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Abstract

To grade open-response answers in a massive course is an important task that
cannot be handled without the assistance of an intelligent system able to ex-
tend the abilities of experts. A peer assessment method may be used for this.
The students who wrote the answers also play the role of graders for a reduced
set of answers provided by other students. The grades thus obtained should
be aggregated to provide a reasonable overall grade for each answer. However,
these systems present two clear disadvantages for students: they increase their
already heavy workload, and the grades that students finally receive lack feed-
back explaining the reasons for their scores. The contribution of this paper
comprises a proposal to overcome these shortcomings. The students acting as
graders are asked to evaluate a number of different aspects. One of them is the
overall grade, but there are other annotations that can be included to explain
the overall grade. Moreover, we represent the responses given by the students
(text documents) as the inputs in a learning task, in which the outputs are
the aspects to be assessed (labels with an ordinal level). Our proposal is to
learn all these labels at once employing a multitask approach that uses matrix
factorization. The method presented in this paper shows that peer assessment
can provide feedback and can additionally be extended to grade the responses
of students not involved in the peer assessment loop, thus significantly reducing
the burden on students. We present the details of the method, as well as a
number of experiments carried out using three data sets obtained from courses
belonging to different fields at our university.
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1. Introduction

The assessment of open-response assignments is frequently a problem. This
is the case in massive courses like MOOCs or even when there are a lot of
assignments during a course. One of the options to overcome this problem
is to avoid open-response in favor of multiple-choice questions. However, this
significantly reduces the communication between students and instructors that
may involve handling different forms of data, including computer programs,
video, audio, and written texts. The alternative is for the students that wrote
the answers to also play a role in the assessment. Peer assessment has been
explored as an efficient procedure to deal with this problem; see for instance
(Kulkarni et al., 2015; Piech et al., 2013; Raman and Joachims, 2014, 2015;
Sadler and Good, 2006; Shah et al., 2013; Labutov and Studer, 2016; Dı́ez
et al., 2013; Luaces et al., 2015a,b, 2017; Formanek et al., 2017). It has been
acknowledged as an activity that enhances student learning in Sun et al. (2015).

However, peer assessment has a number of flaws that should be addressed
in order to be deployed more extensively. Firstly, peer assessment may con-
siderably increase the burden on students. Second, the quality of the feedback
received by students should be improved (Gielen et al., 2010; Liu and Carless,
2006; Tseng and Tsai, 2007; Hovardas et al., 2014). In addition to a grade,
students should obtain some annotations pointing to the weak and strong as-
pects of their answers. Lu and Law (2012) present an interesting analysis on
the effects of providing feedback both for the students being assessed, and for
the students acting as graders. The authors conclude that feedback is clearly
beneficial and they also point out some aspects that must be considered in order
to design good peer assessment processes.

Finally, the fact that each assignment is evaluated by different peer assessors
gives rise to the problem of reaching a consensus to summarize those different
opinions into a single grade and a feedback. This is not trivial, as we will explain
in Section 2.

Table 1 shows some of the approaches proposed to deal with the evaluation
of assignments in a peer assessment context. Most of them are content-based,
i.e. the content of the answers (words) is represented and used to build the
assessment model. Note also that none of the approaches shown in the table
provides any kind of feedback other than the final grade).

In this paper we explore a method to address the mentioned issues in peer as-
sessment when open-responses are written documents. To improve the feedback
from an automated perspective, we propose to use a set of labels or annotations
that may be attached to answers with a level. These labels should cover the
explanations that a student could obtain from a personalized assessment given
by a professional instructor. We tested this proposal in three courses at our
university belonging to different fields: Law and Economy. Instructors could
easily express the possibilities of annotations in terms of labels with levels. On
the other hand, the students were able to understand the assessment task with
annotations effortlessly.

