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3 Departament de Matemàtiques i Informàtica, Universitat de Barcelona (Spain)

petia.ivanova@ub.edu

Abstract. Varroa destructor is a parasite harming bee colonies. As the
worldwide bee population is in danger, beekeepers as well as researchers
are looking for methods to monitor the health of bee hives. In this con-
text, we present a preliminary study to detect parasites on bee videos
by means of image analysis and machine learning techniques. For this
purpose, each video frame is analyzed individually to extract bee im-
age patches, which are then processed to compute image descriptors and
finally classified into mite and no mite bees. The experimental results
demonstrated the adequacy of the proposed method, which will be a
perfect stepping stone for a further bee monitoring system.
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1 Introduction

For almost a decade now, it is a well-known fact that honey bee (apis mellifera)
population is reducing in a global scale. Beekeepers and those in favor of honey
bees are at the mercy of this phenomenon. At the time of this work, there are
no known solutions to stopping this paradox. This is mainly due to the fact that
the reasons are manifold and ambiguous [4].

Beekeepers and researchers are facing the problem by extending the health
surveillance of their bee hives. This includes time consuming manual tests to
control the great amount of parasites that bees are coping with [6]. These manual
processes can be performed in different ways, such as sampling living bees using
alcohol or powder sugar or opening brood cells to check for mites, and have a
number of drawbacks. First, they rely completely on statistical projections to
estimate the parasite load of a bee hive. To get statistically accurate results for
each inspection, a minimum of 300 bees have to be tested per hive. Second, most
accurate procedures are invasive in the sense that bees die during the monitoring
procedures which adds additional strain to the colonies.



The idea of automatically monitoring the entrance of apiaries for flight es-
timations dates back over several decades [7]. This was long before computer
enhanced monitoring became part of a beekeeper’s life. First micro-processor
monitoring was presented by Struye et al. [12], who used small tunnels equipped
with infrared sensors to successfully count the number of bees flying in and out.

Chiron et al. [3] stated the need for observation of bees to monitor abnormal
behavior, which can be used to diagnose the health state of a hive. In particu-
lar, they are interested in the number of bees and trajectories, and used a stereo
camera system to capture video footage. The company Keltronixinc is marketing
bee monitoring as a service [1], by using a system that consists of a camera and
a computer, both setup at the bee hive. The camera is looking at the bee hive
and monitors the bee activity with a tracking algorithm, allowing to distinguish
between healthy and not healthy hives. A recent sensor study for visual observa-
tion of honey bees was presented in [10], in which the camera system proposed
can be mounted at the entrance of a standard honey bee hive.

With the ultimate goal of automating the parasite monitoring, this paper
presents a novelty approach for varroa mite detection on honey bees (see Fig.
1). The proposed framework makes three important contributions: (1) it includes
a foreground detection approach to localize bees on video frames, (2) it provides
a pipeline system susceptible to be applied to other types of bee parasites, and
(3) it allows to reliably detect varroa mites with maximum accuracy over 80%.

The remainder of this manuscript is organized as follows: Section 2 presents
the bee dataset and the proposed methods for parasite detection, Section 3
includes the experimentation carried out and the validation results, and Section
4 closes with the conclusions and future lines of research.

2 Materials and Methods

2.1 Data Collection

Videos of honey bees, when they are entering or leaving the hive, are used as
input data in this research. The acquisition of the videos was carried out by a
camera system that can be mounted at the entrance of standard bee hives [10].
Figure 1 (right) illustrates a representative frame of these videos.

Fig. 1. Representative honey bee in which a varroa mite appears highlighted (left),
and video frame of bees entering or leaving the hive (right).



The main properties of these videos are: (1) the camera position and focus
are fixed creating a static environment, (2) the background is also static due to
the tunnel setup that includes artificial lightning to ensure constant filming con-
ditions, (3) the tunnel is covered with a dark adhesive foil to minimize reflections
and create a homogeneous background.

2.2 Video Frame Processing

Once the videos are recorded, the next step entails processing them frame by
frame. The target here is to detect the foreground first, and then to extract
image patches containing individual bees. Figure 2 shows the different steps for
video frame processing, which are following explained in depth.
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Fig. 2. Workflow for video frame processing with the different proposed methods.

Foreground Detection. This task consists in separating the foreground from
the background in each single video frame, getting a trade-off between noise and
honey bee details. The foreground is defined as all non-static regions of interest
(ROIs) in the image, being the rest of the regions part of the background. In
the problem at hand, the ROIs are the honey bees passing through the tunnels.
From a technical point of view, the result of this step is a binary image serving
as a mask. This mask assigns to each pixel in the original image (video frame)
one of the binary values depending if the pixel belongs to a ROI or not.

