
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. XX, NO. X, XXXX XXXX 1

Acceleration of Gradient-Based Algorithms
for Array Antenna Synthesis with

Far Field or Near Field Constraints
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Abstract—This work presents a technique for the acceleration
of gradient-based algorithms that employ finite differences in the
calculation of the gradient for the optimization of array antennas.
It is based on differential contributions, which takes advantage
of the fact that when an array is optimized, each element is
analyzed independently from the rest. Thus, the computation
of the gradient of the cost function, which is typically the most
time consuming operation of the algorithm, can be accelerated. A
time cost study is presented and the technique is implemented, as
an example, in the generalized Intersection Approach algorithm
for array optimization in near and far fields. Several syntheses
are performed to assess the improvement of this technique.
In the far field, it is compared for periodic and aperiodic
arrays using different approaches for the computation of the
gradient, including the analytic derivative. A reflectarray is also
optimized in the near field with the goal of improving its quiet
zone. The technique of differential contributions shows important
reductions in the time per iteration in all three syntheses, specially
in that of aperiodic arrays and near field optimization, where the
time saved in the evaluation of the gradient is greater than 99%.

Index Terms—Gradient-based algorithm, optimization, synthe-
sis, aperiodic array, reflectarray, near field, far field, differential
contributions, finite differences

I. INTRODUCTION

ARRAY synthesis is important for applications that require
non-canonical patterns, either in near or far field regions.

There are several ways to synthesize the desired pattern, for
instance, analytical techniques [1]–[3], although they present
limitations when applied to complex shaped patterns. A more
powerful approach is to employ some optimization algorithm
(given some suitable starting point), which can be divided into
two general groups depending on how they navigate the search
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space: global or local. Global optimization algorithms include
some well known algorithms such as genetic algorithms [4] or
particle swarm optimization [5], among others. They perform
an exhaustive search and, in principle, do not depend on the
starting point. However, they take many iterations to converge
and, as the search space grows exponentially with the number
of optimizing variables, they are only practical for arrays with
a moderate number of elements. From a computationally point
of view, the main advantage of these algorithms is that the
time per iteration is fast and mainly depends on the number
of population members which are being considered, and they
are commonly fewer than the number of optimizing variables
[5], [6].

On the other hand, local search algorithms strongly depend
on the starting point and perform a local search in the
vicinity of that point, which will lead in general to a local
minimum. There are many local search algorithms for array
synthesis, such as the steepest descent [7], conjugate gradi-
ent [8], intersection approach [9], Levenberg-Marquardt [10]
or Broyden-Fletcher-Goldfarb-Shanno [11]. These algorithms
require the computation of a gradient to obtain the direction
in which the search space is traversed, following the path with
maximum gradient in order to minimize a cost function. For
this reason, local search algorithms sometimes are referred to
as gradient-based algorithms. In addition, the computation of
the gradient is usually the most time consuming operation.
The only exception is the intersection approach since it is
based on a different concept (i.e., the intersection between two
sets [9], [12], [13]). Nevertheless, the generalized intersection
approach, with improved convergence [13], also employs a
gradient-based algorithm in one of its projectors [14], [15].
In addition, local search algorithms are sometimes used along
with global search algorithms, obtaining the so-called hybrid
algorithms, which perform local searches in certain regions to
refine the results provided by the global search [16], [17].

When using gradient-based algorithms, it is best to analyti-
cally compute the gradient in order to accelerate computations.
This can be done either for near [18] or far fields [19].
However, there are cases in which there is no direct expression
relating the optimizing variables and the cost function, for
instance when using the Method of Moments [15], look-up
tables [20], Artificial Neural Networks (ANN) [21] or Support
Vector Machines (SVM) [22]. Also, there might be cases in
which the derivatives may be cumbersome to obtain. In such
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cases, the gradient may be computed using finite differences.
Another approach is to employ the Adjoint Variable Methods
(AVM) [23]–[27], a powerful class of techniques that allows to
obtain the sensitivities (derivatives) with regard to any design
parameter using at most one extra full-wave simulation of the
whole structure. They have been employed with success for
the optimization of electromagnetic devices such as filters [24]
or antennas [25], [26] by improving their scattering matrix
response. However, considering other antenna factors, such as
the far field for radiation pattern synthesis, is still an open area
of research using AVM [25].

