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Abstract— Interest in energy cost saving and in global warming 

have persuaded transport companies to apply measures to reduce 

fuel consumption. Efficient driving is one of the most employed 

solutions as it allows savings in fuel consumption of around 10% 

with a minimal investment. The drawback is that efficient driving 

is a learning process and it greatly depends on the drivers’ 

behavior, which in turn is closely related to their motivation. If 

drivers are not really involved or after some time their interest 

decreases, efficiency improvements would disappear. Thus, an 

efficient driving program should make drivers’ motivation one of 

the main targets. One option could be the implementation of 

reward programs. However, these should be based on a clear 

individual evaluation process, as an unfair system could lead to 

discomfort, complaints and repudiation. In this paper, we propose 

an analytic system, based on the detection of efficient and 

inefficient behavioral patterns, to evaluate the individual driver’s 

progression in efficient driving with the aim of being the basis of a 

reward program. The system receives relevant, driving related, 

vehicle information every 1.5 seconds, allowing a precise searching 

of patterns. It has been tested successfully in 16 bus companies, 

analyzing the performance of 880 professional drivers. To 

accurately illustrate the analytic process, three detailed driver 

analyses have been included as a case study. Results of this applied 

research on the eco driving field show that the proposed system 

identifies efficient and inefficient actions that are used to fairly 

evaluate the drivers’ performance. 

 
Index Terms— Efficient driving, professional driver evaluation, 

analytic system, fuel savings, public transportation 

I. INTRODUCTION 

OAD transportation is one of the most important CO2 

producers and its emissions are partially responsible for 

global warming [1]. Conscious of this environmental problem, 

the European Commission has established the goal of limiting 

the increase of CO2 transport emissions to 8% above the 1990 

level by 2030 [2]. Governments and companies have tried to 

revert this situation implementing different types of measures. 

In some cases, the actions have been oriented to improve 

vehicle technology and in others to make a better use of that 

already existing, for instance, by selecting the best routes, 
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applying predictive maintenance or driving more efficiently. 

Driving efficiency has been promoted through different 

governmental programs around the globe. One of the main 

reasons is that these programs can be applied to any type of 

vehicle, new or old, and the investment is much reduced. 

Moreover, following eco-driving recommendations, fuel 

consumption can be decreased by around 10% [3] which is a 

very significant reduction. However, efficient driving is a 

lifelong learning process that requires a constant update 

throughout the driver’s working life. In the last few years, 

efficient driving programs have consisted of a combination of 

different activities such as face-to-face courses, training, on-

board assistance, etc. Many of these activities have 

demonstrated their capacity to produce short-term 

improvements. Using a combination of them, program 

designers try to maintain these efficiency improvements in the 

long term. However, long-term efficiency relies heavily on the 

drivers' motivation and involvement. The lack of these factors 

gradually reduces the early improvements [4]. 

One way to promote drivers’ motivation is the establishment 

of reward programs which make them co-beneficiaries of their 

collective effort. Nevertheless, to support a fair process, the 

definition of a clear objective and unbiased evaluation method 

is necessary. This method should be supported by an analytic 

system which accurately evaluates individual driver 

performance.  

In this paper, we present an analytic system which evaluates 

the drivers’ individual performance. Based on the detection of 

efficient and inefficient behavioral patterns, the system is able 

to detect the driver’s evolution from the efficiency point of 

view. Driving patterns are extracted from the information 

gathered from the Engine Control Unit (ECU) every 1.5 

seconds. This information includes data related to speed, rpms 

or acceleration among others. Therefore, with our analytic 

system, the benefits for the drivers are twofold: on the one hand, 

the drivers receive personalized recommendations to improve 

their efficiency. On the other hand, they are evaluated and 

analyzed based on their driving behavior and not on biased 
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information such as fuel consumption. As a result, the 

motivation of the drivers to continue applying efficient driving 

techniques are maintained and the information produced could 

be used as the basis of an objective reward program and to 

support the trainer in the definition of the driver’s instructional 

path. Combined with a learning methodology, such as [5], it 

could conform the basis of an efficient driving program. 

In addition, the analytic system based on driving patterns 

allows us to analyze the driver’s behavior in a continuous 

improvement process, which facilitates the incorporation of 

efficient driving behavior during the whole working day. With 

this approach, the driver would become efficient in any road or 

traffic conditions in the long-term, as the efficient behavior 

while driving should be performed under any circumstances, 

especially by professional drivers.  

The system has been tested successfully in 16 companies in 

Spain and Morocco where 880 drivers were evaluated using it.  

Results of these real deployments of the system in different bus 

companies confirm its usefulness in driver evaluation as part of 

a general efficient driving program.  

The rest of the paper is organized as follows: related work is 

outlined in Section II. Section III introduces the context where 

the system can be integrated and why it is important in efficient 

driving programs. Section IV details the analytic process which 

supports the system design. Section V describes the analytic 

system architecture and modules. Section VI includes a case 

study where three drivers were selected to show a detailed 

analysis. Finally, conclusions and future work are highlighted 

in Section VII. 

II. RELATED WORK 

Reduction in fuel consumption can be achieved through 

different approaches, such as predictive maintenance, fleet 

renovation or efficient driving training. However, due to 

operational and cost reasons, promoting eco-driving among 

drivers is a promising option to reduce emissions and fuel 

consumption and produce safety benefits [6].  

The classical way to improve efficiency is to implement 

efficient driving courses. These courses can improve driver 

behavior and reduce fuel consumption in the short-term [7]. 

Another possibility is the use of simulators to consolidate 

knowledge on efficient driving after receiving a course. Authors 

in [8] conclude that this learning method can achieve significant 

reductions in fuel consumption, thus presenting an alternative 

to classical learning methodologies.  

Particularly important is the training of professional drivers, 

as they generally drive longer distances, and furthermore, the 

transport sector is one of the greatest contributors of greenhouse 

gas emissions. Zarkadoula et al. [9] developed a pilot program 

in Greece with the aim of analyzing the results of eco-driving 

courses for urban bus drivers. Results showed a fuel saving of 

around 10%. Similar studies have also been conducted in 

Sweden [10] and Canada [11] with positive results. Authors in 

[12] use a continuous monitoring system to obtain real-time 

feedback with information related to speed and acceleration 

measurements expressed in terms of “driver`s driving style”. 

When applied to a test fleet of 15 light commercial vehicles, a 

reduction of 7.61% of fuel consumption is obtained. They claim 

that this saving was achieved by encouraging drivers to apply a 

set of recommendations based on efficient driving. 

Nevertheless, drivers often revert to their original habits over 

time [13], highlighting that these approaches have several 

drawbacks, closely related with the end of the efficient driving 

programs and their non-obligatory nature. 