The output of peer assessments is a data set that must somehow be filtered

2



Table 1: Several approaches to deal with automatic grading in peer assessment. Column C-b
indicates whether the method is content-based. None of the approaches produce feedback to
the students other than the final grade

Reference C-b Summary

Shah et al. (2014) � Very abstract proposals which include dimensionality reduc-
tion and using features involved in the assessment.

Rodrigues and
Oliveira (2014)

� Answers, represented using the vector space model (VSM)
(Salton et al., 1975), are matched with a reference text (correct
answer) using the cosine as a similarity metric. This method
includes semantic analysis, whereby two words are considered
to be similar if they are related in the WordNet semantic net-
work.

Noorbehbahani and
Kardan (2011)

� Answers are matched with a reference text using a modified
version of the BLEU metric (Papineni et al., 2002).

Thomas et al. (2004) � This approach employs Latent Semantic Analysis (LSA)
(Deerwester et al., 1990), which uses the singular value de-
composition (SVD) of the term-document matrix (matrix of
answers codified using the vector space model (VSM) repre-
sentation) to project it into a smaller dimensional space.

Guetl (2007) � The CarmelTC algorithm implements a näıve Bayes classifier
which requires a reduced set of answers to be graded by an in-
structor and then processed by an ordinal classifier that learns
from the supervised data set.

Wang et al. (2008) � This approach uses a support vector machine (SVM) to eval-
uate creative problem-solving from open-ended responses.

to aggregate or reconcile the grades received by one answer from several students
acting as graders without experience in this task. This is usually tackled using
Machine Learning methods. In the experiments reported at the end of the
paper, we prove that models learned to aggregate grades can be used to ease
the academic workload of students.

The idea is to extend the assessment model to answers not involved in peer
assessment in any way. For this purpose, we use a content-based approach
similar to those employed in Recommender Systems. In this context, contents
are documents (the students’ answers) that can be represented using a bag of
words representation. Several approaches have been proposed to overcome the
limitations of this representation paradigm; see for instance (Deerwester et al.,
1990). In this paper, we propose a matrix factorization method to learn how
to grade that includes a method to arrange the answers of students in a metric
space according to their grades.

Notice that we have to learn to grade each of the aspects of the answer
that need to be considered: the overall grade, and the level of each of the
labels or annotations for feedback. We present a multitask (Caruana, 1997)
method to simultaneously learn all the aspects to be assessed, and we show in
the experiments that, in fact, there is an inductive transfer that improves the
whole Machine Learning process.

The contributions of this article can be summarized as follows. The eval-
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The answer contains misspellings

Quality of the composition

Short-term financial analysis

Long-term financial analysis

Economic analysis

Overall grade

many some few none

bad improvable acceptable good

deficient insufficient sufficient good excellent

deficient insufficient sufficient good excellent

deficient insufficient sufficient good excellent

Criteria Levels

Figure 1: Template used to annotate the assessment of the answers in the assignment of
Accounting Information, see Section 4.1

uation of open response assignments is a task that must be carried out by an
expert. However, when there exists a large number of assignments, which will
take the instructor(s) a prohibitive time to assess, peer assessment is commonly
used. The inherent subjectivity in the assessment, as well as the fact that each
assignment will receive different marks from different peer assessors, poses the
need to aggregate those scores. Computing the average is risky, since we have
only a few assessments per assignment, so we need to use an smarter approach.
Thus, the help of an intelligent system capable of performing this task is needed.

Generally speaking, an intelligent system is a piece of software able to per-
form a task which requires some kind of intelligent behaviour. In this context,
our proposed method is able to generalize the criteria of the peer assessors
(graders), going beyond averaging their scores, and getting rid of their subjec-
tivity in the assessment.

However, peer assessment entails an added burden to the already large vol-
ume of work required to the students. The first contribution of this paper is
a method that does not require all students to participate in the peer assess-
ment. The second is that our method provides feedback to students in the form
of a summarized explanation of the final grade, something which is not done
automatically by other peer assessment methods.

