on £7. This gives
G =0on &

Subtracting the two problems gives the error equations
(45a)  B1(Cqr Gy i1, Wiy 1) = —(Pyu—up, v -n+ (B-n—h"t - Tl)w1>8,‘?7
(45b)  Ba((p, €z (55 T2, w2, p2) = (Cys W2) T3, -

LEMMA 3.20. If (A1) and (A2) hold, then

2 2 _
v llu—unllzo + 16117, = (v + pnu) -+ b= zn () + 7220 (u), u — un)eo

— {(yup +pr-n+ ™2y + Tozp, u — Uh>£g-
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Proof. We have

('yu—i-ph(u)~n+h_1zh(u)+7'2zh(u),u—uh>55—(fyuh+ph~n+h_1zh+7'2zh,u—uh>gg
=7 lu—unllgp + (Gp -1+ 7'+ TG u — un)ep.
Next, Lemma 3.5 gives
B1(Cqs Cys Cs Cpr —Czr —C2) + Ba(Cp, €z, (25 —Cq Gys Gg) = 0
Also, since 75 is piecewise constant on 97 we have
B1(Cqs Cys Ggilpr —Cor —C2) + Ba(Cp, €5 (25 —Cq» Gy G7)
= (s C) 7 = (Paru—un, G-+ (W71 + 71 = B n)C)ep
= (Cys Co) i — (Prru—up, Gp -+ BTG+ ToCe) 9
(GG — (= Un G T BTG+ oG
The above equalities yield
(Cyr G = (u = un, Gp - m+ BT G+ 7)o o
THEOREM 3.21. We have
e = unllo S B2 |Ipll,, o +h* 2 |2l o+ bt lgll,, 0 + 272 Yl 0

~

_1 _3 1 _1
7 ST pll, o + AR Izl o R R lall, o + R TR Iyl g

Iy — ynl

Proof. The optimality conditions yield yu+p-n = 0 and yuy, +pp -n+h~ 'z, +
T2z, = 0 on 5}? . Therefore, the above lemma gives

Yl = unllZo +11¢ 117, = (v + Pa(u) -1+ Bz (w) + Tozn(u), u — up) e

= ((pn(u) = p) -+ h™ 2n () + T2zn (), u — un)gp-

Since 2, (u) = z = 0 on £, we have
[pn(u) = Pllog, < llpr(u) — Hpllyy, + [TIp — pllo7,
SHE |l + 02 [Pl
llzn(w)llco = llzn(u) — Iz + 1z — 2 + Pyz — Zn(u)||gp

< e, = eillom, + Iz — zllo7 -

This implies
lu = wnllep + G ll7 A3 Bl + 57 [l g
+ g, = eqlloms + 21677,

Lemma 3.18 and approximation properties of the L? projection give

Th

_1 _3 1 _1
ShP2 Pl + 0777 |2l o+ BT gl g + 2772 ly

Jou — wnllgg +11G,|

sv.,Q -
The triangle inequality and Lemma 3.15 yield
1 _3 1 _1
ly = wnll7 S B2 1Plowg + 772 2l o + 272 lallgaq + 2772 ylly g O
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3.4.7. Step 7: Estimates for ||p — pnll7., |2 — 2ull75,, and |lg — qnll 7, -
LEMMA 3.22. We have

_1 _3 1 _1
ISpll 7, S B 72 Pl 0+ B2 2l o + A2 Mlall,, o + 2777 ylly, o

_1
Gl S A2 lpll,,

Proof. By the energy identity for By in Lemma 3.4, the second error equation
(45b), and since (z = 0 on €7, we have

BQ(C]M sz CE; Cpa sz <?)
= GG + (7 472 58 MG — 62),C: — hom—5(V - B, G

= (Cysz)Th
< ISull, NSz,

SNyl (IVCl7 + Rz ¢ = Gllom)
SISyl UlSpllm + 72 01¢: = Cllom)-

Here, for the last two inequalities we used the discrete Poincaré inequality in
Lemma 3.17 and Lemma 3.8. This gives