The establishment of reward programs is a good idea to 

maintain the motivation of drivers, as seen in [14], where a 

method for utilizing fuel consumption data in an incentive 

system was developed successfully for a transport company. 

Harvey et al. [15] provide quantitative proof for including these 

incentives. However, to implement reliable reward programs, it 

is necessary to define a method of individualized evaluation as 

objective as possible, based on clear metrics and taking into 

account distortions due to other factors that may influence the 

performance of the vehicle. To that end, a complete analysis of 

the individual efficient driving process has to be carried out. 

Until now, evaluation of an efficient driving process has been 

based mainly on consumption [9], [16] and there are no 

assessments of driving processes analyzed in depth. A system 

based exclusively on fuel consumption is insufficient to 

determine the improvement in driving, due to the multiple 

factors that affect the evaluation context, such as vehicle 

maintenance, weather or traffic congestion [17]. Other papers 

[18], [19] introduce some other indicators to calculate 

efficiency, such as acceleration, speed, revolutions, congestion 

or the weight of the vehicle. However, they only present basic 

reports in a short period of time. Moreover, their analytical 

systems are constrained to present the evolution of some 

metrics, such as braking and accelerations [20], without 

focusing on detecting inefficient driving behaviors. On the 

contrary, our analytic system to evaluate efficient driving 

presents a novel approach, since it is based on complex driving 

patterns that characterize the driver’s behavior.  

Only recently, some studies have started to introduce the 

analysis of driving patterns. In [21], using the vehicle telemetry, 

the system detects inefficient areas on a route, warning the user 

to adjust speed. However, results are based only on 

consumption; their system is not designed for a learning process 

and, as a consequence, it does not allow the establishment of an 

evolution in the efficient driving learning process. Thus, a clear 

individual evaluation process is an open issue. In this paper we 

design and implement a fair evaluation process for efficient 

driving using driving patterns obtained from the data collected 

during the driving process. Authors in [22] also based their 

proposal on information gathered from vehicles. However, their 

interval duration between two consecutive samples is too long 

to obtain accurate results. In addition, their analysis is based on 

the factors which most influence fuel consumption. Our 

proposal is based on data gathered from the vehicles with a high 

sampling rate and we transform this information into accurate 

driving patterns. 

Our main contributions are the design and implementation of 

a learning analytic system, based on the recognition of driving 

patterns to evaluate individual driver performance and not on 

statistical summaries. Our solution is based on complex patterns 
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from data collected every 1.5 seconds from the vehicles to 

detect inefficient situations, thus making it more accurate than 

other proposals. In addition, the proposed system has been 

deployed in 16 different professional fleets of urban public 

transport companies with 880 professional drivers and the 

studies have been conducted over long periods of time, which 

vary from a pilot program of eight months (since 2015) to a 

period of more than three years that is still ongoing today. 

Furthermore, to the best of our knowledge, there are no concise 

proposals to evaluate the individual driver’s evolution in terms 

of efficiency and taking into account the characteristics of the 

driving context.  

III. BACKGROUND 

In our previous research, we developed a methodology to 

learn how to drive vehicles efficiently [5]. The methodology 

was based on the blended learning paradigm (using several 

learning tools such as an on-board system which provides real-

time feedback and recommendations and face-to-face courses 

based on theoretical sessions and individual practical training) 

to be applied while the drivers are working. Therefore, we 

created a complex on-the-job training process with the aim of 

improving the efficient driving results in the long-term.  

On the one hand, professional drivers attend theoretical 

courses, in which an expert in efficient driving gives the basic 

recommendations to achieve more ecological and economic 

driving. Fig. 1a shows an example of one of these sessions. 

On the other hand, these theoretical courses are reinforced 

with practical sessions, in which professional drivers perform a 

complete route without advice to obtain the reference and then, 

on the same route, an expert trainer helps drivers with technical 

advice to apply the learned concepts in efficient driving (Fig. 

1b). After that, performance comparisons between the reference 

route and the guided route are carried out in a Tablet to check 

the improvements in terms of efficiency and the maintenance of 

the time of the service (Fig. 1b). 

The on-board feedback device is the key element in the 

learning process. It is composed of two elements: a monitoring 

device to gather data from the Engine Control Unit and an 

application to show recommendations and alarms while driving 

related to efficient driving behaviors [5]. Recommendations 

and alarms are based on basic parameters related to the efficient 

driving closely associated to the mechanical characteristics of 

the vehicles (such as speed, rpms, acceleration and 

instantaneous fuel consumption), which notify isolated events 

whose values exceed the maximum values established to 

consider driving safe and efficient. The recommendations and 

alarms are presented both visually and acoustically, with the 

aim of facilitating the incorporation of efficient driving 

techniques during the work activity (Fig. 1c). In addition, the 

feasibility of such feedback elements is evaluated in [23]. 

The learning methodology has been applied by our partner 

company, ADN Mobile Solutions, to all of its clients since 

2012. This includes 16 transport companies and 880 drivers. 

Since the beginning of our cooperation, all the drivers have 

received a monthly report with indicators about their 

performance. Originally, the main performance indicator to 

evaluate the drivers’ improvement was fuel consumption. This 

is the classic approach used in the majority of previous works 

[9],[10],[11]. However, fuel consumption is influenced by an 

important set of elements beyond the control of the driver, such 

as the weather or road conditions, state of the tires, etc. Thus, 

this approach is not very accurate. Considering this problem, 

we started to analyze other types of evaluations. Exams or 

specific tests were rejected, as they evaluate the driver’s 

knowledge and not how this knowledge is really applied. 

Accordingly, our focus was to evaluate the behavior of the 

drivers while they were working, which actually reflects their 

real performance. We considered that the optimum approach 

was to infer the behavior of the drivers using information 

gathered from the vehicles. Thus we could compare this 

behavior with some well-known efficient and inefficient 

patterns. This new approach has been part of our feedback 

system since 2014. 

 

 
Fig. 1 a) Theoretical course in efficient driving b) Practical course in efficient 

driving c) On-board system to assist drivers in efficient driving 

IV. ANALYTIC PROCESS 

In this context, we designed a learning evaluation system 

which uses as a source of information, data gathered from the 

ECU (Engine Control Unit) and some additional elements, such 

as a GPS receiver. The gathered information is stored in a non-

relational database and then combined with summarized 

information related to numerical identifiers of vehicles and 

drivers. Then, all the information is stored in an SQL relational 

database to process and extract driving patterns.  From these 

data, the driver’s behavior is extracted, which is directly related 

to efficiency and safety while driving. This system would not 

interfere with the drivers’ normal activity and would reflect 

how they apply the efficient driving techniques.  

