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Abstract. We investigate the problem of approximating a coherent
lower probability on a finite space by a 2-monotone capacity that is
at the same time as close as possible while not including additional
information. We show that this can be tackled by means of a linear
programming problem, and investigate the features of the set of undom-
inated solutions. While our approach is based on a distance proposed
by Baroni and Vicig, we also discuss a number of alternatives: quadratic
programming, extensions of the total variation distance, and the Weber
set from game theory. Finally, we show that our work applies to the
more general problem of approximating coherent lower previsions.
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1. Introduction

Since they were thoroughly studied by Peter Walley in [29] as an exten-
sion of Bruno de Finetti’s work on subjective probability [9], coherent lower
previsions have been considered one of the most general approaches to deal
with imprecision and uncertainty.

They possess a number of advantages: first of all, they can be represented
equivalently as closed and convex sets of probability measures, and as such
they can be given an epistemic interpretation as a model for the imprecise
knowledge of a probability measure. Moreover, the representation of these
sets in terms of lower and upper envelopes allows for a number of math-
ematical advantages, for instance in the extension of the assessments to a
greater domain.

Secondly, they can also be given a clear behavioural interpretation in
terms of acceptable betting rates, thus extending de Finetti’s approach to
be able to deal with indecision, something that arises frequently in cases
where the available knowledge is imprecise.

Thirdly, they include as particular cases most of the models of non-
additive measures that have been proposed in the literature, such as prob-
ability intervals [7], belief functions [25] or possibility measures [14]. It is
thus possible to work with these particular models using all the machinery
that has already been developed for coherent lower previsions.

In spite of these advantages, coherent lower previsions (or their restric-
tions to events, called coherent lower probabilities) also have a number of
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drawbacks that hinder their use in practice: for instance, they have no gen-
eral easy representation in terms of the extreme points of their associated
sets of probabilities, and they sometimes lack some attractive mathematical
properties possessed by some more specific models.

One alternative that somewhat solves these issues while being sufficiently
general is to work with 2-monotone capacities, which can be easily deter-
mined on finite spaces by means of a finite number of extreme points [26]
and that still include as particular cases many of the imprecise probabil-
ity models from the literature [1]. It is therefore interesting to determine
if we can approximate a coherent lower probability by a 2-monotone one
with a minimal loss of information. This problem was already considered by
Bronevich and Augustin in [3], and they gave two algorithms that provide
an outer approximation that is optimal in the sense we shall discuss later
on.

Besides the above mentioned motivations, we stress that the approxima-
tion problem we are concerned with is relevant for practical purposes too. In
particular, it is related to the issue of how to exchange information among
agents adopting different uncertainty formalisms discussed e.g. in [2]. In
fact, it solves this problem in the case of a sending agent, or more gen-
erally an uncertainty interchange format common to an open community
of agents, operating with coherent imprecise probabilities, and a receiving
agent adopting 2-monotone probabilities or some special cases of theirs.

After recalling some preliminary concepts in Section 2, in Section 3 we
study the problem of finding undominated outer approximations that min-
imize the distance to the original model, in the sense proposed by Baroni
and Vicig in [2]. In Section 4, we focus on outer approximations by means
of some particular subfamilies of 2-monotone capacities and prove that this
problem has a unique solution in those cases. A comparison with other ap-
proaches is given in Section 5. In Section 6 we show that our results allow
to solve also the problem of outer approximating coherent lower previsions.
Finally, In Section 7 we take a brief look at the problem of finiding inner
approximations of a given coherent lower probability. Some additional com-
ments are provided in Section 8. In order to ease the reading, proofs, as well
as auxiliary lemmas, have been gathered in an appendix.

2. Preliminary concepts

Let X be a finite space with cardinality |X | = n and powerset P(X ). A
lower probability is a function P : K ⊆ P(X )→ [0, 1] defined on some subsets
(events) of X . Following Walley [29], a lower probability can be given a
behavioural interpretation, so that P (A) is our supremum acceptable betting
rate on event A (that is, the supremum amount of money we would pay for
a gamble with reward 1 when A occurs and 0 when it does not). On the
other hand, lower probabilities can also be given an epistemic interpretation,
in situations of imprecise knowledge about the probability of some events.
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Then the lower probability is understood as a lower bound of an ideal, but
unknown, probability measure, and our information about this measure can
be equivalently represented by means of the set of probability distributions
that are compatible with the information given by P . This set is called
credal set, and it is defined by:

M(P ) = {P probability measure | P (A) ≥ P (A) ∀A ∈ K}. (1)

Some usual consistency requirements are imposed to lower probabilities.
One of the simplest is avoiding sure loss, which means that there is at least
one probability compatible with P , or equivalently, that M(P ) 6= ∅. A
stronger requirement is coherence, which means that the bounds P gives for
the probabilities of the different events are tight:

Definition 1. [29] A lower probability P : K ⊆ P(X ) → [0, 1] is called
coherent when P (A) = min{P (A) : P ∈M(P )} for every A ∈ K.

The conjugate of a lower probability P on K is the function P : Kc ⊆
P(X ) → [0, 1] given by P (A) = 1 − P (Ac) for every A ∈ Kc, where
Kc = {Ac | A ∈ K}. P is called an upper probability, and P (A) can be
understood as an upper bound for the unknown probability of A, or, un-
der the behavioural interpretation, as the infimum betting rate against A.
The conjugacy relation implies that the credal set given in Eq. (1) can be
equivalently represented by:

M(P ) = {P probability | P (A) ≤ P (A) ∀A ∈ Kc}.
In addition, P is coherent if and only if P (A) = maxP∈M(P ) P (A) for every
A ∈ Kc.

Throughout this paper, we shall consider conjugate and coherent lower
and upper probabilities P , P . Moreover, we shall assume that they are
defined on the power set P(X ). This assumption entails no loss of generality,
since coherent models on a proper subset of P(X ) can always be extended
to the power set by means of the notion of natural extension (see [29] for
more details):

P (A) = min{P (A) : P ∈M(P )} ∀A ⊆ X
P (A) = max{P (A) : P ∈M(P )} ∀A ⊆ X .

If P , P are coherent and conjugate on P(X ), they satisfy the following prop-
erties [29, Section 2.7.4]:

(C1) 0 ≤ P (A) ≤ P (A) ≤ 1 for every A ⊆ X .
(C2) P (A) ≤ P (B) and P (A) ≤ P (B) for every A,B ⊆ X such that

A ⊆ B.
(C3) P (A ∪B) ≤ P (A) + P (B) for every A,B ⊆ X .
(C4) P (A ∪B) ≥ P (A) + P (B) for every disjoint A,B ⊆ X .
(C5) P (A ∪B) ≤ P (A) + P (B) for every A,B ⊆ X .
(C6) P (A) + P (B) ≤ 1 + P (A ∩B) for every A,B ⊆ X .

One particular case of coherent lower probabilities are the 2-monotone ones.
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Definition 2. [5] A coherent lower probability P : P(X ) → [0, 1] is called
2-monotone if for every A,B ⊆ X it satisfies:

P (A ∪B) + P (A ∩B) ≥ P (A) + P (B). (2)

We denote by C2 the class of (coherent) 2-monotone lower probabilities de-
fined on P(X ).

The conjugate upper probability of a 2-monotone lower probability is
called 2-alternating, and it satisfies Eq. (2) with the reverse inequality.

Coherent 2-monotone lower probabilities are also referred to as 2-monotone
capacities, as we shall also often do, or sometimes called convex in the lit-
erature. They can be equivalently represented in terms of their Möbius
inverse.

Definition 3. Consider a 2-monotone lower probability P . Its Möbius in-
verse [25] mP : P(X )→ R is given by:

mP (A) =
∑
B⊆A

(−1)|A\B|P (B) ∀A ⊆ X ;

it holds that
P (A) =

∑
B⊆A

mP (B) ∀A ⊆ X . (3)

Conversely [4], a function mP : P(X )→ R satisfying
∑

A⊆X mP (A) = 1,

mP (∅) = 0, mP ({xi}) ≥ 0 for every xi ∈ X and∑
{xi,xj}⊆B⊆A

mP (B) ≥ 0, ∀A ⊆ X , ∀xi, xj ∈ A, xi 6= xj ,

determines a 2-monotone capacity by Eq. (3).
2-monotone capacities possess a number of interesting properties that are

not satisfied in general by coherent lower probabilities. For instance, the
extreme points of the credal set associated with a 2-monotone capacity can
be easily determined using the permutations of the possibility space [26];
moreover, they have a unique extension as an expectation operator that
preserves 2-monotonicity: their Choquet integral [8]. These properties shall
be discussed more deeply in Sections 5.3 and 6, respectively. For more
information on 2-monotonicity, we refer to [10, 11].

Taking this into account, and following an approach similar to the one
in [3], in this paper we shall investigate how to approximate a coherent
lower probability P by a 2-monotone capacity Q that at the same time (a)
introduces no new information; and (b) is as close as possible to the original
model.

The first constraint is modelled by requiring that the credal set deter-
mined by Q includes that of P , M(P ) ⊆M(Q), or in other words, that

Q(E) ≤ P (E) for every E ⊆ X . (4)

In that case, we shall say that Q is an outer approximation of P .
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With respect to the second constraint, one preliminary idea would be
to require Q to be undominated, in the sense that there is no other 2-

monotone capacity Q′ such that M(P ) ⊆ M(Q′) (M(Q). However, this
requirement alone does not determine a unique solution, as we will see later
on in Example 1, nor does it provide us with a tool to determine any 2-
monotone outer approximation, either.

The set of undominated outer approximations was studied by Bronevich
and Augustin in [3], under the name Pareto optimal approximations. In
particular, they showed [3, Lemma 1] that any undominated outer approx-
imation of P in C2 can be obtained as a convex combination of extreme
undominated outer approximations, and provided a theoretical characteri-
zation of the undominated outer approximations. However, it is still an open
problem to determine whether the set of undominated outer approximations
is convex.

In the remainder of this paper, we focus on how to obtain undominated
outer approximations of a coherent lower probability in the class C2 using
different approaches, mainly through linear programming. Also, we study
how to outer approximate a coherent lower probability using some subclasses
of interest.

3. Approximations by linear programming

One way of determining an optimal outer approximation is to consider
those outer approximations Q of the coherent lower probability P that min-
imize the distance proposed by Baroni and Vicig in [2], given by

d(P ,Q) :=
∑
E⊆X

(P (E)−Q(E)). (5)

If we interpret P (E) − Q(E) as the additional imprecision introduced on
E when replacing P (E) with Q(E), then d(P ,Q) has the meaning of total
imprecision added by the outer approximation Q. Measuring the additional
imprecision by d(P ,Q) appears natural, given that the imprecision of an
uncertainty evaluation on an event E is usually measured in the same linear
scale by P (E)−P (E) [29, Section 2.7.2] (see also the final part of Section 5.1
for further comments).

