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ABSTRACT

Two outcrops in the Asturian Basin (northwest Iberian Peninsula) com-
posed of Lower–Middle Jurassic alternations of limestones and marls, includ-
ing black shales proven to be hydrocarbon source rocks, were analyzed from a 
structural point of view. In both outcrops, an inversion tectonic event of Ceno-
zoic age caused contractional folds and faults, as well as a change in the struc-
tural style up section, superimposed on previous Mesozoic extensional struc-
tures. However, the mode and kinematic evolution of the inversion tectonics 
were very different; folding predominated in one of the outcrops, whereas 
faulting is the most important phenomenon in the other one. The character-
istics of the two coastal outcrops (irregular surface, inaccessible portions, ac-
cessibility restricted to low tide periods, good quality of rock exposure and 
scale) led us to build virtual outcrop models using photogrammetry (structure 
from motion) and interpret them in a computer-assisted virtual environment 
(CAVE). The analysis of both field data and the virtual outcrop model–derived 
results (three-dimensional models and cross sections) allowed us to conclude 
that mechanical stratigraphy and the type, characteristics, and distribution of 
previous structures were the key factors that controlled the inversion tectonic 
mode. Awareness of their influence should help when trying to understand 
inversion structures in similar geological settings.

INTRODUCTION

The Asturian Basin constitutes a portion of the North Iberian continental 
margin originated during extensional Permian–Mesozoic events, subsequently 
subjected to inversion tectonics during a Cenozoic contractional event (Fig. 
1A). The Permian–Mesozoic evolution of this basin initiated after the Variscan 
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orogeny of Carboniferous age and culminated with the opening of the Bay of 
Biscay. The Cenozoic history is linked to the Alpine orogeny, which involved 
the convergence of the Iberian and European plates. Currently, the southern 
portion of the Asturian Basin is emerged and crops out in the northwest part of 
the Iberian Peninsula, whereas the north part of the basin is submerged under 
the waters of the Cantabrian Sea. In the subaerial portion of the basin, many 
Jurassic rocks crop out (Fig. 1A), especially along the coastal areas, where 
their exposure is, in many cases, excellent. Because of this, the stratigraphy 
and sedimentology of these rocks have been intensely studied (e.g., Suárez 
Vega, 1974; Valenzuela et al., 1986; Valenzuela, 1988; García Ramos and Guti-
érrez Claverol, 1995; and many others), and they have also been studied from 
other points of views, such as: hydrogeology, hydrocarbons, jet jewelry, dino-
saur paleontology, geological engineering, and geological heritage (see, for 
instance, Soler et al., 1981; Menéndez Casares et al., 2004; Lockley et al., 2007; 
and many others). The main structural features of the Asturian Basin have been 
described in regional studies, some involving geological mapping (e.g., Beroiz 
et al., 1972a, 1972b, 1972c; Pignatelli et al., 1972), whereas others have focused 
on establishing the structural framework of portions of the basin (e.g., Lepvrier 
and Martínez García, 1990; Uzkeda, 2013; Alonso, 2014; Odriozola, 2016; Uzkeda 
et al., 2016). However, despite the exceptional outcrops along the coastline, 
there are only a few of detailed studies of individual structures (e.g., Uzkeda 
et al., 2013). We examined here two excellently exposed outcrops of faulted 
and folded Jurassic rocks, where the variations in the rock competence along 
the stratigraphic succession triggered different structural styles, and where 
different types of inversion tectonics are exhibited. Our research focused on 
the mechanisms by which and extent to which inherited structures influenced 
inversion tectonics. The studied outcrops, which are meter- to decameter-scale 
features, are located by the Cantabrian Sea along the shoreline of the Principal-
ity of Asturias, Spain, and they belong to the northernmost part of the onshore 
portion of the Asturian Basin (Figs. 1B and 1C).

Although the quality of the two studied outcrops is exceptional, their mor-
phology, characterized by inlets and protrusions due to the marine erosion 
of the coastal cliffs, makes it very difficult to construct undistorted geological 
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Figure 1. (A) Geological map of the Asturian Basin (modified from Alonso et al., 2009) and structural sketches of the surrounding areas of the two studied 
outcrops: (B) Huerres (modified from Uzkeda et al., 2016) and (C) Peñarrubia (modified from Odriozola, 2016).
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interpretations. In addition, some portions of the outcrops are not accessible 
due to their steep slopes, and the outcrops can only be visited during low tide 
periods. Thus, deciphering the main features and understanding the kinemat-
ics of the two selected examples required a remote three-dimensional (3-D) 
approach. The strategy chosen consisted of conventional field work together 
with construction of a virtual outcrop model in the form of a point cloud fol-
lowing the structure from motion system (Fig. 2) and subsequent analysis. 
High-dynamic-range photographs of the outcrops, georeferenced using a total 
station and differential global positioning system (GPS), were used. The result-
ing model was visualized in a computer-assisted virtual environment (CAVE) 
and geologically interpreted using in-house software called the 3-D Stereo Vir-
tual Drawing Tool (3D Stereo VDT). The 3-D geological data sets obtained were 
the basis for 3-D geological models from which geological cross sections were 
constructed.

Using the 3-D structural models and the detailed geological cross sections, 
the main features of the different structures developed in the outcrops were 
unraveled, and the distribution of folds and faults was analyzed in order to 
establish their relationships with previous structures and with the competence 
contrast of the rocks, and also to characterize the variation in structural style up 
section conditioned by the presence of detachments within the stratigraphic 
succession. On the other hand, the influence of folding and fracturing on uplift 
and shortening was quantified, a structural evolution was proposed for each 
field example analyzed, and finally the similarities and differences between 
them were examined.

GEOLOGICAL SETTING

The different fold and fault sets that control the present-day configuration 
of the Asturian Basin developed during extensional regimes from the late 
Paleozoic to Mesozoic and during a Cenozoic contractional event (e.g., Pello, 
1967; Julivert et al., 1971, 1973; Gervilla et al., 1973a, 1973b; Pignatelli et al., 
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1973; Suárez Vega, 1974; Suárez Rodríguez, 1988; Lepvrier and Martínez-García, 
1990; Alonso et al., 1996; Rodríguez Fernández et al., 1996; Pulgar et al., 1999; 
Alonso and Pulgar, 2004; Uzkeda, 2013; Uzkeda et al., 2013, 2016; Alonso, 2014; 
Odriozola, 2016). The Permian, Mesozoic, and Cenozoic sediments that fill in 
this basin lie unconformably over a Cambrian to Carboniferous basement, 
which was involved in a foreland fold-and-thrust belt of the Variscan orogen 
of west Iberia known as the Cantabrian zone (Fig. 1A). These basement rocks 
belong to the north branch of the Ibero-Armorican or Asturic orocline, respon-
sible for the arching of the Variscan orogen in the western portion of the Iberian 
Peninsula. The events recorded in the basin infill that crop out in the onshore 
portion of the Asturian Basin reflect continental rifting during Permian–Triassic 
times, followed by a thermal subsidence period, possible extensional thermal 
doming during the Middle Jurassic, a remarkable subsidence period, and an 
extensional event in the Late Jurassic–Cretaceous. In Cenozoic times, the As-
turian Basin was partially inverted.

