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Abstract In the literature, there are two different ap-

proaches to define entropy of Atanassov Intuitionistic

Fuzzy Sets (AIFS, for short). The first approach, given

by Szmidt and Kacprzyk, measures how far is an AIFS

from its closest crisp set, while the second approach,

given by Burrillo and Bustince, measures how far is an

AIFS from its closest fuzzy set. On the other hand, di-

vergence measures are functions that measure how dif-

ferent two AIFSs are. This paper studies how to define

both types of entropies using measures of local diver-

gence. In this context we provide the necessary and suf-

ficient conditions for defining entropy measures under

both frameworks using divergence measures for AIFS.

We also show that the usual examples of entropy mea-

sures can be obtained as a particular case of our more

general framework. Also, we investigate the connection

between knowledge measures and divergence measures.

Finally, we apply our results in a multi-attribute deci-

sion making problem to obtain the weights of the ex-

perts.
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1 Introduction

Fuzzy sets were introduced by Zadeh in 1965 [?] to

model situations where the available information is vague

or incomplete. For any element, a fuzzy set is charac-

terized by a membership degree, which indicates the

degree to which the element belongs to the set or satis-

fies the property described by the fuzzy set. The theory

of fuzzy sets has been widely studied both from the the-

oretical and applied points of view (see [?,?,?], among

others).

Over the years, several extensions of fuzzy sets have

been proposed: interval valued fuzzy sets, type-2 fuzzy

sets [?], hesitant fuzzy sets [?], and so on. In 1986,

Atanassov [?] proposed the notion of Intuitionistic Fuzzy

Set (AIFS, for short). The idea is quite simple: for any
element, an AIFS assigns a membership and a non-

membership degree. The former represents the degree

to which an element belongs to the set or complies with

the property described by the set, while the latter rep-

resents the degree to which the element does not be-

long to the set. The membership and non-membership

degrees satisfy a mathematical constraint: their sum

cannot exceed one. The difference between one and the

sum of both degrees is called hesitation index, which

represents the lack of knowledge about whether the el-

ement belongs or not to the set. In recent past, research

work on the theory of Atanassov IFSs has exponentially

grown, and it has been successfully applied in decision

making [?,?,?], pattern recognition [?,?] and image seg-

mentation [?], among others.

For developing useful applications, two important

lines of research have attracted the attention of the

researchers. One of the approaches involves compari-

son of AIFSs. In this framework, many different mea-

sures of comparison have been suggested in the liter-
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ature, like distances or dissimilarities. However, it can

be argued that these measures could be inadequate in

some context. For this reason, we have introduced di-

vergence measures in our previous works [?,?], and we

have shown many interesting mathematical properties

as well as their usefulness in many applications [?,?].

The other approach involves the study of entropies for

AIFSs. In this framework, two different trends can be

found: (i) The Szmidt and Kacprzyk [?] approach, which

considers the entropy as a measure of fuzziness: it mea-

sures how distant is an AIFS to be a crisp set. (ii) The

Burrillo and Bustince [?] approach, which interprets en-

tropies as measures of intuitionism: it measures how

different is an AIFS to be a fuzzy set.

Our aim in this paper is to define entropies, both

Szmidt and Kacprzyk (SK) type and Burrillo and Bus-

tince (BB) type, using divergences. For this, after intro-

ducing some preliminary notations in Section 2, in Sec-

tions 3 and 4 we study how measures of divergence can

be used to define entropies under both frameworks. In

Section 5 we investigate the connection between diver-

gences and knowledge measures [?]. We provide some

concluding remarks in Section 7. Preliminary results of

this investifation has been included in [?].

2 Preliminaries

In this section we introduce the main notions used in

this paper. First of all, we introduce fuzzy sets and

AIFSs. We also explain a graphical interpretation of

AIFSs and define some usual operations between these

sets. Then, we recall the definition of divergences for

fuzzy sets [?] and AIFSs [?], emphasizing the property

of locality [?]. We conclude this section explaining in

detail the primary objective of this paper.

Throughout this paper, we consider a finite universe

X whose cardinality will be denoted by n, that is, |X| =
n.

2.1 Atanassov Intuitionistic Fuzzy Sets

Fuzzy sets were introduced by Zadeh [?] as an extension

of crisp sets to model vague or linguistic information.

While a crisp set A only allows two possibilities x ∈
A or x /∈ A, a fuzzy set A allows, for any x ∈ X, a

degree of membership of the element x to the set. This

membership degree, formally defined as a function µA :

X → [0, 1], represents the degree in which an element

belongs to A, or the degree to which it satisfies the

property described by the set A. In this way, 1−µA(x)

represents the degree to which x does not belong to A.

In [?], Atanassov discussed that the non-membership

degree could be different than 1− µA(x) due to lack of

knowledge. To account for this, he proposed an exten-

sion of fuzzy sets allowing two degrees: the member-

ship and non-membership degrees, which correspond

to the degree to which an element belongs and does

not belong to the set, respectively. Formally, an intu-

itionistic fuzzy set, AIFS for short, is defined by A =

〈(x, µA(x), νA(x)) | x ∈ X〉, where µA(x) and νA(x) de-

note the membership and non-membership degrees of x

to A, respectively. Any AIFS has an associated hesita-

tion index, denoted by πA, and defined by πA(x) =

1− µA(x)− νA(x) for any x ∈ X, and it measures the

lack of knowledge about whether x belongs or not to A.

Any fuzzy set A can be expressed as an AIFS, just

by taking νA = 1 − µA. Therefore, for fuzzy sets it

holds that πA = 0. Also, a crisp set is a particular case

of an AIFS where for any x ∈ X, either µA(x) = 1 and

νA(x) = 0, if x ∈ A, or µA(x) = 0 and νA(x) = 1, if

x /∈ A. From now on, we denote by AIFS(X) the set of

all AIFSs on X, and by FS(X) the set of all fuzzy sets

on X.

Any AIFS can be graphically depicted for any x ∈ X
as a pair (µA(x), νA(x)), as can be seen in Figure 1.

The segment that goes from (1,0) to (0,1) corresponds

to the pairs (µA(x), νA(x)) where νA(x) = 1 − µA(x).

If for any x ∈ X, the element (µA(x), νA(x)) belongs to

such segment, A is a fuzzy set. Moreover, the further

(µA(x), νA(x)) is from the segment ((1,0), (0,1)), the

greater is the hesitation index πA(x). Also, the case of

total ignorance, that is when πA(x) = 1, corresponds

to the pair (0, 0).

νA(x)

µA(x)0 1

1

Fig. 1: Graphical representation of AIFSs.

To conclude this subsection, let us recall some basic

operations between AIFSs. Given A,B ∈ AIFS(X), we

consider the following operations:

– The union of A and B, denoted by A∪B, is the AIFS

whose membership and non-membership degrees are
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given by:

µA∪B(x) = max{µA(x), µB(x)},
νA∪B(x) = min{µA(x), µB(x)}.

– The intersection of A and B, denoted by A ∩ B, is

the AIFS whose membership and non-membership

degrees are given by:

µA∩B(x) = min{µA(x), µB(x)},
νA∩B(x) = max{µA(x), µB(x)}.

– A is included in B, denoted by A ⊆ B, if µA ≤ µB
and νA ≥ νB .

– The complement of A, denoted by Ac, is defined by:

Ac = 〈(x, νA(x), µA(x)) | x ∈ X〉.

We note here that more general families of unions and

intersections can be defined using a T-norm for min and

T-conrom (S-norm) for max.

2.2 Divergences for AIFSs

One very popular topic of research within AIFSs the-

ory is that of measuring how different two AIFSs are.

Although there are many different approaches, for in-

stance similarities or distances, we have introduced in

[?] a new family of measures, for comparing this kind of

sets, called AIF-divergences, and we have argued that,

from our point of view, AIF-divergences are more apro-

priate than other measures of comparison existing in

the literature.

Definition 1 ([?]) A functionD defined from AIFS(X)×
AIFS(X) to R+ is an AIF-divergence if it satisfies the

following properties:

(Div.1) D(A,B) = D(B,A) for any A,B ∈ AIFS(X).

(Div.2) D(A,A) = 0 for any A ∈ AIFS(X).

(Div.3) D(A ∩ C,B ∩ C) ≤ D(A,B) for any A,B,C ∈
AIFS(X).

(Div.4) D(A ∪ C,B ∪ C) ≤ D(A,B) for any A,B,C ∈
AIFS(X).

Hence, an AIF-divergence is symmetric, takes the value

0 when comparing an AIFS with itself, and the closer

two AIFSs are, the smaller the AIF-divergence between

them.

In [?, Lemma 3.2] we proved that any AIF-divergen-

ce satisfies the following property, which will be useful

for the forthcoming results:

A ⊆ B ⊆ C ⇒ D(A,C) ≥ max{D(A,B), D(B,C)}.
(1)

One particular family of AIF-divergences that satisfies

the local property is:

D(A ∪ {x}, B ∪ {x})−D(A,B)

= hIF(µA(x), νA(x), µB(x), νB(x));

where hIF satisfies five locality properties in Theorem 1.

This means that if we modify the membership and non-

membership degrees of only one element of the sets, the

change in the AIF-divergence between the sets depends

only on what has been changed.

In [?] we characterized local AIF-divergences, using

the following notation1:

D = {(u1, u2, v1, v2) ∈ R4+ | u1 + u2 ≤ 1, v1 + v2 ≤ 1}.
(2)

Theorem 1 [?] An AIF-divergence D is local if and

only if there exists a function h : D → R+ such that

D(A,B) =
∑
x∈X

hIF(µA(x), νA(x), µB(x), νB(x))

and satisfying the following properties:

(AIF-loc.1) hIF(u, v, u, v) = 0 for any (u, v, u, v) ∈ D.

(AIF-loc.2) hIF(u1, u2, v1, v2) = hIF(v1, v2, u1, u2) for

any (u1, u2, v1, v2) ∈ D.

(AIF-loc.3) If (u1, u2, v1, v2) ∈ D, ω ∈ [0, 1] and u1 ≤
ω ≤ v1, it holds that:

hIF(u1, u2, v1, v2) ≥ hIF(u1, u2, ω, v2).

Moreover, if max{u2, v2}+ ω ≤ 1, it holds that:

hIF(u1, u2, v1, v2) ≥ hIF(ω, u2, v1, v2).

(AIF-loc.4) If (u1, u2, v1, v2) ∈ D, ω ∈ [0, 1] and u2 ≤
ω ≤ v2, it holds that:

hIF(u1, u2, v1, v2) ≥ hIF(u1, u2, v1, ω).

Moreover, if max{u1, v1}+ ω ≤ 1, it holds that:

hIF(u1, u2, v1, v2) ≥ hIF(u1, ω, v1, v2).

