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Abstract. For practical purposes, and to ease both the drawing and
the computing processes, the fuzzy rating scale was originally introduced
assuming values based on such a scale to be modeled by means of trape-
zoidal fuzzy numbers. In this paper, to know whether or not such an
assumption is too restrictive, we are going to examine on the basis of
a real-life example how statistical conclusions concerning location-based
scale estimates are a�ected by the shape chosen to model imprecise data
with fuzzy numbers. The discussion will be descriptive for the considered
scale estimates, but for the Fréchet-type variance it will be also inferen-
tial. The study will lead us to conclude that statistical conclusions are
scarcely in�uenced by data shape.
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1 Introduction

In previous papers we have discussed the in�uence of the shape of fuzzy data
coming from a random process in some statistical conclusions about this process.
Although the assumption of the trapezoidal shape is not at all mandatory to de-
velop statistics with fuzzy data, such an assumption substantially eases compu-
tations. Moreover, several authors have provided with di�erent arguments either
to employ trapezoidal fuzzy numbers or to employ trapezoidal approximations of
fuzzy numbers preserving some key features (like ambiguity, expected interval,
etc.).

The already developed discussions concern location of the random processes
generating fuzzy data (see Lubiano et al. [7,9]), and a few ones regard the
Fréchet-type variance of these processes (see De la Rosa de Sáa et al. [2,3]).

This paper presents a discussion involving some scale estimates for fuzzy data
sets that have been recently introduced (see [3]). The discussion is to be based
on a case study and will include both, descriptive and inferential conclusions.



2 Preliminaries

By a (bounded) fuzzy number we mean a mapping Ũ : R → [0, 1] such that
for all α ∈ [0, 1], the α-level set Ũα = {x ∈ R : Ũ(x) ≥ α} if α ∈ (0, 1],
= cl{x ∈ R : Ũ(x) > 0} if α = 0 (with `cl' denoting the closure of the set) is a
nonempty compact interval.

As frequently used examples of fuzzy numbers we can consider those in Fig-
ure 1, which are instances of the so-called LU -fuzzy numbers (see Stefanini et
al. [13]).

Fig. 1. Six types of fuzzy numbers sharing core [20, 25] and support (10, 40) and dif-
fering in shape. On the left, trapezoidal (top) and Π-curve (bottom), along with four
di�erent LU fuzzy numbers on the middle and the right

Random processes generating (intrinsically-valued) fuzzy data can be soundly
formalized by means of random fuzzy numbers (for short RFN's), the one-
dimensional convex version of fuzzy random variables, as de�ned by Puri and
Ralescu [10] (i.e., a random fuzzy number is a fuzzy number-valued mapping
X associated with a probability space and such that, for each α, the α-level
interval-valued mapping is a random interval associated with the probability
space).

Let X be an RFN associated with a probability space, and let x̃n = (x̃1, . . . , x̃n)
be a sample of observations from X . The sample Aumann-type mean is the
fuzzy number such that for each α

(x̃n)α =

[
n∑
i=1

inf(x̃i)α/n,

n∑
i=1

sup(x̃i)α/n

]
,

and the sample 1-norm median (Sinova et al. [12]) is the fuzzy number such
that for each α

(
̂̃
Me(x̃n))α = [Mei inf(x̃i)α,Mei sup(x̃i)α] .



3 Case study

The discussions in this paper will be based on the following case study.

Example 1. (Gil et al. [4]) This example is related to the well-known question-
naire TIMSS-PIRLS 2011 which is conducted on the population of Grade 4
students (i.e., nine to ten years old) and concerns their opinion and feeling on
aspects regarding reading, math, and science. This questionnaire is rather stan-
dard and most of the involved questions have to be answered according to a
4-point Likert scale, responses being disagree a lot, disagree a little,
agree a little, and agree a lot.

To get more expressive responses and informative conclusions, some items se-
lected from the original questionnaire form (see Table 1) have been adapted
to allow a double-type response: the original Likert and a fuzzy rating scale-
based one with reference interval [0, 10] (see Figure 2 for one of the items,
and http://bellman.ciencias.uniovi.es/smire/Archivos/FormandDatasetFRS-TP.pdf
for the full paper-and-pencil form, and Hesketh et al. [5] and Lubiano et al. [6,8]).