1
Ipll7, + P77 1¢: = Gllom
She=2 |Ipll,, o+ h T8 |2l o + b2 gl

_3 1 _1
ot b7 |zl o+ gl 0 + AT Yl o

Sz,

_1
o thv?2 ||y||sy,§z .
Using the discrete Poincaré inequality and Lemma 3.8 again yields
_1
1Cll7 S IVEl7 + R3¢ = CGllaT,
1 _3 1 1
Sk pl, 0 072 2l o+ 2 gl o+ 22yl oo O

Sq,

To obtain a positive convergence rate for q, we need

(46) ry>1, 1,>2, 14>0, 7p>1

LEMMA 3.23. If (A1), (46), and k > 1 hold, then
ISqll7; S P Pl 0 + 272 2l o + 2% lall,, 0 + 2 Yl 0

Proof. By the energy identity in Lemma 3.4, the first error equation (45a), and
since 7o is piecewise constant on 97, we have

Bl(an Cy?gfﬁ CQ7 <y7 Cﬁ)

1
= (an Cq)Th + <(h71 + 71— 5/6 ’ TL)(Cy - Cﬂ)a Gy — €§>37-h\5;?

SV BG, G)m BT T~ 5B m)G e
=—(Pyu—up,(g-n+ (B n—h'- Tl)Cy>5;?
—(Pau—up, g — (B 4+ 72)Gy ) ep
—(u—up,Gq-m— (™' + T2)Cy) e
lu = unllgo (I<qllep + R lICyllep)

1 1
S lu—unllgo (IKall7;, +h72 G lleo)-

Sp, Sz, Sq»

A
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This gives

_1
||Cq||7'h ShTEflu— UhHe;f

Shpll, o+ B2 el g + 0o gl o + Bl - O

The above lemma, the triangle inequality, Lemma 3.15, and Lemma 3.19 complete
the proof of the main result:

THEOREM 3.24. We have

_1 _3 1 _1
Ip = pully, SEP72 pll,, 0+ B2 Izl o + 22 gl 0 + 277 yll,, -

1 _3 1 —1
Iz = znlly, SR 72 lpll,, 0 + 272 l2ll, o + 272 llall,, o+ 272 lly

Sp; sy, 82 °
If in addition (46) is satisfied and k > 1, then
lg —anllr, < hee! Iplls, o+ h®= =2 I2lls. 0+~ llalls, o + ho =y 5,0

4. Numerical Experiments. In this section, we report numerical experiments
to illustrate our theoretical results. Furthermore, although we derived the a priori
error estimates for diffusion dominated problems (¢ = 1), we also present numerical
results for convection dominated problems (¢ < 1) to show the performance of the
HDG method for this difficult case. For all computations, we take v =1, 75 = 1, and
T1 =T + - n so that (A1)-(A3) are satisfied.

4.1. Smooth test. We begin with an example on a square domain Q = [0, 1] x
[0,1] € R2. The state, dual state, and convection coefficient are chosen as

y = —?x(sin(rxy) + sin(mas)), z = e Y2 sin(ray) sin(ras),

B = —[x?sin(x), cos(z1)e®?],

and the source term f and the desired state y; are generated using the optimality
system (4) with the above data. Since the solution is smooth, we do not use this
test to illustrate the low regularity theory; instead, we use this test to study the
performance of the HDG method when the problem becomes convection dominated.
We show the numerical results for K =1 and € = 1 in Table 1 and for £k = 1 and
e = 107" in Table 2. In the convection dominated case, the HDG method converges for
all variables with at least a linear rate. In the diffusion dominated case, convergence
rates are higher for all variables except the control. This example demonstrates that
the error analysis will be different for the convection dominated case, as expected.

4.2. Non-smooth test. Next, we present numerical results for a 2D example
problem similar to examples from [9, 21], where the case 3 = 0 is considered. We
consider a square domain Q = [0,1/8] x [0,1/8] C R?, and choose f =0 and v = 1.

