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Abstract 

In this research, an algorithm is presented for predicting the remaining useful life (RUL) of air-

craft engines from a set of predictor variables measured by several sensors located in the en-

gine.  RUL prediction is essential for the safety of those aboard, but also to reduce engine 

maintenance and repair costs. The algorithm combines time series analysis methods to fore-

cast the values of the predictor variables with machine learning techniques to predict RUL 

from those variables. First, an auto-regressive integrated moving average (ARIMA) model is 

used to estimate the values of the predictor variables in advance. Then, we use the result of 

the previous step as the input of a support vector regression model (SVM), where RUL is the 

response variable. The validity of the method was checked on an extensive public database, 
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and the results compared with those obtained using a vector auto-regressive moving average 

(VARMA) model. Our algorithm showed a high prediction capability, far greater than that pro-

vided by the VARMA model.  

1. Introduction 

Nowadays aircraft engines are mainly either lightweight piston engines or gas turbines. Com-

pared to steam turbines, gas turbines have hardly any cooling needs. In addition, their low 

thermal inertia allows them to reach their full load in very short time. This simplicity, in com-

parison with steam turbines and reciprocating engines, gives them two additional advantages 

when compared to other thermal machines: simple maintenance and high reliability. In fact, 

the reduction of lubrication and refrigeration requirements, the continuity of the combustion 

process and the absence of alternative motions means that the probability of failure decreas-

es. However, gas turbines also have a significant number of drawbacks, including high rota-

tional speed and low performance (30-35%) when compared to diesel alternative engines (al-

most 50%) or to steam turbines (values of 40% are common). 

The safe and reliable operation of aircraft engines is one of the main principles of the aeronau-

tic industry [1,2]. The maintenance of aircraft engines in an operational condition and the early 

detection of possible failures is a fundamental requirement. In the case of aircraft engines and 

for safety reasons, forecasting of remaining useful life (RUL) has become an important issue in 

the last decade [3-5]. Condition-Based Maintenence (CBM) is a maintenance approach in 

which the maintenance of a piece of equipment is made based on its current status and not 

simply on the time passed. In order to put  CBM maintenance systems in place, reliable models 

of Remaining Useful Life (RUL) are mandatory. The CBM approach to maintenance started in 

the aerospace industry in the mid – 1990s and now is a well-known methodology [6]. 
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The future health of an engineering system is predicted by a discipline called Prognostics and 

Health Management (PHM). The approach to the prediction of a system's health can be made 

in three ways [7]: 

 Using machine learning and data recognition techniques that can predict the RUL of 

the system without any prior knowledge of the problem. This is called the data-driven 

approach [8]. 

 Understanding the physical process and the interrelationships of the variables in the 

RUL of the system. This approach is called model-based [9]. 

 Finally, combining both the data-driven and the model-based approaches in order to 

predict the RUL of the system. This is called a hybrid approach [10]. 

In the present research, the prediction of the RUL is performed by a data-driven approach. 

2. Material and methods 

2.1. Materials 

Fig. 1 shows a diagram of the type of engine used to validate our method, with its main ele-

ments. In this kind of device, the air is introduced into the low-pressure compressor through 

the fan. In the following step, it travels to the high-pressure compressor. This is when the air is 

heated in the combustor; also in the combustor, the air is mixed with fuel and ignited. The fuel 

combustion raises the HPC (high-pressure turbine) discharge air velocity to drive the HPT (high 

pressure turbine) and the LPT (low-pressure turbine). The engine employed for the present 

study is based on a low-frequency, transient, performance model of a high-speed ratio, dual-



spool, low by-pass, variable cycle, turbofan engine with a digital controller. The controller has a 

50 Hz frequency. 

Data employed in this research refers to an aircraft engine of 90,000 lb thrust class. The infor-

mation retrieved from the aircraft corresponds to different operating conditions that range 

from sea level to 40,000 ft, with temperatures ranging from -51 ºC to 39 ºC. In fact, the data 

comes from the MAPSS software. This program has revisions for both civil and military applica-

tions. The present research used the military version, which can perform realistic simulations 

according to the Standard Full Authority Digital Engine Controllers (FADEC) [11]. A more in-

depth explanation can be found in the C-MAPSS User’s Guide [12]. 