(AIF-loc.5) If (u1, u2, v1, v2) ∈ D and ω ∈ [0, 1], then

if max{u2, v2}+ ω ≤ 1 it holds that:

hIF(ω, u2, ω, v2) ≤ hIF(u1, u2, v1, v2);

and if max{u1, v1}+ ω ≤ 1, it holds that:

hIF(u1, ω, v1, ω) ≤ hIF(u1, u2, v1, v2).

1 The notation we are using here is slightly different from
that on [?], where the set D was defined by D = {(u, v) ∈
R2+ | u+ v ≤ 1}, and then we considered D2. In this paper,
we have considered the alternative expression for D in Equa-
tion (2) for the sake of mathematical convenience. However,
both approaches are equivalent.
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Let us prove a useful property of the function hIF asso-

ciated with a local AIF-divergence.

Proposition 1 Let D be a local AIF-divergence with

associated function hIF. Then, hIF(u, v, 1, 0) is decreas-

ing on u and increasing on v, and hIF(u, v, 0, 1) is in-

creasing on u and decreasing on v, whenever u+v ≤ 1.

Proof Let us prove that hIF(u, v, 1, 0) is decreasing in

u. For this, take u1 ≤ u2 such that u2 + v ≤ 1. Taking

property (AIF-loc.3) into account, it holds that:

hIF(u1, v, 1, 0) ≥ hIF(u2, v, 1, 0).

On the other hand, let us see that hIF(u, v, 1, 0) is in-

creasing in v. For this, take v1 ≤ v2. Define the AIFSs

A,B,M on {x} by:

A = 〈(x, u, v1)〉, B = 〈(x, u, v2)〉, M = 〈(x, 1, 0)〉.
From property (Div.4), D(A,M) = D(A∪B,A∪M) ≤
D(B,M), which means that:

hIF(u, v2, 1, 0) ≥ hIF(u, v1, 1, 0).

Let us now study the function hIF(u, v, 0, 1). First of all,

let us see that it is increasing in the first component.

Take u1 ≤ u2, and define the AIFSs A,B,N on {x} by:

A = 〈(x, u2, v)〉, B = 〈(x, u1, v)〉, N = 〈(x, 0, 1)〉.
Using property (Div.3), we obtain that

D(B,N) = D(A ∩B,N ∩B) ≤ D(A,N),

which means that:

hIF(u2, v, 0, 1) ≥ hIF(u1, v, 0, 1).

On the other hand, let us see that hIF(u, v, 0, 1) is de-

creasing in v. Taking v1 ≤ v2 and using (AIF-loc.4) it

holds that:

hIF(u, v1, 0, 1) ≥ hIF(u, v2, 0, 1).ut
Divergences for fuzzy sets had already been introduced

in [?]. A function D : FS(X) × FS(X) → R is a di-

vergence for fuzzy sets if it satisfies conditions (Div.1)

to (Div.4) when we restrict them to FS(X). The prop-

erty of locality has also been defined for divergences

for fuzzy sets, and it was characterized in the following

way:

Theorem 2 ([?, Prop. 3.4]) A function D : FS(X)×
FS(X)→ R+ is a local divergence for fuzzy sets if and

only if there exists a function hFS : [0, 1]× [0, 1]→ R+

such that:

D(A,B) =
∑
x∈X

hFS(µA(x), µB(x))

and it satisfies the following properties:

(loc.1) hFS(u, v) = hFS(v, u) for any (u, v) ∈ [0, 1]2.

(loc.2) hFS(u, u) = 0 for any u ∈ [0, 1].

(loc.3) hFS(u, z) ≥ max{hFS(u, v), h(v, z)} for any u,

v, z ∈ [0, 1] such that u < v < z.

2.3 Divergence-based Entropies of AIFS

In the fuzzy framework, the notion of entropy or fuzzi-

ness was introduced by De Luca and Termini [?]. Since

then, many researchers continued working on this topic,

such as [?,?,?,?,?,?], among others. In particular, Montes

et al. [?] used local divergences for fuzzy sets as a mea-

sure of entropy or fuzziness.

Our objective here is to define entropies for AIFSs

by using local AIF-divergences. As we shall explain

later, there are two different types of entropies: the one

defined by Szmidt and Kacprzyk [?], that measures how

different is an AIFS from its nearest crisp set, and the

one defined by Burrillo and Bustince [?] that measures

how different is an AIFS from its closest fuzzy set. As

Pal et al. have already explained in [?], both types of

entropies are different and can be interpreted as com-

plementary.

From now on, we consider a local AIF-divergence

D with associated function hIF, and we investigate the

additional properties that must be imposed on hIF to

define entropies, with respect to both interpretations,

the interpretation of Szmidt and Kacprzyk (SK) and

that of Burrillo and Bustince (BB).

For this we make two assumptions: (i) the local AIF-

divergence can be expressed by:

D(A,B) =
1

n

∑
x∈X

hIF(µA(x), νA(x), µB(x), νB(x))

for any A,B ⊆ AIFS(X); and (ii) hIF takes values in

[0, 1], meaning that for any element the maximal differ-

ence is 1. As far as D is upper bounded, the previous

assumptions can be simply understood as a rescaling of

the divergence. Therefore, these assumptions are only

made for mathematical convenience.

3 SK-Entropies

Here we deal with entropies measuring how far is an

AIFS to be a crisp set, which will be called SK-entropies.

Following the definition of entropy given by Szmidt and

Kacprzyk [?], we introduce the notion of closest crisp to

an AIFS, and then use local AIF-divergences to define

SK-entropies.

3.1 Szmidt and Kacprzyk’s Entropy

We start introducing the definition of entropy for AIFSs

given by Szmidt and Kacprzyk [?]. The idea behind this

definition is quite simple: it measures how far is an AIFS

from its closest crisp set.
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Definition 2 ([?]) A function E : AIFS(X)→ [0, 1] is

an entropy if it satisfies the following axioms:

(ISK1) E(A) = 0 if and only if A is a crisp set.

(ISK2) E(A) = 1 if and only if µA(x) = νA(x) for every

x ∈ X.

(ISK3) E(A) = E(Ac).

(ISK4) E(A) ≤ E(B) if µA(x) ≤ µB(x) < νB(x) ≤
νA(x) or νA(x) ≤ νB(x) ≤ µB(x) ≤ µA(x) for every

x ∈ X.

Let us discuss the previous conditions. The condition

(ISK1) implies that the entropy is zero (non-existent)

if, and only if, the set is crisp. (ISK3) says that the

entropy is closed with respect to the complement. Ac-

cording to, Property (ISK2), the entropy takes the max-

imum value if, and only if, both the membership and

non-membership degrees coincide. However, in some ap-

plications this property can be argued to be rather soft:

given two AIFSs A and B satisfying µA = νA and

µB = νB , both sets have the same entropy, regard-

less of exact values of the membership degrees µA and

µB (or πA and πB). Hence, property (ISK2) does not

take into account the hesitation index associated with

the AIFSs. For example, consider the AIFSs A and B

defined by:

A = 〈(x, 0.1, 0.1) | ∀x ∈ X〉,
B = 〈(x, 0.45, 0.45) | ∀x ∈ X〉. (3)

From (ISK2), E satisfies E(A) = E(B), but the lack of

information associated with A seems to be greater than

that with B, because πA(x) = 0.8 > 0.1 = πB(x) for

any x ∈ X. These AIFSs have been graphically depicted

in Figure 2.

νA(x)

νB(x)

µA(x) µB(x)0 1

1

Fig. 2: Graphical representation of the AIFSs in Equation (3).

Property (ISK2) can be slightly modified in order to

avoid this drawback as follows:

(ISK2’) E(A) = 1 if and only if µA(x) = νA(x) = 0 for

every x ∈ X.

This is more plausible as it implies that E(A) = 1

when we have no knowledge about membership and

non-membership for every element. This modified prop-

erty can be equivalently expressed in terms of the hesi-

tation index, since E(A) = 1 if and only if πA = 1. For

the AIFSs defined in Equation (3), if we consider prop-

erty (ISK2’), an entropy must satisfy E(A) ≥ E(B),

but the equality is not required.

Finally, condition (ISK4) says that the closer is the

set to be a crisp set, the lower is its entropy.

Taking into account Definition 2 as well as the pre-

vious discussion, we consider the following definition of

a SK-entropy.

Definition 3 A mapping E : AIFS(X) → [0, 1] is a

SK-entropy if it satisfies the properties (ISK1), (ISK2’),

(ISK3) and (ISK4).

3.2 SK-entropies based on local AIF-divergences

Throughout this subsection we aim to investigate how

SK-entropies can be built using local AIF-divergences.

For this aim, we first introduce the notion of closest

crisp set to an AIFS.

Definition 4 Given A ∈ AIFS(X), we define the clos-

est crisp set to A, denoted by CA, by:

x ∈ CA if µA(x) ≥ νA(x), and x /∈ CA otherwise.

This notion had already been considered for fuzzy sets

in [?].

Since any crisp set is an AIFS with zero hesitation

index, we can express the closet crisp set to A as:

µCA
(x) =

{
1 if µA(x) ≥ νA(x),

0 otherwise,

and

νCA
(x) =

{
0 if µA(x) ≥ νA(x),

1 otherwise.

In Figure 3 we can depict an example of the closest crisp

set to an AIFS. In the left panel of the picture, we show

an example where µA(x) < νA(x), so x /∈ CA, or equiv-

alently, µCA
(x) = 0, νCA

(x) = 1. The opposite happens

in the right panel of the picture, where µB(x) > νB(x),

so x ∈ CB , or equivalently, µCB
(x) = 1, νCB

(x) = 0. As

we can see in the picture, as long as (µA(x), νA(x)) is

above the dotted line which represents the pairs (t, t),

x /∈ CA, while as long as (µB(x), νB(x)) is on or below

the dotted line, x ∈ CB .

Next proposition shows two simple but useful prop-

erties of the closest crisp set to an AIFS.
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νA(x)

µA(x)0 1

1 CA(x)

νB(x)

µB(x)0 1

1

CB(x)

Fig. 3: Example of the closest crisp set to an AIFS.

Proposition 2 Consider A ∈ AIFS(X), and let CA be

its closest crisp set. The following statements hold:

1. A is a crisp set if and only if A = CA.

2. For any x ∈ X, if µA(x) 6= νA(x), then CcA(x) =

CAc(x), where CAc denotes the closets crisp set to

Ac.

Proof Let us prove the first item. Obviously, if A = CA,

A is a crisp set. On the other hand, if A is a crisp set,

for any x ∈ X either x ∈ A, which implies µA(x) = 1,

or x /∈ A, which implies νA(x) = 1. In the former case,

µA(x) > νA(x), and therefore x ∈ CA, while in the

second case µA(x) < νA(x), which implies x /∈ CA. We

conclude that A = CA.