This paper introduces the technique of differential contribu-
tions in order to accelerate the computation of the gradient for
local search or hybrid algorithms in array synthesis when it
is implemented with finite differences. It is based on the fact
that in array synthesis each element is analyzed independently
from the rest, and also in the linearity of Maxwell’s equations,
which leads to a linear dependence between the field in the
aperture and the radiated field (either near field or far field).
Thus, when each derivative is evaluated, only the differential
contribution of the considered element is taken into account
in the computations, saving computing time. This strategy is
implemented in the generalized Intersection Approach and a
time cost study is performed both in near and far field. For the
far field case, this technique is compared with the analysis of
a periodic reflectarray with the Fast Fourier Transform (FFT)
and an aperiodic array with the Non-Uniform FFT (NUFFT),
along with the analytic derivative of the cost function. For
the near field case, a reflectarray is considered with the goal
of improving its quiet zone. In all three cases the technique
of differential contributions reduces the computing time of
evaluating the gradient with finite differences, and it is also
faster than the analytic derivative. Remarkable improvements
are obtained in the far field for aperiodic arrays and in the near
field. Moreover, with this technique, the synthesis of aperiodic
arrays, which is slower due to the use of the NUFFT instead of
the FFT, is leveled with the synthesis of periodic arrays, since
the use of the FFT/NUFFT is avoided in the computation of
the gradient.

The paper is organized as follows. Section II introduces the
formulation of the technique of differential contributions for
the evaluation of the gradient. Section III contains a study
of the time cost for computing the gradient with different
methods. Section IV shows the results obtained for an im-
plementation of the technique in the generalized Intersection
Approach. Section V presents three different array syntheses
to show the total time savings with relevant examples. Finally,
Section VI has the conclusions.

II. COMPUTATION OF THE GRADIENT

A. Introduction

Let us suppose an array of N elements whose radiated field
(either near or far field) is computed at M points. The goal is
to accelerate the computation of the gradient of a cost function
to shape the radiated field pattern. For this task we assume that
S variables are optimized, which may be S ≤ N if we are
optimizing only a subset of the array elements, S > N if there
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Fig. 1. Flowchart for the computation of the cost function gradient.

are several variables per array element which are optimized
(for instance, when directly optimizing the element geometry,
as in [15], or for phase-only synthesis if synthesizing two
polarizations at the same time), or combinations of the two.

The gradient of a multidimensional scalar function is:

∇f(~r, ξ̄) =

(
∂f(~r, ξ̄)

∂ξ1
, · · · , ∂f(~r, ξ̄)

∂ξi
, · · · , ∂f(~r, ξ̄)

∂ξS

)
, (1)

where ξ̄ = (ξ1, . . . , ξi, . . . , ξS) is a vector of S optimizing
variables and ~r ∈ {~r1, . . . , ~rt, . . . , ~rM} an observation point
where the radiated field is computed. Each iteration of the
algorithm estimates the derivatives. The ideal case is to solve
the derivatives analytically, since in such case the computation
of the gradient in (1) will be faster. Otherwise, each derivative
is computed using finite differences, for instance a forward
or backward finite difference since they save half the calls
to the cost function with regard to the central difference. For
instance, the backward lateral difference takes the form:

∂f(~r, ξ̄)

∂ξi
=
f(~r, ξ̄)− f(~r, ξ̄ − hêi)

h
+O(h), (2)

where h is a small positive scalar which can be optimally
selected depending on the type of finite difference (central or
lateral) [10], and êi is the ith unit vector such that:

ξ̄ − hêi = (ξ1, . . . , ξi − h, . . . , ξS) . (3)

Once the optimal value of h is selected [10], it remains fixed
for the computation of all derivatives.

The process for the computation of the gradient (1) can be
divided into the following steps, as illustrated in Fig. 1:

1) Starting with the optimizing variables ξ̄, that can be
geometrical dimensions in general optimization, or the
phase-shift introduced by the array elements in the
particular case of Phase-Only Synthesis (POS), the tan-
gential field ~Ek(~rk

′, ξ̄) at the array aperture is calculated.
2) The radiated field ~E(~r, ξ̄) is obtained using the tangen-

tial field as source.
3) Computation of the cost function f(~r, ξ̄) that will de-

pend on the synthesis algorithm.
4) The derivatives are calculated to obtain the gradient.
The technique of differential contributions requires that two

conditions are met. First, the modification of one variable does
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not affect other variables. And second, part of the process for
the calculation of the cost function is linear.