Our database is composed of information relating to a total of 100 different turbines with a 

total number of observations that varies from 128 to 362. Each record of the engine state has 

a total of 24 variables. Three of these are operational settings, while the other 21 represent 

values for engine performance measurement. We would like to remark that these measure-

ments are contaminated by noise. 

The descriptive statistics of the response and the predictor variables are summarized in Table 

1. The information of the data base corresponds to six different flight conditions with altitudes 

from 0 to 42,000 feet, speeds from 0 to 0.84 Mach and a throttle resolver angle from 20 to 100 

degrees. According to the results of Table 1, the values of variables Demanded fan speed, De-

manded corrected fan speed and Total temperature at fan inlet are constant, while the varia-

tion of other variables like Operational Setting 3, Presure at fan inlet, Engine pressure ratio and 

Burner fuel-air ratio are very small, with a standard deviation almost equal to zero. Constant 

and ‘almost constant’ variables were discarded for the study. Afterwards, the correlation coef-

ficients of the remaining variables were calculated. Those variables whose correlation coeffi-

cient was over 0.8 were analyzed and removed from the study in order to avoid problems as-

sociated to collinearity. In our case, the variables removed were Total temperature at LPT out-
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let and Total pressure at HPC outlet, because their correlation coefficients with Physical fan 

speed and Static pressure at HPC outlet were 0.830 and -0.823, respectively. Static pressure at 

HPC outlet (psia) was removed because its correlation coefficient value with Ratio of fuel flow 

to Ps30 was -0.847. Finally, Static pressure at HPC outlet was removed, as its correlation coef-

ficient with Corrected fan speed was 0.826. 

2.2. Methods 

Our approach makes use of several statistical techniques to estimate RUL from a set of covari-

ates measured by the sensors located in the engine. A brief summary of these techniques is 

provided in order to facilitate the comprehension of this work. 

2.2.1 Vector Autoregressive Moving-Average (VARMA) 

The Vector Autoregressive Moving-Average (VARMA) methodology is a multivariate time series 

method that modelizes several dependent time series together, taking into account the corre-

lations within each one of the time series and also across them [13,14]. In this work, VARMA 

was used for both forecasting the predictor variables and contrasting the results of the pro-

posed method.  

Let  1 ,...,
t

t t KtX x x be a k-dimensional stationary time series, the VARMA(p,q) model has 

the following expression: 

 
0 1 1 0 1 1... ...t t p t p t t q t qA x A x A x M u M u M u            (1) 

     

where t represents the time, 0 1,...,, pA A A  are  K K  autoregressive parameter matrices and 

0 1, ,..., qM M M  are  K K moving average parameter matrices. Likewise, 1, ,...,t t t qu u u   



are terms of Gaussian error with zero mean and time invariant covariance matrix. The zero 

order matrices 0A  and 0M  are assumed to be nonsingular and they are often equal to the 

identity matrix. 

This model can be written in lag operator notation as follows: 

    t tA L x M L u   (2) 

where   0 1

p

pA L A A L A L    and   0 1

q

qM L M M L M L    

Stationarity and invertibility are assumed, which requires that the roots of   0A L   and 

  0M L   are outside the unit circle. 

If  M L I , we obtain a pure vector autoregressive model (VAR) of order p. If  A L I , 

we obtain a pure vector moving average model (VMA) of order q.  

Autoregressive models, such as VARMA, are very flexible in handling a wide range of patterns 

in the time series by changing the parameters. 

2.2.2 Autoregressive integrated moving average (ARIMA) 

The ARIMA model is a generalization of the autoregressive moving average (ARMA) model 

[15]. The autoregressive part of ARIMA indicates that the evolving variable of interest is re-

gressed on their previous values while the moving average part indicates that the regression 

error is a linear combination of errors terms that occurred at different times in the past. 