In the first test, we consider variable convection and choose the data as

e=1, ya=(224y>)73, and B = —[2?sin(xs),cos(z1)e™].

The largest interior angle is w = 7/2, and therefore rq = 3/2. Also, we have yq €
H'/37=1(Q) for any 1 > 0, and therefore r4 = 5/6 — 7 for any i > 0. For this example,
the value of r4 restricts the guaranteed regularity of the solution.

We do not have an exact solution for this problem; therefore, we generate numer-
ical convergence rates by computing errors between approximate solutions computed
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h/V/?2 272 273 24 27 276
lg —agnlloq 1.52E-01 5.05E-02 1.69E-02 5.75E-03 1.99E-03
order - 1.59 1.58 1.55 1.53
lp—pnllgo 2.82E-02 7.33E-03 1.87E-03 4.74E-04 1.19E-04
order - 1.94 1.97 1.98 1.99
ly —unllog 227E-02 3.40E-03 4.87E-04 7.06E-05 1.07E-05
order - 2.74 2.80 2.79 2.73
|2 = 2nllpq  862E-03 1.21E-03 1.61E-04 2.09E-05 2.65E-06
order - 2.83 2.91 2.95 2.98
Ju—unllpr 9.84E-02 2.62E-02 6.70E-03 1.69E-03 4.24E-04
order - 1.91 1.97 1.99 2.00
TABLE 1

Smooth test with k = 1 and € = 1: Errors for the control u, state y, adjoint state z, and the
fluxes q and p.

h/\/2 272 23 214 275 276
lg—anll,o 3.59E-05 1.94E-05 1.01E-05 5.19E-06 2.62E-06
order - 0.90 0.93 0.97 0.99
lp—pnlloq 422E-05 1.84E-05 8.76E-06 4.28E-06 2.12E-06
order - 1.20 1.07 1.03 1.02
ly —ynllq 1.50E+01 3.85E+00 9.74E-01 2.45E-01 6.14E-02
order - 1.96 1.98 1.99 2.00
[z —2nlloq 1.57E+01 3.55E+00 8.58E-01 2.11E-01 5.25E-02
order - 2.14 2.05 2.02 2.01
lu—wunllyr 3.77E+01 9.24E+00 2.28E+00 5.67E-01 1.41E-01
order - 2.03 2.02 2.00 2.00
TABLE 2

Smooth test with k = 1 and € = 10~7: Errors for the control u, state y, adjoint state z, and
the flures q and p.

on different meshes. Specifically, we compare approximate solutions computed on
various meshes with the approximate solution on a fine mesh with 524288 elements,
ie., h =212

When k£ = 1, the guaranteed theoretical convergence rates are given by Corol-
lary 3.3 in Section 3:

ly = wnllo.q = ORY°1), 12 = znllo . = OB,
la = anllo.o = O, [P = pullo 0 = OR>°T),

and
flu— uh”o,F = O(h5/6_n)~

Table 3 shows numerical results for this case. As in Part I, the numerically observed
convergence rates match the theory for the control v and the primary flux g, but
are higher than the theoretical rates for the other variables. As mentioned in Part I,
similar convergence behavior has been observed in other works [27, 30, 34, 21].
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h/V/?2 24 275 276 27 28
llg — ‘IhHo,Q 1.49E-01 1.02E-01 7.51E-02 5.61E-02 4.31E-02
order - 0.52 0.44 0.40 0.38
lp—pulloq 262E-03 9.64E-04 3.55E-04 1.37E-04 5.21E-05
order - 1.46 1.43 1.41 1.38
lly — yh||07Q 1.02E-03 3.31E-04 1.23E-04 4.61E-05 1.82E-05
order - 1.58 1.45 1.38 1.36
Iz — ,zh||07Q 5.94E-05 1.22E-05 2.44E-06 4.88E-07 9.62E-08
order - 2.30 2.32 2.31 2.35
lw — up Ho,r 1.33E-02 6.39E-03 3.34E-03 1.82¢-03 1.01E-03
order - 1.02 0.94 0.85 0.85
TABLE 3