To solve the minimization problem, we determine Q through its Möbius
inverse mQ, by means of Eq. (3), and consider thus the following linear
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programming problem:

min d(P ,Q) (LP-2monot)

subject to:∑
E⊆X

mQ(E) = 1, mQ(∅) = 0. (LP-2monot.1)

∑
{xi,xj}⊆B⊆E

mQ(B) ≥ 0, ∀E ⊆ X , ∀xi, xj ∈ E, xi 6= xj . (LP-2monot.2)

mQ({xi}) ≥ 0, ∀xi ∈ X . (LP-2monot.3)∑
B⊆E

mQ(B) ≤ P (E) ∀E 6= ∅,X . (LP-2monot.4)

In fact, (LP-2monot.2) characterizes 2-monotonicity of Q via its Möbius
inverse mQ [4, Corollary 2], while (LP-2monot.3) ensures that Q is also

1-monotone and non-negative [4, Proposition 1]; (LP-2monot.1) is only a
normalization condition. Finally, (LP-2monot.4) implements condition (4)
taking into account that mQ determines Q by means of Eq. (3)1.

The feasible region of this linear programming problem is non-empty: it
suffices to take into account that the vacuous lower probability

Q
v
(E) =

{
0 if E 6= X ,
1 if E = X ,

(6)

is a 2-monotone [23, Theorem 1] outer approximation of any coherent lower
probability.

Moreover, the linear programming problem above has an optimal solution
by means of Weierstrass’ theorem. To see this, note that

(i) d(P ,Q) =
∑

E⊆X (P (E)−
∑

B⊆EmQ(B)) is continuous on the vari-

ables mQ(B);

(ii) the feasible region is bounded, since by [15, Theorem 1] the values
of mQ are bounded when Q belongs to C2; and

(iii) it is closed, being a polyhedral set in R2n .

Operationally, the linear programming problem we are considering involves
2n + n+ 2n−2

(
n
2

)
different constraints:

• 2 in (LP-2monot.1);
•
∑
{xi,xj}⊆X :xi 6=xj |{A ⊇ {xi, xj}}| =

∑
xi 6=xj∈X 2n−2 = 2n−2

(
n
2

)
in

(LP-2monot.2);
• n in (LP-2monot.3); and
• 2n − 2 in (LP-2monot.4).

Thus, the problem becomes computationally hard to solve for large cardinal-
ities of X . This issue is intrinsic with the nature of imprecise probabilities:

1The constraints (LP-2monot.1)–(LP-2monot.3) were also considered in [6, Thm. 1]
when studying the problem of the consistency with 2-monotone coherent risk measures.
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due to their non-additivity, fixing the values of Q on any xi ∈ X is not
enough to determine Q on P(X ), and exponentially many further argu-
ments may be needed. This will be one of the motivations behind our study
of particular cases in Section 4.

Given this, our first result tells us that any solution of the linear program-
ming problem is undominated:

Proposition 1. Let P be a coherent lower probability, and let Q be an
optimal solution of the linear programming problem (LP-2monot). Then, Q
is an undominated outer approximation of P in C2.

Not surprisingly, the linear programming problem (LP-2monot) may not
have a unique solution:

Example 1. Consider X = {x1, x2, x3, x4} and let P be the coherent lower
probability that is the lower envelope of the probability measures with mass
functions P1 = (0.5, 0.5, 0, 0), P2 = (0, 0, 0.5, 0.5). It is given by:

P (A) =


0 if |A| = 1 or A = {x1, x2}, {x3, x4}
1 if A = X
0.5 otherwise.

To see that P is not 2-monotone, note that, given A = {x1, x3} and B =
{x2, x3},

P (A ∪B) + P (A ∩B) = 0.5 < 1 = P (A) + P (B). (7)

To see that (LP-2monot) may have more than one solution, note that, if Q
is a 2-monotone outer approximation of P , it must satisfy

Q({x1, x3}) +Q({x2, x3}) ≤ Q({x1, x2, x3}) +Q({x3}).

Also, since Q is an outer approximation of P , it holds that:

Q({x1, x2, x3}) +Q({x3}) ≤ P ({x1, x2, x3}) + P ({x3}) = 0.5.

Taking Eq. (7) into account, the last equation can be written as:

Q({x1, x2, x3}) +Q({x3}) ≤ 0.5 = P ({x1, x3}) + P ({x2, x3})− 0.5.

Hence, any 2-monotone outer approximation Q must satisfy

P ({x1, x3}) + P ({x2, x3})−Q({x1, x2, x3})−Q({x3}) ≥ 0.5,

whence

P ({x1, x3}) + P ({x2, x3})−Q({x1, x3})−Q({x2, x3}) ≥ 0.5. (8)

Following a similar reasoning, Q must also satisfy:

P ({x1, x4}) + P ({x2, x4})−Q({x1, x2, x4})−Q({x4}) ≥ 0.5,

and therefore

P ({x1, x4}) + P ({x2, x4})−Q({x1, x4})−Q({x2, x4}) ≥ 0.5. (9)
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If we now combine Eqs. (8) and (9) we deduce that d(P ,Q) ≥ 1 for any
2-monotone outer approximation of P . This distance is attained, amongst
others, by the 2-monotone capacities Q

1
, Q

2
given by

Q
1
(A) =


0 if |A| = 1 or A = {x1, x2}, {x3, x4}
0.5 if |A| = 3

1 if A = X
0.25 otherwise,

and

Q
2
(A) =



0 if |A| = 1 or A = {x1, x2}, {x3, x4}
0.5 if |A| = 3

1 if A = X
0.2 if A = {x1, x4}, {x2, x3}
0.3 otherwise.

Their 2-monotonicity can easily be verified by means of Eq. (2). �

Since the feasible region of (LP-2monot) is bounded, the set of its optimal
solutions is convex. Thus, every convex combination of two undominated
optimal solutions of (LP-2monot) is still an undominated 2-monotone outer
approximation. Note that this does not imply that the set of all undomi-
nated outer approximations is convex: whether this is true or not is still an
open problem at present.

Obviously, if our initial model P is not 2-monotone, any undominated
2-monotone capacity that outer approximates P will not agree with P on
some event A. Interestingly, both models always agree on singletons, and
the same applies to their conjugate upper probabilities:

Proposition 2. Let P be a coherent lower probability with conjugate upper
probability P . If Q is an undominated 2-monotone capacity that outer ap-

proximates P , and Q denotes its conjugate upper probability, then Q({x}) =

P ({x}) and Q({x}) = P ({x}) for every x ∈ X . As a consequence, Q(A) =

P (A) and Q(A) = P (A) for every event A with |A| = n− 1.

As a consequence, both P , P and its undominated outer approximation
Q,Q induce the same order on X . This property may not extend to subfam-
ilies of 2-monotone capacities: it does, for the probability intervals studied
in Section 4.1; however, it is only partially satisfied by the ε-contamination
model studied in Section 4.3, where the property is only satisfied by P ,
and by the pari mutuel model we shall consider in Section 4.2, where the
property is only satisfied by P . More generally, the property ensured by
Proposition 2 is a special case of the (strict) preference preservation prin-
ciple, requiring the approximating uncertainty measure to preserve (strictly
or at least weakly) the ordering induced on P(X ) by the initial measure
[2]. Preference preservation is known to be hard to apply and conflicting
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with other approximation criteria, in general. It is therefore notable that
Proposition 2 guarantees preference preservation, at least on singletons and
their complements, without ever requiring it a priori.

In general, it may be that no solution of the linear programming problem
(LP-2monot) agrees with P on a fixed event A, as we shall see in Example 3
later on. We may overcome this issue simply by adding a constraint to the
linear programming problem (LP-2monot):

min d(P ,Q) (LP-2monot-A)

subject to:∑
E⊆X

mQ(E) = 1, mQ(∅) = 0. (LP-2monot.1)

∑
{xi,xj}⊆B⊆E

mQ(B) ≥ 0, ∀E ⊆ X , ∀xi, xj ∈ E, xi 6= xj . (LP-2monot.2)

mQ({xi}) ≥ 0, ∀xi ∈ X . (LP-2monot.3)∑
B⊆E

mQ(B) ≤ P (E) ∀E 6= ∅,X . (LP-2monot.4)

∑
B⊆A

mQ(B) = P (A). (LP-2monot-A.5)

The only difference with respect to (LP-2monot) is the additional condition
(LP-2monot-A.5), that guarantees that the lower probability Q associated
with mQ satisfies Q(A) = P (A).

The feasible region of the linear programming problem (LP-2monot-A)
is not empty either, because it includes the simple support function on A,
which is the 2-monotone lower probability Q given by

Q(E) =


P (A) if A ⊆ E ( X
1 if A = X
0 otherwise.

To see this, note that the mass function of Q is mQ(A) = P (A), mQ(X ) =

1 − P (A), mQ(E) = 0 otherwise, and that it satisfies all the constraints
in the linear programming problem above. Moreover, the same reasoning
as in (LP-2monot) allows us to conclude that (LP-2monot-A) has optimal
solutions. This immediately lets us deduce the following:

Proposition 3. Let P : P(X )→ [0, 1] be a coherent lower probability, and,
for each A ⊆ X denote by MA the set of optimal solutions of the linear
programming problem (LP-2monot-A). Then

P = max{Q : Q ∈ ∪A⊆XMA}.

In other words, the solutions of the linear programming problems allow
us to recover the initial coherent lower probability. In fact, a similar result
can be derived just taking into account that the feasible region of the linear
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programming problem (LP-2monot-A) is non-empty for every event A ⊆ X :
the simple support functions mentioned above also allow us to recover the
initial coherent lower probability.

Next, we prove that any optimal solution of (LP-2monot-A) is also an
undominated 2-monotone outer approximation of P .

Proposition 4. Let P be a coherent lower probability, and let Q be an
optimal solution of the linear programming problem (LP-2monot-A). Then,
Q is an undominated outer approximation of P in C2 and satisfies Q(A) =
P (A).

At this point, one may think that all the undominated outer approxima-
tions of P in C2 can be obtained as optimal solutions of either (LP-2monot)
or (LP-2monot-A) for some A. However, we shall show in Section 5.1 that
there are undominated outer approximations that are not optimal solutions
of any of the linear programming problems.

4. Particular cases

In this section, we investigate the outer approximations of a coherent lower
probability in some subfamilies of 2-monotone capacities: those associated
with probability intervals and certain distortion models. With the term
distortion model we refer to a model where an initial probability measure
P0 is modified in some sense. We summarize the relationship between the
different models considered in this paper in the following figure, where an
arrow between two nodes means that the model represented by the parent
is a particular case of its descendant:

Coherent

2-monotone

Probability interval

Pari mutuel model ε-contamination

4.1. Probability intervals. We begin by considering probability intervals,
which are imprecise probability models where only the lower and upper
probabilities of the singletons are specified [7]. Thus, a probability interval
is an n-tuple of intervals:

I = {[li, ui] | i = 1, . . . , n},

where [li, ui] is understood as the interval of possible values for the proba-
bility of xi. This n-tuple determines a credal set by:

M(I) = {P probability | li ≤ P ({xi}) ≤ ui, i = 1, . . . , n}.
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This set contains all the probability measures that comply with the con-
strains on singletons given in I. By taking lower and upper envelopes, this
credal set determines a lower and an upper probability:

l(A) = inf
P∈M(I)

P (A) and u(A) = sup
P∈M(I)

P (A) ∀A ⊆ X , (10)

and I is said coherent when l({xi}) = li and u({xi}) = ui for every i =
1, . . . , n. A necessary and sufficient condition for coherence is that∑

j 6=i
lj + ui ≤ 1 and

∑
j 6=i

uj + li ≥ 1 ∀i = 1, . . . , n.