Before describing in detail the analytic system, the following 

sections will summarize the analytical process. The analytic 

process is organized in four phases (Fig. 2) where the context is 

established, the baseline and the periodic analysis are 

calculated, and the learning progress is evaluated. All these 

phases shown in Fig.2 will be detailed later in Section C. The 

whole system is based on the detection of efficiencies and 
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inefficiencies. To that end, some patterns which reflect these 

two types of behavior have been characterized. The patterns are 

combinations of values detected in the traces recovered from 

the vehicle, which reflect the application or not of an efficient 

driving technique. With our driving patterns, the influence of 

external factors on classical parameters such as fuel 

consumption are avoided and the evaluation is made taking into 

account how the drivers apply the efficient driving techniques 

learned during the face-to-face seminars throughout the 

working day.   

The results will be used twofold. On the one hand, the 

trainers will have a tool to monitor driver progress and apply 

personalized training programs [24]. On the other hand, the 

person in charge of the fleet can use this information to 

implement a reward program which increases driver 

motivation. In addition, the learning analytic process will 

provide all the necessary information to construct the feedback 

report with personalized recommendations and evaluation 

results for each driver.  

 
Fig. 2. Learning analytic process 

A. Information sources 

The analytic process starts with the collection of data from 

the vehicle driven by the driver who is going to be evaluated. 

This information, gathered by an on-board device, mainly 

comes from the ECU. To complement the information provided 

by the vehicle, the on-board system itself adds other important 

data such as the GPS position and g forces detected with an 

accelerometer. At this point, raw data is associated with a driver 

by a numeric identifier. 

A trace with all of this information is composed every 1.5 

seconds (with average values of the samples calculated during 

1.5 seconds), transmitted out of the vehicle and stored to 

conform a huge information system with the vehicle 

performance. The components included in a trace are: 

• Vehicle id: identifies the vehicle associated with the 

collected data. 

• Timestamp: identifies the date and time of the day when the 

registered events have occurred, with the following format 

YYYY-MM-dd hh:mm:ss.xxx. 

 

• Speed of the vehicle: average speed of the vehicle in Km/h. 

• RPMs: average of revolutions per minute of the engine. 

• Selected gear: current engaged gear. 

• Acceleration: average acceleration of the vehicle in m/s2. 

• Accelerator pedal position: position of the accelerator pedal, 

measured in percentage. 

• Brake switch: identifies whether the brake pedal is in use. 

• Instantaneous fuel consumption: instantaneous fuel 

consumption of the vehicle in l/h. 

• Latitude: GPS latitude coordinate. 

• Longitude: GPS longitude coordinate. 

B. Efficiency and inefficiency patterns 

To extract the driver behavior from the vehicle performance, 

we have designed a set of patterns which represent efficient or 

inefficient actions of the driver. These behavioral patterns are 

detected analyzing the traces recovered from the vehicle. 

Efficiency is represented by the “Inertia” pattern, while the 

other three show inefficient habits, which we call 

“Acceleration-Brake”, “Brake-Acceleration” and “Idling”. We 

made a brief introduction to the efficiency and inefficiency 

patterns as a base of an adaptive learning system in [25]. The 

described patterns complement the learning evaluation process 

in conjunction with the analytic system. 

To be able to analyze the patterns we will define the Key 

Performance Indicators (KPI) [26]. This is a common term used 

for describing a performance measurement, being a tool to 

evaluate the success of a particular activity. 

1) Inertia 

Inertia is the basic efficiency pattern. It shows when the 

vehicle under study is running with zero fuel consumption. The 

conditions for this pattern are that the speed must not be zero, a 

gear (any) has to be engaged and the driver’s foot has to be off 

the accelerator. According to this, the parameters set to find the 

pattern will be non-zero speed and null fuel consumption (this 

involves the gear and accelerator assumptions). 

𝑠𝑝𝑒𝑒𝑑 ≠ 0; 𝑓𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 = 0                             (1) 

If the vehicle under study does not provide the consumption 

data, we will change it for the engaged gear (being different to 

zero) and accelerator (being 0%) option. 

𝑠𝑝𝑒𝑒𝑑 ≠ 0; 𝑔𝑒𝑎𝑟 ≠ 0; 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑜𝑟 = 0                     (2) 

This second option, which is 100% reliable, is not as 

common as the first. The reason is that the consumption data is 

found more regularly than the accelerator percentage. 

The KPI for the inertia pattern will be its time percentage in 

relation to the total duration of the studied period, as well as the 

total change of speed which will be obtained from the difference 

between the initial and final speed. 

2) Acceleration-Brake (AB) 

The AB pattern characterizes the abuse of the accelerator and 

brakes. It shows a lack of efficiency concepts, as the driver 

keeps speed constant by accelerating softly and then comes to a 

halt by braking progressively, instead of using inertia. 

We look for periods where the driver accelerates 

permanently, immediately followed by the use of the brakes 

within a 2 second gap (as the driver uses the same foot for both 

pedals and has to change).  
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𝑎 > 0 → (𝑡 ≤ 2𝑠) → 𝑏𝑟𝑎𝑘𝑒𝑠 = 1                             (3) 

If we do not have the “brakes on-off” data, we will substitute 

it by a negative acceleration, trying to distinguish the natural 

decelerations of the vehicle due to friction and motor retention. 

For this, we will pre-set a limit value as a pattern launcher. 

𝑎 > 0 → (𝑡 ≤ 2𝑠) → 𝑎 ≤ 𝑙𝑖𝑚𝑖𝑡 𝑚 𝑠2                       (4)⁄  

We will record how many times this pattern happens every 

100km in the studied period, as a KPI. We will also save the 

duration of the pattern, and initial and final speed to obtain the 

total speed differential. 

3) Brake- Acceleration (BA) 

The aim of this pattern is to detect when the driver fails to 

keep the safety distance, which is both unsafe and inefficient. 

The BA pattern starts when an elevated intensity of deceleration 

occurs (which we identify with a harsh-braking event). After 

the harsh braking, the driver continues accelerating the vehicle. 

Then, the purpose of the harsh braking was not to stop the 

vehicle. For that reason, the BA pattern is related to anticipation 

while driving. The driver loses a great amount of the energy 

provided to the vehicle compared with when the safety distance 

has been maintained, so enabling the use of inertia.  

We will dismiss every use of the brakes with the intention of 

stopping the vehicle, while we will pursue the hard braking 

situations intended to produce an immediate change in speed 

but without the will of stopping. The interpretation is that, by 

not maintaining the safety distance, the driver could not 

anticipate what the vehicle in front of him was going to do, so 

a brake event over the limits has to be done to avoid a collision. 