The field examples analyzed here involve the Rodiles Formation, divided 
into the Buerres and Santa Mera Members (Valenzuela et al., 1986), the 
ages of which range from upper Sinemurian to lower Bajocian, i.e., Lower 
to Middle Jurassic (Suárez Vega, 1974). This stratigraphic unit consists of an 
~110–210-m-thick alternation of gray marls and limestones with abundant fos-
sil remains such as bivalves, gastropods, brachiopods, echinoderms, belem-
nites, ammonites, reptiles, fishes, and trace fossils, amongst others (Valenzu-
ela et al., 1986), deposited in a carbonate ramp. There are also some levels of 
black shales (García-Ramos et al., 1992, 2001; Suárez-Ruiz and Prado, 1995; 
Bádenas et al., 2013), the high organic matter content of which indicates hy-
drocarbon source rocks with type II kerogen (Soler et al., 1981; Valenzuela et 
al., 1986; Valenzuela, 1988; Suárez-Ruiz and Prado, 1995; Riaza Molina, 1996; 
García-Ramos et al., 2008; Bádenas et al., 2013).

The first example, the Huerres structure, crops out in the north-northeast 
portion of the emerged portion of the Asturian Basin (Fig. 1B). In this region, 
the major folds are open, upright, and relatively rounded and exhibit NW-SE 
strikes, and the major faults are normal and have three predominant orienta-
tions: NW-SE, NE-SW, and E-W. Evidence of selective and irregularly distrib-
uted inversion tectonics has been recognized. Thus, some normal faults were 
reactivated as reverse or strike-slip faults, whereas others display buttressing 
effects. They may also be deformed due to next-generation structures, such as 
thrusts, which usually display E-W strikes (Uzkeda, 2013).

The second example, the Peñarrubia structure, is located in the northern 
part of the emerged portion of the Asturian Basin (Fig. 1C). The main struc-
tural features of its surrounding area consist of two generations of major 
open to gentle, upright, and rounded folds: an older set with NE-SW trends 
and a younger one with NW-SE trends. Three systems of faults, with strikes 
of NE-SW, NW-SE, and E-W, have been identified. Most kinematic indicators 
on the fault planes indicate strike-slip movement; however, some normal and 
reverse faults also occur. Locally, N-S structures appear (Odriozola, 2016).

The existence of superimposed tectonic events makes it highly important 
to understand how inversion took place and which parameters conditioned the 

Figure 2. Proposed workflow from the collection of field data to the construction of sections across 
the studied structures using the strategy presented here. SfM—structure from motion, VOM— 
virtual outcrop model, CAVE—computer-assisted virtual environment, 3D—three dimensional.
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process, for instance, in order to determine whether mechanical stratigraphy 
and the different manners in which previous structures reacted to a younger 
tectonic event (being reactivated, remaining as passive elements, or constrain-
ing the distribution of deformation) may lead to a situation where folding is 
dominant over faulting. These two outcrops, the rocks of which have under-
gone similar tectonic events but exhibit different rheological properties and 
inherited structures, are key features that can be used to decipher the control 
exerted by these factors on the inversion tectonics.

METHODOLOGY

The framework of the investigation was to characterize the geometry and 
kinematics of the analyzed structures using a combination of field work and 
laboratory-based tasks aimed at extracting 3-D information and generating ac-
curate cross sections (Fig. 2).

This method has a number of advantages:
(1) A CAVE offers a proper 3-D view of the outcrops, in contrast to virtual 

outcrops visualized in computer screens, which are based on perspectives or 
contrasts between light and shadows and different colors used to simulate a 
3-D view, and, therefore, it makes the interpreter feel as if they are really in 
the field.

(2) Virtual outcrop views in computer screens are usually small and require 
the interpreter to move and rotate the image, as well as enlarge it and reduce 
it, to properly interpret their geological features. Conversely, working inside a 
CAVE does not require so many operations to carry out a geological interpre-
tation because its large size allows an overview of the outcrop, reducing the 
need to navigation around the model.

(3) Like with other techniques of analysis of virtual outcrops, it is possible to 
obtain distortion-free 3-D geological data, to analyze the whole outcrop, even 
portions hardly accessible in the field, and it allows us to “bring the outcrop to 
the laboratory,” where it can be visualized and analyzed using different geolog-
ical tools, and where it can be shared at any time.

Field Work: Acquisition of the Photographs and Control and  
Check Points

It is recommended to take photographs of the outcrops with as much qual-
ity as possible. One key point is to employ large depths of field to make sure 
that everything is in focus. Furthermore, the employment of techniques such 
as high dynamic range helps to increase the quality by overcoming lighting 
problems such as shadowed areas. In addition, it also helps to take all the 
photographs with the same camera, in particular, a fixed-focus lens camera. 
A summary of recommendations for photographs of field outcrops may be 
found in Martín et al. (2013). Regarding the number of photographs, a min-
imum of three images for each feature is required. However, the higher the 

number of photographs, the better is the outcome, i.e., the denser the point 
cloud will be. The Huerres outcrop was covered with 60 photographs, whereas 
the Peñarrubia outcrop required 63 images. It is also recommended that the 
photographs have enough overlap. In some cases, two sets of photographs—
one set covering the whole area from relatively far away, and a second one 
from a closer distance, focused on some especially important details (i.e., mi-
nor fractures, intersections between structures, tension gashes, etc.)—supply 
better results. For instance, in the field examples studied here, closer photo-
graphs were taken covering the areas with the highest density of structures, 
such as the southern limb of the Huerres anticline and the forelimb of the 
Peñarrubia anticline. It is advisable to take photographs covering the whole 
outcrop from different angles and positions (ideally, surrounding the element 
of interest), which should prevent any gaps produced by areas obscured or not 
visible from a certain location or shooting trajectory.

Using a combination of total station and differential GPS, accurate coordi-
nates of control points (employed to georeference the point cloud) and check 
points (not used for building the point cloud, but for testing its quality) must 
be taken in the field. These points might be either targets placed with such pur-
pose in strategic positions on the outcrop and/or, as was the case in the exam-
ples described below, natural points such as intersections between beds and 
joints, changes in rock color, significant topographic features, etc. Three is the 
minimum number of points needed, although the result may improve if more 
points are employed. These points should be taken evenly spread along the 
outcrop, cover the whole scene, and be distributed at different depths of view.

All these tasks must be accompanied by conventional field work, which 
ought to include: geological mapping; measurement of orientation of planes 
and lines of interest, such as bedding, fractures, fold axes, and kinematic in-
dicators; measurement of lengths, such as fault displacements and bed thick-
ness; geological sketch drawing; taking of conventional oriented photographs 
and photogeological interpretation; and structural analysis of the collected 
data. All this information should be the foundation on which to carry out an 
initial geological interpretation of the area under study. In the examples shown 
in this paper, a geological map and a conventional photogeological interpre-
tation were constructed to serve as the basis for the following analysis. This, 
together with some field sketches, helped with the interpretation of especially 
complicated areas within the CAVE. In addition, bedding and fault orientation 
were measured.

Creation of the Virtual Outcrop Model: Point Cloud

A point cloud with associated color information (x-y-z red-blue-green 
[RGB] files) may be created, as in this study, using the software VisualSFM 
(downloadable for free at http://ccwu.me/vsfm; Wu, 2013), which works follow-
ing the structure from motion system developed by Wu et al. in 2011 (for ap-
plications of structure from motion in earth sciences, see Carrivick et al., 2016; 
see also Fig. 2). This software solves the problem of the camera  calibration 
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(calculation of focal length, center of projection, radial distortion), as well as 
of resection (determining the camera positions for each photograph). This is 
done by the bundle adjustment method (Triggs et al., 2000; Wu et al., 2011), 
with automatic detection of matching points using the Scale Invariant Fea-
ture Transform algorithm. Had the camera been calibrated before, it is also 
possible to load the corresponding parameters and set a fixed calibration in 
VisualSFM. Since the camera used in this research had not been calibrated, 
the first approach was followed. The different available options are: (1) down-
sampling the point cloud for large-scale interpretation when not so much 
detail is needed, which should cause better computer performance; (2) di-
viding the point cloud into smaller portions to be analyzed independently; 
(3) deleting areas without interest; and (4) obtaining a textured triangulated 
mesh. Given that the chosen outcrops were of relatively manageable size, 
the downsampling and the extraction of small portions were not necessary. 
However, some zones of no interest, such as fallen blocks at the bottom of the 
cliffs, were removed. Moreover, no triangulated meshes were created, given 
that they were not necessary for the research.