Let us now turn to the second item. Since µA(x) 6=
νA(x), we only have two possibilities, either µA(x) >

νA(x) or µA(x) < νA(x). Assume we are in the for-

mer case. By definition of CA, it holds that µCA
(x) =

1, νCA
(x) = 0, which implies that x ∈ CA, and conse-

quently x /∈ CcA. Also, since µA(x) > νA(x), it holds

that:

µAc(x) = νA(x) < µA(x) = νAc(x),

so x /∈ CAc .

On the other hand, if νA(x) > µA(x), following a

similar reasoning we obtain that x ∈ CcA and x ∈ CAc ,

so we conclude that CcA(x) = CAc(x). ut

From the second item, we deduce that when µA(x) 6=
νA(x), µCAc (x) = νCA

(x) and νCAc (x) = µCA
(x).

The second item of Proposition 2 is graphically ex-

plained in Figure 4. As it can be seen in the left-side

panel, when µA(x) > νA(x), CA(x) and CAc(x) are just

the opposite, so CcA(x) = CAc(x). On the other hand,

note that the second item requires µA(x) 6= νA(x). The

reason is that if µA(x) = νA(x) holds, as in the right-

side panel, the closest crisp set to A and Ac in x coincide

as is equal to µCA
(x) = 1, νCA

(x) = 0. That is why con-

dition µA(x) 6= νA(x) is required in the second item of

the Proposition 2.

A(x)

0 1

1

CA(x)

CAc (x)

Ac(x)

0

1

CA(x) = CAc (x)

A(x) = Ac(x)

Fig. 4: Graphical representation of the second item in Propo-
sition 2. In this figure, A(x) and Ac(x) represent the pairs
(µA(x), νA(x)) and (νA(x), µA(x)), respectively.

So far we have investigated the properties of the

closest crisp set to an AIFS. Now, we use this notion to

define an SK-entropy in terms of local AIF-divergences.

Recall that the aim of an SK-entropy is to measure how

different is an AIFS from a crisp set. Therefore, it seems

reasonable to measure the entropy of an AIFS as the

AIF-divergence between such AIFS and its closest crisp

set. Note that, when comparing A ∈ AIFS(X) with CA
by means of a local AIF-divergence D induced by the

function hIF, the domain of hIF is no longer D, but

D1 = {(x, y, 1, 0) ∈ D | x ≥ y}
∪ {(x, y, 0, 1)) ∈ D | x < y}. (4)

For this, only the conditions imposed on hIF in the next

theorem need to be satisfied in the domain D1.

Theorem 3 Consider a local AIF-divergence D induced

by a function hIF, and define E : AIFS(X)→ [0, 1] by:

E(A) = D(A,CA)

=
1

n

∑
x∈X

hIF(µA(x), νA(x), µCA
(x), νCA

(x))

for any A ⊆ X. Then, E is an SK-entropy if and only if

function hIF satisfies the following additional properties

on D1:

(AIF-loc.1’) hIF(u1, u2, v1, v2) = 0 for (u1, u2, v1, v2) ∈
D1 if and only if u1 = v1, u2 = v2.

(AIF-loc.5) hIF(u1, u2, v1, v2) = hIF(u2, u1, v2, v1) for

any (u1, u2, v1, v2) ∈ D1 such that u1 6= u2.

(AIF-loc.6) hIF(u1, u2, v1, v2) = 1 for (u1, u2, v1, v2) ∈
D1 if and only if u1 = u2 = 0 and v1 = 1, v2 = 0.

Proof Let us first prove that if hIF satisfies these addi-

tional properties, then E is an SK-entropy.

(ISK1) : E(A) = 0 if and only if for any x ∈ X:

hIF(µA(x), νA(x), µCA
(x), νCA

(x)) = 0.
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According to (AIF-loc.1’), this is equivalent to µA(x) =

µCA
(x) and νA(x) = νCA

(x), which from Proposition 2

happens if and only if A is a crisp set.

(ISK2′) : E(A) = 1 if and only if

hIF(µA(x), νA(x), µCA
(x), νCA

(x)) = 1

for any x ∈ X. From (AIF-loc.6), this happens if and

only if (u1, u2, v1, v2) = (0, 0, 1, 0), which is equivalent

to µA(x) = 0 and νA(x) = 0, that is, if and only if

πA(x) = 1 for any x ∈ X.

(ISK3) : In order to check that E(A) = E(Ac), it

is enough to check whether the following equality holds

for any x ∈ X:

hIF(µA(x), νA(x), µCA
(x), νCA

(x))

= hIF(µAc(x), νAc(x), µCAc (x), νCAc (x)).

On the one hand, if µA(x) 6= νA(x), from Proposition 2,

CcA(x) = CAc(x), and therefore:

hIF(µA(x), νA(x), µCA
(x), νCA

(x))

= hIF(νA(x), µA(x), νCA
(x), µCA

(x))

= hIF(µAc(x), νAc(x), µCAc (x), νCAc (x)),

where the first equality follows from property (AIF-

loc.5). On the other hand, if µA(x) = νA(x), it trivially

holds that

hIF(µA(x), νA(x), 1, 0) = hIF(νA(x), µA(x), 1, 0).

(ISK4) : Assume that µB(x) < νB(x) and µA(x) ≤
µB(x) < νB(x) ≤ νA(x), which implies that µCA

(x) =

µCB
(x) = 0 and νCA

(x) = νCB
(x) = 1. Define the

following AIFSs on {x} by:

A∗ = 〈(x, µA(x), νA(x))〉, B∗ = 〈(x, µB(x), νB(x))〉,
N = 〈(x, 0, 1)〉.

It holds that N ⊆ A∗ ⊆ B∗, and therefore from Equa-

tion (1), D(A∗, N) ≤ D(B∗, N), which implies that

hIF(µA(x), νA(x), µCA
(x), νCA

(x))

= hIF(µA(x), νA(x), 1, 0)

≤ hIF(µB(x), νB(x), 1, 0)

= hIF(µB(x), νB(x), µCB
(x), νCB

(x)).

On the other hand, assume µB(x) ≥ νB(x) and νA(x) ≤
νB(x) ≤ µB(x) ≤ µA(x), which implies that µCA

(x) =

µCB
(x) = 1 and νCA

(x) = νCB
(x) = 0.

Now define the following AIFSs on {x}:

A∗ = 〈(x, µA(x), νA(x))〉, B∗ = 〈(x, µB(x), νB(x))〉
M = 〈(x, 1, 0)〉.

It holds that B∗ ⊆ A∗ ⊆M , which implies, from Equa-

tion (1), that D(B∗,M) ≥ D(A∗,M), and therefore

hIF(µA(x), νA(x), µCA
(x), νCA

(x))

= hIF(µA(x), νA(x), 0, 1)

≤ hIF(µB(x), νB(x), 0, 1)

= hIF(µB(x), νB(x), µCB
(x), νCB

(x)).

We conclude that if hIF satisfies the additional condi-

tions, E is an SK-entropy.

On the other hand, assume that E is an SK-entropy.

We need to prove that hIF satisfies the additional con-

ditions.

(AIF− loc.1′) : Take (u1, u2, v1, v2) ∈ D1, and de-

fine the AIFS A on {x} by A = 〈(x, u1, u2)〉. Note that:

E(A) = hIF(u1, u2, v1, v2).

Hence, from (ISK1), it holds that

E(A) = hIF(u1, u2, v1, v2) = 0

if and only if A is a crisp set, which from Proposition 2

is equivalent to A = CA. For this equality, it must hold

that either u1 = 1 and u2 = 0, which in turn implies

that v1 = 1 and v2 = 0, or u1 = 0 and u2 = 1, which

implies that v1 = 0 and v2 = 1. In both cases, we

conclude that hIF(u1, u2, v1, v2) = 0 if and only if u1 =

v1 and u2 = v2.

(AIF− loc.5) : Take (u1, u2, v1, v2) ∈ D1, and de-

fine the AIFS A on {x} by A = 〈(x, u1, u2)〉. It holds

that:

E(A) = hIF(u1, u2, v1, v2).

Let us assume that u1 6= u2. This means that Ac =

〈(x, u2, u1)〉 and, from the second item in Proposition 2,

CcA = CAc . Hence:

E(Ac) = hIF(u2, u1, v2, v1).

Finally, from (ISK3), E(A) = E(Ac), and we deduce

that hIF(u1, u2, v1, v2) = hIF(u2, u1, v2, v1).

(AIF− loc.6) : Take (u1, u2, v1, v2) ∈ D1, and de-

fine the AIFS A on {x} by A = 〈(x, u1, u2)〉. Then, it

holds that:

E(A) = hIF(u1, u2, v1, v2).

Therefore, hIF(u1, u2, v1, v2) = 1 if and only if E(A) =

1, which from (ISK2′), is equivalent to u1 = u2 = 0 and

v1 = 1, v2 = 0.

We conclude that if E is an SK-entropy, hIF must

satisfy the additional conditions. ut
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In [?] we have shown how an AIF-divergence could

be built from a divergence for fuzzy sets. In particular,

given a divergence D for fuzzy sets and a component-

wise increasing function f : [0, 1] × [0, 1] → [0, 1] satis-

fying f(0, 0) = 0, the function

DAIF(A,B) = f(D(µA, µB), D(νA, νB))

for any A,B ∈ AIFS(X) is an AIF-divergence, where

µA, νA, µB , νB are considered as fuzzy sets [?, Prop. 4.7].

Furthermore, if D is local, DAIF is local if and only if

f(x, y) = αx+ βy for some α, β ≥ 0 [?, Prop. 5.2].

Following a similar reasoning, we can define an SK-

entropy using a local divergence for fuzzy sets, just im-

posing some additional conditions on f and on the fuzzy

divergence. For this, we consider the following domain

where the function hFS will be defined:

D2 =
{

(x, y) | y = 1
}
∪
{

(x, y) | x ≤ 1

2
, y = 0

}
.

Proposition 3 Consider a local divergence D for fuzzy

sets induced by the function hFS and let f : [0, 1] ×
[0, 1)→ [0, 1] be a function satisfying

(f1) f(u, v) = 0 if and only if u = v = 0.

(f2) f is component-wise increasing.

(f3) f(u, v) = 1 if and only if u = 1 and v = 0.

(f4) f(u, v) = f(u, v).

Then, the function E defined by:

E(A) =
1

n

∑
x∈X

f
(
hFS(µA(x), µCA

(x)),

hFS(νA(x), νCA
(x))

)
(5)

is an SK-entropy if and only if hFS satisfies the follow-

ing additional conditions in D2:

(loc.1’) For (u, v) ∈ D2, hFS(u, v) = 0 if and only if

u = v;

(loc.4) For (u, v) ∈ D2, hFS(u, v) = 1 if and only if

u = 0, v = 1.