In this case, we will look for the intensity of deceleration, 

using the same prefixed value used in the previous pattern. 

Nevertheless, it is necessary for the vehicle not to stop before 

accelerating for the pattern to be fulfilled. 

𝑎 ≤ 𝑙𝑖𝑚𝑖𝑡 𝑚 𝑠2⁄ → {
𝑎 < 0
𝑣 ≠ 0

→ 𝑎 > 0                           (5) 

We will record how many times this pattern happens every 

100km as a KPI. We will check how long the pattern is and 

initial and final speed to see how much it decreases. 

4) Idling (Id) 

Traditionally, idling has been considered part of the set of 

recommendations to achieve more efficient driving as it has a 

great influence on fuel consumption. Therefore, idling is 

considered as an inefficient driving pattern and it makes sense 

in conjunction with the rest of our driving patterns, with the aim 

of refining the evaluation results and giving personalized 

recommendations. We try to detect periods over a certain 

amount of time where the engine is running but the vehicle is 

stationary. We have taken this approach but with special 

considerations to take into account the inherent characteristics 

of the transport service in order not to jeopardize the driver’s 

evaluation results in efficient driving. The amount of time that 

sets the limit of the pattern has to be agreed with the fleet 

manager according to the needs of the service. 

                    𝑣 = 0(𝑡 ≥ 𝑙𝑖𝑚𝑖𝑡𝑠)                                        (6) 

In the case of the idling behavior, the KPI will be the time in 

percentage (%) of the total driving time for the studied period. 

C. Phases of the Learning Analytic Process 

To evaluate the driver’s progress in accordance with the 

described efficient and inefficient patterns, we propose a 

learning analytic process with 4 different phases (Fig. 2). Thus, 

our evaluation of driving efficiency is based on driving patterns 

and their evolution over time. Therefore, the elements that 

condition the efficiency level and are closely related to fuel 

consumption such as the load of the vehicle or the state of the 

tires do not influence the efficiency results, as we evaluate 

driving behavior. 

The first phase of the analytical process, context definition, 

is dedicated to obtaining the detailed description of all the 

aspects relevant to detect efficient driving patterns. Therefore, 

the context definition phase includes the identification of the 

type of service provided, the type of vehicle and its main 

characteristics and finally, the amount and type of data that it is 

possible to gather from the vehicle. These elements are closely 

related with the set of external factors that affect the efficient 

driving process and thus, the final evaluation results. We refer 

to type of service as the characteristics of the main purpose of 

the fleet and we differentiate between urban public transport, 

interurban passenger service and freight transport.   

Relating to the type of service, there are great differences 

between urban public transport, a regular coach or a long 

distance coach traveling along the motorway. The first stops 

every few meters, the second in every town and the last only in 

major cities. The situations where the driver has to be efficient 

are very different. For that reason, the characteristic idling 

periods will also be different. Likewise, there are also 

differences between passenger service and freight transport. 

The time of the average idling period is used to characterize the 

type of service. 

The context definition phase is also characterized by the type 

of vehicle (including simple buses, articulated buses, 

minibuses, trucks or solid urban waste trucks, among others). 

Another key element in this phase is the type of gearbox 

(automatic or manual) and the characteristic gearshift points.  

Moreover, to complete the context definition phase, an 

evaluation of available data obtained from the vehicle should be 

carried out, with the aim of determining the quantity and quality 

of the obtained results of the evaluation process. The possibility 

of collecting and storing additional data implies differences in 

the definition of the patterns, as discussed in Section IV.B. For 

instance, the availability of information relating to the brake 

pedal provides more detailed information for pattern analysis. 

The baseline definition phase states the driver’s efficiency 

starting point. It is specific for each driver and establishes the 

details of the efficient driving behavior that will be used as the 

comparison factor to monitor the evolution of the driver’s 

competence. Therefore, each driver has their own baseline, and 

the analysis of the learning progress is carried out based on their 

individual evolution in applying the efficient driving 

techniques. During the baseline phase, the driver’s behavior is 

monitored and no feedback information is provided. The default 

duration period to collect data to calculate driving patterns for 

the baseline is established at one month. These patterns are 

characterized by a set of KPIs which will be used to produce 

general indicators to summarize the whole period.  

The details of the tasks in the third phase, the periodic 
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analysis phase, are the same as in the baseline definition, 

carrying out pattern extraction by analyzing all the data, but in 

different time periods. The periodic analysis phase (third phase) 

is carried out every month after the baseline definition phase. 

However, during the periodic analysis phase, drivers are 

assisted by the on-board device which provides real-time 

feedback related to recommendations of speed and rpms and 

alerts of harsh braking or acceleration events to help drivers 

apply efficient driving techniques. The purpose of the real-time 

recommendations is twofold: on the one hand, the feedback 

device maintains concentration on efficient driving throughout 

the whole working day. On the other hand, it permits long-term 

learning as the new driving habits are included little by little in 

the daily routine. Notwithstanding, the feedback device is 

focused on localized events. These are enriched with the 

complete analysis of the driving behavior, carried out during the 

third phase of the learning analysis process. Each of our 

designed driving patterns (Section IV.B) is analyzed every 

month and expressed in terms of its performance indicators 

(KPIs).    

With the aim of determining the learning progress, the last 

phase (learning evaluation) compares all the indicators 

extracted in the baseline and the periodic analysis phases. This 

comparison allows us to see in detail how the driver is applying 

the efficient driving techniques over time. Therefore, for each 

driver, the driving performance, in terms of driving patterns, is 

compared from the baseline period to the following months. A 

positive evolution in driving efficiency is characterized by a 

reduction in the KPI indicators of the idle, AB and BA patterns, 

and an increment in the inertia KPI. Otherwise, the driver’s 

performance in terms of driving efficiency is not evolving 

adequately. To complement this information and also to explain 

the origin of this performance, correlations between patterns, 

time (day of the week, hour of the day, etc.) and locations are 

analyzed. Thus, a deeper analysis can be carried out based on 

the day of the week, the hour or even the geolocation with the 

aim of focalizing the efficient driving recommendations in such 

elements that need to be improved. Consequently, personalized 

recommendations can be made in order to eliminate 

inefficiencies while driving in successive iterations of the 

learning process. All the processed information is used to 

complete a detailed report, with personalized information for 

each driver. 

V. ANALYTIC SYSTEM 

The analytic system has been developed based on a set of 

hardware and software elements that support the proposed 

methodology. Such software and hardware elements are 

grouped to build functional modules that perform specific tasks 

as part of the learning analytic methodology. All the necessary 

data to feed the analytical system are provided by the CatedBox 

system described in [5], which is a corporate operational system 

for companies interested in controlling their driving efficiency.  