In that case, l(A), u(A) can be computed for every A ⊆ X by:

l(A) = max

∑
xi∈A

li, 1−
∑
xi /∈A

ui

 and u(A) = min

∑
xi∈A

ui, 1−
∑
xi /∈A

li

 .

(11)
Moreover, when a probability interval is coherent, its lower probability l is
2-monotone [7, Proposition 5].

Let CPI denote the set of all the probability intervals on X . It is not hard
to prove that for CPI, there is a unique undominated outer approximation:

Proposition 5. Let P be a coherent lower probability on P(X ) with conju-
gate upper probability P . Define the probability interval I by:

I = {[li, ui] = [P ({xi}), P ({xi})] | i = 1, . . . , n}, (12)

and denote by l, u the lower and upper probability it induces by means of
Eq. (10). Then, I is a coherent probability interval and l is the unique
undominated outer approximation of P associated with CPI.

We can deduce from this result that the undominated outer approximation
of P associated with CPI also preserves the order that P establishes on
singletons.

4.2. Pari mutuel models. We next consider the pari mutuel model [19, 24,
29] (PMM, for short). This is a betting scheme originated in horse racing.
It is determined by two elements: a probability measure P0 and a distortion
factor δ > 0. For every event A of P(X ), P0(A) is interpreted as a fair prize
for a bet on A, and δ > 0 denotes the loading of the house. They determine
a coherent lower probability and its conjugate coherent upper probability
by:

P δ(A) = max{0, (1+δ)P0(A)−δ} and P δ(A) = min{1, (1+δ)P0(A)} (13)

for every A ⊆ X . The associated credal set is given by:

M(P0, δ) = {P probability | max{0, (1 + δ)P0(A)− δ} ≤ P (A) ∀A ⊆ X}.

The following result from [19, Lemma 4] shall be useful later on.
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Lemma 6. Let P δ be the upper probability induced by a PMM (P0, δ) by
means of Eq. (13). For every A ⊆ X such that P δ(A) < 1, it holds that
P δ(A) =

∑
x∈A P δ({x}).

Thus, although a coherent upper probability is in general not additive,
but only subadditive (C3), in the case of the PMM additivity holds on some
subset of the domain.

The lower probability associated with a PMM is 2-monotone, as shown
for instance in [24, Section 2]. Moreover, in [19] it is proven that PMMs
correspond to particular instances of probability intervals.

We denote by CPMM all the pari mutuel models defined on P(X ). Our
next result gives the unique undominated outer approximation of a coherent
lower probability in CPMM.

Proposition 7. Let P be a coherent lower probability with conjugate upper
probability P . Define the constant value δ > 0 and the probability P0 by:

δ =

n∑
i=1

P ({xi})− 1, P0({xi}) =
P ({xi})

1 + δ
∀i = 1, . . . , n.

Denote by P δ the coherent lower probability associated with the PMM (P0, δ)
by means of Eq. (13). Then, P δ is the unique outer approximation of P in
CPMM.

If we apply this result to the coherent lower probability from Example 1,
we obtain that the unique undominated pari mutuel model that outer ap-
proximates P is given by:

P δ(A) =


0 if |A| = 1, 2

0.5 if |A| = 3

1 if |A| = X ;

in fact, this is the same optimal outer approximation we obtain in the family
of probability intervals. However, the solutions in both subfamilies need not
coincide in general: that obtained with probability intervals may be more
informative than the one we obtain in the family of pari mutuel models, as
we shall show in Example 2.

In contrast with the outer approximations in terms of 2-monotone lower
probabilities and probability intervals, the outer approximations in terms of
pari mutuel models may not preserve the order among singletons given by
P , as also Example 2 shall show. However, the upper probability associated
with the outer approximation in Proposition 7 does coincide with the original
upper probability P on singletons, i.e. it holds that P δ({xi}) = P ({xi})
for every i = 1, . . . , n. This is shown in the second part of the proof of
Proposition 7 (Eq. (25)).

4.3. ε-contamination models. Another relevant distortion model is the
ε-contamination model, also called linear-vacuous mixture in [29]. Given a
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probability measure P0 and ε ∈ (0, 1), they determine the coherent lower
probability

P ε(A) =

{
(1− ε)P0(A) if A 6= X .
1 if A = X .

(14)

Equivalently, P ε = (1−ε)P0+εQ
v
, where Q

v
is the vacuous lower probability

defined in Eq. (6). The vacuous lower probability models the total absence
of information, and the credal setM(Q

v
) is made up of all the probabilities

in P(X ). Also, the conjugate upper probability of P ε is given by:

P ε(A) =

{
(1− ε)P0(A) + ε if A 6= ∅.
0 if A = ∅.

The lower probability induced by such a model is 2-monotone. This follows
from the fact that it satisfies an even stronger property: complete mono-
tonicity, as can be deduced for instance from [8, Theorems 5 and 11] and
[16, Chapter 10.2].

Let Cε denote the set of all ε-contamination models in P(X ). As with the
PMM, there is only one undominated outer approximation for a coherent
lower probability in Cε.

Proposition 8. Let P be a coherent lower probability satisfying the condi-
tion

∑n
j=1 P ({xj}) > 0. Define ε ∈ (0, 1) and the probability P0 by:

ε = 1−
n∑
j=1

P ({xj}), P0({xi}) =
P ({xi})∑n
j=1 P ({xj})

∀i = 1, . . . , n.

Denote by P ε the ε-contamination model they determine by means of Eq. (14).
Then, P ε is the unique undominated outer approximation of P in Cε.

Note that the assumption
∑n

j=1 P ({xj}) > 0 in this proposition is neces-

sary for the existence of some outer approximation: if P ({xj}) = 0 for every
xj ∈ X , any ε-contamination model that outer approximates P ε should also
satisfy P ε({xj}) = 0 for every xj ∈ X :

0 = P ε({xj}) = (1− ε)P0({xj}) ∀xj ∈ X ,

where P0 is the precise probability in the ε-contamination model. However,
since ε ∈ (0, 1), it follows that P0({xj}) = 0 for every xj ∈ X and using
additivity we obtain P0(X ) =

∑n
j=1 P0({xj}) = 0, a contradiction. This is

what happens if we try to apply our result to the coherent lower probability
from Example 1.

Moreover, from the above definition of P0 and ε we deduce that P ε coin-
cides with P on singletons:

P ε({xi}) = (1− ε)P0({xi}) =
n∑
j=1

P ({xj})
P ({xi})∑n
j=1 P ({xj})

= P ({xi}).



14 IGNACIO MONTES, ENRIQUE MIRANDA AND PAOLO VICIG

On the other hand, this is not the case for the upper probability: we obtain

P ε({xi}) = 1−P ε(X \{xi}) = 1−
∑
j 6=i

P ({xj}) ≥ 1−P (X \{xi}) = P ({xi}),

where the inequality follows from the super-additivity (C4) of P and can be
strict, as we shall show in Example 2. Thus, the optimal outer approxima-
tion of a coherent upper probability by an ε-contamination model will be in
general more imprecise than the one in the family of probability intervals,
given by Proposition 5.

To conclude this section, we show that the optimal outer approximations
of a coherent lower probability in the family of PMM or ε-contamination
models may indeed be more imprecise than the one in the family of probabil-
ity intervals, and moreover that there is no dominance relationship between
them:

Example 2. Let X = {x1, x2, x3, x4} and consider the coherent lower prob-
ability P on P(X ) given by

P (A) =


0.1 if |A| = 1

0.4 if |A| = 2

0.6 if |A| = 3

1 if |A| = 4.

To see that it is coherent, note that it can be obtained as the lower envelope
of the probability measures associated with the mass functions

(0.2, 0.2, 0.2, 0.4), (0.2, 0.2, 0.4, 0.2), (0.2, 0.4, 0.2, 0.2), (0.4, 0.2, 0.2, 0.2),

(0.1, 0.3, 0.3, 0.3), (0.3, 0.1, 0.3, 0.3), (0.3, 0.3, 0.1, 0.3), (0.3, 0.3, 0.3, 0.1).

Moreover, it is not 2-monotone, since

P ({x1, x2, x3}) + P ({x1}) = 0.7 < 0.8 = P ({x1, x2}) + P ({x1, x3}).

From Proposition 5, the optimal outer approximation of P in the family of
probability intervals is given by

P ({xi}) ∈ [P ({xi}), P ({xi})] = [0.1, 0.4] ∀i = 1, . . . , 4.

On the other hand, Proposition 7 shows that the optimal outer approximation
of P by a pari mutuel model is given by (P0, δ), where P0 is the uniform

probability distribution and δ =
∑4

i=1 P ({xi})− 1 = 0.6. This gives

P δ(A) =


0 if |A| = 1

0.2 if |A| = 2

0.6 if |A| = 3

1 if |A| = 4.
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Finally, from Proposition 8 the optimal outer approximation in the family of
ε-contamination models is given by P0 uniform and ε = 0.6. This produces

P ε(A) =


0.1 if |A| = 1

0.2 if |A| = 2

0.3 if |A| = 3

1 if |A| = 4.

Thus, both P δ and P ε are more imprecise than the optimal outer approxi-
mation by a probability interval, and there is no dominance relation between
them. �

5. Comparison with other approaches

In this section, we explore other alternatives to the linear programming
approach we have considered so far, in order to justify better our choice.
We first look for undominated 2-monotone outer approximations that can be
obtained solving a quadratic problem. Next, we discuss the use of extensions
of the total variation distance to determine the outer approximations, and
finally we investigate whether the Weber set from coalitional game theory
can be used to obtain undominated 2-monotone outer approximations.

5.1. Quadratic problems. As Example 1 shows, the linear programming
problem (LP-2monot) may not have a unique solution. One way to over-
come this issue is to consider, instead of the distance given by Eq. (5), the
quadratic distance given by:

d̃(P ,Q) :=
∑
E⊆X

(P (E)−Q(E))2.