The first condition is met when the analysis of each array
element is independent from the rest, i.e. assuming local
periodicity. Despite this condition, the coupling between el-
ements may be taken into account. If a Full-Wave analysis
technique based on Local Periodicity (FW-LP) is employed in
the optimization, such as in [15], mutual coupling is taken into
account directly during the synthesis procedure. On the other
hand, the condition is also met in the case of POS, which is
very common in array pattern synthesis. In POS, the mutual
coupling is considered in a further step during the design
process of the array elements or the feeding network to match
the phase distribution obtained in the synthesis stage [28].

In order to fulfill the second condition, the entire process
for the calculation of the gradient or part of it must be linear.
Ideally, this linear relation would be between the optimizing
variable ξi and the cost function f . In practice, this is not true
for array antenna synthesis. Indeed, it is common to employ
non-linear cost functions which breaks the linear relation.
Looking into each step of the process, the first one concerning
the computation of the tangential field starting from the
optimizing variables is, in general, non-linear; such is the
case in phased-arrays or when carrying out a direct geometry
optimization [15], [20]. In addition, the relation between the
radiated field and cost function (step 3) is, in general, also
non-linear [14], [15], [29]. However, due to the linearity of
Maxwell’s equations, the relation between the tangential field
and the radiated field (either near or far field) is linear (step
2), and this can be exploited in array antenna synthesis to
accelerate the computation of the gradient by applying the
technique of differential contributions to the computation of
the radiated field from the field at the aperture.

B. Differential Contribution for Radiated Field Calculation

Continuing with (2), for the computation of f(~r, ξ̄) the
radiated field ~E(~r, ξ̄) must be obtained. Similarly, for the
computation of f(~r, ξ̄−hêi), the field ~E(~r, ξ̄−hêi) is required.
Since the modification of one variable does not affect the rest,
the perturbed field ~E(~r, ξ̄−hêi) can be computed by extracting
the original contribution of the unperturbed array element and
adding the contribution of the perturbed element. Using the
differential contribution we have:

~E(~r, ξ̄ − hêi) = ~E(~r, ξ̄) + ∆ ~E(~r, ξi), (4)

where ∆ ~E(~r, ξi) is the differential contribution to the radiated
field produced by the array element depending on variable i:

∆ ~E(~r, ξi) = ~E(~r, ξi − h)− ~E(~r, ξi). (5)

Since ~E(~r, ξ̄) is computed once for all S derivatives in
(1), the field in (4) is computed by taking into account the
differential contribution of one element only, thus accelerating
the computation of the perturbed radiated field, which will
reduce the computing time of evaluating (2). Note, however,
that there is no linear relation between ξi and ~E(~r, ξi). Instead,
the linear relation is between the tangential field and the
radiated field.

Let us call ~Ek(~rk
′) the tangential field of the kth array

element at location ~rk′, with k = 1, . . . , N . Since the number
of optimizing variables S is in general different from the
number of array elements N , we will denote by ~Ek(~rk

′, ξi)
the tangential field of the kth array element which depends
on optimizing variable i (i.e. ξi), with i = 1, . . . , S. When
an array element does not depend on an optimizing variable,
~Ek(ξi) = ~Ek, dropping the ~rk′ to alleviate notation.

Thus, (5) can be expressed writing the radiated field as a
function of the tangential field:

∆ ~E(~r, ξi) = ~E(~r, ~Ek(ξi − h))− ~E(~r, ~Ek(ξi)). (6)

Since the radiated field is linear with respect to the tangential
field, it follows:

∆ ~E(~r, ξi) = ~E(~r,∆ ~Ek(ξi)), (7)

where:
∆ ~Ek(ξi) = ~Ek(ξi − h)− ~Ek(ξi). (8)

This way, instead of evaluating two radiated fields at M
points, as in (5) or (6), it is only necessary to calculate the
difference between tangential fields in (8) and then to evaluate
one radiated field in (7).

The particularization for the far field and near field cases is
straightforward and will be addressed in the following section.

C. Differential Contributions for Far Field Analysis

For the far field case, the radiated field can be expressed as:

~EFF(~r, ξ̄) =

N∑
k=1

ep,k(~r) ~Ek(ξi) exp (j k0 ~r · ~rk′) , (9)

where ~r ∈ {~r1, . . . , ~rt, . . . , ~rM} is a vector of observation
points in the far field, with ~r = (u, v) and u = sin θ cosϕ,
v = sin θ sinϕ; ~rk′ is the coordinate vector of the kth
array element; ep(~r) is a scalar function representing the
element pattern, which in general will be different for each
array element, and it also includes the propagation term for
compactness; and ~Ek(ξi) is the tangential field on the kth array
element which may depend on variable ξi.