Fig. 3 shows the schema of the proposed system. To build the 

different modules of the analytic system, we previously load all 

the necessary data from the corporate operational system. To do 

this, and in order to avoid interferences in the operational and 

functional processes of the company and to avoid congestion 

problems in the central system when performing operations 

with data, a replica of the original database is performed in our 

own system. To implement our data warehouse we have chosen 

Microsoft SQL Server. This decision was principally taken due 

to the availability of Microsoft Business Intelligence tools and 

furthermore, due to performance issues because of the high 

volume of data. 

The corporate operational system maintains raw data from 

the vehicles in a non- relational (CouchDB) database. Detailed 

information of the CouchDB database in the central system is 

copied in a replica deployed in the analytic system. Later, the 

data from the replica is stored in our data warehouse with a 

specific ETL (Extract Transform and Load) module. The 

specific ETL module also retrieves information from 

summarized data which is stored in a PostgreSQL database. 

These summaries are enriched with details provided by 

transport companies, such as the information on the people that 

were driving the vehicles at a certain time. This information is 

a unique identifier assigned by the transport company to each 

driver with the aim of maintaining the privacy of the drivers. A 

detailed description of the architecture can be found in our 

previous work [27]. 

 

 
Fig. 3. Analytic system design 

Once the data has been stored in our system, a set of 

additional modules carry out actions in order to complete the 

learning evaluation process. We have used the Microsoft 

Business Intelligent tool, SSIS (SQL Server Integration 

Services) to process the information and extract the driving 

patterns from the data gathered from the vehicles. The 

following paragraphs summarize the main characteristics of 

each module.  

A. Map-matching and Reverse Geocoding 

Map-matching and a reverse geocoding module performs 

tasks to correct latitude and longitude positions of the processed 

data and to translate these pair values into the nominal value of 

the street, respectively. Our map-matching module is 

implemented using an external service, constituted by a set of 
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functions using the API for GPS traces in OpenStreetMap1.   

When the map-matching process ends, we can associate the 

new corrected positions with the corresponding remaining data 

at that location (rpms, speed, etc.). Then, once latitude and 

longitude pairs have been calibrated, we use Nominatim2 to 

perform the reverse geocoding processes. Nominatim has been 

installed in an Ubuntu 12.04 server and results from the 

conversion are loaded in the data warehouse. 

B. Context Processor 

The context processor module performs actions to establish 

the context according to the guidelines explained in Section IV.  

Two processes have been designed and implemented with 

SSIS to characterize the context: on the one hand, a process to 

calculate the characteristic gearshift points for each vehicle 

based on the following input parameters collected from the 

vehicles and the on-board system: timestamp, rpm and gear. 

On the other hand, a second analytical process is responsible 

for the evaluation of the typical idling periods for the service. 

Analysis of idling periods is performed by evaluating the 

complete fleet in order to obtain an average value of the idling 

pattern. Timestamp and speed are the required data to calculate 

the result.  

Additionally, a third module, using estimations based on the 

available data, assesses the reliability or availability of the 

accessible parameters for each vehicle. Information about the 

available data will be used in the pattern recognition module to 

select the suitable configuration for processing the pattern.  

Finally, results of the different context establishment 

modules are stored in a complementary database, along with 

information associated with the fleet and the vehicle.  

C. Pattern recognition, baseline definition and periodic 

analysis 

The pattern recognition module has been implemented using 

SSIS processes. This module searches among the data collected 

from the vehicles during a certain period, for the efficiency and 

inefficiency patterns described in Section IV.C. The module 

includes a process for each of the patterns designed, collects the 

necessary data from the SQL Server database and creates new 

tables with the detection results. From the results obtained in 

the detection of patterns for a certain period of time, the defined 

KPIs are calculated for each pattern. This period of time could 

belong to the baseline definition phase or to the periodic 

analysis phase.  

To determine the presence of a certain pattern in the 

information collected from the vehicles, the proposed analytical 

system responds to a state-based model, which maintains a 

temporary window to determine if consecutive samples meet 

the conditions for a given pattern over a continuous period. 

The input data needed to process the patterns vary according 

to the type of pattern to be analyzed and also depend on the data 

that may be available in the vehicle. For instance, brake switch 

information is not always available in certain vehicles. If this 

parameter is present in the input data, the quality of the results 

will improve, so the system will use it when it is available, 

 
1 https://mapmatching.3scale.net/ 

although it is not indispensable to evaluate the patterns. The 

most relevant input data for each of the patterns are specified in 

Table I. In addition, the whole analysis process requires 

information about the timestamp and geolocation associated 

with the data. 

TABLE. I. INPUT DATA ON PATTERN RECOGNITION MODULE 

 

When a pattern is detected, the system registers the event 

(identifying the driver and the vehicle) with the corresponding 

representative data and also including the KPIs for each pattern. 

Detailed information about the output data recorded for each 

pattern is shown in Table II and KPIs for each pattern are 

underlined. All this information is loaded in the database. 

As previously mentioned, all the necessary data to extract the 

driving patterns are gathered from the on-board device (Section 

IV.A). During the baseline period, the drivers are not aware that 

they are being monitored. Thus, from the driving patterns of the 

baseline period, we obtain the initial KPI values which serve as 

a starting point of comparison. All drivers have their own 

baseline, obtained from the initial analysis. The results stored 

on the generated tables will be consulted in the future, to 

generate summary indicators that characterize this period. 

Subsequent analysis periods follow the same guidelines and 

summary indicators will be compared with the baseline 

indicators in order to evaluate the learning process. However, 

unlike during the baseline period, in subsequent periods the 

drivers are aware of the monitoring process.  

TABLE II. OUTPUT DATA ON PATTERN RECOGNITION MODULE 

 

D. Learning evaluation and Reporting Module 

Finally, the evaluation and reporting modules carry out the 

analysis of the learning process and the creation of the summary 

of the results respectively. The process analyses all the data 

mentioned previously, using for reference all the baseline data. 

This analysis varies in accordance with each pattern that is 

evaluated, depending on the individual KPIs of each pattern 

(duration, average speed, ...) and the dimensions in which they 

are included (day of the week, month of the year, hour range, 

street, shift …) providing enough information to evaluate the 

learning progress of each driver.  

2http://www.nominatim.org 
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All the information extracted from the analysis is represented 

in two ways to obtain the desired knowledge. The first way will 

be recording on a map the most frequent inefficient patterns 

localized, providing knowledge about the main points where the 

driver fails. The second method is based on displaying a 

dashboard with all the data compared, showing the results 

obtained through multiple graphs. The dashboard represented 

will vary depending on the mode in which the analysis is 

executed, showing comparison between drivers, baseline 

against actual performance, etc. 