This produces the following optimization problem:

min
∑
E⊆X

(Q(E)2 − 2P (E)Q(E)) (QP-2monot)

subject to∑
E⊆X

mQ(E) = 1, mQ(∅) = 0. (LP-2monot.1)

∑
{xi,xj}⊆B⊆E

mQ(B) ≥ 0, ∀E ⊆ X , ∀xi, xj ∈ E, xi 6= xj . (LP-2monot.2)

mQ({xi}) ≥ 0, ∀xi ∈ X . (LP-2monot.3)∑
B⊆E

mQ(B) ≤ P (E) ∀E 6= ∅,X . (LP-2monot.4)
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The quadratic programming problem in (QP-2monot) can be expressed in
the usual matrix form:

min
1

2
~Q
t
H~Q+ ct~Q,

where ~Q denotes a vector with the values of Q, H = 2I2n−1 is twice the

identity matrix of size 2n − 1 and c = −2~P , where ~P is used to denote
the vector with the values of P . Since H is a positive definite matrix, it
follows that the quadratic programming problem (QP-2monot) subject to
restrictions (LP-2monot.1)–(LP-2monot.4) has a unique optimal solution Q.

From this it ensues, taking into account Lemma 14 in the Appendix,
that the solution Q is an undominated outer approximation of P . Note
that this outer approximation need not be one of the solutions of the linear
programming problem (LP-2monot), as the next example shows.

Example 3. Consider a four element space X and a lower probability P
whose values are given in the next table:

A P (A) Q Q
1

Q
2

Q
3

{x1} 0.1 0.1 0.1 0.1 0.1
{x2} 0 0 0 0 0
{x3} 0 0 0 0 0
{x4} 0.3 0.3 0.3 0.3 0.3
{x1, x2} 0.1 0.1 0.1 0.1 0.1
{x1, x3} 0.3 0.26 0.3 0.2 0.2
{x1, x4} 0.6 0.54 0.5 0.6 0.6
{x2, x3} 0.3 0.24 0.2 0.2 0.3
{x2, x4} 0.4 0.36 0.4 0.3 0.3
{x3, x4} 0.4 0.36 0.4 0.4 0.3
{x1, x2, x3} 0.5 0.5 0.5 0.5 0.5
{x1, x2, x4} 0.6 0.6 0.6 0.6 0.6
{x1, x3, x4} 0.7 0.7 0.7 0.7 0.7
{x2, x3, x4} 0.6 0.6 0.6 0.6 0.6

X 1 1 1 1 1

Note that P is a coherent lower probability because it is the lower envelope
of the probability measures with mass functions

(0.1, 0, 0.4, 0.5), (0.4, 0.1, 0.2, 0.3), (0.3, 0.3, 0, 0.4).

Moreover, P is not 2-monotone, because taking for example A = {x1, x3}
and B = {x1, x4}, it holds that:

P (A ∩B) + P (A ∪B) = 0.1 + 0.7 < 0.3 + 0.6 = P (A) + P (B).

Solving the linear programming problem (LP-2monot), we obtain a unique
solution, the 2-monotone lower probability Q

1
. Note that this 2-monotone

lower probability satisfies Q
1
({x1, x4}) < P ({x1, x4}) and Q

1
({x2, x3}) <

P ({x2, x3}). Solving the linear programming problem (LP-2monot-A) with
A = {x1, x4} we obtain as optimal solutions Q

2
, Q

3
, as well as their convex
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combinations; taking A = {x2, x3}, we obtain a unique optimal solution,
again Q

3
.

On the other hand, the quadratic programming problem (QP-2monot) has
the unique solution Q. This solution is not dominated by Q

1
, as we can see

on the event A = {x1, x4}; moreover, it is not dominated by any solution
of (LP-2monot-A) for A = {x1, x4} or A = {x2, x3} because the optimal
distance (5) to P is 0.3, while the distance (5) between Q and P is 0.24.

We therefore conclude that the optimal solution of the quadratic program-
ming problem is not an optimal solution of the linear programming problems
(LP-2monot) and (LP-2monot-A). �

Although this example shows that quadratic programming may reach un-
dominated outer approximations that cannot be obtained via linear pro-
gramming, this is not always the case. For instance, it may be checked
that the quadratic programming solution for approximating P in Exam-
ple 1 is Q

1
, one of the linear programming solutions. Note further that

d(P ,Q
1
) = 1 > d̃(P ,Q

1
) = 1

4 . This fact may be generalized: being ap-

plied to numbers in [0, 1], d̃ tends to be smaller than d, i.e. the same outer

approximation is perceived as closer with d̃.
In our view, however, the interpretation of the quadratic solution is less

clear than those of the linear programming problem (LP-2monot). In par-
ticular, if the imprecision of an event E is measured [29, Section 2.7.2] by

P (E) − P (E), d̃ involves a different scaling for quantifying the additional
imprecision introduced by Q (and its conjugate Q), unlike d. This can be
seen from the simple relation among final, additional and initial imprecision
of the evaluation on E that arises from the linear scaling guaranteed by d:

Q(E)−Q(E) = (Q(E)− P (E)) + (P (E)− P (E)) + (P (E)−Q(E)).

In words, the final imprecision Q(E)−Q(E) is the sum of the initial one and

of the additional imprecision due to Q and its conjugate Q. This relation

does not hold using d̃, nor generally with further alternative distances.

5.2. The total variation distance. Another possibility for defining a dis-
tance between lower probabilities would be to consider an extension of the
total variation distance [18, Chapter 4.1] to the imprecise case. Recall that
given two probability measures P1 and P2, their total variation is defined as

||P1 − P2|| = max
E⊆X

|P1(E)− P2(E)|.

This definition can be equivalently expressed as [18, Prop. 4.2]:

||P1 − P2|| =
1

2

∑
x∈X
|P1({x})− P2({x})|.

In an imprecise framework, given two coherent lower probabilities P 1, P 2, we
can extend the definition above in a number of (not necessarily equivalent)
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ways:

d1(P 1, P 2) = max
E⊆X

|P 1(E)− P 2(E)|, (15)

d2(P 1, P 2) =
1

2

∑
x∈X
|P 1({x})− P 2({x})|, (16)

d3(P 1, P 2) = sup
P1∈M(P 1),P2∈M(P 2)

||P1 − P2||, (17)

and we refer to [1, Section 11.4] for some comments on d1 in the context of
imprecise Markov chains. It is not difficult to show that d3 is always greater
than or equal to d1.

Proposition 9. For every two coherent lower probabilities P 1 and P 2 it
holds that d3(P 1, P 2) ≥ d1(P 1, P 2).

One may wonder whether there are some other connections among d1, d2
and d3. The next examples show that there is no other dominance relation-
ship among them.

Example 4. Consider a three element space X = {x1, x2, x3} and the co-
herent lower probabilities P 1, P 2, P 3 given by:

{x1} {x2} {x3} {x1, x2} {x1, x3} {x2, x3} X
P 1

1
3

1
3

1
3

2
3

2
3

2
3 1

P 2 0 0 0 1
2

1
2

1
2 1

P 3 0 0 0 1
3

1
3

1
3 1

It follows from Eq. (15) that d1(P 1, P 2) = 1
3 and d1(P 2, P 3) = 1

6 , while
Eq. (16) implies that d2(P 1, P 2) = 0.5 and d2(P 2, P 3) = 0. Thus, there is
no dominance relationship between d1 and d2. Moreover, any element P2 ∈
M(P 2) will be of the type (α, β, γ), with 0 ≤ α, β, γ ≤ 0.5 and α+β+γ = 1.
Then we deduce from Eq. (17) that:

d3(P 1, P 2) = max
(α,β)∈[0,0.5]2:0.5≤α+β≤1

{
1

3
− α, 1

3
− α+

1

3
− β

}
≤ max

{
1

3
,
1

6

}
=

1

3
< 0.5.

Taking Proposition 9 into account, we conclude that

d2(P 1, P 2) > d3(P 1, P 2) = d1(P 1, P 2) =
1

3
.

On the other hand, if we take P2 = (0, 0.5, 0.5) ∈M(P2) and P3 = (23 ,
1
6 ,

1
6) ∈

M(P 3), we obtain that

d3(P 2, P 3) ≥ ‖P2 − P3‖ =
1

2

(
2

3
+

1

3
+

1

3

)
=

2

3
,

whence
d3(P 2, P 3) > d1(P 2, P 3) > d2(P 2, P 3).
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Thus, there is no dominance relation between d2 and d3 either, and moreover
d1 and d3 are not equivalent in general. �

At this point, one may think that these distances could be used to ob-
tain undominated outer approximations. However, all these extensions may
lead to outer approximations that are dominated, and therefore cannot be
considered adequate for our problem, as the next examples show.

Example 5. Consider a four element space and the lower probability P
defined in the following table:

A P (A) Q′
1
(A) Q′

2
(A)

{x1} 0.1 0.1 0.1
{x2} 0 0 0
{x3} 0 0 0
{x4} 0.1 0.1 0.1
{x1, x2} 0.4 0.3 0.3
{x1, x3} 0.4 0.3 0.3
{x1, x4} 0.4 0.4 0.3
{x2, x3} 0.2 0.2 0.2
{x2, x4} 0.4 0.3 0.3
{x3, x4} 0.4 0.3 0.3
{x1, x2, x3} 0.5 0.5 0.5
{x1, x2, x4} 0.6 0.6 0.6
{x1, x3, x4} 0.6 0.6 0.6
{x2, x3, x4} 0.5 0.5 0.5

X 1 1 1

Note that P is a coherent lower probability because it is the lower envelope
of the probability measures with mass functions

(0.4, 0, 0.2, 0.4), (0.3, 0.1, 0.1, 0.5), (0.3, 0.3, 0.3, 0.1), (0.1, 0.3, 0.3, 0.3),

(0.4, 0.2, 0, 0.4), (0.2, 0.2, 0.4, 0.2), (0.2, 0.4, 0.2, 0.2), (0.5, 0.1, 0.1, 0.3).

To see that it is not 2-monotone, note that, taking A = {x1, x2} and B =
{x1, x3} it holds that:

P ({x1, x2, x3}) + P ({x1}) = 0.6 < 0.8 = P ({x1, x2}) + P ({x1, x3}). (18)

Any outer approximation Q in the class of 2-monotone lower probabilities
must satisfy:

Q({x1, x2}) +Q({x1, x3}) ≤ Q({x1, x2, x3}) +Q({x1}).

Also, since Q is an outer approximation of P , and using Eq. (18), it holds
that:

Q({x1, x2, x3}) +Q({x1}) ≤ P ({x1, x2, x3}) + P ({x1})
= P ({x1, x2}) + P ({x1, x3})− 0.2.
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Hence, if Q is a 2-monotone outer approximation of P , it must satisfy:

Q({x1, x2}) +Q({x1, x3}) ≤ P ({x1, x2}) + P ({x1, x3})− 0.2.