The computation of the modified far field is then:

~EFF(~r, ξ̄ − hêi) = ~EFF(~r, ξ̄) + ~EFF(~r,∆ ~Ek(ξi)), (10)

where the differential contribution to the far field is:

∆ ~Ek(ξi) = ~Ek(ξi − h)− ~Ek(ξi). (11)

This is a direct application of (4)–(8) to the far field case, and
allows to calculate the derivative in (2) by evaluating the far
field only once for just one array element.

D. Differential Contributions for Near Field Analysis

For the near field synthesis, the near field model described
in [30] is employed. It is based on computing the near field
at any point in the semispace in front of the array as far
field contributions of each array element, which are modeled
as small rectangular apertures, thus taking into account the
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element amplitude pattern. This way, the near field at any point
in space may be expressed as:

~ENF(~r, ξ̄) = T2
{

N∑
k=1

T1
{
~EFF,k(~r, ξi)

}}
, (12)

where ~r ∈ {~r1, . . . , ~rt, . . . , ~rM} is the set of observation
points in a volume in front of the array, with ~r = (x, y, z);
~EFF,k(~r, ξi) is the far field contribution at ~r of the kth array
element, whose tangential field is ~Ek(ξi); and T1{·} and T2{·}
perform linear transformations with respect to the tangential
field, a change of coordinates from spherical to Cartesian and
a rotation, respectively [30]. Please note that depending on the
antenna optics, the T2 operator might be the identity [30].

The same considerations as before can be made for the near
field, and since T1 and T2 perform a linear transformation, the
modified near field can also be computed using the differential
contribution as:

~ENF(~r, ξ̄ − hêi) = ~ENF(~r, ξ̄) + ~ENF(~r,∆ ~Ek(ξi)), (13)

where ∆ ~Ek(ξi) is defined in (11).

III. COMPUTATIONAL COST

The analysis of the computational cost of the gradient (1)
is divided into two blocks to highlight the improvement of
this work. The first block corresponds to the analysis of the
array elements depending on their modeling. The second block
includes the rest of the steps of Fig. 1, computing the gradient
starting from the field at the aperture.

A. Time Cost of Computing the Tangential Field

When performing array synthesis there are several possibil-
ities for the computation of Ek(ξi). First, the tangential field
Ek(ξi) might be the optimizing variable [31], in which both
the optimal amplitude and phase are sought. In such case, the
time cost of analyzing the element can be assimilated to O(1).

However, if a direct optimization of the array element
geometry is performed employing a FW-LP [32]–[34], obtain-
ing Ek(ξi) becomes slower and its time cost is denoted as
O(OFW-LP). An intermediate case would be to model the array
element with ANN [21], SVM [22] or use Look-Up Tables
(LUT) [20], which considerably accelerates the computation
of Ek(ξi) with regard to the FW-LP. In any case, we can
assume a time cost O(OElem) for the element analysis, which
will take one form or another depending on the employed
analysis method. The time cost of analyzing the element is
independent of the improvement provided by the differential
contribution technique and should be added to the time cost
of the techniques described in Section III-B.

B. Time Cost for the Gradient Computation

Starting from the tangential field at the aperture, a direct
evaluation of f(~r, ξ̄) has a computational cost of O(NM).
Thus, if S variables are optimized, the computational cost of
the gradient is:

O(SNM). (14)

However, if the derivative can be obtained as an analytical
function, the time cost is reduced to:

O(SM). (15)

Equations (14) and (15) can be considered as the upper and
lower limits of the time cost of a general technique, both in
near and far field problems. Unfortunately, this is a particular
case and, in general, numerical evaluation of the derivatives is
required, for which several techniques can be applied.

1) Computational Cost in Far Field Analysis of Uniform
Arrays: A direct evaluation of the far field is inefficient,
since (9) can be efficiently computed with an FFT. If there
are not analytic derivatives, and they are evaluated by finite
differences, the time cost of evaluating the gradient would be:

O(SM logM) (16)

2) Computational Cost in Far Field Analysis of Non-
Uniform Arrays: For aperiodic arrays, the radiation pattern
has the same expression as in (9), with the only difference
that the array elements are arranged in a non-regular lattice.
Now, the NUFFT must be used, which for planar aperiodic
arrays yields a time cost for the gradient evaluation [35]:

O
(
SM

(
logM + log2 ψ−1

))
, (17)

where ψ is the desired accuracy. The evaluation of the gradient
is slower using the NUFFT, but it is still faster than (14).