Georeferencing the Point Cloud

This step consists of placing the point cloud in its correct geographical 
position and with its appropriate orientation and dimensions. This is a vital 
issue, since it allows proper 3-D coordinates to be obtained for the geolog-
ical features interpreted in the point cloud, as well as measuring plane and 
line orientations. To carry out this step, coordinates of control points along the 
studied area must be used. This step may be carried out using the software 
VisualSFM with a minimum of three points. To estimate the error, the point to 
point comparison method may be used (Fonstad et al., 2013), which consists 
of using check points recorded in the field and left out of the point cloud gen-
eration procedure (Fig. 2). It should also help to detect outliers that must be 
removed from the model. For the Huerres outcrop, six control points plus 16 
check points were taken, whereas the Peñarrubia example was covered with 
six control points and 18 check points.

Visualization and Geological Interpretation in a CAVE

The in-house software 3-D Stereo VDT, developed by the research group 
IdeasCAD (University of Oviedo), was used to visualize and interpret the point 
cloud from the geological point of view within a CAVE (Fig. 2). This software 
combines shutter glasses and a handheld device to pick features from the point 
cloud. Infrared cameras track the position of the user to provide the correct 
view of the outcrop and that of the drawing tool, and to draw the geological 
features at their accurate position. 3-D Stereo VDT software allows the user to 
draw points and polylines, as well as to edit, delete, or modify them. It also al-
lows the use of different colors and widths to distinguish different beds, faults, 

joints, fold axes, and many other sets of geological features. The geological 
interpretation carried out in the CAVE must be based on the initial geological 
interpretation performed during the field data collection. This preliminary in-
terpretation helps to provide a broad outline of the structure and determine 
the areas of special interest. Thus, the geologist has an idea of the main char-
acteristics of the structure and can focus on drawing it as precisely as possible 
within the CAVE. In the examples shown here, the conventional photogeo-
logical interpretations were used to define the horizons and faults that were 
going to be interpreted on the point cloud. The geological interpretation may 
be exported as a dxf file, which can be imported in most conventional drawing 
or geological software programs to continue its analysis, i.e., construction of 
geological cross sections, restorations, etc. For instance, the interpretations of 
the examples presented in this paper carried out in the CAVE were loaded in 
the software Move (Midland Valley Exploration Ltd., Glasgow, UK) to continue 
with the analysis and generate the 3-D model and the different cross sections 
shown. Although the software was implemented in a CAVE, it could also be 
adapted to more affordable systems such as head-mounted displays (Oculus 
Rift or HTC Vive). However, this is beyond the scope of this study.

Given that the software 3-D Stereo VDT works with “obj” files, and Visu-
alSFM only generates “ply” files, it is necessary to change the file format. 
This can be achieved, as, indeed, was done in this research, using the open 
source tool MeshLab (available for free at http://meshlab.sourceforge.net/), 
wherein it is also feasible to remove unneeded areas or select only those 
parts of interest. It should be borne in mind that 3-D Stereo VDT cannot han-
dle more than around five million points. In case of point clouds with more 
points, MeshLab allows two strategies to overcome this issue: (1) Reduce 
the density of the whole point cloud by applying the Poisson-disk sampling 
algorithm (Corsini et al., 2012), which implies losing some minor details, and/
or (2) divide the point cloud into smaller parts that can be loaded separately. 
Fortunately, the point clouds created from the outcrops studied here did not 
exceed this limit.

Surface Extraction: 3-D Model and Geological Cross-Section Building

The data interpreted in the previous step must be extracted (Fig. 2). From 
various selected points on a surface, it is possible to calculate the surface 
mean dip and dip direction or strike. These estimated values may be compared 
to those directly measured in the field using a conventional compass and/or 
an electronic device such as a mobile telephone or tablet, as a way to check the 
accuracy of the point cloud. Dips and strikes may also be obtained for areas 
otherwise inaccessible, such as the highest parts of the outcrops, in order to fill 
gaps in the conventional mapping.

The lines interpreted in the point cloud, and subsequently extracted, may 
be projected onto selected planes to create geologically meaningful cross sec-
tions. These lines may also be used to produce surfaces by extending them 
while observing constraints such as the strike and dip of bedding and of 
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 structural elements (fold limbs, fold axes, and fault surfaces), and honoring 
dip domains. This procedure may be carried out using commercial 3-D geo-
modeling software such as Skua-Gocad (Paradigm Geophysical B.V.) or Move 
(Midland Valley Exploration Ltd.), amongst others, in order to construct a 3-D 
geological model. For the research presented here, surfaces were built using 
Move, and they were then used to generate geological cross sections perpen-
dicular to the axes of the structures.

HUERRES STRUCTURE

The Huerres structure is located near the small village of Huerres, around 
30 km to the east of Gijón (Figs. 1A and 1B). The structure crops out along a 
coastal cliff that is ~50 m wide and around 60 m high, although the studied 
structure is restricted to the lower 5–10 m. The average orientation of the cliff 
face is NNW-SSE; however, the structure is located at a small salient (Fig. 3A). 
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Figure 3. (A) Google Earth image with location of the geological map illustrated in B. (B) Geological map of the Huerres outcrop and surrounding areas. See Figure 1 for location 
of this map within the Asturian Basin. (C) Photograph of the Huerres outcrop along with its geological interpretation. The structure involves alternations of gray limestones 
and marls, and black shales and limestones (Santa Mera Member, Rodiles Formation). Black shales and marls predominate in the lower part of the outcrop, whereas gray 
limestones predominate in the upper part. Blue lines—bedding, red lines—faults.

Downloaded from https://pubs.geoscienceworld.org/gsa/geosphere/article-pdf/14/4/1635/4265479/1635.pdf
by guest
on 26 April 2019

http://geosphere.gsapubs.org


Research Paper

1641Uzkeda et al. | Controls on inversion tectonics by inheritanceGEOSPHERE | Volume 14 | Number 4