Proof First of all, assume that hFS satisfies the addi-

tional conditions and let us prove that E is an SK-

entropy.

(ISK1) : E(A) = 0 if and only if

f
(
hFS(µA(x), µCA

(x)), hFS(νA(x), νCA
(x))

)
= 0

for any x ∈ X. From (f1), f(u, v) = 0 if and only if

u = v = 0, which is equivalent to

hFS(µA(x), µCA
(x)) = hFS(νA(x), νCA

(x)) = 0,

but from (loc.1’) this happens if and only if µA(x) =

µCA
(x) and νA(x) = νCA

(x), which from Proposition 2

is equivalent to A = CA, so A is a crisp set.

(ISK2′) : E(A) = 1 if and only if

f
(
hFS(µA(x), µCA

(x)), hFS(νA(x), νCA
(x))

)
= 1

for any x ∈ X. From (f3), this happens if and only if

hFS(µA(x), µCA
(x)) = 1 and hFS(νA(x), νCA

(x)) = 0.

Also, from (loc.4) it holds that hFS(u, v) = 1 if and

only if u = 0, v = 1. However, this happens if and only

if µA(x) = 0 and µCA
(x) = 1, which is equivalent to

νA(x) = 0.

(ISK3) : In order to prove E(A) = E(Ac), we will

see that:

f
(
hFS(µA(x), µCA

(x)), hFS(νA(x), νCA
(x))

)
= f

(
hFS(µAc(x), µCAc (x)), hFS(νAc(x), νCAc (x))

)
for any x ∈ X. First of all, since µAc(x) = νA(x) and

νAc(x) = µA(x), we only need to prove that:

f
(
hFS(µA(x), µCA

(x)), hFS(νA(x), νCA
(x))

)
= f

(
hFS(νA(x), µCAc (x)), hFS(µA(x), νCAc (x))

)
. (6)

If µA(x) = νA(x), this means that µCA
(x) = µCAc (x) =

1 and νCA
(x) = νCAc (x) = 0, which implies that the

equality in Equation (6) holds.

Assume now that µA(x) 6= νA(x). From Proposi-

tion 2, CcA(x) = CAc(x), which means that µCA
(x) =

νCAc (x) and νCA
(x) = µCAc (x). Also, note that µA(x) =

νAc(x) and νA(x) = µAc(x). Using these facts, as well

as property (f4), it holds that:

f
(
hFS(µA(x), µCA

(x)), hFS(νA(x), νCA
(x))

)
= f

(
hFS(νAc(x), νCAc (x)), hFS(µAc(x), µCAc (x))

)
= f

(
hFS(µAc(x), µCAc (x)), hFS(νAc(x), νCAc (x))

)
= f

(
hFS(νA(x), µCAc (x)), hFS(µA(x), νCAc (x))

)
.

(ISK4) : Assume that µA(x) ≤ µB(x) < νB(x) ≤
νA(x). In this case, it holds that µCA

(x) = µCB
(x) = 0

and νCA
(x) = νCB

(x) = 1. By the property (loc.3) of

hFS, it follows that:

hFS(µA(x), 0) ≤ hFS(µB(x), 0) and

hFS(νA(x), 0) ≤ hFS(νB(x), 0),

and by (f2), it follows that

f
(
hFS(µA(x), µCA

(x)), hFS(νA(x), νCA
(x))

)
= f

(
hFS(µA(x), 0), hFS(νA(x), 1)

)
≤ f

(
hFS(µB(x), 0), hFS(νB(x), 1)

)
= f

(
hFS(µB(x), µCB

(x)), hFS(νB(x), νCB
(x))

)
.

Assume now that νA(x) ≤ νB(x) ≤ µB(x) ≤ µA(x),

which implies that µCA
(x) = µCB

(x) = 1 and νCA
(x) =
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νCB
(x) = 0. Using the property (loc.3) of hFS, it holds

that:

hFS(µA(x), 1) ≤ hFS(µB(x), 1) and

hFS(νA(x), 0) ≤ hFS(νB(x), 0).

Also, (f2) implies that:

f
(
hFS(µA(x), µCA

(x)), hFS(νA(x), νCA
(x))

)
= f

(
hFS(µA(x), 1), hFS(νA(x), 0)

)
≤ f

(
hFS(µB(x), 1), hFS(νB(x), 0)

)
= f

(
hFS(µB(x), µCB

(x)), hFS(νB(x), νCB
(x))

)
.

On the other hand, let us now assume that E is an SK-

entropy and we prove that f and hFS must satisfy the

additional conditions.

(loc.1′) : On the one hand, take (u, v) ∈ D2 such

that v = 1, and define the AIFS A on {x} by A =

〈(x, u, 0)〉. Then, CA(x) = 1, hence:

E(A) = f
(
hFS(u, 1), hFS(0, 0)

)
.

Also, from (ISK1), E(A) = 0 if and only if A is a crisp

set, which by Proposition 2 is equivalent to A = CA.

This holds if and only if u = 1. Finally, E(A) = 0 is

equivalent to:

f
(
hFS(u, 1), hFS(0, 0)

)
= 0,

but from (f1) this happens if and only if hFS(u, 1) =

hFS(0, 0) = 0. We therefore conclude that u = 1 if and

only if hFS(u, 1) = 0.

On the other hand, take (u, v) ∈ D2 such that v = 0

and define the AIFS A on {x} such that A = 〈(x, 1 −
u, u)〉. Note that since (u, 0) ∈ D2, this implies that

u ≤ 1
2 , or equivalently, 1 − u ≥ 1

2 . Then, CA(x) = 1,
hence:

E(A) = f
(
hFS(1− u, 1), hFS(u, 0)

)
.

Now, from (ISK1), E(A) = 0 if and only if A is a crisp

set, which by Proposition 2 is equivalent to A = CA.

This happens if and only if u = 0. Finally, E(A) = 0 is

equivalent to

f
(
hFS(1− u, 1), hFS(u, 0)

)
= 0,

but from (f1) this happens if and only if hFS(1−u, 1) =

hFS(u, 0) = 0. We conclude that u = 0 if and only if

hFS(u, 0) = 0.

(loc.4) : First of all, take (u, v) = (0, 1) ∈ D2 and

define the AIFS A on {x} by A = 〈(x, 0, 0)〉. From

(ISK2′):

E(A) = f
(
hFS(0, 1), hFS(0, 0)

)
= 1.

However, using (f3), this happens if and only if hFS(0, 1) =

1 and hFS(0, 0) = 0. We conclude that hFS(0, 1) = 1.

On the other hand, let us see that if hFS(u, v) = 1,

it must hold that u = 0, v = 1. First of all, assume that

(u, v) ∈ D2 such that v = 0 and hFS(u, v) = 1. This

means that u < 1−u. Let us define the AIFS A on {x}
by A = 〈(x, u, 1 − u)〉. Using the definition of E and

(f2), it holds that:

E(A) = f
(
hFS(u, 0), hFS(1− u, 1)

)
= f(1, hFS(1− u, 1)) ≥ f(1, 0) = 1,

where the last equality follows from (f3). We conclude

that E(A) = 1. However, from (ISK2′) this is equivalent

to u = 1− u = 0, a contradiction.

Therefore, take (u, v) ∈ D2 such that v = 1, and

define the AIFS A on {x} by A = 〈(x, u, 0)〉. Then, it

holds that:

E(A) = f
(
hFS(u, 1), hFS(0, 0)

)
= f(hFS(u, 1), 0),

where the last equality follows from (loc.1). Now, from

(f3), f(hFS(u, 1), 0) = 1 if and only if hFS(u, 1) = 1.

However, from (ISK2′), E(A) = 1 if and only if u = 0.

Therefore, we conclude that u = 0 and hFS(u, 1) = 1

are equivalent when v = 1. ut

Remark 1 Note that in the previous result, the domain

of the function f is [0, 1] × [0, 1). The reason for not

including the value 1 in the second component is that

hFS(νA(x), νCA
(x)) cannot take the value 1: according

to (loc.4), hFS(u, v) = 1 if and only if u = 0, v = 1,

but this would mean that νA(x) = 0 and νCA
(x) = 1, a

contradiction, because νA(x) = 0 implies that µA(x) ≥
νA(x) and therefore νCA

(x) = 0.

3.3 Examples of SK-entropies based on

AIF-divergences

In the literature, several different measures of compar-

ison have been introduced. In an earlier work [?, Sec-

tion III-C] we showed some examples of local AIF-diver-

gences, like the Hamming [?] and Hausdorff [?] dis-

tances, denoted by lAIF and dH , respectively, and the

two measures proposed by Hong & Kim [?]2, denoted

by DC and DL. In this subsection we consider these

four local AIF-divergences and we investigate whether

they satisfy the conditions of Theorem 3 and can there-

fore be used to define a SK-entropy. Recall that these

2 The original definition of DC and DL is slightly different
from those of Equations (9) and (10). The difference is that
in [?], DC was divided by 2 and DL by 4, instead of 2. In
this paper, we consider the definitions of Equations (9) and
(10) just to make DC and DL to satisfy the normalization
property mentioned in Subsection 2.3.
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AIF-divergences are defined by:

lAIFS(A,B) =
1

2n

∑
x∈X
|µA(x)− µB(x)|

+ |νA(x)− νB(x)|+ |πA(x)− πB(x)|. (7)

dH(A,B) = (8)

1

n

∑
x∈X

max
{
|µA(x)− µB(x)|, |νA(x)− νB(x)|

}
.

DC(A,B) =
1

n

∑
x∈X
|µA(x)− µB(x)|

+ |νA(x)− νB(x)|. (9)

DL(A,B) =
1

2n

∑
x∈X
|µA(x)− νA(x)− µB(x) + νB(x)|

+ |µA(x)− µB(x)|+ |νA(x)− νB(x)|. (10)

In the next example we show that both the Hamming

and Hausdorff distances satisfy the conditions of The-

orem 3 and, surprisingly, they both induce the same

SK-entropy. On the contrary, we show that the Hong

and Kim divergences do not induce a SK-entropy.

Example 1 Consider first the Hamming and Hausdorff

distances defined in Equations (7) and (8), and let us

see that their associated functions, that will be denoted

by hl and hd, satisfy the conditions of Theorem 3. First

of all, note that the functions hl and hd inducing the

Hamming and Hausdorff distances are given by:

hl(u1, u2, v1, v2) =
1

2

(
|u1 − v1|+ |u2 − v2|

+ |u1 + u2 − v1 − v2|
)
.

hd(u1, u2, v1, v2) = max{|u1 − v1|, |u2 − v2|}.