The paper is organized as follows. First we explain the whole process as
it is seen by students and instructors and then introduce the insight behind
the approach presented here. The following section is devoted to presenting
the formal setting. We then report the experiments conducted to evaluate the
approach presented in the paper. We end with the conclusions of this research.

2. Overall Description of the Method

After submitting their answers to an open-response assignment, students
are required to grade a group of anonymized answers by other students. The
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assessments must be carried out using a template like the one shown in Figure 1,
and following the rules detailed in a rubric. Notice that the template presents
a set of graded annotations or labels that, together with the overall grade, will
form the feedback for the students who wrote the answers. Thus, the feedback
provided to the student with the scores shown in Figure 1 can be read as:

You have got 5 points out of 10 (overall grade) because you made
an economic analysis which was insufficient, although the long-term
financial analysis was good and the short-term analysis was excellent.
The quality of your composition was good, with no misspellings.

The rubric should include the correct answer when this is not clear for all
students; this was the case of the assignment of Constitutional Law used in the
experiments reported in Section 4. However, at other times, for instance in
the course entitled Spanish Economy, the rubric indicates what elements would
contain a good answer, and the grade is to a certain extent a subjective opinion
of the grader.

The labels and the rubric must be provided by the instructor considering
that they serve to organize the process of assessment. They should aim to
achieve uniform assessment criteria.

The output of peer assessment is a 3-dimensional matrix like that in Figure 2.
In the figure, the answers are represented in columns, the graders in rows, and
the labels to be graded in pages. Most of the components of this matrix are
usually empty.

We assume that there is an unknown relationship between the grades given
to the labels of the answers. So if we find a pattern in the grades of some of
these labels, we hope to use them explicitly as an inductive transfer to learn how
to make an assessment of all the labels of all the answers by all the graders. In
other words, we try to complete the assessment matrix with grades consistent
with those we have available, as shown in Figure 2.

The consistency of grades with the original assessment matrix is established
in term of orderings. The aim is to have a ranking of answers as similar as
possible to the partial rankings provided by graders. Thus, we will not to use
regression. The main reason is that graders are not professionals. Therefore, if
a grader assigns 9 points to an answer x and 4 points to y, we are only using
the fact that x is preferable to y. This is the ordinal point of view. If we were
trying to learn how to predict exactly 9 points for x and 4 for y (the regression
approach), then we would had adopt the cardinal point of view.

There are many reasons in favor of the ordinal approach, not only in as-
sessment, but in general when we are interested in learning preferences in con-
texts like information retrieval or marketing studies (Bahamonde et al., 2004;
Joachims, 2002; Luaces et al., 2015c).

Once we have a complete estimation of the assessment matrix, we compute
the average of all the grades assigned to each answer in each label, including the
overall grade. These values will be the grades given by the model just learned
from peer assessment data. However, these grades are just a tool to order the
answers.
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Figure 2: The process starts out from a sparse assessment matrix and provides a full matrix
after learning from the available data
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Sometimes, these rankings (one for each label) are enough to complete the
assessment process. If this is not the case (as happens in Spanish universities),
we need to compute a grade. We then transform ranking positions into grades
following the same distribution as those given by the students acting as graders.
In this respect, we take into account the grades given by the graders. But let
us emphasize here that this final step is just a translation from the language of
percentiles to that of grades.

3. Formal Settings

In this section we present the formal details of our proposal. Firstly, we ex-
plain a multitask approach, which learns a predictive model taking into account
all the available data, i.e. all the labels simultaneously, including the overall
mark. Then, we present a simplification in which a different model is learned
for each label. In the end of the section we suggest how the rankings obtained
by any of the previous methods can be transformed into an absolute grade, just
in case it was necessary.

3.1. Multitask approach

Let G be a set of graders, and A a set of answers for an assignment. Graders
are asked to assign a grade for a set of aspects of the assignment represented by
labels in L. After the assessment, we have an assessment matrix,

M(g, l,a). (1)

The values of this matrix are grades given by a grader g ∈ G for answer a ∈ A
with respect to a label l ∈ L. Typically, one of the labels stands for the overall
grade, but formally this is only another label to be assessed. The remaining la-
bels will be understood as feedback given to the students who wrote the answers
to explain the final grade.