3) Computational Cost Using Differential Contributions for
Far Field and Near Field Analysis: The strategy of Differ-
ential Contributions (DFC) on the radiated field improves the
computational cost of the FFT or NUFFT-based evaluations of
the gradient. Although efficient, those methods still compute
the contributions from all the elements of the array (N ) at
all UV points in the spectral domain (M ). With the DFC, it
is only computed the radiated field (near or far field) of the
differential contribution of the kth array element, thus reducing
the computational cost in all cases to O(M). Hence, the new
computational cost for evaluating the gradient starting from
the tangential field becomes:

O(SM). (18)

Finally, the time cost associated to the element analysis
(SOElem) should be included to obtain the time cost for the
gradient computation starting from the optimizing variables.

IV. STUDY OF THE IMPROVEMENT IN COMPUTING TIME

The strategy of differential contributions has been imple-
mented in the generalized Intersection Approach (IA) [14] to
accelerate the POS and assess the improvement in the evalu-
ation of the gradient. The generalized IA uses the Levenberg-
Marquardt algorithm (LMA) [10] in the backward projector,
which requires the computation of the Jacobian matrix, formed
with the gradient in (1). The simulations will be carried out in
a workstation with an Intel Xeon E5-2630 v4 CPU at 2.2 GHz
with 10 cores and 20 threads. The computation of the Jacobian
is parallelized computing one derivative (Jacobian column) per
thread.
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Fig. 2. Measured computing time of the Jacobian matrix evaluation for the
far field with the FFT, NUFFT (ψ = 10−2), Differential Contributions (DFC)
and analytic derivative for different numbers of optimizing variables using a
UV grid of 512× 512 points and computations parallelized with 20 threads.

A. Far Field Time Study

For the far field case, the radiation patterns are calculated
using the first principle of equivalence, which requires the
computation of three spectrum functions for each polarization
for POS [14]. Since a periodic grid is a particular case of an
aperiodic one, the computing time study will be performed
with a periodic grid using the FFT, NUFFT, Differential
Contributions (DFC) and the analytical derivative in order
to compare the four approaches in the same conditions. In
addition, the grid in which the radiation pattern is computed
has 512× 512 points, which is a typical value for large array
synthesis [12]. In this case O(OElem) = O(1) and S �M .

Fig. 2 shows the measured computing time when optimizing
a different number of array elements, computing the gradient
with 20 threads. The precision parameter chosen for the
NUFFT is ψ = 10−2, which produces fast computations
while providing enough accuracy in the computation of the
radiation pattern [35]. Using the NUFFT for the computation
of the far field results in the slowest of the four techniques
for computing the gradient, although it is still much more
efficient than the direct evaluation which is not considered in
this study. As it can be seen, the DFC is faster than the FFT,
NUFFT and even the analytic derivative for the computation
of the Jacobian matrix (gradient). In the present case, both the
analytic derivative and DFC have a time cost of O(SM) for
the computation of the derivative, but the analytic derivative
requires more operations inside the loop sweeping all M
points. In addition, the absolute time gaining increases with
the number of optimizing variables, which means that time
savings will be larger for larger arrays.

The speed up of the DFC technique with regard to the other
methods has been calculated from the measured data of Fig. 2
using the following expression:

Speed up (%) = 100 · tref − tDFC

tref
, (19)

where tDFC is the time employed by the DFC technique and
tref is the time employed by the technique which is compared
with the DFC. A mean speed up of 56.9% is obtained for
the periodic case (FFT), while a significant speed up for the
NUFFT is achieved: 94.2%. Also, the DFC technique is around
29.8% faster than the analytic derivative for the case at hand.