Hence, d1(P ,Q) ≥ 0.1. To see that this is indeed the minimum distance
among the 2-monotone outer approximations, note that it is attained by the
2-monotone capacities Q′

1
, Q′

2
in the table above. Thus, both Q′

1
, Q′

2
are

optimal outer approximations with respect to the distance d1, even if Q′
2

is

dominated by Q′
1
. �

Example 6. Consider again the coherent lower probability from Example 1.
Any 2-monotone outer approximation Q of P , undominated or not, shall
satisfy Q({xj}) = 0 for every j, and as a consequence d2(P ,Q) = 0. As for
d3, ||P1−P2|| = 1 for the probability measures P1 = (0.5, 0.5, 0, 0) and P2 =
(0, 0, 0.5, 0.5) fromM(P ), and by definition this is the maximum value of the
total variation ||P1 − P2||. Because M(P ) ⊂ M(Q), also d3(P ,Q) = 1 for
any 2-monotone outer approximation Q of P , even for the ‘most dominated’
vacuous lower probability Q

v
. Thus, d2, d3 do not rule out the undominated

solutions, either. �

5.3. The Weber set. A coherent lower probability P is uniquely deter-
mined by its credal set M(P ) using Eq. (1). This set is closed and convex,
and can thus be determined by its extreme points. We say that a probability
measure P is an extreme point ofM(P ) if there are no P1, P2 ∈M(P ) and
α ∈ (0, 1) such that P = αP1 + (1 − α)P2, and shall denote by ext(M(P ))
the set of extreme points of M(P ).

In general, there is no easy procedure to determine the extreme points
of M(P ) when P is a coherent lower probability. A nice feature of a 2-
monotone capacity is that the extreme points of its credal set are in a one-
to-one correspondence with the permutations of the possibility space, in the
following manner: let P be a 2-monotone capacity, and for any permutation
σ of {1, . . . , n}, define the precise probability Pσ by

Pσ({xσ(1)}) = P ({xσ(1)}), (19)

Pσ({xσ(k)}) = P ({xσ(1), . . . , xσ(k)})− P ({xσ(1), . . . , xσ(k−1)})

for every k = 2, . . . , n. It was first proven by Shapley [26] that, if Sn denotes
the set of permutations of {1, . . . , n}, then

ext(M(P )) = {Pσ | σ ∈ Sn}.
In general, even when P is not 2-monotone but only coherent, we can define
the set of probabilities:

W (P ) = {Pσ | σ ∈ Sn}, (20)

where Pσ is defined as in Eq. (19). This is called the Weber set of P ,
and it holds that [17] P is 2-monotone if and only if ext(M(P )) = W (P ).
Otherwise,M(P ) is a proper subset of conv(W (P )), the set of convex com-
binations of elements in W (P ). This implies that the lower envelope Q
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of conv(W (P )) is a coherent lower probability that outer approximates P .
Computationally, the procedure for obtaining Q is nimbler than the lin-
ear programming problem in Section 3, thus looking for Q seems to be a
tempting alternative in the outer approximation problem.

In fact, in the case of cardinality four, the lower envelope of conv(W (P ))
is indeed 2-monotone:

Proposition 10. Let P : P(X ) → [0, 1] be a coherent lower probability,
where |X | ≤ 4, and denote by Q the coherent lower probability defined by
Q(E) = min{P (E) | P ∈ conv(W (P ))} for every E ⊆ X , where W (P ) is
given by Eq. (20). Then, Q is a 2-monotone outer approximation of P .

Yet, and perhaps surprisingly, the lower envelope of the Weber set is not
2-monotone in general for cardinalities greater than 4, as our next example
shows:

Example 7. Consider a five element space X and the lower probability
defined as the lower envelope of the probability measures with mass functions:

(0.2080, 0.0113, 0.2693, 0.2962, 0.2152),

(0.2786, 0.2732, 0.1442, 0.2410, 0.0630),

(0.6097, 0.0275, 0.2191, 0.0399, 0.0839).

If we denote by Q the lower probability Q(E) = min{P (E) | P ∈ conv(W (P ))}
for every E ⊆ X , it can be verified that:

Q({x2, x3}) = Pσ1({x2, x3}) = 0.1717, where σ1 = (3, 4, 2, 1, 5).

Q({x2, x5}) = Pσ2({x2, x5}) = 0.0905, where σ2 = (5, 3, 4, 2, 1).

Q({x2, x3, x5}) = Pσ3({x2, x3, x5}) = 0.2347, where σ3 = (5, 3, 4, 2, 1).

Also, from Lemma 15 in the Appendix, P and Q coincide on singletons,
whence Q({x2}) = P ({x2}) = 0.0113.

Then, we have that:

Q({x2, x3}) +Q({x2, x5}) = 0.1717 + 0.09105 = 0.2622

> 0.2460 = 0.0113 + 0.2347 = Q({x2}) +Q({x2, x3, x5}),

and as a consequence Q is not 2-monotone. �

Thus, we cannot use the lower envelope of the Weber set as a 2-monotone
outer approximation for cardinalities greater than four. Further, even for
this case the outer approximation we obtain may be dominated:
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Example 8. Consider a four-element space X = {x1, x2, x3, x4}, and the
coherent lower probability P from Example 3, reported in the following table:

A P (A) Q(A) Q
1
(A)

{x1} 0.1 0.1 0.1
{x2} 0 0 0
{x3} 0 0 0
{x4} 0.3 0.3 0.3
{x1, x2} 0.1 0.1 0.1
{x1, x3} 0.3 0.2 0.3
{x1, x4} 0.6 0.5 0.5
{x2, x3} 0.3 0.2 0.2
{x2, x4} 0.4 0.3 0.4
{x3, x4} 0.4 0.3 0.4
{x1, x2, x3} 0.5 0.5 0.5
{x1, x2, x4} 0.6 0.6 0.6
{x1, x3, x4} 0.7 0.7 0.7
{x2, x3, x4} 0.6 0.6 0.6

X 1 1 1

If we compute Q = min{P | P ∈ conv(W (P ))}, we obtain the values depicted
in the table above. However, this 2-monotone capacity is dominated by the
2-monotone outer approximation Q

1
given in the same table, which is the

solution of the linear programming problem (LP-2monot). �

6. Approximations of coherent lower previsions

The problem considered in this paper can be generalized from coherent
lower probabilities to the richer framework of coherent lower previsions [29]:
if we denote by L(X ) the set of bounded real-valued functions on X , a
coherent lower prevision is a function P : L(X )→ R that satisfies

• P (f) ≥ inf f
• P (λf) = λP (f)
• P (f + g) ≥ P (f) + P (g)

for every f, g ∈ L(X ) and every λ > 0. A coherent lower prevision P can
be equivalently expressed in the following way: P is coherent when it is the
lower envelope of a set of expectation operators with respect to a family of
probability measures on X :

M(P ) = {P probability | EP (f) ≥ P (f) ∀f ∈ L(X )}.
Then, P is a coherent lower prevision if and only if P (f) = minP∈M(P )EP (f)
for every f ∈ L(X ).

The notion of 2-monotonicity has also been extended to lower previsions
[8, 28]: P is a 2-monotone lower prevision if and only if

P (f ∧ g) + P (f ∨ g) ≥ P (f) + P (g) ∀f, g ∈ L(X ),

where ∧ and ∨ denote the pointwise minimum and maximum, respectively.
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The restriction of a coherent lower prevision to {IA | A ⊆ X} is a coherent
lower probability, and the convention P (IA) = P (A) is usually adopted. In
general, a coherent lower probability P on P(X ) may have more than one
extension to L(X ) as a coherent lower prevision; however, if P is 2-monotone,
then it has a unique extension to L(X ) as a 2-monotone lower prevision: its
Choquet integral.

Theorem 11. [8] Let P ′ : P(X )→ [0, 1] be a 2-monotone lower probability.
Then, there exists a unique 2-monotone lower prevision P : L(X ) → [0, 1]
such that P ′(A) = P (IA) for every A ∈ P(X ), and it is given by:

P (f) = (C)

∫
fdP ′ ∀f ∈ L(X ),

where (C)
∫
fdP ′ denotes the Choquet integral of f with respect to P ′, given

by:

(C)

∫
fdP ′ = inf f +

∫ sup f

inf f
P ′({f ≥ t})dt.

The lower prevision P in this theorem is the natural extension of P ′

to L(X ): if P ′ is a 2-monotone lower probability, its unique 2-monotone
extension to L(X ) is given by P (f) = minP∈M(P ′)EP (f).

Similarly to what we have done in the rest of the paper, we could study the
problem of outer approximating a coherent lower prevision by a 2-monotone
one. Interestingly, this problem turns out to be equivalent to the one we
have analyzed for finite spaces X , and anyway the equivalence extends to
infinite spaces X too, as our next result shows:

Proposition 12. Let P : L(X )→ R be a coherent lower prevision, and let
P ′ be its restriction to events. Then, there is a one-to-one correspondence
between the sets

{Q : L(X )→ R 2-monotone undominated outer approximation of P}
and

{Q′ : P(X )→ [0, 1] 2-monotone undominated outer approximation of P ′}.

The key in this result is that if we want to outer approximate a coherent
lower prevision, we can simply consider its restriction to events, outer ap-
proximate it and then apply the procedure of natural extension. Figure 1
provides an illustration.

Therefore, it suffices to focus on outer approximations of coherent lower
probabilities instead of lower previsions.

Remark 1. Using a proof similar to that of Proposition 12, that we can find
in the Appendix, we can establish a similar result for the particular cases
of 2-monotone lower probabilities that we have considered in Section 4: it
suffices to take into account that a 2-monotone lower probability has a unique
extension to L(X ) that preserves 2-monotonicity, as we have mentioned. For
the extension of the pari mutuel model to gambles, we refer the reader to [24,
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P ′ coherent
lower probability

Q′ 2-monotone capacity
undominated outer

approximation

P coherent
lower prevision

Q 2-monotone prevision
undominated outer

approximation

Q′ ≤ P ′

Q ≤ P

P ′(A) = P (IA)
Q′(A) = Q(IA)

Q(f) = (C)

∫
fdQ′

Figure 1. Correspondence between the 2-monotone outer approximations.

Section 3]; ε-contamination models on gambles were considered by Walley
in [29, Section 2.9.2].

Note that the extension of the pari mutuel model to gambles can be in-
terpreted in risk measurement as a coherent and 2-monotone risk measure,
termed Tail Value-at-Risk or TVaR [24, Section 3], while coherent upper
previsions correspond to coherent risk measures. Thus the present approxi-
mation problem also has the (risk measurement) meaning of approximating
a generic coherent risk measure with the closest (2-monotone) TVaR. �

7. Inner approximations of coherent lower probabilities

So far, we have studied how to outer approximate a coherent lower prob-
ability. Similarly, we may also consider the problem of finding inner ap-
proximations2. Following the reasoning in Section 2, given a coherent lower
probability P , a 2-monotone lower probability Q is an inner approxima-
tion of P when P ≤ Q; it is also called non-dominating when any other

2-monotone inner approximation Q′ such that P ≤ Q′ ≤ Q must satisfy

Q′ = Q.
The problem of looking for non-dominating inner approximations can

be tackled in a similar way as we did in Section 3: we can set up the
minimization problem

min
∑
E⊆X

(Q(E)− P (E)), (LP-inner)

which can be equivalently expressed in terms of the Möbius inverse mQ:

min
∑
E⊆X

( ∑
B⊆E

mQ(B)
)
− P (E)

 .