Not all components of M will have values. In fact, these type of matrices
are often quite sparse. The reason for this is that each grader g is asked to
evaluate only a few answers Ag ∈ A. As mentioned above, the first step toward
an assessment is to fill the matrix according to the available values. For this
purpose, we start out from a set of preference judgments (Bahamonde et al.,
2004; Joachims, 2002; Luaces et al., 2015c),

D = {(g, l,ab,aw) : M(g, l,ab) >M(g, l,aw)}, (2)

where g ∈ G, l ∈ L, and ab,aw ∈ Ag. The intended meaning is to record that
for g, for label l, the answer ab deserves a higher grade than the answer aw. In
this way, we overcome the actual grades, but retain the ordinal preferences of
the graders. Nevertheless, at the end of the process we will take into account
the distribution of grades given for each label, just in case we need to transform
the final ranking into absolute scores.
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We use a vectorial representation to handle answers, labels, and graders. We
thus use a bag of words approach for the answers to explicitly consider the con-
tents of the answers in the assessment method. This requires first computing
the corpus of all words used in all answers in A. Then, each answer can be
codified by a binary vector indexed by the corpus: the components correspond-
ing to a word that appears in the answer will have a value of 1, while the rest
will have a 0. This is a straightforward approach to implement a content-based
system that can be eventually replaced by other, most advanced, representation
methods, like those proposed by Le and Mikolov (2014) or by Cho et al. (2014).

On the other hand, graders and labels will be represented using one-hot cod-
ification. The i-th element will be codified by a vector whose only nonzero value
will be the i-th component. Then, to consider grader g and label l at the same
time, we use the direct sum (concatenation) of their vectorial representations,
(g ⊕ l).

All vectors involved in the assessment process will be projected (embedded)
in a common Euclidean space, Rk,

R|G|+|L| 7→ Rk, (g ⊕ l) 7→W (g ⊕ l), (3)

R| corpus(A)| 7→ Rk, a 7→ V a. (4)

Notice that the input of projections depends on the size of the corpus and on
the number of labels and graders, while Rk has an arbitrary dimension, k. We
normally use a lower dimension than that of input spaces. The idea is to reduce
the noise of the data.

In this context, we define a full assessment matrix, M̂ , to estimate the grade
for a label l given to an answer a according to grader g, using the inner product
of the projections in Rk as follows:

M̂(g, l,a) = 〈W (g ⊕ l),V a〉 = (g ⊕ l)TW TV a. (5)

In this equation, the matrices W T and V are factors of a matrix of weights for
the products of the components of (g⊕ l) and a. For this reason, this approach
is called matrix factorization.

Finally, the grade for aspect l of answer a is defined by the average of grades

given by all graders using the estimations of M̂ ; see Figure 2. In symbols,

f(l,a) =
1

|G|
∑

g∈G
M̂(g, l,a) = 〈W (ḡ ⊕ l),V a〉, (6)

where ḡ stands for the average grader,

ḡ =
1

|G|
∑

g∈G
g. (7)

The coherence of the assessment matrix, M , and its estimation, M̂ , is mea-
sured in terms of differences in the orderings of the answers. The aim is for the
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orderings induced by the estimated grades (of the average grader and each of the
graders) to be as similar as possible to the ordering given by each grader. Then
we search for the best matrices, W and V . The formalization of our multitask
approach is that both parameters, W and V , are the same for all labels.

To measure the similarity of the orderings, we use a maximum margin ap-
proach. We seek to reduce the number of swapped pairs in the orderings. The
optimization problem considering all labels at the same time can be set to min-
imize the following loss function:

err(W ,V ) =
∑

(g,l,ab,aw)∈D

max
{

0, 1−〈W ((ḡ + g)⊕ l),V ab〉+

〈W ((ḡ + g)⊕ l),V aw〉
}
.