Table 1. Questions selected from the student questionnaire in Example 1

Reading in school

R.1 I like to read things that make me think
R.2 I learn a lot from reading
R.3 Reading is harder for me than any other subject

Mathematics in school

M.1 I like mathematics
M.2 My math teacher is easy to understand
M.3 Mathematics is harder for me than any other subject

Science in school

S.1 My teacher taught me to discover science in daily life
S.2 I read about science in my spare time
S.3 Science is harder for me than any other subject

Fig. 2. Example of the response (paper-and-pencil) form to an item in Example 1

The questionnaire involving these double response questions has been con-
ducted in 2014 on a sample of 69 fourth grade students from Colegio San Ignacio
(Oviedo-Asturias, Spain). These students have been distributed in accordance



with (their usual) three groups, so that the teachers have decided that the stu-
dents in one of the three classrooms have to �ll out the paper-and-pencil format
and the students from the other two groups have to complete the computerized
version.

The training of the students to let them know about the meaning and
purpose of the case study, as well as the aim of the double response, has been
carried out in up to 15 minutes, and three researchers from the Department of
Statistics, OR and Math Teaching have been in charge of the explanation and
conduction of the survey. At this point, it should be remarked that the students
had no idea on the concept of real-valued functions and they have just learned
that of a trapezium. With the guidelines enclosed in the form, the students have
not had understanding problems, they have catched the philosophy behind and
they have been able to provide us with quite coherent responses in most of the
cases. Actually, for all the questions, the number of `no response�s has been very
small and smaller for the fuzzy rating than for the Likert scale. In summary,
the training has been surprisingly much easier and more e�ective than we had
expected.

Datasets associated with responses to this questionnaire can be found in
http://bellman.ciencias.uniovi.es/smire/Archivos/FormandDatasetFRS-TP.pdf.

4 Metrics and scale measures for fuzzy data

Distances have been computed by considering two di�erent metrics: the L2 met-
ric ρ2 and the L1 metric ρ1 (see Diamond and Kloeden [1]), where for fuzzy
numbers Ũ , Ṽ they are given by

ρ2(Ũ , Ṽ ) =

√
1

2

∫
[0,1]

[
(inf Ũα − inf Ṽα)2 + (sup Ũα − sup Ṽα)2

]
dα,

ρ1(Ũ , Ṽ ) =
1

2

∫
[0,1]

[
| inf Ũα − inf Ṽα|+ | sup Ũα − sup Ṽα|

]
dα.

Let X be an RFN associated with the probability space (Ω,A, P ), x̃n =
(x̃1, . . . , x̃n) a sample of observations from X .

Then, the (sample) Fréchet-type ρ2-Standard Deviation, ρ1-Average
Distance Deviation, ρ2-Average Distance Deviation, ρ2-Median Dis-
tance Deviation, ρ1-Median Distance Deviation are given by

ρ2-SD(x̃n) =

√√√√ 1

n

n∑
i=1

[
ρ2(x̃i, x̃n)

]2
,

̂ρ2-ADD(x̃n) =
1

n

n∑
i=1

ρ2(x̃i, x̃n), ̂ρ1-ADD(x̃n) =
1

n

n∑
i=1

ρ1

(
x̃i,
̂̃
Me(x̃n)

)
,

̂ρ2-MDD(x̃n) = Mei

{
ρ2(x̃i, x̃n)

}
, ̂ρ1-MDD(x̃n) = Mei

{
ρ1

(
x̃i,
̂̃
Me(x̃n)

)}
.



5 Case study-based descriptive discussion

A descriptive comparative study has been developed by computing the scale
estimators in the last section over the samples of fuzzy-valued responses to Items
in Table 1.

Table 2. Scale estimates values for the responses to Items R.1-R.3, concerning READ-
ING in Example 1, depending on the considered shape

R.1 Tra Π LU1A LU1B LU2A LU2B Tri TriS

ρ2-SD 2.2609 2.2577 2.2578 2.2581 2.2573 2.2573 2.2329 2.2447
ρ2-ADD 1.4413 1.4390 1.4689 1.3751 1.4284 1.3800 1.4330 1.5640
ρ1-ADD 1.3683 1.3647 1.2640 1.3104 1.3658 1.3101 1.3364 1.4309
ρ2-MDD 1.8205 1.8130 1.8176 1.8105 1.8131 1.8104 1.7645 1.7852
ρ1-MDD 1.7189 1.7142 1.7113 1.7201 1.7121 1.7178 1.6944 1.7203