The initial set up of an ARIMA model is based on the observation of the time series graph and 

in the analysis of autocorrelations for different time delays. In order to perform this procedure 

in a systematic way, a well-known methodology called Box-Jenkins is applied [16] 
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A general ARIMA model can be expressed as               where   represents the number 

of autoregressive terms,   is the number of non-seasonal differences needed for stationary 

and   is the number of lagged forecast errors in the prediction equation. 

The               model is as follows: 

                    

Where: 

   is the actual value. 

   is the random error at time period  . 

  is the lag operator that is defined by         . 

     is the autoregressive operator, represented as a polynomial in the backshift operator, 

                    
  

 

2.2.3 Support Vector Machines (SVM) 

 Support Vector Machines (SVM) were developed as a methodology to be applied in binary 

classification problems. In addition, it was extended for the solution of other problems such as 

regression. Support vector machines (SVM) for regression were developed by Vapnik and co-

workers at AT&T Bell Laboratories [17-19]. Given their good performance, SVM has become a 

standard for both classification and regression in a wide range of machine-learning software. 

We used SVM to estimate RUL from the forecasted values of the predictor variables. 

Let  
1

,
n

i i i
y


x be a training dataset, where d

i X x represents the predictor covariates 

and iy   the response variable. In the  -SV linear regression [18] the aim is to find a func-

tion   , , ,df x b b   w x w that has at most a deviation   from y for all training 



data.  Analytically speaking, the solution of this problem is formulated as the following minimi-

zation problem with restrictions 
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where   is the Euclidean norm, *andi i  the so-called slack variables and 0C   determines 

the trade-off between the flatness of f and the value of such deviations. The flatness of f de-

pends on w  (the smaller the elements of w are, the flatter f is).  

The quality of the estimation is measured  by the  - insensitive loss function L  proposed by 

Vapnik: 

 
0 f

otherwise

i
L

 

 

 
 


  (4) 

The slack variables account for the deviations of the solution beyond the -sensitive zone.  

If C is too large, then the objective is to minimize the average loss (empirical risk), without re-

gard to model complexity. 

The optimization problem in (3) is computationally simpler to solve in its Lagrange dual formu-

lation. The solution is a linear combination of a subset of sample points called support vectors.  

    * *

1

, ; , 0
n

i i i i i

i

f x b   


    x x   (5) 
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1 1
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n n

i i i i i

i i

  
 

   w x x , and *,i i   the Lagrange multipliers. 

The support vectors correspond to the observations for which *or 0i i   .  
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The Lagrange dual formulation allows extending the solution to nonlinear functions by replac-

ing the dot product ,ix x  with a positive definition function  ,ik x x  (kernel) as follows: 

      , ,i ik  x x x x   (6) 

where : d rX   is a transformation that maps x into a high dimensional space (fea-

ture space). The explicit coordinates in the feature space and even the mapping function   

become unnecessary when we define a kernel. The advantage of this procedure, known as the 

kernel trick, is that the complexity of the optimization problem remains  dependent only on 

the dimensionality of the input space, and not on the feature. 

The solution of the optimization problem is analogous to  

    
1

,
n

i i

i

f x k b


  x x   (7) 

Using this method, nonlinear SVM finds the optimal function in the transformed predictor 

space. 

There are many types of kernels in existing literature, polynomial and tangent hyperbolic ker-

nels being two of the most cited. Selecting a particular kernel type and kernel function param-

eters is usually based on application-domain knowledge. 

In the present research, four different kinds of kernels were employed: linear, polynomial, 

radial basis and sigmoidal. 

2.2.4 Genetic Algorithms (GA) 

Genetic algorithms are well-known evolutionary algorithms developed by Holland [20]. This 

methodology mimics the natural evolution of a population, considering the proposed solutions 



of a problem as genetic chains that are combined in order to improve their performance. The 

fitness of the proposed solutions is evaluated, and the individuals with the highest perfor-

mance are preserved and combined in order to create the next generation set of proposed 

solutions. In this study GA has been used to find optimum values for the SVM parameters.  