To complete the graphical display of the results, we have 

developed a set of tools, using scripting language that allows us 

to generate XML documents from information obtained from 

the results of the patterns in order to analyze and visualize the 

detected events on maps. Moreover, to integrate all the analytic 

modules, we have developed a tool with a graphic user interface 

to perform the learning analytics process following the 

designed methodology.  

VI. CASE STUDY 

The proposed analytical system has been deployed in 16 

different bus companies with 880 professional drivers. 

However, in order to perform a detailed study for this paper, we 

have selected one of the fleets and three of its drivers. 

The selected fleet was a Spanish urban public transport 

company with more than 50 lines and 22 drivers participating 

in the efficient driving program. We selected three drivers of 

the same route of this company (Driver #1, Driver #2 and Driver 

#3) to perform a complete analysis over a period of two months. 

The selection of the drivers from the same route is done to 

enrich the analysis and the discussion of the results. As 

explained, the analytic system to evaluate efficient driving is 

based on the driver’s behavior and not on other parameters 

influenced by the characteristics of the road or other external 

factors. Along the analysis period, the selected drivers covered 

a total distance of 2432, 2444 and 2085 km respectively, during 

198, 182.5 and 177 driving hours respectively. Driver #1 and 

Driver #2 do the afternoon shift, while Driver #3 does the 

morning shift. We apply our learning analytic process described 

in Section IV in order to analyze the learning progress of the 

selected drivers during the time period described. To analyze 

the evolution in the learning of efficient driving, the vehicles 

include the installation of the monitoring device to gather data 

from the ECU every 1.5 seconds. As explained in Section V, 

the information is stored in a data warehouse and completed 

with geolocation information and other context information. 

Then, once the information is ready after all the necessary 

transformations, we proceed to calculate the driving patterns. 

These transformations include the moving from a non-relational 

database to a relational database, using specific ETL modules. 

From the obtained results, expressed in terms of the KPIs 

described for each pattern, the trainer can check the learning 

evolution of the drivers, as well as those concepts or attitudes 

related to efficient driving that are not being applied correctly. 

A. Phase I 

Following the designed learning analytic process, we have 

characterized the context. All the types of buses are the same 

(Mercedes Citaro Euro V) and have 4 speed automatic 

gearboxes and run on diesel engines. To complete the 

characterization of the context, we have also determined 

gearshift points and typical idling periods. For this type of 

service, an urban public transport company, the average 

duration of idling time is 19 seconds. Regarding the availability 

of data, vehicles provide brake switch information. 

B. Phase II 

To check the evolution of the drivers during the learning 

process, we have established an initial period of one month for 

the baseline definition phase. During the baseline definition 

phase, the driver’s activity is monitored in order to extract the 

final KPI results for each pattern and no feedback information 

is facilitated to the drivers. Results of the efficiency and 

inefficiency patterns (in terms of KPIs) for the baseline phase 

are summarized in Table III.  

TABLE III. KPI RESULTS OF THE BASELINE DEFINITION PHASE 

 All drivers Driver #1 Driver #2 Driver #3 

Idling (% time) 20.82% 15.73% 21.73% 23.05% 

Inertia (% time) 13.32% 9.23% 13.05% 9.98% 

AB (events/100Km) 327.32 328.32 372.89 351.2 

BA (events/100Km) 74.41 78.72 77.57 83.25 

 

According to the results of the context analysis phase (Phase 

I), all idling values below 19 seconds will not be considered in 

the study as these idling cases are inherent to the service and 

traffic conditions. 

Finally, after the first month of gathering data without any 

type of feedback to drivers, a seminar is performed by an expert 

in efficient driving.  

C. Phase III 

After the baseline definition phase, we have applied our 

analytical process to find the designed patterns for each driver 

among data collected from the vehicles during the following 

months. Table IV shows the results of the periodic analysis 

phase during the second month of the analysis.  

TABLE IV. KPI RESULTS OF THE PERIODIC ANALYSIS PHASE FOR ONE MONTH 

 All drivers Driver #1 Driver #2 Driver #3 

Idling (% time) 19.38% 19.20% 19.99% 25.26% 

Inertia (% time) 11.59% 9.85% 11.47% 10.25% 

AB (events/100Km) 263.47 322.74 329.97 351.1 

BA (events/100Km) 68.72 98.94 75.72 108.11 

D. Phase IV 

The analysis of the information collected during Phases II 

and III will provide detailed information about the learning 

process of each driver in order to implement the necessary 

actions in each case (encourage the acquisition of new efficient 

driving habits, reinforce practical aspects that the drivers are 

reluctant to apply, etc.). The following paragraphs discuss in 

detail the analysis of the learning process for the drivers 

selected for this case study. 

Table V shows the rate of variation of each pattern, taking 

into account individual baseline results and monthly results.  
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TABLE V. RATE OF VARIATION FOR EACH PATTERN 

 All drivers Driver #1 Driver #2 Driver #3 

Idling  -1.44% +3.47% -1.74% +2.21% 

Inertia  -1.73% +0.62% -1.58% +0.27% 

AB  -19.51% -1.69% -11.51% -0.03% 

BA  -7.65% +25.69% -2.35% +29.86% 

 

Considering the overall performance of all drivers, the 

general tendency is to reduce the occurrence of the patterns, 

thus improving efficiency. However, the appearance of inertia 

pattern decreases, resulting in a negative evolution of the eco-

driving behavior. In addition, Driver #1 and Driver #3 increase 

the apparition of idling and BA patterns, worsening in both 

characteristics of efficient driving. 

After a first insight into the results, an in-depth analysis is 

carried out with the aim of pinpointing the specific 

improvement points for each driver. The analysis has been 

divided according to the different efficiency patterns, and is 

detailed below. 

1) Idling 

Comparing the results of Tables III and IV for the idling 

pattern, it is noted that Driver #1 performs much better than 

Driver #2, Driver #3 and the average in this pattern, mainly 

during the baseline definition phase. In the second month of the 

analysis, the record for Driver #1 is much worse (increased by 

3.47%) but even in that case Driver #1 remains below the 

average, while Driver #2 improves almost 2% but is still above 

the mean values, and Driver #3 obtains a negative evolution. 

A detailed analysis will include the evaluation of idling 

periods relative to the time of the day. The selected drivers work 

in the afternoon shift, Driver #1 from 14 to 22 hours and Driver 

#2 from 15 to 23 hours. In addition, we have also included 

Driver #3 from the morning shift. Fig. 4 shows the idling 

periods distributed according to the time of the day.  