2Some results in this respect were established by Dubois and Prade in [13, Section 2.4].
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In order to guarantee that mQ defines a 2-monotone lower probability Q,

we need to consider the restrictions (LP-2monot.1)–(LP-2monot.3), and to
guarantee that Q is an inner approximation, we consider the following con-
straint:∑

B⊆E
mQ(B) ≥ P (E) ∀E 6= ∅,X . (LP-2monot.4*)

The feasible region of the linear programming problem (LP-inner) with con-
straints (LP-2monot.1)–(LP-2monot.3) and (LP-2monot.4*) is non-empty:
since P is coherent, its credal set is non-empty, so every (precise) probability
in M(P ) is in particular 2-monotone and satisfies all the constraints. Also,
the same reasoning as in Section 3 ensures that the linear programming
problem has an optimal solution. Not surprisingly, next result says that
every optimal solution is a non-dominating inner approximation. Its proof
is analogous to that of Prop. 1 and therefore omitted in the Appendix.

Proposition 13. Let P be a coherent lower probability, and let Q be an
optimal solution of the linear programming problem (LP-inner) with con-
straints (LP-2monot.1)–(LP-2monot.3) and (LP-2monot.4*). Then Q is a
non-dominating inner approximation of P in C2.

Although from a formal point of view there are mathematical similarities
between the existence of outer and inner approximations, and some of the
results in Section 3 can be easily adapted to the setting of inner approxi-
mations, this second problem is not as interesting, in our view. The main
reason is that the use of inner approximations entails breaking the first of
our two initial conditions: that the approximation introduces no new in-
formation. Indeed, if M(P ) represents a set of possible candidates for an
unknown or partially defined precise probability P0, an inner approximation
Q reduces the set of possible candidates: M(Q) ⊂M(P ); thus, the elicita-
tion of an inner approximation is always adding (unwarranted) information
to the model.

Moreover, the benefits ensued by using particular models for approximat-
ing the coherent lower probability that we have seen in Section 4 are not
preserved in general when looking for inner approximations. Of course, an
inner approximation in CPI always exists, taking for example a precise prob-
ability in M(P ). However, the existence of inner approximations in CPMM

and Cε is not guaranteed. For example, if there is an element x ∈ X such
that P ({x}) = P ({x}) ∈ (0, 1), any inner approximation must satisfy the
condition P ({x}) = Q({x}) = Q({x}) = P ({x}) ∈ (0, 1), thus having im-

precision Q−Q = 0 at x. This is impossible for both the PMM and for the
ε-contamination models: on events with non-extreme evaluation, they have
constant positive imprecision, δ > 0 and ε > 0, respectively.
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8. Conclusions

In this paper we have investigated the problem of approximating a lower
probability by means of a 2-monotone one that satisfies two properties:
firstly, it must not add new information, and secondly, it should be as close
as possible to the original lower probability, so as to minimize the increase
in imprecision. This has led to the quest for undominated 2-monotone ca-
pacities that outer approximate the original model, which was firstly tackled
in [3].

We have first considered the closest outer approximation under the dis-
tance proposed by Baroni and Vicig in [2], and have obtained undominated
outer approximations by means of linear programming. Although the ap-
proximation with this procedure is not unique in general, it becomes unique
if we focus on some particular subfamilies of 2-monotone capacities, such as
those associated with notable distortion models or probability intervals.

We have also discussed alternative approaches based on other distances,
such as the quadratic or the total variation distance. Although they dis-
play some interesting features, they also possess a number of drawbacks
that make them less suitable in our view for the problem at hand than the
distance of Baroni and Vicig.

We have also investigated a more general problem: the outer approxima-
tion of coherent lower previsions by 2-monotone ones. Our results show that
this problem is actually equivalent to the one we have studied in the main
bulk of the paper: in order to outer approximate a lower prevision, we just
need to outer approximate its restriction to events and then take the natural
extension to L(X ).

We think that this paper opens a line of research that can be pursued in
different ways. Firstly, in this paper we are obtaining undominanted outer
approximations by minimising the distance proposed by Baroni and Vicig.
An alternative procedure would be to minimise a divergence instead of a
distance [22] or to consider linear imprecision indices [3]. Secondly, although
here we have considered the problem of outer approximating a coherent
lower probability by means of a 2-monotone capacity, we could also consider
outer approximations by means of belief functions, or maxitive capacities.
Some advances have already been done in this setting in [2, 12, 13, 21].
Thirdly, we would also like to study in greater detail the loss of information
entailed by the outer approximations, as well as the elicitation among them
when there is more than one undominated outer approximation. We think
that the results in [27] could be helpful in this regard. Fourthly, we shall
mention that the enumeration of all the undominated outer approximations
is not a simple task. We have seen that one way of obtaining undominated
outer approximations in C2 is by solving a linear programming problem, but
Example 3 shows that this procedure does not give all of them. Although
the undominated outer approximations in CPI, CPMM and Cε are unique, it
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remains as an open problem to enumerate all of them in C2. In this sense,
the theoretical characterization given in [3, Proposition 4] may be useful.
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P. We would also like to thank Sébastien Destercke and Seraf́ın Moral for
some helpful suggestions and Massimiliano Kaucic for his valuable computa-
tional assistance. Also, we want to thank the reviewers for their suggestions
which helped us to improve the quality of the paper. A preliminary version
of this paper was presented at the IPMU’2018 conference [20]; the current
version includes additional results, proofs and discussions.

Appendix: Proofs

Lemma 14. Let P be a coherent lower probability and denote by P ′ an outer
approximation in a class C. If P ′ is a solution to the problem:

min
P ′∈C,P ′≤P

∑
E⊆X

g(P (E)− P ′(E)), (21)

where g : R → R is strictly increasing, then P ′ is an undominated outer
approximation of P in C.

Proof. Assume ex-absurdo that P ′ is dominated in C, so there exists P ′′ ∈ C
such that P ′ � P ′′ ≤ P . Then, g(P (E) − P ′(E)) ≥ g(P (E) − P ′′(E)) for
every event E ⊆ X , with strict inequality in some event E0. Hence:∑

E⊆X
g(P (E)− P ′(E)) >

∑
E⊆X

g(P (E)− P ′′(E)).

This contradicts that P ′ is a solution of Eq. (21). Thus, P ′ is undominated.
�

Proof of Proposition 1. First of all, as we have already argued, Q is a 2-
monotone lower probability by conditions (LP-2monot.1), (LP-2monot.2)
and (LP-2monot.3). Also, condition (LP-2monot.4) implies that Q outer
approximates P : Q ≤ P . Finally, from Lemma 14 we deduce that it is
undominated in C2. �

Proof of Proposition 2. Let us first prove that P and Q coincide on single-
tons. Assume that there exists x ∈ X such that Q({x}) < P ({x}). Let us

define Q′ recursively by:

Q′({x}) ∈ (Q({x}), P ({x})], Q′({x′}) = Q({x′}) ∀x′ 6= x,

and for every event A of cardinality |A| > 1:

Q′(A) = max

{
Q(A), max

C1,...,Cj

{ j∑
i=1

Q′(Ci)
}}

, (22)

where C1, . . . , Cj form a partition of A.
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Let us now establish some properties of Q′:

(a) Q � Q′ ≤ P : for every event A, it follows by definition that Q′(A) ≥
Q(A). Moreover, Q′({x}) > Q({x}). Thus, Q � Q′.

To see that Q′ ≤ P , we proceed iteratively on the cardinalities of
the events on X . First, recall that the inequality follows on single-
tons. Next, given a partition C1, . . . , Cj of A, if Q′(Ci) ≤ P (Ci) for
every i = 1, . . . , j, we get that:

j∑
i=1

Q′(Ci) ≤
j∑
i=1

P (Ci) ≤ P (A),

where the last inequality follows from the superadditivity (C4) of P .
Since also Q ≤ P , we deduce from Eq. (22) that Q′ ≤ P .

(b) Q′(A) = Q(A) if x /∈ A: we apply induction on |A|.
If |A| = 1, this holds by definition.
If |A| = k, take any partition C1, . . . , Cj of A. Then:

j∑
i=1

Q′(Ci) =

j∑
i=1

Q(Ci) ≤ Q(A),

where the equality follows by the induction hypothesis and the in-
equality follows by the super-additivity (C4) of Q.

(c) Q′ can be equivalently expressed by:

Q′(A) =

{
max{Q(A), Q′({x}) +Q(A\{x})} if x ∈ A.
Q(A) if x /∈ A.

On the one hand, we already know that Q′(A) = Q(A) when x /∈ A.
Let us now assume that x ∈ A and apply induction on |A|:
If |A| = 2, if x ∈ A, then A = {x, y} (x 6= y) and it holds that:

Q′(A) = max
{
Q(A), Q′({x}) +Q′({y})

}
= max

{
Q(A), Q′({x}) +Q({y})

}
,

where the last equality follows from the previous item.
Assume that the alternative expression holds until |A| = k − 1 and
take A with cardinality k. Consider a partition C1, . . . , Cj of A.
Then, there will be exactly one event including x; assume for instance
that it is C1. By item (b) and superadditivity (C4) of Q, it holds
that:

j∑
i=1

Q′(Ci) = Q′(C1) +Q(C2) + . . .+Q(Cj)

≤ Q′(C1) +Q(C2 ∪ . . . ∪ Cj) = Q′(C1) +Q′(C2 ∪ . . . ∪ Cj).

It ensues that the inner maximum in Eq. (22) is achieved by some
two-element partition of A. Take any such partition, whose elements
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are C1, including x, and C2. It holds that:

Q′(C1) +Q′(C2) = Q′(C1) +Q(C2)

= max
{
Q(C1) +Q(C2), Q

′({x}) +Q(C1\{x}) +Q(C2)
}

≤ max{Q(A), Q′({x}) +Q(A\{x})},
where the second equality follows applying the induction hypothesis
and the inequality from the super-additivity (C4) of Q. Since we
can do this for every two-element partition of A, we conclude that:

Q′(A) ≤ max
{
Q(A), Q′({x}) +Q(A\{x})

}
.

The converse inequality is trivial.
(d) If Q is 2-monotone, so is Q′: consider two events A,B and let us

prove that

Q′(A ∪B) +Q′(A ∩B) ≥ Q′(A) +Q′(B).

There are a number of possibilities:
(1) If either x /∈ A ∪B or x ∈ A\B and Q′(A) = Q(A), then:

Q′(A)+Q′(B) = Q(A)+Q(B) ≤ Q(A∪B)+Q(A∪B) ≤ Q′(A∪B)+Q′(A∩B),

where the equality follows from (b).
(2) If x ∈ A\B, and Q′(A) = Q′({x}) +Q(A\{x}), then:

Q′(A) +Q′(B) = Q′({x}) +Q(A\{x}) +Q(B)

≤ Q′({x}) +Q((A\{x}) ∩B) +Q((A\{x}) ∪B)

≤ Q((A\{x}) ∩B) +Q′(A ∪B)

= Q(A ∩B) +Q′(A ∪B) = Q′(A ∩B) +Q′(A ∪B).