The field work carried out allowed us to construct a geological map (Fig. 3B), 
as well as a photogeological interpretation of the outcrop (Fig. 3C), and projec-
tions of the collected orientation data (Fig. 4). Sixty high-dynamic-range pho-
tographs of the outcrop were shot, and 22 control and check points were taken 
(Fig. 5A). The point cloud (Fig. 5B), georeferenced using six control points, was 
interpreted from a geological point of view (Fig. 6A) with the help of field ob-
servations. This interpretation, together with the orientation data for the lay-
ers and structural elements, allowed us to develop a 3-D geological model 
(Fig. 6B), from which a geological section perpendicular to the fold axes was 
constructed (Fig. 6C). The mean square error estimated from comparing the 
coordinates of the check points measured in the field with their location in the 
point cloud was 8.5 cm. In addition, we estimated the strike and dip of eight 

bedding surfaces located in different places of the point cloud. The obtained 
values were compared with measurements of strike and dip taken directly at 
the outcrop at the same locations. The average angle between the bedding 
planes calculated using the point cloud interpretation and the bedding planes 
measured in the field varied from 4° to 14°, average 11°. These discrepancies 
are similar to those obtained by Cawood et al. (2017) when comparing orien-
tations measured in the field with those of fitted surfaces extracted from point 
clouds created by photogrammetry (terrestrial and aerial structure from mo-
tion) in areas where it is possible to achieve an adequate coverage (i.e., good 
overlap, resolution, no occlusion, etc.). Taking into account the possible errors 
due to the irregularity of the bedding surfaces, those derived from the mea-
surement instruments, and those made by ourselves in the interpretations and 
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Figure 4. Equal-area projections in the lower hemisphere and tangent diagrams of orientation data collected in the Huerres outcrop. (A) Bedding (surfaces and poles); (B) bedding 
(surfaces and poles) and average fold axis for the syncline; (C) bedding (surfaces and poles) and average fold axis for the anticline; and (D) faults, along with their kinematic indicators. 
Equal-area projections were plotted using the software Stereonet. Tangent diagrams have 5° increments. The bedding dip vectors displayed in the tangent diagrams have been fitted 
using a quadratic function.
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Figure 5. (A) High-dynamic-range photographs employed to construct the virtual outcrop model of the Huerres outcrop in the form of a point cloud, displayed in (B). The software 
 VisualSFM was used to construct the point cloud. H—horizontal, V—vertical.
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Figure 6. (A) Three-dimensional (3-D) geo-
logical interpretation of the Huerres point 
cloud displayed in Figure 5B carried out with 
the software 3-D Stereo VDT in a computer- 
assisted virtual environment (CAVE). (B) 3-D 
geological model of the Huerres outcrop con-
structed using the software Move, field data, 
and the CAVE interpretation shown in A.  
(C) Geological section across the lower por-
tion of the Huerres structure obtained from the 
3-D geological model displayed in B. Red lines 
and surfaces—faults, other color lines and sur-
faces—bedding, H—horizontal, V—vertical.

Downloaded from https://pubs.geoscienceworld.org/gsa/geosphere/article-pdf/14/4/1635/4265479/1635.pdf
by guest
on 26 April 2019

http://geosphere.gsapubs.org


Research Paper

1644Uzkeda et al. | Controls on inversion tectonics by inheritanceGEOSPHERE | Volume 14 | Number 4

measurements, we consider that the errors obtained from the check points and 
from the orientations of bedding surfaces support the accuracy of the point 
cloud constructed for geological purposes.

Structural Features

The most noticeable structure identified in the Huerres outcrop consists of 
a decameter-scale, approximately parallel syncline and anticline pair (Figs. 3, 
5B, and 6). These folds are gentle to open, and their interlimb angles are ~120° 
(Fig. 4). The anticline width measured from the syncline hinge to its intersec-
tion with a fault to the north is ~15 m, and its structural relief is around 2 m 
(Fig. 6C). The north limb of the anticline dips gently to the NNW, whereas its 
south limb, which is the common limb with the syncline, is shorter than the 
north limb and dips a little bit steeper to the SSE. The south limb of the syncline 
again dips gently to the NNW. The fold axes and axial surfaces of these folds 
have an ENE-WSW direction, and they are approximately upright structures 
(Fig. 4). However, the anticline is a little vergent toward the SSE. These folds 
are slightly conical (note how the bedding dip vectors may be fitted by a qua-
dratic function) and have almost horizontal fold axes (Fig. 4). The dip and width 
of the common limb between the anticline and the syncline become gentler 
and smaller toward the ENE of the studied outcrop until the folds disappear 
(Fig. 3B).

The anticline-syncline pair is bounded to the north by a decameter- to hec-
tometer-scale fault (Figs. 3 and 6). This fault is subvertical to steeply dipping to 
the S, and its strike is approximately E-W. No kinematic indicators were found 
on the fault surface, but it shows a reverse throw on the geological map (Fig. 
3B), being the southern block (hanging wall) of the upthrown one. The fault 
orientation is slightly oblique to that of bedding in both the hanging wall and 
footwall and to that of the syncline-anticline pair described above (Fig. 3A). 
The limestones and marls of the Rodiles Formation exhibit a certain degree of 
brecciation in the fault zone. The fault displacement is around 36 m, estimated 
using the base of the Vega Formation as a reference bed. In the upthrown 
blocks of some neighboring faults, the Vega Formation rests unconformably on 
the underlying Rodiles Formation, the uppermost portion of which is missing 
(Suárez-Vega, 1974). This has been attributed to fault activity during the time 
in between the sedimentation of the uppermost Rodiles Formation and that 
of the lowermost overlying Vega Formation (Uzkeda et al., 2016). We ignored 
whether the displacement estimated for the fault described above, using the 
Vega Formation base as a reference bed, is the total value or a minimum value, 
which would be the case if the fault were active before sedimentation of the 
Vega Formation, similar to nearby faults.

Apart from the anticline-syncline pair and the reverse fault described 
above, the rocks are affected by several second-order structures; their types, 
dimensions, and numbers reflect a change in structural style up section in the 
hanging wall of the main reverse fault (Figs. 3C and 6C). In the lower part of 
the stratigraphic succession, where shales predominate, the density of struc-
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tures is greater than in the upper part, where limestones predominate, but 
their dimensions are smaller. Second-order structures in the lower part con-
sist mainly of thrusts and sporadic normal faults. The thrusts, which are the 
most numerous structures, are both NNW-directed and SSE-directed, exhibit 
ramp-flat geometry, and are up to 7–10 m length, and their maximum displace-
ment is around 20–30 cm. The normal faults, usually NNW dipping and with 
small dimensions and displacement, seem to be cut and offset by the thrusts. 
In contrast, the upper part of the stratigraphic sequence is affected by fewer 
structures, and gentle fault-bend folds related to thrusts are the most common 
features. These thrusts form a SSE-directed imbricated system, display stair-
case geometries with ramps and flats, have a meter-scale length, and produce 
decimeter-scale displacements greater than those of the thrusts occurring in 
the lower part. This imbricated thrust system detaches at the upper part of 
a relatively thick, incompetent layer of dark marls that separates the upper 
and lower deformational domains (Fig. 7A). The cutoff angles between thrusts 
and bedding are usually 30° but, in some cases, may be as high as 60°. All 

Figure 7. Mechanical-stratigraphic column of the (A) Huerres and (B) Peñar-
rubia outcrops.

Downloaded from https://pubs.geoscienceworld.org/gsa/geosphere/article-pdf/14/4/1635/4265479/1635.pdf
by guest
on 26 April 2019

http://geosphere.gsapubs.org


Research Paper

1645Uzkeda et al. | Controls on inversion tectonics by inheritanceGEOSPHERE | Volume 14 | Number 4

the  second-order contractional structures described here are restricted to the 
south block of the main reverse fault, i.e., its upthrown hanging wall, and do 
not appear in the fault footwall. They are concentrated in the area closest to the 
main fault and disappear southward away from the fault. In particular, they are 
concentrated in the forelimb of the main anticline. A few small-scale (not big 
enough to be mapped), NNE-dipping, right-lateral and NW-dipping, left-lateral 
faults also occur (Fig. 4D).