Also:

hl(u, v, 1, 0) =
1

2

(
(1− u) + v + (1− u− v)

)
= 1− u.

hl(u, v, 0, 1) =
1

2

(
u+ (1− v) + (1− u− v)

)
= 1− v.

hd(u, v, 1, 0) = max{1− u, v} = 1− u.
hd(u, v, 0, 1) = max{u, 1− v} = 1− v.

Therefore, we can see that hl and hd coincide in D1.

Now, let us prove that hl, and consequently also hd,

satisfies the required properties:

(AIF− loc.1′) hl(u, v, 1, 0) = 0 if and only if 1 −
u = 0, or equivalently, if and only if u = 1. But also, u =

1 is equivalent to v = 0, because u + v ≤ 1. Similarly,

hl(u, v, 0, 1) = 0 if and only if 1−v = 0, or equivalently,

if and only if v = 1. But this is equivalent to u = 0

because u+ v ≤ 1.

(AIF− loc.5) In [?, Section IV], we have proven

that hl is symmetric.

(AIF− loc.6) Finally, hl(u, v, 1, 0) = 1 if and only

if u = 0, but this can only happen if and only if v = 0.

On the other hand, hl(u, v, 0, 1) = 1 is not possible,

because this would mean that v = 0, but in that case

we would compare (u, v) with (1, 0), not with (0, 1).

We conclude that both hl and hd satisfy the ad-

ditional conditions of Theorem 3, so each of lAIF and

dH induces an SK-entropy. Furthermore, since hl = hd
in the domain D1 we are considering in the definition

of the entropy, we conclude that they induce the same

SK-entropy.

Once that we know that they both induce a SK-

entropy, let us see that the SK-entropy they induce co-

incide and it is given by:

E(A) = 1− 1

n

∑
x∈X

max
{
µA(x), νA(x)

}
. (11)

On the one hand, if µA(x) ≥ νA(x), µCA
(x) = 1, νCA

(x) =

0 so:

hl(µA(x), νA(x), µCA
(x), νCA

(x))

= hl(µA(x), νA(x), 1, 0) = 1− µA(x).

On the other hand, if µA(x) < νA(x), µCA
(x) = 0,

νCA
(x) = 1, and then:

hl(µA(x), νA(x), µCA
(x), νCA

(x))

= hl(µA(x), νA(x), 0, 1) = 1− νA(x).

Substituting this values, we obtain the following:

E(A) =
1

n

 ∑
x|µA(x)≥νA(x)

1− µA(x)

+
∑

x|µA(x)<νA(x)

1− νA(x)


= 1− 1

n

 ∑
x|µA(x)≥νA(x)

µA(x)

+
∑

x|µA(x)<νA(x)

νA(x)


= 1− 1

n

∑
x∈X

max
{
µA(x), νA(x)

}
.ut

Let us now see that the local AIF-divergences of

Hong and Kim defined in Equations (9) and (10) do

not satisfy the conditions of Theorem 3. It can be easily

seen that the functions hC and hL associated with DC



Entropy Measures for Atanassov intuitionistic fuzzy sets based on divergence 11

and DL, respectively, are given by:

hC(u1, u2, v1, v2) = |u1 − v1|+ |u2 − v2|.

hL(u1, u2, v1, v2) =
1

2

(
|u1 − u2 − v1 + v2|

+ |u1 − v1|+ |u2 − v2|
)
.

However, these functions do not satisfy one of the condi-

tions of Theorem 3 because for α = µA(x) = νA(x) > 0,

it happens that µCA
(x) = 1, νCA

(x) = 0 and:

hC(µA(x), νA(x), µCA
(x), νCA

(x)) = hC(α, α, 1, 0) = 1,

but α 6= 0. Therefore, neither hC nor hD satisfies (AIF-

loc.6), and then we conclude that neither DC nor DL

induces an SK-entropy.

Next example shows that the SK-entropy defined by

Guo and Song [?] by:

E(A) =
1

n

∑
x∈X

(1− |µA(x)

− νA(x)|) ·
(

2− µA(x)− νA(x)

2

)
can also be defined as in Theorem 3 through a local

AIF-divergence.

Example 2 Consider now the function D given for any

A,B ∈ AIFS(X) by:

D(A,B) =
1

n

∑
x∈X

(
|µA(x)− µB(x)|+

|νA(x)− νB(x)|
)
·
(

1 + |πA(x)− πB(x)|
2

)
.

It can be easily proven that this function is a local AIF-

divergence with associated function:

hIF(u1, u2, v1, v2) =
(
|u1 − v1|

+ |u2 − v2|
)
·
(

1 + |u1 + u2 − v1 − v2|
2

)
.

The function hIF also satisfies the additional conditions

of Theorem 3, hence it induces an SK-entropy. Note

that when u ≥ v, we obtain:

hIF(u, v, 1, 0) = (1− u+ v) ·
(

2− u− v
2

)
,

while for u < v, we obtain:

hIF(u, v, 0, 1) = (1− v + u) ·
(

2− u− v
2

)
.

Therefore, the SK-entropy induced by D is given by:

E(A) =
1

n

( ∑
x|µA(x)≥νA(x)

(
1− µA(x)

+ νA(x)
)
·
(

2− µA(x)− νA(x)

2

)
+

∑
x|µA(x)<νA(x)

(1 + µA(x)

− νA(x)) ·
(

2− µA(x)− νA(x)

2

))

=
1

n

∑
x∈X

(1− |µA(x)

− νA(x)|) ·
(

2− µA(x)− νA(x)

2

)
.

To conclude the section, let us see two examples of SK-

entropies built using the procedure of Proposition 3.

Example 3 Consider the Hamming distance for fuzzy

sets, which is defined for any A,B ∈ AIFS(X) by:

lFS(A,B) =
1

n

∑
x∈X
|µA(x)− µB(x)|, (12)

where µA and µB denote the membership function of

two fuzzy sets A and B. The Hamming distance for

fuzzy sets is known to be a local divergence for fuzzy

sets, and its associated function h is given by h(u, v) =

|u − v|. This function h satisfies the additional con-

ditions required in Proposition 3. On the one hand,

h(u, v) = 0 if and only if u = v = 0; on the other hand,

h(u, v) = |u − v| = 1 if and only if either u = 1, v = 0

or u = 0, v = 1. However, (u, v) = (1, 0) /∈ D2. Hence,

h(u, v) = 1 for (u, v) ∈ D2 if and only if u = 0, v = 1.

Also, we consider the function f given by f(u, v) =

u+v−uv, which is usually called the product t-conorm

(see [?] for details in t-norms and t-conorms). As any

t-conorm, f satisfies conditions (f1), (f2) and (f4). Also,

since f is the t-conorm associated with a strict t-norm

(algebraic product), it also satisfies (f3)3.

Therefore, applying Proposition 3 we can define an

SK-entropy by using Equation (5). Note that, if µA(x) ≥
νA(x), µCA

(x) = 1, νCA
(x) = 0, and it holds that:

f
(
h(µA(x),µCA

(x)), h(νA(x), νCA
(x))

)
= f

(
h(µA(x), 1), h(νA(x), 0)

)
= f

(
1− µA(x), νA(x)

)
= 1− µA(x) + νA(x)− (1− µA(x))νA(x)

= (1− µA(x))(1− νA(x)) + νA(x).

3 Recall that any t-conorm f satisfies f(u, v) = 1 if and
only if either u = 1 or v = 1. However, remember that in the
statement of Proposition 3 we are restricting the domain of f
to the set [0, 1]× [0, 1), hence f(u, v) = 1 if and only if u = 1.
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Also, if µA(x) < νA(x), µCA
(x) = 0, νCA

(x) = 1, and

then:

f
(
h(µA(x),µCA

(x)), h(νA(x), νCA
(x))

)
= f

(
h(µA(x), 0), h(νA(x), 1)

)
= f

(
µA(x), 1− νA(x)

)
= 1− νA(x) + µA(x)− (1− νA(x))µA(x)

= (1− µA(x))(1− νA(x)) + µA(x).

Therefore, the SK-entropy defined using Equation (5)

is given by:

E(A)

=
1

n

 ∑
x|µA(x)≥νA(x)

(1− µA(x))(1− νA(x)) + νA(x)

+
∑

x|µA(x)<νA(x)

(1− µA(x))(1− νA(x)) + µA(x)


=

1

n

∑
x∈X

(1− µA(x))(1− νA(x)) + min{µA(x), νA(x)}.

Example 4 Consider again the Hamming distance for

fuzzy sets defined on Equation (12) and take now the

function f given by f(u, v) = max{u, v}. This function

is also a t-conorm satisfying (f1) to (f4), so using the

Hamming distance for fuzzy sets and the maximum t-

conorm, we can apply Proposition 3 to define an SK-

entropy. Let us note that for µA(x) ≥ νA(x), µCA
(x) =

1, νCA
(x) = 0, so:

f
(
h(µA(x),µCA

(x)), h(νA(x), νCA
(x))

)
= f

(
h(µA(x), 1), h(νA(x), 0)

)
= max{1− µA(x), νA(x)} = 1− µA(x),

and if µA(x) < νA(x), µCA
(x) = 0, νCA

(x) = 1, there-

fore:

f
(
h(µA(x),µCA

(x)), h(νA(x), νCA
(x))

)
= f

(
h(µA(x), 0), h(νA(x), 1)

)
= max{µA(x), 1− νA(x)} = 1− νA(x).

However, taking Example 1 into account, the SK-entropy

that we can define using the Hamming distance for

fuzzy sets and the maximum t-conorm coincides with

the SK-entropy defined from the Hamming and Haus-

dorff distances for AIFSs, given in Equation (11).

4 BB-entropies

We now investigate other type of entropies, those mea-

suring how different is an AIFS from being a fuzzy

set. For this aim we consider the definition of entropy

given by Burrillo and Bustince in [?], and we investi-

gate whether we can define an entropy using local AIF-

divergences.

4.1 Burrillo and Bustince’s entropy

To the best of our knowledge, the first proposal of en-

tropy for AIFSs was introduced by Burrillo and Bustince

in [?].

Definition 5 ([?]) A mapping I : AIFS(X)→ [0, 1] is

called entropy if it satisfies the following properties:

(IBB1) I(A) = 0 if and only if A ∈ FS(X).

(IBB2) I(A) = 1 if and only if µA = νA = 0.

(IBB3) I(A) = I(Ac).

(IBB4) I(A) ≥ I(B) if µA ≤ µB and νA ≤ νB .