(8)

To solve this optimization problem, we use a Stochastic Gradient Descent
(SGD) that finds the optimum parameters of the model, i.e. the matrices W
and V . Appendix A gives more mathematical details about the gradient descent
procedure.

3.2. Binary Relevance (BR) approach

The straightforward baseline for the multitask approach is to learn one model
for each label. In our case, to learn matrices Wl and Vl for each label l. For
this purpose, we need to focus only on those grades involving one label l,

Dl = {(g,ab,aw) : (g, l,ab,aw) ∈ D}. (9)

Using the same approach as that presented above for the multitask approach,
we estimate the grades for an answer a and a label l using a particular function

fl(a) = 〈Wl ḡ,Vl a〉. (10)

In the following, we will refer to this simple approach as Binary Relevance
(BR) using a terminology borrowed from multilabel classification.

Figure 3 depicts an artificial example to highlight the differences between
the multitask and BR approaches from a geometrical point of view. Let us recall
that, in the multitask approach, whose scoring function takes the form expressed
in (6), vector W (ḡ⊕ l) defines an assessment hyperplane in Rk for label l, such
that the model predicts that the score (grade) given by the average grader to
answer ai regarding aspect (label) l is proportional to the distance from its
representation in Rk, V ai, to the assessment hyperplane. The parameters of
the multitask model, W and V , are learned simultaneously for all labels.

In contrast, for the BR approach, the problem is split into as many problems
as the number of labels to be assessed, so there will be a different model, i.e.
a different pair of matrices Wl and Vl for each label. In other words, the BR
approach consists in decomposing the original learning problem into as many
independent subproblems as the number of labels to be assessed.
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Figure 3: Geometrical interpretation of the multitask approach (left) vs. the binary relevance
approach (right) for a hypothetical History assignment. The blue points represent answers
and the red lines are the hyperplanes defined by the graders and the assessment labels. In
this example, the labels to be assessed are the quality of the organization of historical events
in the answer, the student’s knowledge regarding relevant facts in a given historical period,
and finally, the overall mark. In the multitask approach, the location of answers (V a) and
hyperplanes (W (ḡ ⊕ l)) is learned to cope with all labels at the same time, aiming to take
advantage of an inductive transfer between them, while in the BR approach, there is a model
for each label, i.e. a different pair of matrices Wl and Vl , yielding in this example 3 different
graphs
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Table 2: Characteristics of the datasets. The total number of students participating in each
peer assessment event is indicated in Number of answers. Note that only in Constitutional
Law did all the students also act as graders

Account Constitutional Spanish
Information Law Economy

Number of answers 119 66 111
Number of graders 112 66 108
Number of assessments 1120 660 1065
Sparsity of M (% empty) 92.09 84.85 91.36
Average number of grades per answer 9.41 ± 0.71 10 ± 0 9.59 ± 0.67
Average number of grades per grader 10 ± 0 10 ± 0 9.86 ± 0.99

Thus, the work entrusted to the parameters of the model ({W , V } in the
multitask approach, and several pairs of {Wl ,Vl } in the BR approach) is to
place hyperplanes and answers in Rk in such a way that the distances to the
corresponding hyperplanes are coherent with the ordering of graders. The mul-
titask approach places the representations of answers (blue points in the figure)
in the same position for all labels, while Binary Relevance starts from scratch
for each label and hence the clues given by one label cannot be used in any way
to place the projections of answers for another label.

3.3. Transforming the ranking into a grade

After learning the matrices W and V , using the function f (6), for each
label, we have a ranking of answers from best to worse. If we need to transform
this ranking into grades, our proposal is to do so by trying to reproduce the
same distribution of grades that we collected from the students. Notice that
this is only a translation that has no effect on the ranking of answers learned in
the multitask described above.

Of course, we may follow an analogous process for BR to obtain grades for
each answer in each label.