R.2 Tra Π LU1A LU1B LU2A LU2B Tri TriS

ρ2-SD 1.8780 1.8733 1.8819 1.8957 1.8794 1.8983 1.8107 1.7554
ρ2-ADD 1.4514 1.4476 1.4228 1.4082 1.4552 1.4291 1.3200 1.3448
ρ1-ADD 1.3875 1.3835 1.3339 1.4234 1.3649 1.4037 1.3423 1.3351
ρ2-MDD 1.6332 1.6237 1.6327 1.6543 1.6312 1.6570 1.5390 1.4835
ρ1-MDD 1.4959 1.4932 1.4862 1.5323 1.4958 1.5317 1.4498 1.3834

R.3 Tra Π LU1A LU1B LU2A LU2B Tri TriS

ρ2-SD 2.8987 2.8919 2.9193 2.8947 2.8950 2.8978 2.8535 2.8303
ρ2-ADD 2.2743 2.2713 2.2857 2.2421 2.2667 2.2353 2.2446 2.0791
ρ1-ADD 1.5844 1.6013 1.6006 1.5571 1.5652 1.5542 1.6123 1.6688
ρ2-MDD 2.4180 2.4073 2.4457 2.4028 2.4124 2.4081 2.3459 2.3357
ρ1-MDD 2.2435 2.2395 2.2807 2.2301 2.2458 2.2368 2.2198 2.1938

Table 3. Scale estimates values for the responses to Items M.1-M.3, concerning
MATHEMATICS in Example 1, depending on the considered shape

M.1 Tra Π LU1A LU1B LU2A LU2B Tri TriS

ρ2-SD 2.7000 2.6972 2.6866 2.7058 2.6961 2.7035 2.6378 2.6355
ρ2-ADD 2.3100 2.2998 2.3368 2.4626 2.3166 2.4672 2.2321 2.0475
ρ1-ADD 2.1719 2.1754 2.1970 2.3441 2.1809 2.3529 2.0469 2.0123
ρ2-MDD 2.3777 2.3732 2.3642 2.3781 2.3720 2.3761 2.2803 2.2659
ρ1-MDD 2.2741 2.2734 2.2565 2.2835 2.2706 2.2801 2.2163 2.2048

M.2 Tra Π LU1A LU1B LU2A LU2B Tri TriS

ρ2-SD 2.3419 2.3380 2.3012 2.3785 2.3357 2.3722 2.2803 2.2165
ρ2-ADD 1.7976 1.7954 1.7880 1.8233 1.7842 1.8017 1.7443 1.6821
ρ1-ADD 1.0571 1.0564 0.9956 1.1065 1.0558 1.1030 1.1344 1.1188
ρ2-MDD 1.9837 1.9788 1.9465 2.0164 1.9781 2.0116 1.8949 1.8272
ρ1-MDD 1.7374 1.7371 1.6887 1.7951 1.7332 1.7870 1.7159 1.6497

M.3 Tra Π LU1A LU1B LU2A LU2B Tri TriS

ρ2-SD 3.4820 3.4811 3.4686 3.4973 3.4803 3.4951 3.4744 3.4573
ρ2-ADD 3.4066 3.4061 3.4307 3.3773 3.4142 3.3874 3.3268 3.3392
ρ1-ADD 3.0357 3.0445 3.0127 3.0160 3.0447 3.0191 3.0068 2.9780
ρ2-MDD 3.0942 3.0927 3.0844 3.1052 3.0928 3.1041 3.0829 3.0658
ρ1-MDD 3.0276 3.0273 3.0169 3.0410 3.0268 3.0394 3.0278 3.0097



Table 4. Scale estimates values for the responses to Items S.1-S.3, concerning SCI-
ENCE in Example 1, depending on the considered shape