One of the main advantages of the new technique, apart
from accelerating the computation of the gradient for array
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Fig. 3. Measured computing time of the Jacobian matrix evaluation for
the near field comparing the direct evaluation and Differential Contributions
(DFC) for different numbers of optimizing variables for a Cartesian grid of
6561 points and computations parallelized with 20 threads.

optimization, is the fact that it places the synthesis of aperiodic
arrays on the same computing time level as periodic arrays,
since for the computation of the gradient there is no need to
employ the (NU)FFT. Otherwise, the synthesis of aperiodic
arrays could be significantly slower, in light of the computing
time shown in Fig. 2 and the study carried out in [35].
In addition, the DFC technique is faster than the analytic
derivative thanks to the linearity of the radiated field with
regard to the tangential field, which allows to save operations
in its computation.

B. Near Field Time Study

The near field is computed following [30]. From the tan-
gential field on the array aperture, expressed in the array
coordinate system which is placed at its center, the near field
is obtained as far field contributions of all the array elements
in a Cartesian grid in planes perpendicular to the pointing
direction and expressed in the global coordinate system (see
[30] for further reference). For the time study, the near field
grid has 6561 points.

Fig. 3 shows the measured computing time for the synthesis
of the near field when optimizing different numbers of array
elements. As it can be seen, this technique allows to accelerate
the computation of the gradient more than two orders of
magnitude. Due to the drop in time cost from O(SNM)
to O(SM) for the computation of the gradient, the DFC
technique allows to achieve accelerations of two orders of
magnitude when optimizing 100 elements, and up to three
orders of magnitude for 1000 elements. In addition, greater
accelerations will be achieved when optimizing an even larger
number of elements. The mean speed up calculated using (19)
is close to 99.8% and the speed up increases with the number
of optimizing variables.

C. Errors in the Computation of the Gradient and Scalability

The error in the computation of the Jacobian was recorded,
showing that for an implementation with double precision real
numbers (8 bytes), the difference between the DFC technique
and the analytical computation of a single derivative (i.e. a
Jacobian column) is around 10−9. This value is consistent
with the expected error in the evaluation of the derivative using
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Table I
MEAN SPEED UP OF THE DFC TECHNIQUE WITH REGARD TO OTHER
ANALYSIS TECHNIQUES FOR THE COMPUTATION OF THE GRADIENT.

Speed up (%)

Far field Near field

NUFFT FFT Analytical

1 thread 93.9 57.9 31.0 99.7

20 threads 94.2 56.9 29.8 99.8

finite differences, which for a lateral difference with double
precision real numbers (8 bytes) is of the order of O(10−8)
[10]. This allows to obtain almost the same results when
using the DFC technique in the whole synthesis process as
other techniques, but saving considerable amounts of time. The
deviations in the obtained phase distributions will be assessed
in Section V.

Finally, all previous results were obtained parallelizing the
computation of the Jacobian using 20 threads. In order to
assess the scalability of the new technique, the study was
repeated with a single thread and the measured mean speed up
is summarized in Table I. The average speed up is very similar
for one and 20 threads, assessing the scalability properties of
the proposed technique.

V. SYNTHESIS EXAMPLES

The generalized IA [14] with differential contributions has
been employed to perform three array syntheses: two of them
in the far field, one for a periodic reflectarray and another for
an aperiodic phased-array; and another near field synthesis to
improve the quiet zone generated by a reflectarray. The aim is
to assess the improvement in computing time and to validate
the new technique. In all cases, three iterations of the LMA
are performed in the backward projector per iteration of the
IA [15].

A. Far Field Synthesis of a Periodic Reflectarray

The first far field synthesis will be that of a periodic
reflectarray for DBS application with European coverage [15].
The reflectarray is placed in a geostationary satellite in position
10° E longitude and is comprised of 5180 elements in a rectan-
gular, periodic grid of 74×70 unit cells. The feed is modeled
as a cosq θ function with q = 23, imposing an illumination
taper of −17.9 dB at the reflectarray edges. The feed is placed
at (358,0,1070) mm with regard to the reflectarray center. The
periodicity of the reflectarray is 14 mm×14 mm and the work-
ing frequency is 11.85 GHz. The starting point of the synthesis
is a pencil beam pattern pointing at (θ, ϕ) = (16.26°, 0°).

The synthesis was first carried out with the analytical deriva-
tive and then using the technique of differential contributions.
The obtained phase distributions were compared and their
difference is shown in Fig. 4. As it can be seen, the difference
in the obtained phases is small, and the larger differences are
produced at the edges of the reflectarray. The mean absolute
deviation is 1.6° for the results shown in Fig. 4. In addition,
the deviation was also computed for the phase distributions
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Fig. 4. Phase difference in degrees (°) between the far field syntheses carried
out computing the Jacobian matrix (gradient) with analytical derivatives and
using finite differences with the technique of differential contributions for the
reflectarray with European DBS coverage and X polarization.