4. Experimental Results

In this section we report a number of experiments performed to test the
goodness of the method presented in this paper. First, we introduce the datasets
used, then the evaluation method, and finally the scores obtained.

4.1. Datasets

The datasets used in the experiments were gathered from three courses be-
longing to different fields at the University of Oviedo: Accounting Information,
Constitutional Law, and Spanish Economy.

To collect the data, we used a Moodle (moodle.org) installation on one of
our servers. This platform has a tool called workshop that provides the infras-
tructure required for peer assessment. The final grade is computed in this tool
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by averaging the grade received by each answer, so we replaced this step by our
method.

The double-blind assessment also guaranteed that no student graded her or
his own answer. Each student received 10 answers to grade.

Table 2 shows the basic characteristics of the datasets. Note that around
90% of the components of the assessment matrices M (1) are empty.

On the other hand, Table 3 shows additional characteristics of the datasets.
The first column (#PJ) reports the number of Preference Judgments, i.e. the
size of the corresponding dataset Dl (9). Notice that for each label and each
grader we record only those pairs of answers with different grades; the pairs
with the same grade do not give rise to any element in Dl. This is the reason
why the number of preference judgments may be different for different labels.
Recall that the multitask approach deals with the join of Dl for all l in a single
D (2).

The second column (Discrepancies) gives the percentage of contradictory
preferences with the majority of opinions. For instance, if, for a label l, 3
graders think that answer x is better than y and another 2 graders think the
opposite, we count 2 discrepancies. Thus, the percentage of discrepancies is a
lower error bound for any classification function.

Finally, the last column in Table 3 details the set of labels used in the
assignments whose data were used in the experiments. The original labels were
written in Spanish, so here we give a translation. The number in parentheses is
the same as that used in Figure 4. This picture represents the distribution of
grades given by graders for all labels including the overall grade in the rightmost
graph in each row.

4.2. Evaluation Method

To evaluate the performance of the multitask approach presented in this
paper, we conducted some train/test experiments with the datasets described
above. We compared the performance of multitask versus BR (Section 3.2). To
split the datasets, we first separated a set of students and made a training set
with only the preference judgments involving this subset of students, either as
graders or as those who gave the answers. The remaining available preference
judgments were then considered as the test set. In other words, starting from
the sparse matrix, M , we extract several matrices, M s, built by randomly
selecting s rows and the corresponding columns from M , leaving the rest for
testing. The size of the set of students selected was s = {25, 50, 75, 100}, except
in the case of the dataset from Constitutional Law as we only had 66 students
and therefore we only considered training sets of students of size 25 and 50.

The performance measure was a simple 0/1 classification error in the test.
The errors are those ordered pairs of answers in the test sets that were not
ordered in the same way by the function shown in (6) learned by the multi-
task approach. Table 4 shows the percentage of errors computed averaging 10
repetitions.

During training, the SGD algorithm uses some parameters that must be set
in order to ensure the best performance. For this purpose, we made a grid search
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Table 3: Detailed description of grades and labels for each dataset. The #PJ column indicates
the number of pairs of comparisons, i.e. the pairs of assignments with a different grade in
the corresponding label, given by the same grader. The Discrep. (%) column indicates the
percentage of pairs ordered differently depending on the grader (discrepancies between graders
for a given pair of assignments). The Labels column contains the aspects that had to be
assessed in each assignment and that can be used as feedback to students when they receive
their marks (see Section 2)

Accounting Information

#PJ Discrep. (%) Labels

1603 3.74 (1) The answer contains misspellings
3068 5.05 (2) Quality of the composition
3043 4.24 (3) Short-term financial analysis
3187 4.61 (4) Long-term financial analysis
3455 4.08 (5) Economic analysis
4233 5.20 Overall grade