The structural relief of the Huerres main folds is ~2 m, measured using the 
most complete horizon in the geological cross section (turquoise blue horizon, 
third from bottom horizon in the cross section depicted in Fig. 6C), and taking 
the lowest point of the SSE syncline as a regional datum. Approximately 0.3 m 
(15%) of the structural relief was caused by minor thrust faults within the folds 
(estimated by adding the throw of the thrusts), whereas the rest was due to 
folding. To the structural relief value estimated, we must add 35 m due to the 
throw of the main reverse fault, which makes a total uplift of 37 m. Thus, more 
than 95% of the total uplift was due to faulting, whereas the rest was caused 
by folding. The shortening of the Huerres main folds is around 2 m (~10%), es-
timated by subtracting the width of the turquoise blue horizon in Fig. 6C from 
its total folded length. Approximately 1.3 m (60%) of the total shortening was 
produced by minor thrust faults within the main folds (estimated by adding 
the heave of the thrusts). In addition to the shortening value estimated, the 
main reverse fault has an approximate heave of 6 m, so that the total short-
ening is slightly above 8 m. Therefore, more than 90% of the total shortening 
was due to the contribution of faults, and the rest was due to folds. These data 
suggest that the Huerres structure was formed mainly due to faulting. This is 
in accordance with the geological maps of the surroundings of the studied 
outcrop, where faults are the predominant structures (Uzkeda, 2013; Uzkeda 
et al., 2016).

The layers located in the footwall of the main reverse fault dip to the N. 
In the hanging wall of the main fault, east and south of the studied outcrop, 
the layers also dip to the N (Fig. 3A). These observations point out a general-
ized layer tilting that involves both the hanging wall and footwall of the main 
reverse fault. The second-order folds and thrusts developed within the main 
anticline in the studied outcrop do not seem to have undergone this tilting, 
and, therefore, we assume that they developed after it.

Two almost-orthogonal families of joints were identified. The approx-
imately N-S–striking family exhibits better-developed calcite fillings than 
the approximately E-W–striking family. Some of these fillings may contain 
traces of bitumen. The dips of both joint families range from 60° to 90°. Less- 
developed sets of joints occur, forming angles from 30° to 60° with the two 
main families. The temporal relationships between the joints and folds and 
faults are unclear.

The black shales rich in organic matter located in the lower part of the strati-
graphic succession contain several centimeter- to decimeter-length veins filled 
with carbonate, iron sulfides, and iron oxides, as well as other components. 
These veins are folded by a large number of millimeter- to centimeter-scale, 
recumbent folds (Fig. 8). The axial surfaces of these recumbent folds are ap-

5 cm

SSE NNW

Bedding

Axial traces

proximately parallel to bedding surfaces, so that bedding surfaces are not 
folded. This suggests that the principal compressive stress responsible for vein 
folding was perpendicular to bedding. These veins may have formed during 
compaction of the shales as a result of fluid expulsion and precipitation of 
carbonate and iron-rich minerals. An alternative explanation is that they were 
caused by tectonic layer-parallel shear; however, the lack of a consistent fold 
asymmetry leads us to discard this hypothesis.

Figure 8. Veins folded by millimeter- to centimeter-scale recumbent folds for 
which the axial planes are approximately parallel to bedding.
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To the NE of the studied outcrop, a few map-scale, apparently strike-slip 
faults occur (Fig. 3B). The most important fault is the one closest to the mapped 
structure; it is a NW-SE subvertical fault of decametric dimensions that causes 
a strike separation of around 4 m in the sandstone beds located at the base 
of the Vega Formation. Unfortunately, no kinematic indicators associated with 
this fault were observed, but the fault motion deduced from correlation of 
homologous layers in both fault blocks suggests a left-lateral fault, a fault in 
which its northeast block would be the downthrown block, or an oblique fault 
involving both motion components. This fault offsets the main reverse fault in 
the geological map depicted in Figure 3B; however, this temporal relationship 
is unclear, since the fault intersection area is partially covered by rocks fallen 
from the coastal cliff. The major folds described above disappear in the area 
where these two faults intersect.

Kinematic Evolution

We interpreted the Huerres structure in terms of inversion tectonics be-
cause of the following reasons.

(1) Small-scale normal faults that developed prior to thrust faults were 
identified in the outcrop (Fig. 3C), indicating that there was an extensional 
event followed by a contractional event.

(2) The obliquity between the main anticline-syncline pair and the main 
reverse fault (Fig. 3B) may support the existence of structures formed under 
different stress fields, as proposed by Uzkeda (2013) and Uzkeda et al. (2016), 
and, therefore, the existence of inversion tectonics.

(3) The fact that the contractional structures (main folds and related 
 second-order thrusts) are restricted to a portion of the main fault hanging wall 
and disappear when moving farther away from the fault, and the fact that the 
main fault footwall was not affected by contractional structures suggest that 
the main fault footwall may have played a buttressing role. Buttressing as a 
result of a compressive event affecting preexisting normal faults has been 
documented in neighboring faults (Martín et al., 2013; Uzkeda et al., 2013). The 
incompetent thick succession in the fault hanging wall relative to more com-
petent footwall rocks, together with the elevated dip of the main normal fault, 
supports the buttressing hypothesis. The vergence of the principal anticline 
opposite to the main fault dip, and thrusts directed opposite to the main fault 
dip also support the buttressing hypothesis. Thus, the effect exerted by the 
main fault footwall could be compared, to a certain extent, to that exerted by 
backstops in many laboratory physical experiments where the structures verge 
and are directed toward the opposite sense.

The anticline-syncline pair located in the hanging wall of the main reverse 
fault might be interpreted as detachment folds. The occurrence of incompetent, 
thick black shales in the core of the anticline may support this hypothesis. If 
this were true, the spatial variations in fold geometry may be used to decipher 
the fold temporal evolution following the method proposed by Poblet et al. 
(1998). Thus, the decreasing dip and width of the common limb between the 
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anticline and syncline toward the fold termination (Figs. 3B and 9) suggest that 
the fold amplification mechanism that operated was a mixture of limb rotation 
and hinge migration. Such a combination of mechanisms has been proposed 
for theoretical models of detachment folds (e.g., Poblet and McClay, 1996), as 
well as for surface and subsurface folds in different regions (e.g., Poblet et 
al., 2004).

Figure 10 illustrates schematically a possible evolution of the Huerres 
structure from its initiation to present day. An approximately E-W normal fault 
subperpendicular to bedding developed during the extensional period. This 
fault was located within a large rollover related to a major fault to the north 
of the studied outcrop. Strong inversion tectonics, fundamentally due to fault-
ing, took place during a subsequent contractional event, and the normal fault 
underwent reverse reactivation with a dextral component accompanied by a 
buttressing effect in the fault hanging wall. Buttressing was responsible for 
a detachment anticline adjacent to the normal fault with vergence opposite 
to the sense of motion of the reactivated normal fault. The anticline forelimb 
amplified by rotating and lengthening. Synchronously, a detachment, directed 
in the opposite sense to that of the reverse reactivation of the normal fault, 
developed in the main fault hanging wall. This detachment separates the lower 
incompetent from the upper competent hanging-wall packages with second- 
order structures of different types, dimensions, and abundance. The buttress-
ing effect was triggered when the reverse reactivation of the inherited normal 
fault brought into contact rocks of different competence in the fault hanging 
wall and footwall, which, together with the steep fault dip, prevented contrac-
tional deformation from propagating toward the main normal fault footwall. 
Thus, the inherited normal fault exerted a strong control on the type and distri-
bution of contractional structures in the fault hanging wall (Figs. 3B and 6). The 
extensional structures are assumed to be a Jurassic and/or Cretaceous fea-
ture, whereas the inversion tectonics occurred during Cenozoic times,  similar 

Figure 9. Schematic structural map and cross sections showing the along-strike variation of 
dip and width of the common limb between the major anticline and syncline for the Huerres 
structure. Both decrease toward the eastern termination of the structure.
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to other structures documented in nearby regions within the Asturian Basin 
(Lepvrier and Martínez-García, 1990; Uzkeda et al., 2016; amongst others).