This type of entropies measures how intuitionistic is an

AIF, or in other words, how different is an AIF from a

fuzzy set. The first property (IBB1) says that the en-

tropy is zero if, and only if, the hesitation index is zero,

or equivalently, if and only if the AIFS is a fuzzy set.

(IBB2) says that the entropy is maximal if and only

if the hesitation index is 1, which means that there is

a total lack of information. The third condition says

that the entropy is closed under complementaries, while

(IBB4) means that the greater the hesitation index, the

greater the entropy.

In what follows, a function I satisfying properties

(IBB1) to (IBB4) will be called a BB-entropy.

4.2 BB-entropies based on local AIF-divergences

Our aim is now to define BB-entropies using local AIF-

divergences, in a similar manner as we did in Subsec-

tion 3.2. For this, we define closest fuzzy set to an AIFS.

Definition 6 Given A ∈ AIFS(X), we define the clos-

est fuzzy set to A, denoted by A∗, by µA∗(x) = µA(x)+
πA(x)

2 .

It can be easily seen that 1− µA∗(x) = νA(x) + πA(x)
2 ,

and the interpretation of A∗ can be seen in Figure 5.

In this figure, the fuzzy sets are those elements that

belong to the line from (1,0) to (0,1). In order to define

the closest fuzzy set to an AIFS, we find the point of

the shortest distance of the point (µA(x), νA(x)) to the

(0, 1)− (1, 0) line. This results in an equal distribution

of the hesitation index into the membership and non-

membership values.

Now, we will define the BB-entropy of an AIFS as

the AIF-divergence between the AIFS and its closest



Entropy Measures for Atanassov intuitionistic fuzzy sets based on divergence 13

νA(x)

µA(x) 1

1

νA∗ (x)

µA∗ (x)

Fig. 5: Closest fuzzy set to an AIFS.

fuzzy set. Therefore, the domain of the function hIF
associated with the local AIF-divergence D will be

D3 =

{(
u, v,

1 + u− v
2

,
1 + v − u

2

)
| u+ v ≤ 1

}
.

Theorem 4 Consider a local AIF-divergence D with

associated function hIF, and define the function I by:

I(A) = D(A,A∗) (13)

=
1

n

∑
x∈X

hIF(µA(x), νA(x), µA∗(x), 1− µA∗(x)).

Then, I is a BB-entropy if and only if hIF satisfies the

following additional properties:

(AIF-loc.1”) For (u, v, 1+u−v2 , 1+v−u2 ) ∈ D3, it holds

that hIF(u, v, 1+u−v2 , 1+v−u2 ) = 0 if and only if u +

v = 1.

(AIF-loc.7) The function h∗ defined by

h∗(u, v) = hIF

(
u, v,

1 + u− v
2

,
1 + v − u

2

)
,

for u + v ≤ 1, is symmetric and decreasing in both

u and v.

(AIF-loc.8) hIF(u, v, 1+u−v2 , 1+v−u2 ) = 1 for u + v ≤ 1

if and only if u = v = 0.

Proof (IBB1) : By definition, I(A) = 0 if and only if

hIF(µA(x), νA(x), µA∗(x), 1 − µA∗(x)) = 0 for any x ∈
X, but from (AIF-loc.1”) this is equivalent to µA(x) +

νA(x) = 1 for any x ∈ X, or in other words, A is a

fuzzy set.

(IBB2) : By definition, I(A) = 1 if and only if

hIF(µA(x), νA(x), µA∗(x), 1− µA∗(x)) = 1

for any x ∈ X, and by (AIF-loc.8) this is equivalent to

µA(x) = νA(x) = 0 for any x ∈ X.

(IBB3) : In order to prove that I(A) = I(Ac), it is

enough to realize that, by (AIF-loc.7), it holds that:

hIF(µA(x), νA(x), µA∗(x), 1− µA∗(x))

= hIF(νA(x), µA(x), µAc∗(x), 1− µAc∗(x)),

and that

µAc∗(x) = µAc(x) +
πAc(x)

2

= νA(x) +
πA(x)

2
= νA∗(x).

νAc∗(x) = νAc(x) +
πAc(x)

2

= µA(x) +
πA(x)

2
= µA∗(x).

(IBB4) : Assume that µA(x) ≤ µB(x) and νA(x) ≤
νB(x). Then:

hIF(µA(x), νA(x), µA∗(x), 1− µA∗(x))

= hIF

(
µA(x), νA(x),

1 + µA(x)− νA(x)

2
,
1 + νA(x)− µA(x)

2

)
≥ hIF

(
µB(x), νA(x),

1 + µB(x)− νA(x)

2
,
1 + νA(x)− µB(x)

2

)
≥ hIF

(
µB(x), νB(x),

1 + µB(x)− νB(x)

2
,
1 + νB(x)− µB(x)

2

)
= hIF (µB(x), νB(x), µB∗(x), 1− µB∗(x)) ,

where the inequalities follows from (AIF-loc.7).

On the other hand, assume that I is a BB-entropy

and let us prove that hIF satisfies the additional condi-

tions.

(AIF-loc.1”): Take u, v such that u + v ≤ 1, and

define the AIFS A on {x} by A = 〈(x, u, v)〉. Then, it

holds that:

I(A) = hIF

(
u, v,

1 + u− v
2

,
1 + v − u

2

)
,

but from (IBB1), I(A) = 1 if and only if u = v = 0.

(AIF-loc.7): Let us prove that h∗ is symmetric.

Take u, v such that u+v ≤ 1, and define A = 〈(x, u, v)〉.
From (IBB3), it holds that:

h∗(u, v) = hIF

(
u, v,

1 + u− v
2

,
1 + v − u

2

)
= I(A) = I(Ac)

= hIF

(
v, u,

1 + v − u
2

,
1 + u− v

2

)
= h∗(v, u).

Let us now see that h∗ is decreasing in the first compo-

nent. Take u1, u2, v such that u1 ≤ u2 and u2 + v ≤ 1
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and define the AIFSs A,B on {x} by A = 〈(x, u1, v)〉
and B = 〈(x, u2, v)〉. Then, from (IBB4) it holds that:

h∗(u1, v) = hIF

(
u1, v,

1 + u1 − v
2

,
1 + v − u1

2

)
= I(A) ≥ I(B)

= hIF

(
u1, v,

1 + u2 − v
2

,
1 + v − u2

2

)
= h∗(u2, v).

With a similar reasoning we can proof that h∗ is also

decreasing in the second component.

(AIF-loc.7): Take u, v such that u + v ≤ 1, and

define the AIFS A on {x} by A = 〈(x, u, v)〉. Then:

I(A) =

(
u, v,

1 + u− v
2

,
1 + v − u

2

)
,

but from (IBB2), I(A) = 1 if and only if u = v = 0. ut

There is an alternative way of defining a BB-entropy us-

ing AIF-divergences. This second approach is based on

the comparison of the AIFS A with the fuzzy sets A+,

with membership function µA+(x) = µA(x), and A−,

with membership function µA−(X) = νA(x). We first

compute the AIF-divergence between A and A+ and

between A and A−, and then aggregating both values.

The fuzzy set, A+ and A−, along with their associated

AIFS, A, are graphically shown in Figure 6.

νA(x)

µA(x) 1

1

A+

A−

Fig. 6: Graphical representation of the definition of the sets
A+ and A−.

For the next result, the domain D4 of the function

hIF is given by:

D4 = {(u, v, u, 1−u) | u+v ≤ 1}∪{(u, v, 1−v, v) | u+v ≤ 1}.

Proposition 4 Consider a local AIF-divergence D with

associated function hIF satisfying the following addi-

tional properties on D4:

(AIF-loc.1”’) hIF(u1, u2, v1, v2) = 0 for (u1, u2, v1, v2) ∈
D4 if and only if u1 + u2 = 1.

(AIF-loc.5) hIF(u1, u2, v1, v2) = hIF(u2, u1, v2, v1) for

any (u1, u2, v1, v2) ∈ D4.

(AIF-loc.9) hIF(u, v, u, 1−u) and hIF(u, v, 1−v, v) are

decreasing in both u and v, for u+ v ≤ 1.

(AIF-loc.10) hIF(u1, u2, v1, v2) = 1 for (u1, u2, v1, v2) ∈
D4 if and only if u1 = u2 = 0.

Consider also a function f : [0, 1] × [0, 1] → [0, 1] such

that

(f1) f(u, v) = 0 if and only if u = v = 0.

(f2) f is component-wise increasing.

(f5) f(u, v) = 1 if and only if u = v = 1.

(f6) f(u, v) = f(v, u).

The function I : AIFS(X)→ [0, 1] defined by:

I(A) =
1

n

∑
x∈X

f
(
hIF(µA(x), νA(x), µA(x), 1− µA(x)),

hIF(µA(x), νA(x), 1− νA(x), νA(x))
)

(14)

is a BB-entropy.

Proof (IBB1) : I(A) = 0 if and only if

f
(
hIF(µA(x), νA(x), µA(x), 1− µA(x)),

hIF(µA(x), νA(x), 1− νA(x), νA(x))
)

= 0

for any x ∈ X. From (f1), I(A) = 0 is equivalent to

hIF(µA(x), νA(x), µA(x), 1− µA(x)) = 0

and

hIF(µA(x), νA(x), 1− νA(x), νA(x)) = 0,

which by (AIF-loc.1”’) is equivalent to µA(x)+νA(x) =

1 for any x ∈ X, or equivalent, if A is a fuzzy set.

(IBB2) : I(A) = 1 if and only if

f
(
hIF(µA(x), νA(x), µA(x), 1− µA(x)),

hIF(µA(x), νA(x), 1− νA(x), νA(x))
)

= 1,

for any x ∈ X. Also, from (f5), I(A) = 1 is equivalent

to

hIF(µA(x), νA(x), µA(x), 1− µA(x)) = 1

and

hIF(µA(x), νA(x), 1− νA(x), νA(x)) = 1,

which by (AIF-loc.10) holds if and only if µA(x) =

νA(x) = 0 for any x ∈ X.
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(IBB3) : In order to check the equality I(A) = I(Ac),

we only need to prove that

f
(
hIF(µA(x), νA(x), 1− µA(x), νA(x)),

hIF(µA(x), νA(x), 1− νA(x), µA(x))
)

=

f
(
hIF(µAc(x), νAc(x), µAc(x),

1− µAc(x)), hIF(µAc(x), νAc(x), 1− νAc(x), νAc(x))
)

for any x ∈ X. For this, note that from (AIF-loc.5), it

holds that:

hIF(µAc(x), νAc(x), µAc(x), 1− µAc(x))

= hIF(νA(x), µA(x), νA(x), 1− νA(x))

= hIF(µA(x), νA(x), 1− νA(x), νA(x)).

hIF(µAc(x), νAc(x), 1− νAc(x), νAc(x))

= hIF(νA(x), µA(x), 1− µA(x), µA(x))

= hIF(µA(x), νA(x), νA(x), 1− µA(x)).