The genetic algorithms methodology is based on three genetic operations that are present in 

most biological systems: 

 Reproduction: the set of solutions of a generation is created using the individuals of 

the previous generation as the base. That is the reason why the individuals of one 

generation have most of the characteristics of the individuals of the previous genera-

tion. 

 Crossover: the crossover operator of the GA mimics the biological mechanism of re-

production, using two individuals of a solution set in order to create an individual of 

the next generation. 

 Mutation: the mutation operator is employed in order to maintain the diversity of so-

lutions. The behavior of this operator is very similar to biological mutation, in which 

new offspring are born with random changes that have nothing to do with their par-

ents’ chromosomes. 

There is another operator characteristic of the GA methodology that accelerates the improve-

ment of the fitness function, although it is not present in biological systems. It is called elitism, 

and allows some of the better genomes from one population set to survive (they are cloned in 

the next generation). 

Finally, it must be remarked that one of the most valuable characteristics of GA is its ability to 

avoid falling into local optimus. A more in-depth explanation of GA can be found elsewhere 

[21, 22].  
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The GA algorithm can be mathematically formulated as follows. Let D  be a finite domain and 

:f D R  the function to be optimized. It can be said that f  has a local minimum in x̂ D   

when in a certain domain of x  called        , N x y N x f x f y     . 

Let 0P  be an initial population of   elements,  1

0 0 0,...,P I I    

The population obtained after a certain number of steps    is represented by P . 

The function fsel randomly selects , and with replacement, a set of individuals y P . 

  : ,fsel x y    

where   is a vector of dimension   made up of random values. 

A global reproduction function freprod  is defined as one which creates a population of off-

spring z P  using some selected individuals by means of the crossover operator: 

  ,freprod y z     

with   a vector of dimension 
2

  of random integer numbers that belongs to the set  

 1,..., 1l   . 

The individual mutation function _find mut  is applied to any individual I and creates a new 

mutated individual called MI . The function individual mutation is defined as follows: 

      _ 1,..., ; 1j j mfind mut I MI j l P sm s p         



where mp  represents the mutation probability of each one of the elements that constitute the 

individual I . 

Finally, the function fext  creates a new population 
1n P   starting from two populations 

,x z P . 

 
   

: ,  
   

i

i

i

X if i
fext x z n N

Z if i






 


  

where iN  with 1,..., 2i   is the ith individual of population n . 

The reason why GA are employed in the present research is because of their ability for finding 

quasi-optimum values without been trapped in local optimums [22]. One of the drawbacks of 

this methodology is that, like the rest of the evolutive methodologies, it is not able to guaran-

tee that the optimum value will be found.  

2.3. The algorithm 

In the present research, a new algorithm is proposed in order to calculate the RUL of aircraft 

engines. This algorithm, in a first stage, performs a forecast of the input variables by means of 

an ARIMA model that is explained in section 2.2.2. In a second stage, the RUL is estimated with 

the help of an SVM model (please see the details of this methodology in section 2.2.3) using as 

input values those calculated with the help of the ARIMA. Please note that the algorithm pro-

posed is new and in its first stage makes use of the ARIMA process, whose complexity is lower 

than that of VARMA, a multivariate time series method detailed in section 2.2.1. Figure 2 pre-

sents the flowchart of the algorithm. As has been stated before the Figure shows how the vari-

ables of the different sensor are forecasted by means of an ARIMA model and, afterwards, 

these values are employed as input information for the SVM model. 
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As has already been explained, this research employs four different kinds of kernels which 

were tested for the training of the SVM model: linear, polinomial, radial basis and sigmoidal. 

The choice of the best kernel function for each problem, as well as the parameters of the 

hyperparameters, are important steps in the training procedure of the SVM model. One of the 

most common methodologies for parameter optimization is the grid search and the most 

elaborated and systematic technique of the gradient descent method. However, as the num-

ber of variables to optimize becomes larger, this technique becomes inviable because of its 

computational cost. Instead, in this research the selection is performed by means of genetic 

algorithms as in general, strategies based on evolutionary algorithms are more efficient as 

intelligent tuning strategies than the grid search. The relative importance of the prediction 

variables in the result was also analyzed. 