The effects of the contractional deformation seem to decrease along strike 
toward the eastern portion of the main fault hanging wall, where the folds 
disappear (Fig. 3B). Alternatively, the shortening could have remained approx-
imately constant along strike, whereas to the west, it would have been ac-
commodated by reverse displacement along the main fault plus folding, and 
toward the east, it would have been accommodated solely by reverse displace-
ment along the main fault. To the east of the study area, the cutoff lines be-
tween the horizons and the fault exhibit a certain dip component toward the W, 
and, therefore, the reverse displacement of the fault would increase eastward. 
This would support the second hypothesis.

PEÑARRUBIA STRUCTURE

The Peñarrubia structure is located in the west portion of the Peñarrubia 
Beach, in the east part of Gijón (Figs. 1A and 1C). The studied structure crops 
out along an approximately E-W coastal cliff, around 25 m wide and 10 m high. 

SSE NNW

Normal faulting + Rollover

Fault reactivation + Buttressing 
(Folding & Reverse faulting)

Figure 10. Schematic cartoon showing possible structural evolution of the Huerres struc-
ture from the undeformed state to present day.

The studied outcrop shows irregularities, with faces at different depths and 
approximately flat areas that usually correspond to bedding surfaces. After the 
initial conventional geological tasks, such as geological mapping (Fig. 11A), 
photogeological interpretation of conventional photographs (Fig. 11B), and 
structural data analysis (Fig. 12), 63 high-dynamic-range photographs were 
shot from different points of view to cover the whole outcrop (Fig. 13A). Sub-
sequently, six control and 18 check points distributed along the outcrop were 
taken to georeference and check the quality of the point cloud, respectively 
(Fig. 13B). The point cloud was interpreted from the geological point of view 
(Fig. 14A). The 3-D geological data obtained, together with dips and strikes of 
beds and faults plus the plunge of fold axes, allowed us to construct bedding 
and fault surfaces (Fig. 14B). Finally, a cross section approximately perpendic-
ular to the fold axes was derived from the 3-D geological model (Fig. 14C). A 
comparison of the coordinates of the check points measured in the point cloud 
and those measured in the field yielded an average quadratic error of 2.9 cm. 
Moreover, 10 measurements of strike and dip of stratification surfaces were 
taken in different locations of the point cloud and compared to data taken in 
the field at the same position. The angular differences between both sets of 
measurements ranged between 4° and 15°, being the average close to 11°. The 
difference between the coordinates of the check points and the orientation of 
bedding surfaces measured in the point cloud and those measured in the field 
is relatively small given the errors arising from the irregularity of the stratifi-
cation surfaces and the measuring instruments, as well as errors when taking 
the measurements and interpreting the data. Therefore, this suggests that the 
point cloud constructed is quite accurate and allows us to obtain quantitative 
geological data from its analysis.

Structural Features

The Peñarrubia structure consists of a decameter-scale anticline-syncline 
pair. They are approximately parallel, open folds (Figs. 11, 13B, and 14) with an 
interlimb angle less than 120° (Fig. 12). The structural relief measured in the an-
ticline is around 1.5 m. These folds verge toward the W; the axial surfaces strike 
N-S and dip moderately to the E, whereas the fold axes are slightly curved 
and dip from gently to the N to horizontal to gently to the S. The anticline has 
a long, NW-SE–striking east limb (backlimb) gently dipping to the NE and a 
short, N-S–striking west limb (forelimb), common to the syncline, moderately 
dipping to the W. The west limb of the syncline is subhorizontal. The fold traces 
on the map are slightly curved, approximately N-S to the south, and NNW-SSE 
toward the north (Fig. 11A). These folds are cylindrical, as both the equal-area 
projections and the tangent diagrams suggest (Fig. 12).

Three major, meter- to decameter-length faults occur in between the anti-
cline and syncline hinge zones (Figs. 11B and 14). These faults strike N-S and 
dip moderately to the E, are oblique to bedding almost everywhere, and cause 
centimeter to decimeter displacements. The easternmost and westernmost 
faults are reverse, whereas the fault in between them is normal and displays 
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Figure 11. (A) Geological map of the Peñarrubia 
outcrop and surrounding areas on top of a 2016 
Google Earth photograph with location of the pho-
tograph illustrated in B. See Figure 1 for location of 
this map within the Asturian Basin. (B) Photograph 
of the Peñarrubia outcrop along with its geological 
interpretation. The structure involves alternations 
of gray limestones and marls (Buerres Member, 
Rodiles Formation). Limestones predominate in 
the lower part of the outcrop, whereas alterna-
tions of limestones and marls predominate in the 
upper part (beds A to H). Blue lines—bedding, red 
lines—faults.
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almost dip-slip kinematic indicators (striae). Some of these faults are located in 
different structural positions, offsetting the stratigraphic succession involved in 
this structure, the lower part of which is more competent and consists of gray 
limestones and a small amount of intercalated gray marls, and the upper part 
of which is less competent and is made up of alternations of gray marls and 
limestones. The easternmost reverse fault breaks through the anticline hinge 
in the lower part of the succession and runs through the syncline hinge in the 
upper part of the succession. The westernmost reverse fault runs through the 
anticline forelimb in the lower part of the succession and dies out at a syncline 
hinge in between the two successions. The normal fault in between the reverse 
faults runs through the anticline forelimb in the lower part of the succession 
and through the anticline hinge in the upper part of the succession. A detach-

ment, located at the top of a marly level, separates the more competent (be-
low) from the more incompetent (above) parts of the succession (Fig. 7B). This 
detachment involves ESE-directed motion and has ~2 m of displacement; the 
detachment offsets a subvertical normal fault, approximately perpendicular to 
the detachment surface, toward the west of the studied outcrop. This detach-
ment is folded by the anticline-syncline pair and cuts and offsets the normal 
fault, and it is cut and offset by the easternmost reverse fault.

The structural relief of the Peñarrubia structure is 1.4 m, measured using 
the most complete horizon in the geological cross section (dark-green hori-
zon, eighth horizon beginning from the bottom horizon in the geological cross 
section depicted in Fig. 14C) and taking as a regional datum the lowest point 
of the syncline to the west of the anticline. Approximately 0.1 m (7.1%) of the 

Left-lateral
Right-lateral
Normal
Reverse
Striae

FaultsD

A B CBedding (all data) Anticline Syncline

000/09
004/03

001/07

Bedding poles Bedding planes Fold axes

Bedding dip vectors

10º
20º
30º
40º

50º

60º

10º
20º
30º
40º

50º

60º

10º
20º
30º
40º

50º

60º

000/09
004/03

001/07 000/09
004/03

001/07

006/01004/05 006/01004/05

Figure 12. Equal-area projections in the lower hemisphere and tangent diagrams of orientation data collected in the Peñarrubia outcrop. (A) Bedding (surfaces and poles); (B) bedding 
(surfaces and poles) and average fold axis for the anticline; (C) bedding (surfaces and poles) and average fold axis for the syncline; and (D) faults, along with their kinematic indicators. 
Equal-area projections were plotted using the software Stereonet. Tangent diagrams have 5° increments. The bedding dip vectors displayed in the tangent diagrams have been fitted 
using a linear function.
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Figure 13. (A) High-dynamic-range photographs employed to construct the virtual outcrop model of the Peñarrubia outcrop in the form of a point cloud, displayed in 
(B). The software VisualSFM was used to construct the point cloud. H—horizontal, V—vertical.
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structural relief is due to faulting (estimated by adding the throw of the reverse 
faults), while the rest is due to folding. We obtained a shortening amount of 
1 m (7.9%) by comparing the folded length of the dark-green horizon with its 
width. Thereby, 0.1 m (10% of the total shortening) was due to faulting (es-
timated by adding the heave of the reverse faults), and the rest was due to 
folding. The measured uplift and shortening values indicate that the Peñarrubia 
structure was mainly caused by folding (Figs. 11 and 14). This is in accordance 
with the geological maps of the area surrounding the studied outcrop, where 
folds are the most common structures (Odriozola, 2016).