Therefore, taking (f6) into account, it holds that:

f
(
hIF(µA(x), νA(x), µA(x), 1− µA(x)),

hIF(µA(x), νA(x), 1− νA(x), νA(x))
)

= f
(
hIF(µAc(x), νAc(x), 1− νAc(x), νAc(x)),

hIF(µAc(x), νAc(x), µAc(x), 1− µAc(x))
)

= f
(
hIF(µAc(x), νAc(x), µAc(x), 1− µAc(x)),

hIF(µAc(x), νAc(x), 1− νAc(x), νAc(x))
)
.

(IBB4) : Take A,B ∈ AIFS(X) such that µA ≤ µB
and νA ≤ νB . By property (AIF-loc.9), it holds that:

hIF(µA(x),νA(x), µA(x), 1− µA(x))

≥ hIF(µB(x), νA(x), µB(x), 1− µB(x))

≥ hIF(µB(x), νB(x), µB(x), 1− µB(x)).

hIF(µA(x),νA(x), 1− νA(x), νA(x))

≥ hIF(µB(x), νA(x), 1− νA(x), nuA(x))

≥ hIF(µB(x), νB(x), 1− νB(x), νB(x)).

Therefore, using (f2) we conclude that:

f
(
hIF(µA(x), νA(x), µA(x), 1− µA(x)),

hIF(µA(x), νA(x), 1− νA(x), νA(x))
)
≥

f
(
hIF(µB(x),νB(x), µB(x), 1− µB(x)),

hIF(µB(x), νB(x), 1− νB(x), νB(x))
)
.

Then, I(A) ≥ I(B). ut

At a first glance, one may think that the converse

implication in the previous proposition also holds. That

is, given a function f satisfying (f1), (f2), (f5) and (f6),

and I defined as in Equation (14), then I is a BB-

entropy, if and only if, hIF satisfies properties (AIF-

loc.1”’), (AIF-loc.5), (AIF-loc.9) and (AIF-loc.10). How-

ever, as next example shows, the equivalence cannot be

guaranteed.

Example 5 Consider the function D given by:

D(A,B) =
1

n

∑
x∈X
|µA(x)− µB(x)|+ |νA(x)− νB(x)|2.

This function is a local AIF-divergence whose associ-

ated function hIF is given by:

hIF(u1, u2, v1, v2) = |u1 − v1|+ |u2 − v2|2.

Applying Equation (14) to this function hIF, I(A) is

given by:

I(A)

=
1

n

∑
x∈X

f
(
|µA(x)− µA(x)|+ |1− µA(x)− νA(x)|2,

|µA(x)− 1 + νA(x)|+ |νA(x)− νA(x)|2
)

=
1

n

∑
x∈X

f
(
|1− µA(x)− νA(x)|2, |1− µA(x)− νA(x)|

)
=

1

n

∑
x∈X

f
(
πA(x)2, πA(x)

)
. (15)

Consider the function f : [0, 1]× [0, 1]→ [0, 1] given by

f(x, y) = x+y
2 , which satisfies (f1), (f2), (f5) and (f6).

Substituting in Equation (15), we obtain the following:

I(A) =
1

n

∑
x∈X

πA(x) + πA(x)2

2

=
1

2n

∑
x∈X

πA(x)(1 + πA(x)).

This function is a BB-entropy:

(IBB1) : I(A) = 0 if and only if πA(x)(1+πA(x)) =

0 for any x ∈ X, but this is equivalent to π(A) = 0 for

any x ∈ X, so A is a fuzzy set.

(IBB2) : I(A) = 1 if and only if 1
2πA(x)(1+πA(x)) =

1 for any x ∈ X, but this is equivalent to πA(x) = 1 for

any x ∈ X, so µA = νA = 0.

(IBB3) : Trivially, I(A) = I(Ac) holds.

(IBB4) : Take µA ≤ µB and νA ≤ νB . This implies

that νA ≥ νB , and therefore πA(1 + πA) ≥ πB(1 + πB),

which implies that I(A) ≥ I(B).

We conclude that I is a BB-entropy. However, the

function hIF does not satisfy property (AIF-loc.5): take

(0.6, 0.1, 0.6, 0.4), (0.1, 0.6, 0.4, 0.6) ∈ D4. It holds that:

hIF(0.6, 0.1, 0.6, 0.4) = |0.6− 0.6|+ |0.1− 0.4|2 = 0.09.

hIF(0.1, 0.6, 0.4, 0.6) = |0.1− 0.4|+ |0.6− 0.6|2 = 0.3.

Since both values do not coincide, hIF does not satisfy

property (AIF-loc.5).
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We conclude that the sufficient conditions given in Propo-

sition 4 are not necessary.

4.3 Examples of BB-entropies based on

AIF-divergences

We consider again the four local AIF-divergences de-

fined in Subsection 3.3, the Hamming and Hausdorff

distances lAIF , dH and the AIF-divergences defined by

Hong and Kim DC , DL. In order to make them to sat-

isfy the normalization properties mentioned in Subsec-

tion 2.3, in this section we consider also d∗H , which is

defined by d∗H = 2dH . We first apply Theorem 4 to

these four local AIF-divergences.

Proposition 5 Consider the AIF-divergences lAIF , d∗H ,

DC and DL. They satisfy the conditions of Theorem 4,

so they induce a BB-entropy. Also, the BB-entropies

they induce coincide and it is given by:

I(A) =
1

n

∑
x∈X

πA(x). (16)

Proof First of all, let us see that h1, h2 and h3 coincide

in the domain D3:

h1

(
u, v,

1 + u− v
2

,
1 + v − u

2

)
=

1

2

(∣∣∣∣1− u− v2

∣∣∣∣+

∣∣∣∣1− u− v2

∣∣∣∣+ |1− u− v|
)

= 1− u− v.

h2

(
u, v,

1 + u− v
2

,
1 + v − u

2

)
= 2 max

{
1− u− v

2
,

1− u− v
2

}
= 1− u− v.

h3

(
u, v,

1 + u− v
2

,
1 + v − u

2

)
=

∣∣∣∣1− u− v2

∣∣∣∣+

∣∣∣∣1− u− v2

∣∣∣∣ = 1− u− v.

h4

(
u, v,

1 + u− v
2

,
1− u+ v

2

)
=

1

2

(∣∣∣∣u− 1 + u− v
2

− v +
1− u+ v

2

∣∣∣∣
+

∣∣∣∣1− u− v2

∣∣∣∣+

∣∣∣∣1− u− v2

∣∣∣∣) = 1− u− v.

Thus, we see that all hl, hd∗, hC , hL coincide in D3.

Now, let us see that they satisfy the conditions on The-

orem 4.

(AIF− loc.1′′) : It holds that:

hl

(
u, v,

1 + u− v
2

,
1− u+ v

2

)
= 1− u− v = 0

if and only if u+ v = 1.

(AIF− loc.7) : h∗l (u, v) = 1 − u − v, so obviously

h∗l is symmetric and decreasing in both u, v.

(AIF− loc.8) : It holds that:

hl

(
u, v,

1 + u− v
2

,
1− u+ v

2

)
= 1− u− v = 1

if and only if u = v = 0.

Therefore, hl, hd∗, hC , all satisfy the conditions of

Theorem 4, so each of Hamming and Hausdorff dis-

tances andDC , DL, induces a BB-entropy measure. Fur-

thermore, since hl, hd∗, hC , hL coincide in D3, all of

them induce the same BB-entropy. Using Equation (13),

we obtain the following formula:

I(A) =
1

n

∑
x∈X

h(µA(x), νA(x), µA∗(x), 1− µA∗(x))

=
1

n

∑
x∈X

πA(x).ut

The BB-entropy obtained in the previous proposition

has already been proposed by [?] and used in other

papers like [?].

Let us now apply the procedure described in Propo-

sition 5 to the four local AIF-divergences. As next re-

sult shows, the four measures induce again the same

BB-entropy.

Proposition 6 Consider the four local AIF-divergences

lAIF , dH , DC , DL and a function f : [0, 1] × [0, 1] →
[0, 1] satisfying properties (f1), (f5) and (f6). Then, these

four local AIF-divergences satisfy the conditions of Propo-

sition 5, so then each of them induces a BB-entropy.

Indeed, they induce the same BB-entropy, given by:

I(A) =
1

n

∑
x∈X

f(πA(x), πA(x)).

Proof First of all, let us see that h1, h2, h3, h4 coincide

in D4 and that they take the value 1− u− v.

hl(u, v, u, 1− u)

=
1

2
(|u− u|+ |1− u− v|+ |1− u− v|)

= 1− u− v.
hd∗(u, v, u, 1− u) = max{|u− u|, |1− u− v|}

= 1− u− v.
hC(u, v, u, 1− u) = |u− u|+ |1− u− v| = 1− u− v.
hL(u, v, u, 1− u)

=
1

2

(
|u− u− (1− u) + v|+ |u− u|+ |1− u− v|

)
= 1− u− v.
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Similarly, it can be seen that:

hl(u, v, 1− v, v) = hd∗(u, v, 1− v, v)

= hC(u, v, 1− v, v) = hL(u, v, 1− v, v) = 1− u− v.

Next we shows that they satisfy the conditions on Propo-

sition 5:

(AIF− loc.1′′′) : hl(u, v, u, 1−u) = hl(u, v, 1−v, u) =

1− u− v = 0 if and only if u+ v = 1.

(AIF− loc.5) : hl is trivially symmetric in the do-

main D4 since both hl(u, v, u, 1−u) and hl(u, v, 1−v, v)

coincide and take the value 1− u− v.

(AIF− loc.9) : Again, since

hl(u, v, u, 1− u) = hl(u, v, 1− v, v) = 1− u− v,

so it is always decreasing in both u and v.

(AIF− loc.10) : hl(u, v, u, 1−u) = hl(u, v, 1−v, v) =

1− u− v = 1 if and only if u = v = 0.

We can see that hl, and in a similar manner also

hd∗, hC , hL, satisfy the properties of Proposition 5, and

therefore they define a BB-entropy which is given by:

I(A) =
1

n

∑
x∈X

f
(
hl(µA(x), νA(x), µA(x), 1− µA(x)),

hl(µA(x), νA(x), 1− νA(x), νA(x))
)

=
1

n

∑
x∈X

f(πA(x), πA(x)).ut

If we consider the particular functions:

f1(u, v) =
√
u · v, f2(u, v) = 1− (1−

√
u · v)k,

f3(u, v) =
1

e

√
u · v · e

√
u·v,

where k is an integer, we obtain the following BB-

entropies:

I1(A) =
1

n

∑
x∈X

πA(x).