Constitutional Law

#PJ Discrep. (%) Labels

570 2.98 (1) The answer contains misspellings
1273 6.44 (2) Quality of the composition
1172 4.95 (3) Line of arguments
378 2.91 (4) Quotes the relevant papers
171 0.00 (5) Does not know what a motion of censure is
218 2.29 (6) Does not know what a motion of non-confidence is
369 1.90 (7) Does not know the duties of the King
184 0.00 (8) Does not know how the President is appointed
112 2.68 (9) Does not know the duties of the President

2158 9.73 Overall grade

Spanish Economy

#PJ Discrep. (%) Labels

2318 5.95 (1) Ability to understand and describe the core economic pro-
cesses of each of the stages of evolution of the Spanish Economy

2331 5.19 (2) Ability to distinguish the phases of convergence and diver-
gence of the Spanish Economy with respect to the European econ-
omy

2329 5.84 (3) Ability to show the overall balance of the evolution of the
Spanish Economy with its main achievements and limitations

2544 6.29 (4) Ability to reasonably explain the salient features, events and
consequences of the recent economic crisis and the dilemmas
posed to economic policies

2735 5.45 (5) Quotes the relevant references and uses well-reasoned personal
judgments

2648 6.50 (6) The arguments are well organized and clear. The answer
shows the capacity to summarize and uses the right economic
terms

3736 8.00 Overall grade
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Figure 4: Distributions of the scores given by graders for all labels in the three peer assess-
ment experiments. The first row contains the distribution for the labels assessed in Account
Information, the second row is for Constitutional Law, and the third is for Spanish Economy.
These labels can be found in Table 3. The X axis of each graph shows the number of different
scores that the corresponding label can receive (for instance, the overall mark in any of the
three assignments is a value in the range [0, 10])

using only training sets to find the most promising combination. We conducted
a cross-validation experiment with 2 folds and 5 repetitions using all possible
combinations of values of k, ν and γs (A.2):

k ∈ {2, 10, 20, 50, 100},
ν ∈ {10e : e = −4, . . .+ 2},
γs ∈ {10e : e = −4, . . . ,−1}.

We then selected the best combination to perform the corresponding train/test
experiment.

4.3. Results

Table 4 reports the scores obtained by the multitask and BR approaches.
The last row of each table shows the weighted average of the scores of all labels
for each train/test; the weights are the number of test elements.

The best (weighted average) scores are highlighted in bold. It can be seen
that the multitask approach outperforms the BR approach in most cases: mul-
titask is better 8 out of 10 times.

As expected, the error decreases as the size of the training set increases. The
scores obtained in the biggest sets are slightly higher than those reported in the
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Table 4: Percentage of errors. There is a table for each independent dataset (assignment).
Errors are the percentage of incorrectly ordered pairs of assignments when using only 25, 50,
75 or 100 graders/assignments for training, and the rest for testing

Accounting Information

Multitask BR
25 50 75 100 25 50 75 100

L1 43.29 45.79 48.10 44.26 49.47 47.74 46.08 44.00
L2 36.86 31.24 36.14 28.75 45.22 32.41 32.78 27.74
L3 48.24 30.96 30.44 23.72 48.26 33.01 27.88 23.89
L4 41.91 35.86 32.99 29.42 47.24 36.27 32.08 30.60
L5 40.50 30.27 31.57 25.53 44.57 33.57 29.90 26.34
Overall 40.22 29.60 28.21 25.30 45.85 30.09 26.67 25.30
weighted 41.58 32.68 32.99 27.96 46.45 34.17 31.03 28.15

Constitutional Law

Multitask BR
25 50 25 50

L1 43.24 36.82 39.71 38.32
L2 34.07 33.90 35.73 37.45
L3 28.97 30.41 30.76 34.33
L4 35.80 23.63 46.56 27.81
L5 43.01 36.81 51.70 36.39
L6 31.39 33.08 43.56 27.05
L7 42.28 18.42 40.73 23.51
L8 36.47 26.43 42.88 30.86
L9 26.87 31.43 44.34 30.86
Overall 34.95 36.40 36.92 35.62
weighted 34.88 33.04 37.46 34.68