 

3. Results and discussion 

In a first attempt to modelize the aircraft RUL, VARMA models were trained for each aircraft 

engine. In practice, due to the results obtained, the modeling was restricted to the VAR pro-

cess as the best model found was VAR(42) )028.0( p . As the VARMA results (R2 = 0.5436, 

RMSE = 47.6320 and MAE = 37.6152) did not improve upon previous research for the predic-

tion of RUL [2, 22] in 1t   the results obtained for the predictions in             and 

    are not detailed. 

Using the hybrid algorithm presented in Section 2.3, the RUL for different aircraft engines was 

predicted in 1, 2, 3, 4t t t t     and 5t  . Figure 3 shows the RUL values versus those es-

timated by means of the hybrid algorithm for four times lags. As can be appreciated, there is a 



good fit that, as expected, decreases with time. Please note that the range of dispersion of 

differences between real and predicted values changes significantly from one aircraft engine to 

another, a pattern found in previous works [3]. For the sake of brevity, the results for 5t  , 

which shown the same pattern, are not shown. 

The SVM parameters were tuned using GA for SVM with ν-regression type. Accordingly, value ν 

was set to 1, the chosen kernel was polynomial, with degree 3, 2   and independent pa-

rameter 0 5  . Regarding the general parameters of the SVM, the cost was set at 1.12C   

and 0.1  . 

Table 2 shows the values of the statistics used to estimate the accuracy of the algorithm. In 

this research the performance is measured by means of the determination coefficent     , 

root mean square error (RMSE) and mean absolute error (MAE). The high correlation for     

that is visually observed in Fig. 3, is confirmed by a determinantion coefficient value of        

that improves on our previous research [3,23]. In addition, the results obtained for two and 

more units of time ahead allow us to be optimistic about the usefulness of our algorithm in 

predicting RUL.  

Table 2. R2, RMSE and MAE obtained for the RUL forecast with the proposed hybrid algorithm 

for times in advance from 1 to 5. 

Finally, Table 3 shows the variables importance ranking according to their contribution to the 

R2 of the proposed hybrid algorithm of the RUL for 1t  . In order to perform this calculus, 

variables were removed from the database one by one and the whole process of model train-

ing repeated. The R2 of the algorithm for 1t   without this variable was compared with that of 

the algorithm calculated using all the variables. As may be observed, the most important vari-

able is the LPT coolant bleed, followed by the HPT coolant bleed, Ratio of fuel flow to Ps30 and 
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Total pressure at HPC outlet. The influence of only five variables is above 0.1, while 11 are un-

der 0.05, of which 8 are under 0.01. 

Although the VARMA modelling technique allows several dependent time series to be mod-

elled together and account for both cross and within-correlations of the series, its perfor-

mance in the present research was worse than the performance obtained by previous studies 

by the authors and by the hybrid algorithm proposed. From the authors' point of view, this 

could be attributed to the fact that VARMA are a multivariate generalization of autoregressive 

moving average (ARMA) [26] based on the stationary nature of the data, while univariate 

ARIMA models combine differencing of non-stationary time series with the ARMA model. 

4. Conclusions 

The main contribution of the present research is the proposal of a new algorithm that per-

forms very satisfactorily in predicting RUL for more than one period ahead. Predicting RUL in 

advance is important in order to detect a reduction in the RUL that would affect the operation 

of the aircraft engine. 

In the proposed method, each input variable measured by a specific sensor was forecasted 

using an ARIMA model, and the results used as covariates of an SVM model where the de-

pendent variable is the RUL. The predictive capacity of our proposal is much greater than that 

obtained solving the problem once using a multivariate VARMA model, and also than that re-

ported in previous research using different approaches. An analysis of the relative importance 

of the predictor variables reveals that the RUL is most influenced by only five variables. 