S.1 Tra Π LU1A LU1B LU2A LU2B Tri TriS

ρ2-SD 2.5932 2.5880 2.5909 2.5907 2.5928 2.5924 2.5419 2.5203

ρ2-ADD 1.7080 1.7053 1.7131 1.7086 1.6889 1.6895 1.6893 1.7510

ρ1-ADD 1.6899 1.6926 1.6245 1.7540 1.7098 1.7496 1.5653 1.6506

ρ2-MDD 2.1580 2.1483 2.1427 2.1572 2.1564 2.1590 2.0765 2.0665

ρ1-MDD 2.0268 2.0208 2.0209 2.0337 2.0233 2.0337 1.9951 1.9901

S.2 Tra Π LU1A LU1B LU2A LU2B Tri TriS

ρ2-SD 2.3401 2.3316 2.3792 2.3127 2.3368 2.3192 2.2958 2.3077

ρ2-ADD 1.6748 1.6716 1.7131 1.6096 1.6840 1.6268 1.5829 1.6988

ρ1-ADD 1.6022 1.5897 1.6734 1.6384 1.5795 1.6343 1.5716 1.6289

ρ2-MDD 1.9297 1.9182 1.9659 1.8889 1.9239 1.8960 1.8726 1.9007

ρ1-MDD 1.8317 1.8267 1.8667 1.7972 1.8299 1.8024 1.8150 1.8452

S.3 Tra Π LU1A LU1B LU2A LU2B Tri TriS

ρ2-SD 2.9307 2.9247 2.9530 2.9302 2.9286 2.9339 2.8818 2.8394

ρ2-ADD 2.4098 2.4072 2.4812 2.3751 2.4132 2.3808 2.3283 2.2254

ρ1-ADD 2.2448 2.2007 2.1720 2.2917 2.1704 2.2904 2.2457 2.1063

ρ2-MDD 2.5827 2.5742 2.6057 2.5717 2.5790 2.5768 2.5068 2.4671

ρ1-MDD 2.4685 2.4614 2.4941 2.4676 2.4666 2.4722 2.4379 2.3951

By considering the 4-tuples characterizing the fuzzy responses, we have built
the six LU -fuzzy numbers in Figure 1, along with the triangular ones Tri(a, b, c, d)
= Tra(a, (b+c)/2), d), TriS(a, b, c, d) = Tra(a, (a+d)/2), d). After computing the
scale estimates we have obtained the outputs in Tables 2, 3, and 4. For each of
the Items and scale estimates, one can conclude that the outputs scarcely di�er.

6 Case study-based inferential discussion

In this section, we are going to examine, by means of an inferential analysis of
the case study in Example 1, the in�uence of the shape of fuzzy data on the
statistical conclusions.

The discussion is carried out on the basis of the test about the equality of
variances with fuzzy data, the bootstrapped homoscedasticity test of k in-
dependent RFN's, developed by Ramos-Guajardo and Lubiano [11], which is
now algorithmically summarized for the two-sample case. If X1,X2 are indepen-
dent RFN's, consider a sample of independent observations x̃i = (x̃i1, . . . , x̃ini

)
from Xi, i = 1, 2, the two samples being also independent, with n = n1 + n2.
Denote x̃i = 1

ni
· (x̃i1 + . . . + x̃ini) the sample Aumann-type mean for x̃i,

S2
x̃i

=
∑ni

j=1

[
ρ2(x̃ij , x̃i)

]2
/ni the sample Fréchet-type variance for x̃i, and

S2
x̃ =

∑2
i=1 ni · S2

x̃i
/n.



Then, the bootstrapped algorithm to test the null hypothesis H0 : σ2
X1

= σ2
X2

(equality of the population Fréchet-type variances) proceeds as follows:

Step 1. Compute the value of the statistic

Tn1,n2
=

2∑
i=1

ni

(
S2
x̃i
− S2

x̃

)2
2∑
i=1

1

ni

ni∑
j=1

([
ρ2(x̃ij , x̃i)

]2
− S2

x̃i

)2

Step 2. For each i ∈ {1, 2}, obtain a bootstrap sample from

(
x̃i1 ·

√
S2
x̃/S

2
x̃i
,

. . . , x̃ini
·
√
S2
x̃/S

2
x̃i

)
, x̃∗

i = (x̃∗i1, . . . , x̃
∗
ini

), and compute the value of

the bootstrap statistic

T ∗n1,n2
=

2∑
i=1

ni

(
S2
x̃∗

i
− S2

x̃∗

)2
2∑
i=1

1

ni

ni∑
j=1

([
ρ2(x̃

∗
ij , x̃

∗
i )
]2
− S2

x̃∗
i

)2

Step 3. Step 2 should be repeated a large number B of times to get a set of
estimates, denoted by {t∗1, . . . , t∗B}.

Step 4. Compute the bootstrap p-value as the proportion of values in {t∗1, . . . ,
t∗B} being greater than Tn1,n2 .

Table 5 collects the corresponding p-values (with B = 10000) for testing the
equality of the population Fréchet-type variances for the trapezoidal RFN vs the
other seven LU -valued RFN's.