(3) If x ∈ B\A, the proof is analogous to either case (1) or case (2).
(4) Finally, assume that x ∈ A ∩B. There are four cases:

◦ If Q′(A) = Q(A), Q′(B) = Q(B), we continue as in case
(1).
◦ Q′(A) = Q′({x}) +Q(A\{x}), Q′(B) = Q(B). Then:

Q′(A) +Q′(B) = Q′({x}) +Q(A\{x}) +Q(B)

≤ Q′({x}) +Q(A\{x} ∩B) +Q(A\{x} ∪B)

≤ Q′(A ∩B) +Q′(A\{x} ∪B) ≤ Q′(A ∩B) +Q′(A ∪B).

◦ If Q′(A) = Q(A) and Q′(B) = Q′({x}) + Q(B\{x}), the
proof is analogous to the one in the previous bullet.
◦ Finally, if Q′(A) = Q′({x}) + Q(A\{x}) and Q′(B) =

Q′({x}) +Q(B\{x}), then:

Q′(A) +Q′(B) = Q′({x}) +Q′({x}) +Q(A\{x}) +Q(B\{x})
≤ Q′({x}) +Q′({x}) +Q((A ∩B)\{x}) +Q((A ∪B)\{x})
≤ Q′(A ∩B) +Q′(A ∪B).
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We conclude that Q′ is a 2-monotone outer approximation of P that domi-
nates Q, so Q cannot be undominated.

Now, we prove that P and Q also coincide in singletons; the proof is
analogous to the equality between the lower probabilities. Assume that
there exists x ∈ X such that Q({x}) > P ({x}). Let us define Q′ recursively
by:

Q′({x}) ∈ [P ({x}), Q({x})), Q′({x′}) = Q({x′}) ∀x′ 6= x,

and for every event A of cardinality |A| > 1:

Q′(A) = min

{
Q(A), min

C1,...,Cj

{ j∑
i=1

Q′(Ci)
}}

, (23)

where C1, . . . , Cj form a partition of A.

Let us now establish some properties of Q′:

(a) Q  Q′ ≥ P : for every event A, it follows by definition that Q
′
(A) ≤

Q(A). Moreover, Q
′
({x}) < Q({x}). Thus, Q  Q′.

To see that Q′ ≥ P , we proceed iteratively on the cardinalities of
the events on X . First, recall that the inequality follows on single-
tons. Next, given a partition C1, . . . , Cj of A, if Q′(Ci) ≥ P (Ci) for
every i = 1, . . . , j, we get that:

j∑
i=1

Q′(Ci) ≥
j∑
i=1

P (Ci) ≥ P (A),

where the last inequality follows from the sub-additivity (C3) of P .
Since also Q ≥ P , we deduce from Eq. (23) that Q′ ≥ P .

(b) Q′(A) = Q(A) if x /∈ A: we apply induction on |A|.
If |A| = 1, this holds by definition.
If |A| = k, take any partition C1, . . . , Cj of A. Then:

j∑
i=1

Q′(Ci) =

j∑
i=1

Q(Ci) ≥ Q(A),

where the equality follows by the induction hypothesis and the in-
equality follows by the sub-additivity (C3) of Q.

(c) Q′ can be equivalently expressed by:

Q′(A) =

{
min{Q(A), Q′({x}) +Q(A\{x})} if x ∈ A.
Q(A) if x /∈ A.

On the one hand, we already know that Q′(A) = Q(A) when x /∈ A.
Let us now assume that x ∈ A and apply induction on |A|:
If |A| = 2, if x ∈ A, then A = {x, y} (x 6= y) and it holds that:

Q′(A) = min
{
Q(A), Q′({x}) +Q′({y})

}
= min

{
Q(A), Q′({x}) +Q({y})

}
,



2-MONOTONE APPROXIMATIONS OF COHERENCE 31

where the last equality follows from the previous item.
Assume that the alternative expression holds until |A| = k − 1 and
take A with cardinality k. Consider a partition C1, . . . , Cj of A.
Then, there will be exactly one event including x; assume for instance
that it is C1. By item (b) and sub-additivity (C3) of Q, it holds that:

j∑
i=1

Q
′
(Ci) = Q

′
(C1) +Q(C2) + . . .+Q(Cj)

≥ Q′(C1) +Q(C2 ∪ . . . ∪ Cj) = Q
′
(C1) +Q

′
(C2 ∪ . . . ∪ Cj).

It ensues that the inner minimum in Eq. (23) is achieved by some
two-element partition of A. Take any such partition, whose elements
are C1, including x, and C2. It holds that:

Q
′
(C1) +Q

′
(C2) = Q

′
(C1) +Q(C2)

= min
{
Q(C1) +Q(C2), Q′({x}) +Q(C1\{x}) +Q(C2)

}
≥ min{Q(A), Q′({x}) +Q(A\{x})},

where the second equality follows applying the induction hypothesis
and the inequality from the sub-additivity (C3) of Q. Since we can
do this for every two-element partition of A, we conclude that:

Q′(A) ≥ min
{
Q(A), Q′({x}) +Q(A\{x})

}
.

The converse inequality is trivial.
(d) If Q is 2-alternating, so is Q′: consider two events A,B and let us

prove that

Q′(A ∪B) +Q′(A ∩B) ≤ Q′(A) +Q′(B).

There are a number of possibilities:

(1) If either x /∈ A ∪B or x ∈ A \B and Q
′
(A) = Q(A), then

Q′(A)+Q
′
(B) = Q(A)+Q(B) ≥ Q(A∪B)+Q(A∩B) ≥ Q′(A∪B)+Q′(A∩B),

where the equality follows from (b).
(2) If x ∈ A\B and Q′(A) = Q′({x}) +Q(A\{x}), then:

Q′(A) +Q′(B) = Q′({x}) +Q(A\{x}) +Q(B)

≥ Q′({x}) +Q((A\{x}) ∩B) +Q((A\{x}) ∪B)

≥ Q((A\{x}) ∩B) +Q′(A ∪B)

= Q(A ∩B) +Q′(A ∪B) = Q′(A ∩B) +Q′(A ∪B).

(3) If x ∈ B\A, the proof is analogous to either case (1) or case (2).
(4) Finally, assume that x ∈ A ∩B. There are four cases:

◦ If Q′(A) = Q(A), Q′(B) = Q(B), continue as in case (1).
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◦ Q′(A) = Q′({x}) +Q(A\{x}), Q′(B) = Q(B). Then:

Q
′
(A) +Q

′
(B) = Q

′
({x}) +Q(A\{x}) +Q(B)

≥ Q′({x}) +Q(A\{x} ∩B) +Q(A\{x} ∪B)

≥ Q′(A ∩B) +Q′(A\{x} ∪B) ≥ Q′(A ∩B) +Q
′
(A ∪B).

◦ If Q′(A) = Q(A) and Q′(B) = Q′({x}) + Q(B\{x}), the
proof is analogous to the one in the previous bullet.
◦ Finally, if Q′(A) = Q′({x}) + Q(A\{x}) and Q′(B) =
Q′({x}) +Q(B\{x}), then:

Q′(A) +Q′(B) = Q′({x}) +Q′({x}) +Q(A\{x}) +Q(B\{x})
≥ Q′({x}) +Q′({x}) +Q((A ∩B)\{x}) +Q((A ∪B)\{x})
≥ Q′(A ∩B) +Q′(A ∪B).

We conclude that Q′ is a 2-alternating outer approximation of P that is
dominated by Q, so Q cannot be an optimal outer approximation of P .

From the equalities Q({x}) = P ({x}) and Q({x}) = P ({x}) for every

x ∈ X we deduce by conjugacy that Q(A) = P (A) and Q(A) = P (A) for
every event A ⊂ X with cardinality n− 1. �

Proof of Proposition 3. It suffices to take into account that for any event
A, any Q in the non-empty set MA satisfies Q(A) = P (A), and that any
element in ∪A⊆XMA is an outer approximation of P . �

Proof of Proposition 4. This result follows immediately from Lemma 14. �

Proof of Proposition 5. Let us denote by l the lower probability associated
with I by means of Eq. (10). In order to prove that I is a coherent proba-
bility interval, we just need to prove that l is a coherent lower probability.
But this holds because it is the natural extension of the restriction to events
of cardinality 1 or n− 1 of the coherent lower probability P .

Let us now see that l is an outer approximation of P , that is, l(A) ≤
P (A) for every A ⊆ X . Since I is a coherent probability interval, l can be
computed using Eq. (11). Then:

l(A) = max

∑
xi∈A

li, 1−
∑
xi /∈A

ui

 = max

∑
xi∈A

P ({xi}), 1−
∑
xi /∈A

P ({xi})


≤ max

P (A), 1−
∑
xi /∈A

P ({xi})

 ≤ max
{
P (A), 1− P (Ac)

}
= max {P (A), P (A)} = P (A),
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where the first and second inequalities follow from the super- and sub-
additivity (conditions (C4) and (C3)) of P and P , respectively, and the
last equality follows because P and P are conjugate.

Finally, let us see that l is the unique undominated outer approximation of
P using a probability interval. For this aim, assume that there exists a coher-
ent probability interval I ′ = {[l′i, u′i] | i = 1, . . . , n} with associated coherent

lower and upper probabilities l′, u′ such that l′(A) ≤ P (A) ≤ P (A) ≤ u′(A).
From Eq. (12), we just need to realize that:

l′i ≤ P ({xi}) = li and u′i ≥ P ({xi}) = ui,

so [li, ui] ⊆ [l′i, u
′
i] for every i = 1, . . . , n. From [7, Proposition 6], this implies

that l′(A) ≤ l(A) and u′(A) ≥ u(A) for every A ⊆ X . �

Proof of Proposition 7. First of all, note that P0 is indeed a probability mea-
sure since P0({xi}) ≥ 0 for every i = 1, . . . , n and:

n∑
i=1

P0({xi}) =

n∑
i=1

P ({xi})
1 + δ

=

∑n
i=1 P ({xi})

1 +
∑n

i=1 P ({xi})− 1
= 1.

As a consequence,

P0(A) =
∑
xi∈A

P0({xi}) =
1

1 + δ

∑
xi∈A

P ({xi}) ∀A ⊆ X . (24)

Let us first show that P δ is an outer approximation of P . For this aim, let
us see that P δ ≥ P . If P δ = 1, the inequality trivially holds. If P δ(A) < 1,
Eq. (24) and Lemma 6 imply that:

P δ(A) = min{(1 + δ)P0(A), 1} = (1 + δ)P0(A) =
∑
xi∈A

P ({xi}) ≥ P (A),

where the inequality follows from the sub-additivity (C3) of P . We conclude
that P (A) ≤ P δ(A) for every A ⊂ X , and therefore, by conjugacy:

P δ(A) = 1− P δ(Ac) ≤ 1− P (Ac) = P (A).