A few second order, meter-scale, strike-slip faults were identified (Fig. 10D). 
They usually consist of NW-SE right-lateral faults and NE-SW left-lateral faults. 
All of them exhibit steep dips, usually greater than 80°; the right-lateral faults 
dip toward the SW, and the left-lateral faults dip toward the NW. Most of them 
have subhorizontal kinematic indicators such as striae. In cross-sectional view, 
these faults produce small throws that may reach 10–20 cm and may appear 
to be reverse or normal depending on the pitch of their kinematic indicators. 
The northwestern fault block of many NE-SW left-lateral faults corresponds to 
the downthrown block. Some right-lateral faults cut and offset left-lateral ones; 
however, in some outcrops, both families seem to be synchronous and are 
probably conjugate faults.

In addition, a decameter-scale, right-lateral fault with an approximately E-W 
strike and steep dip offsets the Peñarrubia structure around 3 m (Fig. 10A) and 
is responsible for a small drag fold in the vicinity of the fault.

Kinematic Evolution

Apparently, the Peñarrubia structure displays the typical geometry of a 
pure contractional structure. However, some elements, listed below, suggest 
that a previous extensional event took place.

(1) Both normal and reverse faults have been mapped in the studied out-
crop (Figs. 11B and 14), which could indicate at least two tectonic episodes, an 
extensional one and a contractional one.

(2) The detachment located in between the upper and lower stratigraphic 
successions cuts and offsets a normal fault, subperpendicular to bedding, in 
the forelimb of the anticline (Figs. 7B, 11B, and 14). Assuming that the detach-
ment is the oldest contractional feature in this outcrop, this suggests the occur-
rence of an extensional event followed by a contractional one.

The most noticeable structural features of the Peñarrubia outcrop, i.e., a 
parallel anticline developed in the hanging wall of a thrust (westernmost re-
verse fault) that dies out at the hinge of the frontal syncline, indicating that 
its displacement decreases up section toward its termination, suggests that 
this structure could be interpreted as a fault-propagation fold (Suppe and 
Medwedeff, 1990). Assuming that serial geological sections across the termi-
nation of a fold reflect its temporal evolution, then the constant dip and de-
crease of width of the common limb between the anticline and the syncline 
along strike as we approach the fold termination to the north (Figs. 10A and 
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Figure 14. (A) Three-dimensional (3-D) geological interpretation of the Peñarrubia point 
cloud displayed in Figure 13B carried out with the software 3-D Stereo VDT in a comput-
er-assisted virtual environment (CAVE). (B) 3-D geological model of the Peñarrubia outcrop 
constructed using the software Move, field data, and the CAVE interpretation shown in 
A. (C) Geological section across the Huerres structure obtained from the 3-D geological 
model displayed in B. Red lines and surfaces—faults, other color lines and surfaces— 
bedding, H—horizontal, V—vertical.
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15)  indicate,  according to Poblet et al. (1998), that the anticline forelimb was 
amplified through the hinge-migration mechanism. Anticline forelimb hinge- 
migration is also consistent with the interpretation of this structure as a fault- 
propagation fold. The main difference between the Peñarrubia structure and 
most fault-propagation folds documented in the literature is that the thrust 
responsible for the Peñarrubia structure is oblique to the anticline backlimb. 
This situation has been documented in some types of fault-propagation folds 
such as trishear fault-propagation folds (Erslev, 1991), double-edge fault- 
propagation folds (Uzkeda et al., 2010), etc. The easternmost thrust running 
from the anticline hinge to the syncline hinge up section, cutting through the 
anticline forelimb, is interpreted as a breakthrough thrust.

Figure 16 illustrates schematically a possible evolution of the structure 
from its initiation to present day. Initially, during the extensional episode, the 
Peñarrubia structure was a small-displacement normal fault subperpendicu-
lar to bedding. During the contractional episode, a SE-directed detachment 
cut and offset the normal fault. This detachment separates a more compe-
tent, lower package from a less competent, upper package. Subsequently, a 
fault-propagation fold started to develop with a vergence opposite to that of 
the detachment sense of displacement. The anticline forelimb increased its 
width while maintaining its initial dip, while the main thrust propagated to-
ward the core of the frontal syncline. At a certain stage of fold development, 
a breakthrough thrust cut and offset the anticline forelimb, involving almost 
all the stratigraphic succession. As a result, the detachment was folded by the 
fault-propagation fold and offset by the breakthrough thrust. Thus, the old ex-
tensional structure underwent inversion tectonics due to a contractional event. 
Finally the whole structure was cut and offset by a dextral, approximately E-W, 
steep fault. The homogeneous nature of the rocks in the hanging wall and foot-
wall of the Peñarrubia main normal fault and the relatively small displacement 
of the normal fault indicate that the geometry of the layers just before the 
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Figure 15. Schematic structural map and cross sections showing the along-strike variation of dip 
of the common limb between the major anticline and syncline for the Peñarrubia structure. It 
decreases toward the northern termination of the structure.
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Figure 16. Schematic cartoon showing the possible structural evolution of the 
Peñarrubia structure from the undeformed state to present day.
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 contractional episode was mostly undeformed; this may be the reason why 
the inversion tectonics gave rise to an almost typical contractional structure, 
where almost no record of the inherited extensional structure is preserved. 
The main control exerted by the normal fault consisted of the initial perturba-
tion, where the fault-propagation fold developed and conditioned the position 
of the anticline axial surface in the upper part of the stratigraphic succession 
(Figs. 11B and 14). As in other structures within the Asturian Basin, we assume 
that the extensional event took place sometime during the Jurassic and/or Cre-
taceous, and the contractional inversion tectonics occurred during Cenozoic 
time (e.g., Lepvrier and Martínez-García, 1990; Uzkeda et al., 2016).

COMPARISON BETWEEN THE HUERRES AND  
PEÑARRUBIA STRUCTURES

We have recognized important coincidences and differences between the 
Huerres and Peñarrubia structures in terms of the stratigraphic succession in-
volved in the structures and the structures themselves (Table 1). Thus, both 
structures involve alternations of limestones and marls of Early to Middle Ju-
rassic age; they display variations in the structural style of the contractional 
structures up section, because they consist of two stratigraphic packages of 
different competence separated by a folded detachment; the scale of both 
structures is similar; the nucleation of the contractional structures was condi-
tioned by the existence of a previous normal fault; the second-order contrac-
tional faults are concentrated in the forelimb of the main anticlines; and they 
underwent a similar degree of inversion tectonics.