An interesting result is that the tendency is the same for all 

drivers depending on the time. Thereby, Fig. 4 shows how the 

hourly fluctuation has the same sign (with the exception of 

Driver #2 at 16 hours) in the cases shown (Drivers #1, #2 and 

#3, and the average). 

 
Fig. 4. Idling pattern: KPI (% of time) results by hours 

This study illustrates how a particular driver performs better 

or worse in relation to the traffic or the number of passengers. 

For instance, we can see how Driver #2 increases his idling time 

much more than his colleagues during rush hours, yet he is near 

to the average when everything is less busy. 

In conclusion, Driver #2 shows a better evolution, meaning 

that the efficient driving learning approach has influenced his 

behavior. However, the percentage of time of the idling pattern 

based on the time of the day shows higher values for Driver #2 

because, in general, he has longer idling periods. According to 

the learning evaluation process, we are able to perform a 

detailed analysis of the idle pattern for Driver #2 in order to 

identify the cause of his performance. A detailed analysis of the 

geographic location for idle values beyond 2 minutes reveals 

that these points are concentrated in the end of the route. 

Therefore, Driver #2 does not turn off the engine at the end of 

the route, so he registers longer periods of idling than the rest 

of the drivers, despite being the same route. In conclusion, 

successive reinforcement reports for Driver #2 should 

emphasize the recommendation of turning off the engine during 

long periods of idling, but highlighting that positive results are 

being reached. 

2) Inertia 

Driver #1 and #3 have a slight improvement in the inertia 

pattern. On the contrary, Driver #2 evolves in a similar way to 

the whole group, as he decreases inertia time and maintains the 

distance below the mean values.  

At first glance these data could seem to suggest a better 

performance by Driver #2, as he generates more inertia time. 

However, Driver #1 and #3 perform better, as they managed to 

improve 0.62% and 0.27% while the fleet tendency during the 

analyzed period was to worsen by 1.73%. Therefore, as 

explained previously, the evaluation process is based on 

individual assessment and thus, Driver #2 shows a negative 

evolution in the inertia pattern: he decreases the inertia time 

from one month to the next. 

The hourly evolution analysis shows interesting data. Fig. 5 

shows how the records in the first half of the day are much 

better than those in the second half. Therefore, both drivers have 

more difficulty in developing inertia than those working during 

the morning. We can see how performances before 3 p.m. 

manage to obtain much better inertia records than in the 

afternoon/evening. The explanation is that, with a higher 

density of traffic in the morning, the driver will be braking 

longer than in the afternoon, so the time with no fuel 

consumption increases, causing more periods of inertia. Note 

that the inertia periods that include the use of the brakes are 

related with the movement of the vehicle with null consumption 

and not with harsh braking events. However, the selected driver 

of the morning shift (Driver #3) performs worse in the inertia 

pattern than the rest of the fleet. Nevertheless, Driver #3 obtains 

a positive individual evolution in the inertia pattern (Table V).  

 
Fig. 5. Inertia pattern: KPI (% of time) results by hours 
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3) Acceleration - Brake (AB) 

In this case, drivers improve their AB performance (Table 

V), as is the tendency of the whole group of drivers. This 

reduction in the detection of the AB pattern, from the baseline 

period to the next month of analyzed data, can be graphically 

observed in Fig. 6. Fig. 6 shows concentration points for the AB 

pattern in a specific area of the city of the case study. As 

previously defined, the AB pattern includes events in which the 

duration is less than 2 seconds, that means the time between the 

driver stopping accelerating until there is a sudden harsh 

braking.  The AB events registered during the baseline period 

are represented by black points and the AB events during the 

following month of the analysis are summarized using white 

points. We can see how these points are gathered mainly around 

bus stops (marked with a black circle) and how the incidence of 

this pattern diminishes in the second month of the analysis 

(white points) in relation to the baseline definition phase (black 

points).  

 

Fig. 6. AB pattern concentration points 

Driver #2 improves in a similar way to the average of all 

drivers (42.92 events/100km against 63.85) while Drivers #1 

and #3 only show a slight improvement. To analyze this 

behavior in detail, we have carried out an evaluation of both 

drivers of the afternoon shift (Driver #1 and #2), comparing 

results of the number of AB events per time of the day for each 

month.  

Fig. 7 shows the results for Driver #1 and Driver #2. 

According to the analyzed data, Driver #1 would have shown 

worse records in the second month without the big 

improvement between 21 and 22 hours, as the rest of the periods 

were quite balanced, with a couple of clear increases at 15 and 

18 hours (the one at 13 hours is not relevant, as it is 1 event in 

0.83km, making 120 events/100km). On the contrary, Driver #2 

has a global improvement with an exception at 16 hours, 

indicating a more solid performance and a much better result in 

this pattern. 

4) Brake - Acceleration (BA) 

This pattern, due to its nature, tends to produce worse results 

when the traffic is dense, as vehicles run closer together and 

distances are reduced between them. Thus, we have identified 

more harsh-braking events followed by the acceleration of the 

vehicle as the main indicative of the driving behavior which 

does not maintain the safety distance during rush hours. For this 

reason, an increase of BA events/100Km can be observed in 

Fig. 8 during rush hours in the morning (8-9 a.m and 11-12 

a.m). In the afternoon, there is a slight increase at 17 h. 

However, both of the studied drivers obtain records over the 

average. While Driver #2 has acceptable values even when over 

the average (Tables III and IV), Driver #1 experiences a 

relevant increase of BA events in the second month (Table V), 

leading us to think that the driver has fallen into some 

negligence or relaxed attitude that has to be corrected. 

 

 
Fig. 7. AB pattern: KPI (events/100Km) results for Driver #1 and Driver #2 

 
Fig. 8. BA pattern: KPI (events/100Km) results by hours  

According to the hourly distribution graphic (Fig. 8), Drivers 

#1, #2 and #3 perform worse than the average of the complete 

fleet. If we analyze Fig. 8, Driver #3, from the morning shift, 

performs worse during rush hours in the morning (8 a.m and 11 

a.m) and Driver #1, from the afternoon shift, performs much 

better after 19 hours. This situation could indicate that high 

traffic density affects the driving behavior of Driver #1 and #3. 

The opposite effect is found in the behavior of Driver #2. 

Moreover, Driver #1 and #2 increase BA events at 22 hours, 

where vehicles are returned to the garage without passengers 

and drivers do not maintain the same good driving practices as 

when passengers are on board. 