Non-smooth test with constant convection, € = 1, and k = 1: Errors for the control u, state y,
adjoint state z, and the fluzes q and p.

h/V/?2 24 275 276 27 278
llg — ‘IhHo,sz 2.22E-01 1.69E-01 1.22E-01 8.92E-02 6.56E-02
order - 0.39 0.47 0.46 0.44
lp — ph||0 q 8.60E-03 5.10E-03 2.75E-03 1.43E-03 7.31E-04
order - 0.75 0.90 0.94 0.97
lly — yh||0 o 2.96E-03 1.33E-03 4.91E-04 1.82E-04 6.97E-05
order - 1.15 1.44 1.43 1.39
Iz — zh||0 q 3.82E-04 1.08E-04 2.89E-05 7.48E-06 1.90E-06
order - 1.82 1.91 1.95 1.97
[lw — uhHo,r 2.83E-02 1.79E-02 1.07E-02 6.14E-03 3.47E-03
order - 0.66 0.75 0.80 0.82
TABLE 4

Non-smooth test with constant convection, € = 1, and k = 0: Errors for the control u, state y,
adjoint state z, and the fluzes q and p.

Next, for k£ = 0, Corollary 3.3 gives the suboptimal convergence rates
lly — tho,Q = O(hl/Q_n)7 |2 — Zh”o,ﬂ = O(hl/Q_n>v lp — ph”o,Q = O(hl/Q_n)a
and
flu— Uh”o;‘ = O(hl/Qin)-

As in Part I, we observe much larger numerical convergence rates for all variables.
Improving the analysis for the £ = 0 case is again an interesting topic we leave to be
considered elsewhere.

Numerical experiments for the same problem with constant convection coefficient
B = [1, 1] gave similar results for both £k =1 and k& = 0 (not shown).

In the second test, we consider variable convection and we choose the problem
data

yg=1, and B = —[z}sin(xy),cos(z;)e™?].

We compute the approximate solution using k = 1 for both ¢ = 1 and ¢ = 1076 to
see the effect of strong convection on the solution.



HDG FOR DIRICHLET BOUNDARY CONTROL PROBLEMS 23

(a) The computed state y (b) The computed boundary control u

Fic. 1. Test with variable convection, yg =1, e =1, and k = 1.

When € = 1, since y4 is smooth we know from the high regularity convergence
theory in Part I that

lu—unllo,r = O(R>277).

We observed this convergence rate in numerical experiments (not shown). The ap-
proximate state y and the approximate optimal boundary control u are shown in
Figure 1.

Next, we demonstrate the performance of the HDG method in the convection
dominated case with variable convection. We do not attempt to compute convergence
rates here; instead for illustration we plot the state y and the boundary control u in
Figure 2. We note that the computed state y is entirely different compared to the
solution of the diffusion dominated problem. Also, the HDG method is able to capture
the very sharp boundary layers in the solution with almost no oscillatory behavior.

5. Conclusion. In Part I of this work, we considered a Dirichlet boundary con-
trol problem for an elliptic convection diffusion equation and approximated the so-
lution using a new HDG method. We also proved optimal convergence rates for the
control under a high regularity assumption. In this paper, we removed the restric-
tions on the domain € and the desired state y,; from Part I and considered a low
regularity scenario. We used very different HDG analysis techniques to prove op-
timal convergence rates for the control. We also presented numerical results for a
convection dominated problem; the HDG method was able to capture sharp layers in
the solution. A thorough investigation of the performance of HDG methods for the
convection dominated case is underway.

As far as we are aware, this paper and Part I are the only existing analysis and
numerical analysis explorations of this convection diffusion Dirichlet control problem.
We leave many topics to be considered in future work, such as improving the HDG
convergence analysis for the Dirichlet boundary control problem considered here and
also applying HDG methods to Dirichlet control problems for fluids.
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