The most important differences between both outcrops concern the 
contractional episode responsible for inversion tectonics. Thus, the Huerres 
structure is interpreted as undergoing oblique-reverse reactivation of an 
original normal fault accompanied by buttressing in its hanging wall. This 
would have caused detachment folding, decoupling of an upper and a lower 
structural level, and second-order thrusting. On the contrary, the Peñarru-
bia structure is interpreted as a thrust-propagation fold involving a forelimb 
breakthrough thrust. The thrust-propagation fold was responsible for folding 
and offsetting a detachment, which in turn offset the old normal fault. In the 
Huerres outcrop, all the contractional structures are interpreted to have been 
active at approximately the same time, i.e., the reactivation of the normal 
fault and the folding. On the contrary, in the Peñarrubia outcrop, activity of 
the contractional structures was not simultaneous, so that the detachment 
was the first one to develop, followed by the fault-propagation fold. In the 
Huerres outcrop, the position, sense of motion, and vergence of the main 
contractional structural elements simulate a sort of “pop-up” structure; thus, 
the main fault, located to the north, is N-directed, whereas the folds, located 
to the south, are S-vergent. However, in the Peñarrubia outcrop, the position, 
sense of motion, and vergence of the structures resembles a sort of “trian-
gular zone,” because the E-directed detachment moved toward the W-vergent 
fault-propagation fold. In the Huerres outcrop, the inversion tectonic struc-

tures developed in the normal fault hanging wall, whereas in the Peñarrubia 
outcrop, the structures developed in both the hanging wall and footwall of 
the normal fault.

In both outcrops, the inversion tectonics and the kinematic evolution during 
the contractional event were strongly influenced by rheological parameters, as 
well as by the main geometrical features of previous extensional structures 
and their orientation in relation to the contractional stress field. The mechanical 
stratigraphy of the rocks involved in the structures turned out to be one of the 
main parameters that controlled the type, dimensions, number, and distribu-
tion of contractional structures.

CONCLUSIONS

The main features of the meter- to decameter-scale outcrops studied here 
suggest that a wide range of different types of tectonic inversion structures, re-
sulting from Mesozoic extensional faults subjected to a Cenozoic contractional 
event, may coexist in the Asturian Basin:

(1) from faulting-dominated to folding-dominated inversion tectonics;
(2) from inversion tectonics structures reusing inherited normal faults (re-

verse and/or strike-slip fault reactivation) to other types of interaction between 
old normal faults and inversion tectonics structures (normal faults cut, offset, 
and/or folded by newly generated contractional structures);

(3) from inversion tectonics structures consisting of detachment fold types 
to fault-propagation fold types;

(4) from inversion tectonics structures with divergent senses of motion, 
similar to a certain extent to “pop-ups,” to inversion tectonics involving conver-
gent senses of motion, similar to “pseudo-triangular zones”;

(5) from inversion tectonics structures restricted to the inherited normal 
fault hanging wall to inversion tectonics structures developed in both the fault 
hanging wall and footwall, highly dependent on the mechanical contrast of 
both fault blocks; and

(6) from inversion tectonics structures where the type, main features, and 
distribution were strongly controlled by the inherited normal faults to inver-
sion tectonics where the only control by the inherited normal faults was the 
locus at which they developed.

The use of virtual outcrop models was essential to this research. Without 
them, it would have been virtually impossible to obtain geological cross sec-
tions that properly illustrated the correct geometry of the structures. Geolog-
ical cross sections derived from conventional photogeological interpretation 
and from traditional cross-section construction in the field exhibited large dis-
tortions due to the irregularity of the outcrops. In addition, the irregular shape 
of the outcrops made it difficult to correlate the different layers from one end 
to the other end of the outcrops, especially because the outcrops are made up 
of relatively thin alternating layers of two predominant lithologies. The anal-
ysis presented herein was facilitated by the use of virtual outcrop models. In 
addition, the resulting models provided a fast and easy way to measure fault 
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TABLE 1. COMPARISON BETWEEN HUERRES AND PEÑARRUBIA STRUCTURES

HUERRES PEÑARRUBIA
Stratigraphy and mechanical stratigraphy
Formation Rodiles Rodiles
Member Santa Mera Buerres
Age Lower–Middle Jurassic Lower Jurassic
Incompetent package Black shales, limestones Gray marls, limestones
Competent package Gray limestones, marls Gray limestones, marls
Stratigraphic position of incompetent rocks Bottom Top
Structural position of incompetent rocks Hanging wall of the main normal fault Hanging wall and footwall of the main normal fault 
Mechanical contrast between hanging wall and 

footwall
High Low

Broad structure
Scale Decameter Meter-decameter
Strike Approximately E-W Approximately N-S

Extensional structure
Main normal fault dip Subvertical (subperpendicular to bedding) Moderate to the E (subperpendicular to bedding)
Main normal fault displacement Decameter (reverse) Centimeter to decimeter (normal)

Contractional structure
Variation of structural style up section Important (type, size, number, and distribution of second-order 

structures)
Subtle (position and number of main faults)

Structure separating structural styles Folded detachment (decimeter to meter slip) Folded detachment (decimeter to meter slip)
Detachment timing Coeval to the rest of contractional structures Oldest contractional structure
Detachment sense of displacement Equal to the vergence of the main contractional structures (SSW) Opposite to the vergence of the main contractional 

structures (E)
Upper structural style Few, large fault-bend folds and related thrusts (imbricated system) Two main faults along fold hinges 
Lower structural style Fewer, small thrusts Three main faults within main anticline forelimb
Main fold vergence SSE (same as main normal fault dip) W (opposite to main fault dip)
Main fold interlimb angle Gentle to open Open
Main fold amplifi cation mechanism Limb rotation + hinge migration Hinge migration
Distribution of folds and faults Restricted to the main normal fault hanging wall Developed in both blocks of the main normal fault
Concentration of second-order faults Main fold forelimb Main fold forelimb
Structure uplift 37.1 m (95% fault and 5% fold) 1.4 m (7% fault and 93% fold)
Structure shortening 8.3 m (90% fault and 10% fold) 1 m (10% fault and 90% fold)

Inversion tectonics
Normal fault reactivation Important reverse fault with dextral component? No apparent reactivation
Contractional structures offsetting main normal fault None Detachment
Main inversion tectonics mode and kinematic evolution Normal faulting + tilting, reverse (dextral) fault reactivation + 

buttressing (detachment folds, second-order thrusts and 
detachment)

Normal faulting, detachment, fault-propagation fold 
involving a forelimb breakthrough thrust

Inversion tectonics degree Strong Strong
Principal infl uence of the main normal fault Type and distribution of contractional structures Position of the axial surface of the main 

contractional fold
Late dextral faults Possible Yes
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displacements and to obtain orientation data from elements of interest, which 
was particularly handy in those areas not accessible in the field, e.g., upper 
parts of the outcrops.

The structural interpretation of the outcrops carried out here may provide 
assistance in the geological interpretation of particular structures imaged in 
the seismic data of the offshore portion of the Asturian Basin. This should 
help to improve the models used to date in order to explore for hydrocarbons 
(Riaza Molina, 1996). Furthermore, it should also be of assistance for the ac-
curate geological mapping of less well-exposed onshore areas of the basin 
away from the coast, where substantial vegetation cover occurs. In addition, it 
may contribute to a better understanding of the deep structure of the Asturian 
Basin, which is very important for the comprehension of the formation and 
structuring of this part of the North Iberian margin. It may also have conse-
quences on the selection of possible sites for placing state reserve acreage for 
CO2 storage, since this region has been chosen, together with adjacent ones, 
as an area of potential interest. Finally, the structural interpretations carried out 
here may serve as analogues for structures developed in similar extensional 
regions that have undergone inversion tectonics.
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