Table II
NUMBER OF OPTIMIZING VARIABLES AND LMA ITERATIONS FOR EACH

STAGE FOR THE REFLECTARRAY FAR FIELD SYNTHESIS.

Stage # variables LMA iterations

1 1042 102
2 2094 138
3 2986 135
4 3910 48
5 4462 24

obtained after the first iteration of the algorithm optimizing all
variables at the same time, showing a mean absolute deviation
of only 0.0034° (5.9 · 10−5 rad). On the other hand, Fig. 5
shows the synthesized copolar patterns for X polarization using
both methods. As it can be seen, the differences due to the
phase distributions not being the same are negligible. Similar
results were obtained for Y polarization regarding the phase
distribution and the copolar pattern.

The synthesis took 149 iteration of the generalized IA [14],
with three iterations of the LMA [10] per iteration of the IA,
thus having a total of 447 iterations where the gradient was
computed in multithreaded mode with 20 threads. In addition,
the synthesis was carried out in different stages, increasing
the number of optimizing variables at each successive stage
as shown in Table II. With the technique of differential
contributions, a total of 2875 seconds (47.9 minutes) were
employed computing the gradient. If the FFT were employed
for the computation of the radiation pattern, the computation
of the gradient would have taken 6540 seconds (109 minutes),
using the data from Fig. 2. This supposes a speed up of roughly
56%, which is in accordance to the data shown in Table I.

Finally, even though it is expected that syntheses that take
more iterations to converge will produce larger deviations
between the two methods, the results regarding far field
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Fig. 5. Copolar pattern for X polarization in gain (dBi) of the synthesized Eu-
ropean coverage for DBS application obtained using (a) analytical derivatives
and (b) the technique of differential contributions. (u, v) are in the reflectarray
coordinate system.

compliance (or near field for those cases), will be good
since several solutions are possible for the synthesis problem.
The deviation in terms of the obtained phase distribution
only means that the optimization algorithm chose a slightly
different path across the search space, reaching a different
but acceptable solution. In this regard, even though the error
in the computation of a single derivative is very small, the
fact that the Jacobian requires hundreds or even thousands of
derivatives and that very small deviations in the first steps of
the algorithm will cause the algorithm to transverse the search
space through a different path, causes the phase differences
shown in Fig. 4. Hence, in the following sections only the
results obtained with the DFC technique will be reported, as
well as the time saving derived from using this technique.

B. Far Field Synthesis of an Aperiodic Array

The aperiodic array will be obtained from a periodic array
grid adopting the procedure detailed in [36], assuming a raised
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Fig. 6. Result of the optimization of the aperiodic array, showing the starting
point for the synthesis (pencil beam; red dotted line) and the final isoflux
pattern (black solid line). (a) Zoom of the coverage area for the cut in u.
(b) Main cut in u of the radiation pattern.

cosine excitation as starting point and obtaining an aperiodic
distribution with uniform excitation. The initial periodic array
is rectangular, has a periodicity of 0.4λ× 0.4λ at 30 GHz and
is comprised of 44×44 elements. After applying the procedure
in [36] an aperiodic array is obtained. It has the same physical
dimensions of the periodic array but it is comprised of 1444
elements, in contrast with the 1936 elements of the periodic
array, which supposes a reduction of 25% of the elements. In
addition, the local periodicities in the aperiodic array range
from 0.41λ to 0.60λ, which avoids the appearance of pseudo-
grating lobes.

The goal of the optimization is to obtain an isoflux pat-
tern [37] which will be radiated from a satellite placed in
geostationary orbit. The side lobe level is set to −19 dB and
the allowed ripple in the coverage area to 0.2 dB, which is
a very tight requirement. The starting point is a pencil beam
pointing towards the center of the coverage area. After the
synthesis, the radiation pattern shown in Fig. 6 was obtained.
It is represented along with the pencil beam which was used
as starting point. As it can be seen, the obtained isoflux pattern
mostly complies with the specification template in both side
lobe level and ripple in the coverage area.

In this case, there were 480 gradient evaluations (see Ta-
ble III), taking 1330 seconds (22.2 minutes) with the technique
of differential contributions. If the NUFFT were used, it would
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Table III
NUMBER OF OPTIMIZING VARIABLES AND LMA ITERATIONS FOR EACH
STAGE FOR THE APERIODIC ARRAY SYNTHESIS WITH ISOFLUX PATTERN.