Table V summarizes the evolution of the drivers regarding 

all of the four patterns. Results of the evaluation show that 

Driver #1 and #3 have a negative evolution in the idling and BA 

patterns. However, a slight improvement in inertia and AB 

patterns is detected, probably due to the extra use of brakes in 

the second month, as stated in pattern BA. Regarding Driver #2, 

results only worsen in inertia, improving in the other areas of 

efficient and safe driving. As a result, individual and 

personalized formative actions would be applied in order to 

achieve a more efficient activity and a safer work environment, 

taking into account not only inefficient actions but also 

conflictive areas of the city or time of the day. Therefore, 
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drivers receive individualized recommendations and their 

motivation in the learning process in efficient driving increases, 

with the consequent positive evolution in the long-term.  

Finally, as stated in Section “I. Introduction”, the information 

obtained from the analysis of the driver’s evolution can be used 

in a reward program. In this sense, the fleet manager should 

detail the basis of such a system, and the duration of the period 

to obtain the classification. In this paper, we focus on the 

analytic system to evaluate driving efficiency and the case study 

reviews the driver’s evolution over a period of two months. 

Table V shows that Driver #2 improves his performance in 

idling, AB and BA patterns, while Driver #1 and Driver #3 only 

show a positive evolution in the inertia and AB patterns. 

Therefore, Driver #2 evolves in more aspects than the rest of 

the drivers. This information is the basis of the reward system 

but other information is used to enrich the distribution of the 

drivers through the ranking, such as the efficiency level based 

on time of the day, day of the week or vehicle.  

In order to verify the evolution in driving efficiency, we analyze 

the drivers’ behavior after 6 months. The monthly feedback 

process is aimed at gradually improving the efficient driving 

behavior, from the basic driving patterns to the more complex 

patterns. With this idea, the initial drivers’ feedback reports will 

focus on improving inertia and idling, since the AB and BA 

patterns are technically more complex.  

Table VI summarizes the inertia KPI values after 6, 7 and 8 

months. Driver #3 continues improving in the inertia pattern 

over the months. Driver #1 shows a great increase in the inertia 

performance except for a slight deterioration in the last month. 

Finally, Driver #2 (who shows the best performance during the 

baseline period) improves the inertia pattern from the second 

month, except during the last analyzed month which shows a 

minor decline.  

TABLE VI. INERTIA KPI RESULTS (% TIME) OF THE PERIODIC ANALYSIS PHASE  

 Driver #1 Driver #2 Driver #3 

Baseline 9.23% 13.05% 9.98% 

Second month 9.85% 11.47% 10.25% 

Sixth month 13.24% 12.57% 10.96% 

Seventh month 13.88% 12.82% 11.01% 

Eighth month 13.42% 12.73% 11.44% 

 

Since Driver #2 begins with a good inertia performance in the 

baseline period, we check his evolution in the idle pattern. Table 

VII shows the results. Apparently, the feedback report has not 

had the desired effect to improve this behavior as Driver #2 

increases the KPI values (and should decrease for the idle 

pattern).  

TABLE VII. IDLE KPI RESULTS (% TIME) OF THE PERIODIC ANALYSIS PHASE  

 Driver #2 

Baseline 21,73% 

Second month 19,99% 

Sixth month 22.08% 

Seventh month 23.76% 

Eighth month 23.23% 

 

However, the analysis of idle periods of more than 2 minutes 

(the most inefficient) show that the worse value is reached 

during the baseline period, in which no feedback is provided. 

During the second month, this value is reduced to 0.26%. In the 

months 6, 7 and 8, the values fluctuate, indicating that, for this 

driver, the recommendation to turn off the engine in stops of 

more than two minutes must always be present in the feedback 

reports as a reminder since, otherwise, the performance 

deteriorates. 

TABLE VIII. IDLE KPI RESULTS (% TIME) FOR IDLING TIME > 120 SECONDS  

 Driver #2 

Baseline 0.97% 

Second month 0.26% 

Sixth month 0.77% 

Seventh month 0.57% 

Eighth month 0.78% 

The reward system has been implemented in two of the 

professional bus companies from our analytic system. In one of 

the fleets, the prize consists of a week’s cruise. In the other fleet, 

the prize includes two days of expert driving courses on a 

professional circuit. However, the evaluation in the long-term 

of the reward system should be addressed in our future work. 

VII. CONCLUSIONS AND FUTURE WORK 

In this paper, we propose a learning analytic system, which 

improves a previous efficient driving learning methodology 

already in use in 16 different companies with 880 professional 

drivers. We have demonstrated that the proposed novel method 

to evaluate individual driver’s performance, based on a set of 

designed patterns related to efficiency, security and anticipation 

behaviors, can accurately describe the learning process in 

efficient driving. In addition, inefficient actions can be located 

depending on the zone, street or even the time of day, thus 

facilitating the detailed description of the feedback needed to 

correct these behaviors. 

Results obtained from a real learning analysis show that the 

system is able to identify efficient and inefficient actions, which 

are the basis for evaluating the improvement of the driver’s 

behavior over time. We have also verified that our system 

provides vital information to schedule future formative and 

corrective actions and measure their effectiveness. This is a key 

issue for a lifelong learning process based on continuous 

evaluation in which it is necessary to know the situations that 

have to be corrected. Moreover, the accurate indicators 

obtained during the evaluation phase are decisive in the 

rewarding program due to the fact that drivers are more 

involved during the efficient driving learning process, as the 

system can identify when, where and how they can improve 

their behavior. Results show that, in general terms, drivers 

evolve positively after few months of being part of the efficient 

driving learning program. 

The paper shows the need for such systems to control the 

learning processes while the drivers are actually working. In 

these scenarios, an evaluation based on specific tests does not 

guarantee that those skills are actually used in the work activity. 

Our analytic system to evaluate efficient driving and its 

complexity is transparent for the drivers and does not interfere 

in their normal work activity. This characteristic means that our 

system has been widely adopted in professional fleets. 

Future work will focus on the evaluation of the reward 

program in the long-term and the inclusion of the analytical 
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system into an adaptive learning process. In this new approach, 

personalized recommendations and customized training plans 

will be designed for each driver, using the information 

produced in the learning analytic system. Moreover, an 

automatic recommendation system will be introduced in the 

learning analytic system to produce a revision of the drivers’ 

performance with minimum participation of the trainers. In 

addition, we will continue to design new patterns to detect 

further efficient and inefficient behaviors, with the aim of 

covering all situations while driving. Finally, our future work 

will include a socio-demographic analysis of the influence of 

elements such us age or driving experience on the adoption of 

efficient driving behavior and the inclusion of more data 

sources, such as traffic and road conditions to improve the 

detailed results on efficient driving. 
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