Let us now prove that P δ is the (unique) undominated outer approximation
of P in CPMM. For this aim, let P ′δ be the upper probability induced by
another pari mutuel model that outer approximates P .

First of all, note that for every x ∈ X :

P δ({x}) = min{1, (1 + δ)P0({x})} = min{1, P ({x})} = P ({x}), (25)

whence P ({x}) = P δ({x}) ≤ P
′
δ({x}). Let us see that this inequality also

holds for every event A. On the one hand, if P
′
δ(A) = 1, trivially P δ(A) ≤

P
′
δ(A) = 1. On the other hand, if P

′
δ(A) < 1, Lemma 6 implies that

P
′
δ(A) =

∑
xi∈A

P
′
δ({xi}) ≥

∑
xi∈A

P ({xi}) =
∑
xi∈A

P δ({xi}) ≥ P δ(A),
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where the first inequality follows because P
′
δ is an outer approximation of

P , and the second inequality follows from the sub-additivity (C3) of P δ. We

conclude that P δ(A) ≤ P ′δ(A) for every A ⊆ X . �

Proof of Proposition 8. First of all, note that P0 is indeed a probability be-
cause P0({xi}) ≥ 0 and:

n∑
i=1

P0({xi}) =
n∑
i=1

P ({xi})∑n
j=1 P ({xj})

= 1.

Let us now see that P ε is an outer approximation of P , that is, P ε(A) ≤
P (A) for every A ⊆ X . For A = X , it trivially holds that P ε(X ) = P (X ) =
1. Take A ⊂ X . On the one hand, the super-additivity (C4) of P implies:

P (A) ≥
∑
xi∈A

P ({xi}). (26)

On the other hand:

P ε(A) = (1− ε)P0(A) =

 n∑
j=1

P ({xj})

∑xi∈A P ({xi})∑n
j=1 P ({xj})

=
∑
xi∈A

P ({xi}).

(27)
Combining Eqs. (26) and (27), we conclude that P ε(A) ≤ P (A).

Let us now see that P ε is the only undominated outer approximation

of P in Cε. Assume that there exists ε′ ∈ (0, 1) and P
′
0 inducing an ε′-

contamination model Q that outer approximates P . Then:

P ε({xi}) = (1− ε)P0({xi}) = P ({xi}) ≥ Q({xi}),

where the second equality follows from the definition of ε and P0, the in-
equality because Q is an outer approximation of P .

Now, given A ⊂ X , it holds that:

P ε(A) = (1− ε)P0(A) = (1− ε)
∑
xi∈A

P0({xi}) =
∑
xi∈A

P ({xi})

≥
∑
xi∈A

Q({xi}) =
∑
xi∈A

(1− ε′)P ′0({xi}) = (1− ε′)P ′0(A) = Q(A).

We therefore conclude that P ε(A) ≥ Q(A) for every A ⊆ X , so P ε is the
unique optimal outer approximation of P in Cε. �

Proof of Proposition 9. Let E be an event such that d1(P 1, P 2) = |P 1(E)−
P 2(E)|. Since both P 1, P 2 are coherent, there exist P1 ∈ M(P 1), P2 ∈
M(P 2) such that P1(E) = P 1(E) and P2(E) = P 2(E). Then, it holds that:

d3(P 1, P 2) ≥ ||P1−P2|| ≥ |P1(E)−P2(E)| = |P 1(E)−P 2(E)| = d1(P 1, P 2),

whence d3 ≥ d1. �
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The following lemma establishes a property of the lower envelope Q of
the Weber set of a coherent lower probability P , that we shall use in the
proof of Proposition 10.

Lemma 15. Let |X | = n ≥ 2, P be a coherent lower probability on P(X )
and A ∈ P(X ). If |A| ∈ {1, n− 1} then:

Q(A) = min
σ∈Sn

Pσ(A) = P (A).

Proof. We consider first of all the case |A| = 1. Assume then that A =
{xi}, and take a generic permutation σ ∈ Sn. Using Eq. (19) and the
superadditivity (C4) of P , we have:

• If i = σ(1), then Pσ({xi}) = P ({xi}).
• If i = σ(k) for some k > 1, then:

Pσ({xi}) = P ({xσ(1), . . . , xσ(k)})− P ({xσ(1), . . . , xσ(k−1)})
≥ P ({xσ(k)}) = P ({xi}).

Thus, Q({xi}) = P ({xi}).
Consider now the case |A| = n − 1. To simplify the notation, suppose

A = {x2, . . . , xn}. Applying Eq. (19) and with some simple computations,
we obtain that:

• If 1 = σ(n), then

Pσ(A) = Pσ({x2}) + . . .+ Pσ({xn}) = P ({x2, . . . , xn}) = P (A).

• If 1 = σ(1), it holds that:

Pσ(A) = 1− P ({xσ(1)} = P (A) ≥ P (A).

• If 1 = σ(k), for some 1 < k < n, it holds that:

Pσ(A) = P ({xσ(1), . . . , xσ(k−1)}) + 1− P ({xσ(1), . . . , xσ(k)})
≥ P ({xσ(1), . . . , xσ(k−1), xσ(k+1), . . . , xσ(n)}) = P (A),

where the inequality holds from (C6).

We conclude that Q(A) = P (A). �

Proof of Proposition 10. It suffices to consider the case of |X | = 4, since for
cardinalities smaller than four any coherent lower probability is 2-monotone.

By construction, Q is an outer approximation of P . From Lemma 15,
we also know that Q(A) = P (A) for |A| = 1 or |A| = 3. Let us see what
happens with events of cardinality 2. Assume without loss of generality that
A = {x1, x2}; the other cases follow by analogy.

We shall determine the value of Pσ(A) for the different permutations of
X . It is not difficult to see that the only differentiating element within all
permutations is the relative position of {x1, x2} in (σ(1), σ(2), σ(3), σ(4)),
in the sense that if, for instance, they are in the second and fourth posi-
tions, the conclusions we draw on σ = (3, 1, 4, 2) are analogous to those on
(3, 2, 4, 1), (4, 1, 3, 2) and (4, 2, 3, 1). For this reason, we depict a few cases
only, each representative of one of the possible alternatives.
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• If σ satisfies {σ(1), σ(2)} = {1, 2}, then Pσ(A) = P (A).
• If σ satisfies {σ(3), σ(4)} = {1, 2}, then Pσ(A) = P (A) ≥ P (A).
• If σ = (1, 3, 2, 4), then:

Pσ(A) = P ({x1}) + P ({x1, x2, x3})− P ({x1, x3}).

This means that Pσ(A) < P (A) if and only if

P ({x1}) + P ({x1, x2, x3}) < P ({x1, x3}) + P ({x1, x2}),

or in other words if and only if P violates the 2-monotonicity for the
events A = {x1, x2} and B = {x1, x3}.
• If σ = (1, 3, 4, 2), then Pσ(A) = P ({x1}) + P ({x2}) ≥ P (A), where

the inequality follows from property (C5).
• If σ = (3, 1, 2, 4), then:

Pσ(A) = P ({x1, x3})− P ({x3}) + P ({x1, x2, x3})− P ({x1, x3})
= P ({x1, x2, x3})− P ({x3}) ≥ P ({x1, x2}),

where the inequality follows from the super-additivity (C4) of P .
• If σ = (3, 1, 4, 2), then:

Pσ(A) = P ({x1, x3})− P ({x3}) + P ({x2}).

This means that Pσ(A) < P (A) if and only if:

P ({x1, x3}) + P ({x2}) < P ({x3}) + P ({x1, x2}),

but from the properties (C4) and (C5) of a coherent lower probability
it holds that:

P ({x1, x2}) + P ({x3}) ≤ P ({x1, x2, x3}) ≤ P ({x1, x3}) + P ({x2}),

so the inequality cannot occur in the reverse order.

We conclude that Q(A) < P (A) in those events of cardinality 2 where P
violates the 2-monotonicity with some other event B such that |A∩B| = 1.

It only remains to see that Q is 2-monotone. Let W (Q) the Weber set of

Q. Then Q is 2-monotone if and only if Q = min conv(W (P )) := Q′.

Reasoning as before, Q′(A) = Q(A) for events A of cardinality 1 or 3.
Assume that there exists an event A of cardinality 2, A = {x1, x2}, such
that Q′(A) < Q(A). This means that Q violates the 2-monotonicity for A
and another event B of cardinality 2. Assume without loss of generality that
B = {x1, x3}. Then:

Q({x1, x2}) +Q({x1, x3})
> Q({x1, x2, x3}) +Q({x1}) = P ({x1, x2, x3}) + P ({x1}). (28)
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On the other hand, by definition Q ≤ Pσ for any permutation σ. Using this
fact with σ = (1, 3, 2, 4):

Q({x1, x2})+Q({x1, x3}) ≤ Pσ({x1, x2}) + P ({x1, x3})
= P ({x1}) + P ({x1, x2, x3})− P ({x1, x3}) + P ({x1, x3})
= P ({x1}) + P ({x1, x2, x3}).

From this inequality and Eq. (28), we obtain:

P ({x1}) + P ({x1, x2, x3}) > P ({x1}) + P ({x1, x2, x3}),

a contradiction.
We therefore conclude that Q(A) = Q′(A) also for events of cardinality

2, and as a consequence that Q is 2-monotone. �

Proof of Proposition 12. Let Q be a 2-monotone and undominated lower

prevision that outer approximates P . Then, its restriction to events Q′

satisfies:

Q′(A) = Q(IA) ≤ P (IA) = P ′(A) ∀A ⊆ X .
Also, Q′ is 2-monotone because Q is 2-monotone. Therefore, Q′ is a 2-

monotone outer approximation of P ′.
If there is some other 2-monotone outer approximation Q′

1
of P ′ such that

Q′ � Q′
1
≤ P ′, then its natural extension E1, that is its only 2-monotone

extension, will satisfy E′ = Q ≤ E1 ≤ E ≤ P , since P is a coherent

extension of P ′ and so it dominates its natural extension E, and also taking
into account that the procedure of natural extension preserves dominance.
This means that Q � E1 ≤ P , a contradiction with Q being undominated.

Conversely, if Q′ is a 2-monotone and undominated lower probability that

outer approximates P ′, its natural extension E′ will satisfy:

a) E′ is 2-monotone, from [29].
b) E′ ≤ E ≤ P , since P dominates the natural extension of its restric-

tion to events and natural extension preserves dominance.
c) If E′ ≤ E1 ≤ P for some other 2-monotone outer approximation

of P , then Q′ ≤ Q′
1
≤ P ′, where Q′

1
is the restriction of E1 to

events. Thus, Q′ = Q′
1
, whence E′ = E1 because a 2-monotone

lower probability on P(X ) has a unique 2-monotone extension to
L(X ).

We therefore conclude that E′ is also a 2-monotone and undominated lower
prevision that outer approximates P . �
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