Stage # variables LMA iterations

1 320 33
2 618 105
3 890 63
4 1160 39
5 1290 51
6 1330 111
7 1444 78

have taken 22833 seconds (380.6 minutes, or more than six
hours), using the data of Fig. 3 linearly extrapolating the time
for the NUFFT with 20 threads, corresponding to a speed up
of 94.2%, which is in the range of that reported in Table I.

C. Near Field Synthesis of a Reflectarray

The reflectarray considered for the near field synthesis is
square and comprised of 1080 elements in a regular grid
of 30×36, with periodicity 6 mm×5 mm. The feed is a horn
modeled with a cosq θ function with q = 8.2 which generates
an illumination taper of −7.4 dB at the reflectarray edges. The
working frequency is 20 GHz. As starting point for the opti-
mization, the reflectarray collimates the field in the ẑ direction
with a radiation angle θ0 = 20°. The starting phase distribution
generates a pencil beam pointing at (θ, ϕ) = (20°, 0°), while
in the near field it collimates the field with the same radiation
angle, generating a planar phase front [30]. With this starting
point, the quiet zone is strongly limited in amplitude due to
the taper imposed by the feed. The goal is to improve the
quiet zone size in amplitude while preserving or improving
the planar phase front. The imposed specifications are a ripple
in amplitude of 1.25 dB, and of 10° in phase.

The synthesis has been carried out in two parallel near field
planes placed at 300 mm and 400 mm from the reflectarray
center in the global coordinate system [30]. The synthesized
near field is shown in Fig. 7, where the main cuts are
represented. They correspond to the offset plane for y = 0 mm
and two different planes perpendicular to the pointing direction
θ0 = 20° (details of the geometry and antenna optics may
be consulted in [30]). As it can be seen, the quiet zone was
greatly improved in amplitude, while the phase ripple was also
improved.

Finally, the near field synthesis had 3660 evaluations of the
gradient in four different stages as shown in Table IV, with
a total time of 750 seconds (12.5 minutes) using differential
contributions. The same synthesis with the direct evaluation
approach would have taken 891342 seconds (10.3 days), thus
having a speed up of 99.916%, which is in accordance with
the data of Fig. 3, since only sets of more than 500 variables
were employed in the different stages of this optimization.

VI. CONCLUSIONS

This paper has presented a technique for the acceleration of
gradient-based algorithms implemented with finite differences
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Fig. 7. Main cuts in the offset plane (y = 0mm) for the initial and
synthesized near field at two different planes perpendicular to the collimating
direction θ0 = 20°. (a) Amplitude. (b) Phase.

Table IV
NUMBER OF OPTIMIZING VARIABLES AND LMA ITERATIONS FOR EACH

STAGE FOR THE NEAR FIELD SYNTHESIS FOR CATR APPLICATION.

Stage # variables LMA iterations

1 580 1260
2 1000 840
3 680 960
4 1000 600

for the optimization of array antennas. It is based on differ-
ential contributions (DFC) for the evaluation of the gradient,
in which only the contribution of one element is considered
for the computation of the radiated field. This way, both far
field and near field syntheses are sped up. A time study
was carried out comparing the proposed technique with the
classic analysis to assess the speed up in the evaluation of the
gradient. For the far field analysis with the FFT, employed
for periodic arrays, there is a speed up of 57%, while for
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the analysis of aperiodic arrays using NUFFT the speed up
is around 94%. Furthermore, compared to the use of analytic
derivative, the DFC technique is 30% faster due to having less
operations for the computation of the gradient. For near field
synthesis, the speed up is better than 99.7%. Finally, three
different syntheses were carried out to show the performance
for each case. First, a large reflectarray comprised of more
than 5000 elements was considered for a DBS application with
European coverage. The speed up in the gradient evaluation
saved an hour (61.1 minutes) in the whole synthesis process
(from 109 minutes to 47.9 minutes). Next, an aperiodic array
with uniform excitation was optimized to generate an isoflux
pattern. This time, the technique of differential contributions
saved close to 360 minutes (6 hours) in the evaluation of the
gradient in a total of 480 iterations. Finally, the near field
synthesis went from taking more than one week evaluating
the gradient (10.3 days) to only 12.5 minutes, which supposes
a great time saving of more than 99.9%.
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