From the authors' point of view, the results obtained are promising, and would be applicable 

to the optimization of maintenance planning, not only of aircraft engines but also of un-



manned aerial vehicles (UAVs), the optimal control of which is an important research topic 

nowadays [22]. Indeed, our method would be even more especially relevant for UAVs due to 

the lack of physical presence of human pilots inside the vehicles who might be able to detect a 

possible breakdown in advance. 

In our future research, we will try to improve the prediction of RUL and also to predict more 

time units ahead with the help of deep learning methodologies and also of the Multivariate 

Autoregressive Forests (mv-ARF) [23], which employs tree-based ensemble learners with auto-

regressive components.  
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Figure 1. Simplified diagram of the simulated engine (LPC: low-pressure compressor; HPC: high-pressure 

compressor; LPT: low-pressure turbine; HPT: high-pressure turbine; N1 turbine axis; and N2: turbine 

shaft). 
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Figure 2. Diagram of the proposed hybrid algorithm. 
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Figure 3. Scatter plots showing real versus predicted RUL a) 1t  , b) 2t   c) 3t   and d) 4t 

. 



Table 1. Descriptive statistics of all the variables of the database. 
Output and input variables Mean Sd. 

Remaining useful life 108.808 68.881 

Operational setting 1 -8.870 10-6 0.003 

Operational setting 2 2.350 10-6 0.003 

Operational setting 3 100.002 10-6 

Total temperature at fan inlet (ºR) 518.670 0 

Total temperature at LPC outlet (ºR) 642.681 0.500 

Total temperature at HPC outlet (ºR) 1590.523 6.131 

Total temperature at LPT outlet (ºR) 1408.934 9.000 

Pressure at fan inlet (psia) 14.620 3.390x10-6 

Total pressure in bypass-duct (psia) 21.609 0.001 

Total pressure at HPC outlet (psia) 553.368 0.885 

Physical fan speed (rpm) 2388.097 0.070 

Physical core speed (rpm) 9065.243 22.082 

Engine pressure ratio (P50/P2) 1.300 4.66x10-13 

Static pressure at HPC outlet (psia) 47.5412 0.267 

Ratio of fuel flow to Ps30 (pps/psi) 521.414 0.738 

Corrected fan speed (rpm) 2388.096 0.719 

Corrected core speed (rpm) 8143.753 19.076 

Bypass ratio 8.442146 0.038 

Burner fuel-air ratio 0.0300 1.56x10-14 

Bleed enthalpy 393.212 1.549 

Demanded fan speed (rpm) 2388.000 0 

Demanded corrected fan speed (rpm) 100.000 0 

HPT coolant bleed (lbm/s) 38.8163 0.181 

LPT coolant bleed (lbm/s) 23.279 0.108 
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Table 2. R2, RMSE and MAE obtained for the RUL forecast with the proposed hybrid algorithm 

for times in advance from 1 to 5. 

time R2 RMSE MAE 

    0.9315 39.6843 27.6837 

    0.8979 41.3629 28.7352 

    0.8469 45.2593 29.0939 

    0.7456 47.6721 31.7868 

    0.6662 50.8108 32.6096 
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Table 3. Variable importance according to their influence on the R2 of the model.  

Input variables R2 influence 

LPT coolant bleed (lbm/s) 0.1505 

HPT coolant bleed (lbm/s) 0.1420 

Ratio of fuel flow to Ps30 (pps/psi) 0.1379 

Total pressure at HPC outlet (psia) 0.1146 

Bypass ratio 0.1075 

Total temperature at LPC outlet (ºR) 0.0638 

Bleed enthalpy 0.0547 

Corrected fan speed (rpm) 0.0469 

Corrected core speed (rpm) 0.0365 

Physical core speed (rpm) 0.0239 

Engine pressure ratio (P50/P2) 0.0076 

Total pressure in bypass-duct (psia) 0.0067 

Operational setting 1 0.0065 

Operational setting 3 0.0054 

Burner fuel-air ratio 0.0028 

Remaining useful life 0.0021 

Operational setting 2 0.0017 

Pressure at fan inlet (psia) 0.0006 

 