I2(A) =
1

n

∑
x∈X

(1− (1− πA(x))k).

I3(A) =
1

en

∑
x∈X

πA(x)eπA(x).

The former has already been obtained in Proposition 6,

while the second and the third were already presented

as examples of BB-entropies in [?].

5 Knowledge Measures

In a recent paper [?], the notion of knowledge measure

was introduced by Guo. The aim of this measure is

to quantify the amount of knowledge conveyed by an

AIFS.

Definition 7 ([?]) A mapping K : AIFS(X) → [0, 1]

is called a knowledge measure if K has the following

properties:

(KP1) K(A) = 1 if and only if A is crisp.

(KP2) K(A) = 0 if and only if πA = 1.

(KP3) K(Ac) = K(A).

(KP4) K(A) ≥ K(B) if µA(x) ≤ µB(x) < νB(x) ≤
νA(x) or νA(x) ≤ νB(x) ≤ µB(x) ≤ µA(x) for any

x ∈ X.

We can simply notice that a knowledge measure is noth-

ing but the complementary of an SK-entropy: K is a

knowledge measure if and only if E = 1 −K is a SK-

entropy. In this way, we can simply adapt our results

from Section 3 to build knowledge measures using lo-

cal AIF-divergences. For instance, we can easily write

Theorem 3 in terms of knowledge measures:

Corollary 1 Consider a local AIF-divergence D with

associated function hIF, and define the function K by:

K(A) = 1−D(A,CA)

= 1− 1

n

∑
x∈X

hIF(µA(x), νA(x), µCA
(x), νCA

(x))

for any A ∈ AIFS(X). Then, K is a knowledge measure

if and only if hIF satisfies the conditions (AIF-loc.1’),

(AIF-loc.5) and (AIF-loc.6).

The proof is analogous to that of Theorem 3 and there-

fore, omitted. Also, we can adapt the other results from

this section, as well as, the examples given in Subsec-

tion 3.3, which give rise to the following knowledge mea-

sures:

K1(A) =
1

n

∑
x∈X

max{µA(x), νA(x)}.

K2(A) = 1− 1

n

∑
x∈X

(
1− |µA(x)

− νA(x)|
)(2− µA(x)− νA(x)

2

)
.

K3(A) = 1− 1

n

∑
x∈X

(
(1− µA(x))(1− νA(x))

+ min{µA(x), νA(x)}
)
.

K1 is a knowledge measure that can be built using the

Hamming and Hausdorff distances. K2 is a knowledge
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measure already mentioned in [?,?], while K3 is another

knowledge measure that can built using the Hamming

distance for fuzzy sets as we did in Example 3.

6 Application to multi-attribute group decision

making

In this section we present an application of our results in

a multi-attribute decision making (MADM, for short)

problem. In detail, we continue with the approach given

in [?, Section 6], where knowledge measures were used

to obtain the weights of the experts.

First of all, let us introduce the main notations. In

MADM problems, there are a number of alternatives

X = {x1, . . . , xn} and A = {a1, . . . , am} are the at-

tributes with a weight vector w = (w1, . . . , wm). The

alternatives are evaluated by some experts e1, . . . , el.

Their evaluations of the alternatives are given as IFSs

in a matrix form: S(k) is a n × m matrix such that

s
(k)
i,j = 〈xi, µ(k)

i,j , ν
(k)
i,j 〉 denotes the IFS that represents

the evaluation of the expert k of the alternative xi on

the attribute aj .

In [?], Nguyen used knowledge measures to deter-

mine weight vector for the experts, following these steps:

– Step 1: For each expert ek, we compute the indi-

vidual overall evaluation values of alternative xi by

using the following intuitionistic fuzzy weighted av-

eraging operator [?]:

z
(k)
i =

〈
xi, 1−

5∏
j=1

(
1− µ(k)

i,j

)wj
,

m∏
j=1

(
ν
(k)
i,j

)wj

〉
,

– Step 2: For each expert ek, we compute the knowl-

edge of its overall evaluation zi, denoted by K(z(k)).

– Step 3: We define the weights of the experts by nor-

malizing the values K(z(i)):

λk =
K(z(k))∑l
i=1K(z(i))

.

From our comments in Section 5 we deduce that his ap-

proach is made in terms of SK-entropies, which means

that it determines the weights of experts by measuring

the lack of information of any expert about whether

the alternative is adequate or not. Then, the smaller

the lack of information, the greater the weight. How-

ever, as we have explained before, we could also use

BB-entropies instead of SK-entropies to measure the

indecision of the experts.

Hence, we propose to modify the previous procedure

as follows:

– Step 2*: Let us fix a local AIF-divergence and the

SK- and BB-entropies it defines, denoted by ESK
and EBB . For each expert ek, we compute the SK-

and BB-entropy of its overall evaluation: ESK(z(k))

and EBB(z(k)).

– Step 3*: We define the weight of each expert by

normalizing the entropies:

αk =
1− ESK(z(k))∑l

i=1(1− 1− ESK(z(k)))
,

βk =
1− EBB(z(k))∑l

i=1(1− 1− EBB(z(k)))
.

Once that we have obtained these values, we can pro-

ceed as follows:

1. The weights αk are computed by measuring the lack

of information of any expert about whether the al-

ternative is adequate or not. Then, the weight de-

creases as the lack of information decreases.

2. The weights βk are computed by measuring the de-

termination of the experts, in the sense that the

smaller indeterminacy of the expert, the closer is

s
(k)
i,j to be a crisp set, so the greater the weight.

Our framework includes the approach of Nguyen [?] as

a particular case, just following the first interpretation

and taking into account our comments in Section 5.

We next apply this approach in the following exam-

ple, which first appeared in [?, Example 4].

Example 6 Consider the MADM problem that consists
in choosing an air-conditioning system between three
alternatives x1, x2, x3. In order to take the decision,
five attributes are analyzed: good quality (a1), easiness
to operate (a2), being economical (a3), good service
(a4) and price (a5), where their weight vector is w =
(0.2, 0.299, 0.106, 0.156, 0.239). Three experts e1, e2, e3
evaluate the alternatives and they give the following
IFSs:

S(1) =

 〈0.8, 0.1〉 〈0.7, 0.1〉 〈0.7, 0.2〉 〈0.9, 0〉 〈0.5, 0.4〉〈0.7, 0.1〉 〈0.8, 0.2〉 〈0.6, 0.4〉 〈0.7, 0.1〉 〈0.4, 0.6〉
〈0.8, 0.2〉 〈0.9, 0.1〉 〈0.7, 0〉 〈0.7, 0.2〉 〈0.5, 0.5〉


S(2) =

 〈0.9, 0.1〉 〈0.8, 0.1〉 〈0.7, 0〉 〈0.9, 0.1〉 〈0.7, 0.3〉〈0.7, 0.2〉 〈0.8, 0.1〉 〈0.9, 0.1〉 〈0.7, 0.3〉 〈0.7, 0.2〉
〈0.7, 0.1〉 〈0.9, 0〉 〈0.8, 0〉 〈0.8, 0.2〉 〈0.3, 0.6〉


S(3) =

 〈0.8, 0〉 〈0.7, 0.1〉 〈0.9, 0〉 〈0.8, 0.1〉 〈0.6, 0.4〉
〈0.8, 0.2〉 〈0.7, 0.3〉 〈0.8, 0.1〉 〈0.9, 0.1〉 〈0.3, 0.6〉
〈0.9, 0.1〉 〈0.8, 0〉 〈0.8, 0.1〉 〈0.9, 0〉 〈0.4, 0.5〉



Using Step 2, the individual overall evaluation of the

experts are given by:

z1 = 〈(x1, 0.737, 0), (x2, 0.677, 0.219), (x3, 0.775, 0)〉.
z2 = 〈(x1, 0.82, 0), (x2, 0.701, 0.217), (x3, 0.7625, 0)〉.
z3 = 〈(x1, 0.752, 0), (x2, 0.727, 0.245), (x3, 0.797, 0)〉.
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Now, consider the Hamming distance lAIFS , and the

SK- and BB-entropies they induce, denoted by ESK
and EBB , which were computed in Eqs. (11) and (16).

Then, following Step 2* we obtain the following values:

z1 z2 z3
ESK(zi) 0.271 0.239 0.241

EBB(zi) 0.204 0.167 0.160

Thus, following Step 3*, we obtain the final weight vec-

tors:

α = (0.324, 0.339, 0.337), β = (0.322, 0.338, 0.340).

Let us compare the two obtained weight vectors. On the

one hand, the weight vector α is given in terms of the

amount of knowledge of the experts. This means that

expert e2 has a slightly greater weight than e3, and the

least informative expert is e1. On the other hand, the

weight vector β is given in terms of the determination

of each expert. With respect to this second approach,

e3 is the most determined expert, so she has a slightly

greater weight than e2 and e1.

Finally, if we want to take into account the amount

of information of the experts, we shall use the weights

αk, while if we want to take into account the determi-

nation of the experts, we shall use the weights βk. If

we want to take into account both points of view, we

could aggregate both weights by means of any appro-

priate combination. In any case, we have to notice that

both weights come from the same divergence measure,

so they have a common starting point and they are re-

lated in all the cases.

As soon as we determine the weights, we can use the

usual procedures from MADM to determine which is

the most adequate alternative.

7 Conclusions

In the framework of AIFSs, two different ways of defin-

ing entropies can be found in the literature. On the one

hand, Szmidt and Kacprzyk define entropy as a mea-

sure of how far an AIFS is from a fuzzy set; on the

other hand, Burrillo and Bustince define entropy as a

measure of how far an AIFS is from its closest fuzzy

set.

In this paper, we have used local AIF-divergence

measures, which are functions that measure how differ-

ent two AIFSs are, to define both types of entropies.

In the framework of Szmidt and Kacprzyk, we have de-

fined the closets crisp set to an AIFS and then we have

defined the SK-entropy as the AIF-divergence between

an AIFS and its closest crisp set. In the framework of

Bustince and Burrillo, we have defined its closest fuzzy

set, and then we have defined the BB-entropy as the

AIF-divergence between the AIFS and its closest fuzzy

set.

In both approaches, we have studied the properties

that must be imposed in the AIF-divergence to guar-

antee that they define either a SK-entropy or a BB-

entropy. We have also seen that the usual examples

of SK- and BB-entropies can be obtained using local

AIF-divergences. Finally, we have also seen that SK-

entropies and knowledge measures are equivalent, so we

can also apply our results to define knowledge measures

using local AIF-divergences.

As a future research, we aim to apply entropies and

knowledge measures defined from AIF-divergence mea-

sures in image processing, as was done in [?,?], or to

pattern recognition, as was done in [?,?].
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