Table 5. p-Values for the equality of population Fréchet's variances of trapezoidal vs
other LU 's responses for to Items R.1 to S.3 in Example 1

p-values Tra vs ... Π LU1A LU1B LU2A LU2B Tri TriS

R.1 0.992 0.993 0.993 0.990 0.990 0.917 0.957

R.2 0.981 0.991 0.940 0.999 0.908 0.740 0.537

R.3 0.984 0.954 0.991 0.985 0.998 0.896 0.842

M.1 0.992 0.966 0.988 0.990 0.985 0.814 0.814

M.2 0.992 0.913 0.925 0.988 0.903 0.851 0.704

M.3 0.996 0.956 0.955 0.995 0.949 0.976 0.913

S.1 0.987 0.994 0.992 0.997 0.996 0.861 0.793

S.2 0.977 0.900 0.931 0.984 0.937 0.886 0.919

S.3 0.979 0.933 0.995 0.984 0.989 0.839 0.705

On the basis of the obtained p-values, one can immediately conclude that
in computing Fréchet-type variance, data shape seems not to be signi�cantly
in�uential.



For all the usual signi�cance levels one can consider, there are no signi�-
cant di�erences between population Fréchet's variances for the seven developed
comparisons, even for the triangular shaped data.

Ackowledgements

The research is this paper has been partially supported by the Spanish Min-
istry of Economy, Industry and Competitiveness Grant MTM2015-63971-P. Its
support is gratefully acknowledged.

References

1. Diamond, P., Kloeden, P.: Metric spaces of fuzzy sets. Fuzzy Sets Syst., 35, 241�249
(1990)

2. De la Rosa de Sáa, S., Carleos, C., López, M.T., Montenehgro, M.: A case study-
based analysis of the in�uence of the fuzzy data shape in quantifying their Fréchet's
variance. In: Gil, E. et al. (Eds.) The Mathematics of the Uncertain. A tribute to
Pedro Gil. Studies in Systems, Decision and Control, Vol. 142, pp. 709�720 (2018).
Springer: Cham

3. De la Rosa de Sáa, S., Lubiano, S., Sinova, S., Filzmoser, P.: Robust scale estimators
for fuzzy data. Adv. Data Anal. Classif. 11, 731�758 (2017)

4. Gil, M.A., Lubiano, M.A., De la Rosa de Sáa, S., Sinova, B.: Analyzing data from a
fuzzy rating scale-based questionnaire. A case study. Psicothema 27, 182�191 (2015)

5. Hesketh, T., Pryor, R., Hesketh, B.: An application of a computerized fuzzy graphic
rating scale to the psychological measurement of individual di�erences. Int. J. Man-
Mach. Stud. 29, 21�35 (1988)

6. Lubiano, M.A., De la Rosa de Sáa, S., Montenegro, M., Sinova, B., Gil, M.A.:
Descriptive analysis of responses to items in questionnaires. Why not using a fuzzy
rating scale? Inf. Sci. 360, 131�148 (2016)

7. Lubiano, M. A., De la Rosa de Sáa, S., Sinova, B., Gil, M.A.: Empirical sensitivity
analysis on the in�uence of the shape of fuzzy data on the estimation of some statis-
tical measures. In: Grzegorzewski, P. et al. (Eds.) Strengthening Links Between Data
Analysis and Soft Computing. Advances in Intelligent Systems and Computing, Vol.
315, pp. 123�131 (2015). Springer: Heidelberg

8. Lubiano, M.A., Montenegro, M., Sinova, B., De la Rosa de Sáa, S., Gil, M.A.:
Hypothesis testing for means in connection with fuzzy rating scale-based data: al-
gorithms and applications. Eur. J. Oper. Res. 251, 918�929 (2016)

9. Lubiano, M.A., Salas, A., Gil, M.A.: A hypothesis testing-based discussion on the
sensitivity of means of fuzzy data with respect to data shape. Fuzzy Sets Syst. 328,
54�69 (2017)

10. Puri, M.L., Ralescu, D.A.: Fuzzy random variables. J. Math. Anal. Appl. 114,
409�422 (1986)

11. Ramos-Guajardo, A.B., Lubiano, M.A.: K-sample tests for equality of variances
of random fuzzy sets. Comp. Stat. Data. Anal. 56(4), 956�966 (2012)

12. Sinova, B., Gil, M.A., Colubi, A., Van Aelst, S.: The median of a random fuzzy
number. The 1-norm distance approach. Fuzzy Sets Syst. 200, 99�115 (2012)

13. Stefanini, L., Sorini, L., Guerra, M.L. (2006) Parametric representation of fuzzy
numbers and applications to fuzzy calculus. Fuzzy Sets Syst. 157, 2423�2455 (2006)