Taking into account the properties of the input data, especially the static
camera setup, the following methods were considered:

– Background subtraction [11]. The idea is to subtract the intensity values
of the image with the intensities of the background, and then classify each
pixel as foreground if it is greater than a proposed threshold, t. Therefore,
the binary image, Mi of the i-th frame, Fi is computed as: Mi = |Fi−B| > t,
where B is the background image. Two different approaches were considered
to calculate the background image, B. The first one uses the median image
over the complete video as a model for the background. The second one cal-
culates the background using Gaussian Mixture Models (GMMs), being the
idea to model each pixel intensity value as a linear combination of Gaussian
distributions calculated over the histogram of the image.



– Color thresholding. This approach uses a simple thresholding in different
color spaces, both individually and combined. The threshold defines a region
in a given color space, in such a way that all the pixels that fall into this
region are treated as foreground, whereas the rest is background. Raw image
data is organized in the RGB format, which addresses the color of each pixel
as a mix of the three base colors: red, green, and blue. When looking at
color as a potential feature, the RGB format is not always optimal, mainly
because the brightness information of each pixel is directly linked to the
color information. For this reason, two color models that separate color from
brightness have been also considered: CIELab and HSV.

Patch Extraction. Since the input of the subsequently image classification
step is one single foreground object, bounding boxes with individual bees need
to be extracted from the foreground previously detected. To this end, the fore-
ground image is processed using connected component analysis to determine the
biggest component and its direction, whilst all other components are removed.
The procedure is as follows: (1) find the boundaries of segmented bees, (2) cal-
culate the bounding boxes of individual bees and extract images from them, and
(3) post-process the patch images to remove other bees and rotate if needed.

2.3 Image Classification

In this stage, image patches previously extracted from video frames are used as
input data. A set of features is extracted from each single patch to create an
image descriptor that finally feeds a classifier in order to categorize it into mite
or no mite. Figure 3 shows the different steps, which are subsequently described.
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Fig. 3. Workflow for image classification with the different proposed methods.



Data pre-processing. In order to improve the contrast of input images, Con-
trast Limited Adaptive Equalization (CLAHE) [14] has been considered. This
method operates on small regions of the image, by applying the contrast trans-
form function to each region individually, rather than to the entire image.

Taking into account the distinctive color of varroa mites, other color spaces
apart from RGB have been analyzed. So, the pre-processing step also includes
the transformation of input images from RGB to CIELab and HSV.

Feature extraction. Varroa mites are parasites with a button shape and a
reddish-brown color (see Fig. 1). In order to detect them in bee images, different
feature extraction methods have been considered:

– Color histograms. Binned color histograms of the input images in the
different color spaces have been computed. Note that histograms for each
color component have up to 256 bins.

– Color histogram moments. In addition to using color histograms as fea-
ture vectors, a few statistical measures have been computed from them and
used as features: mean, standard deviation, skewness, and kurtosis.

– Local binary patterns [8]. This technique allows to compute a local repre-
sentation of texture. It partitions input images into non-overlapping regions,
and then it calculates the LBP value for the center pixel of each region.

– Dense SURF [2]. Inspired in the popular scale-invariant feature transform
(SIFT) descriptor, it also allows to compute local features but being faster
and more robust against image transformations.

Classification. The last step consists in classifying the input image, by means
of its feature vector, into one of the two classes considered: mite or no mite.
Three popular classifiers were selected aiming to provide different approaches of
the learning process [5]: naive Bayes, based on the Bayesian theorem; support
vector machine (SVM), based on the statistical learning theory; and random
forest, a combination of decision trees.

3 Experimental Results

This section presents the evaluation of the proposed method for parasite detec-
tion on honey bees, including the results for video processing and image classi-
fication. Note that the source code was implemented in Python, making use of
the OpenCV4 library for image analysis and Scikit-learn5 for machine learning.

3.1 Results for Video Frame Processing

The first experiments were designed to qualitatively evaluate the detection of
individual bees on video frames. For this purpose, a total of 12 videos that

4 https://opencv.org/
5 http://scikit-learn.org/



includes confirmed mites were acquired as described in Section 2.1. The videos
have a resolution of 1920× 1080 pixels in RGB, with a frame rate of 30 fps.

As explained in Section 2.2, different methods for foreground detection have
been considered. Figure 4 illustrates the behavior of each one as applied to a
representative video frame. As can be observed, the background subtraction
with median provides poorer results, since it allows to detect the bee with very
low precision. As opposite, background subtraction with GMMs as well as color
thresholding (using CIELab or HSV) provide much better results. They allow to
detect the whole bee, although some noise appears as foreground. The combina-
tion of these three methods to calculate the foreground leads to a more robust
approach, with a good trade-off between noise and honey bee details.

Fig. 4. Comparing different foreground detection methods applied to the video frame of
Fig. 1. From left to right: background subtraction with median, background subtraction
with GMMs, color thresholding with HSV, color thresholding with CIELab, and HSV-
CIELab color thresholding combined with GMM background subtraction.

3.2 Results for Image Classification

After processing the 12 videos acquired from bee hives, a total of 1300 patches
were obtained, each one containing a single bee. These images were manually
labeled with one of the two classes considered: mite vs. no mite. Only 103 of these
images correspond to bees with mites, resulting in a high imbalanced dataset. For
this reason, a balanced dataset was created by randomly selecting 103 negative
samples to match the available positive ones. Based on a 80-20 percent split, two
distinct subsets were selected: a 163-sample train set and a 43-sample test set.

The experimental results were analyzed in terms of the two following metrics:
accuracy, the percentage of correctly classified instances; and F1-measure, the
harmonic mean of precision and recall. Due to the size of the train set, a 3-fold
cross-validation [9] was used to evaluate the hyper-parameters of each feature
extraction method, such as the number of bins used for color histograms (30-256
bins), or the grid-size of SURF features (30-80 px).

The goal of this second experiment was to find the feature vector that best
describes the underlaying data. For this purpose, the three different color models
considered, as well as their individual color components, were combined with
the four feature extraction methods. Given the great number of combinations
obtained, only the most relevant ones are included in Table 1.

As can be observed, R from RGB, L from Lab, and H from HSV are the
individual components that provide better results, similar to the three compo-
nents of each one. Regarding feature extraction, the color histogram moments
and SURF are the most competitive ones when combined with other methods.



With respect to the classifiers, random forest provides the highest values for the
two performance measures considered, followed closely by SVM. And finally, the
use of CLAHE as a pre-processing step seems not to be necessary, in general,
since the best results for most of the combinations are obtained when no image
equalization is applied. However, the best results for both accuracy and F1-score,
0.81 and 0.83 respectively, are obtained when using the following configuration:
(1) CLAHE and HSV color space as pre-processing, (2) LBP (radius: 1 px, 8-
neighborhood) and SURF (grid-size: 80 px) feature extraction on all three color
channels, and (3) random forest classifier for final classification.

Table 1. Image classification results obtained with different combinations of colors
models and feature extraction methods, with no equalization (top) and after applying
CLAHE (bottom). Results are shown in terms of accuracy and F1-measure using three
different classifiers. The best result per column, top and bottom, appears in bold.

Color Features Naive Bayes SVM Random Forest
model applied Acc F1 Acc F1 Acc F1

RGB Moments, SURF 0.72 0.74 0.79 0.82 0.67 0.67
Lab Moments, SURF 0.61 0.71 0.65 0.65 0.72 0.79
HSV Histog., Moments, SURF 0.56 0.58 0.51 0.53 0.81 0.79
R Hist., Momen., LBP, SURF 0.70 0.70 0.79 0.82 0.70 0.67
L Hist., Momen., LBP, SURF 0.72 0.74 0.65 0.69 0.81 0.79
H Histog., Moments, SURF 0.77 0.78 0.56 0.56 0.65 0.61

RGB Histog., moments, SURF 0.56 0.63 0.61 0.64 0.77 0.77
Lab Moments, SURF 0.67 0.76 0.51 0.68 0.77 0.81
HSV LBP, SURF 0.70 0.74 0.67 0.68 0.81 0.83
R Histog., moments, SURF 0.51 0.59 0.58 0.59 0.77 0.78
L Moments, SURF 0.56 0.64 0.63 0.70 0.77 0.79
H Histograms, moments 0.49 0.56 0.56 0.58 0.72 0.74

Note that, in addition to the pipeline illustrated in Fig. 3, an object detec-
tion pipeline similar to the Viola/Jones face detector [13] was applied to the
problem at hand. The main performance advantage of this approach comes from
efficient computation of Haar-like features, using integral images in combination
with a cascading classifier. Nonetheless, this alternative pipeline provides a max-
imum accuracy of 0.65 and F1-score of 0.71, mainly because an object detection
approach of this type needs a greater amount of data samples for training.

4 Conclusion

Varroa mites are harmful parasites that affect bee colonies, causing the destruc-
tion of hives. Automatic monitoring systems play an important role to help
beekeepers that traditionally perform a time consuming manual sampling.

This manuscript presents a first, novel approach to detect parasites in honey
bees recorded when entering and leaving their hive. Video frames are individually



processed in order to extract single images of each bee, which are further ana-
lyzed to classify them as mite or no mite. Experimentation results demonstrated
the adequacy of the proposed pipeline, which includes both image analysis and
machine learning techniques. The proposed methods are able to classify bee
images with maximum accuracy and F1-measure over 80%.

Our future research is focused on the use of deep learning approaches for
image classification and techniques to handle the class imbalance problem.
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