Spanish Economy

Multitask BR
25 50 75 100 25 50 75 100

L1 54.94 40.65 39.71 32.13 49.57 47.98 43.49 38.03
L2 52.46 40.72 36.75 37.07 43.24 45.41 40.85 39.66
L3 51.54 40.72 36.69 30.78 47.08 44.65 41.86 37.51
L4 50.44 42.61 40.60 31.51 48.42 46.17 43.98 36.31
L5 42.62 36.23 35.92 31.25 45.09 41.04 37.20 35.81
L6 49.14 43.04 40.53 40.38 49.26 48.33 43.01 39.58
Overall 49.06 40.63 38.40 33.61 48.23 46.41 38.92 37.96
weighted 49.78 40.62 38.38 33.79 47.34 45.72 41.11 37.82
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papers by Raman and Joachims (2014); Luaces et al. (2015a,b, 2017). The
main reason for this is that the aforementioned papers report the resubstitu-
tion error; the comparison was established comparing the discrepancies between
professional instructors and the model learned.

In this paper, we present a collection of train/test experiments that, on
the one hand, provide a support to launch assessment tools where only a part
of the students will be required to grade their peers. On the other hand, the
experiments reported here back the hypothesis that assessment can be smoothly
learned like other learning tasks.

5. Conclusions

In this paper, we address two important issues in order to increase the qual-
ity of the peer assessment of written open-responses: the need to provide use-
ful feedback to students, and to relieve their workload. The proposal requires
graders to assess a number of annotations or labels about the answer that they
are assessing. The overall grade is another label in this context. We have pre-
sented a method that uses a multitask approach to search for grading patterns
in all labels at the same time.

Multitask leverages the accuracy of a baseline that successively focuses on
each label separately. Thus, the assessments provided by students can be ag-
gregated in a list of graded labels that informs their peers of their overall grade,
as well as providing a number of reasons explaining weak and strong points in
their answers.

On the other hand, models learned using the multitask approach can be
extended to answers not at all involved in peer assessment. The consequence
is that a part of the students can be relieved of the assessment task, thereby
reducing the burden on students in processes of this kind.

The paper thus presents an intelligent system that allows implementing
the assessment of open-response assignments in massive courses. Our proposal
presents two fundamental contributions with respect to the existing literature.
On the one hand, it considerably reduces the student workload. In fact, when
students are required to assess the work of others, they must spend a lot of
time on this task. In our proposal, by explicitly using the texts of the answers,
the intelligent system is able to do the work of an expert evaluator: it gen-
eralizes what has been learned from a part of the students to grade the rest.
On the other hand, the system presented here is capable of offering an expert
explanation to students, in addition to an overall grade to their answers. This
explanation constitutes a feedback that undoubtedly contributes to improving
teaching.

The goodness of the approach presented in this paper was checked on three
datasets collected from courses at our university (Accounting Information, Con-
stitutional Law, and Spanish Economy), yielding quite successful accuracy scores.
Therefore, we would like to stress that this research proved that it is feasible
to deploy sophisticated assessment methods in fields far-removed from Com-
puter Science. Both instructors and students found the experience satisfactory
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and did not find any difficulty in shifting from traditional assignments to our
proposal.

Any peer assessment process requires that the instructor(s) must provide
a rubric, i.e., clear instructions for the peer assessors to evaluate their peers’
assignments. In addition to this requirement, our method also requires the
instructor(s) to provide a list of aspects (labels) to be considered for deciding
the overall grade. The achievement of these aspects must be assessed using
either a real value (score) or a range of ordinal values. Therefore, the approach
presented in this paper is applicable in the assessment of assignments in any
field or discipline, provided these requirements are fulfilled.

The work presented in this paper can be extended in several aspects. Firstly,
we may wish to include the grades provided by a professional instructor together
with those provided by peers. The challenge will be how to merge all these
grades, bearing in mind that the reliability of the instructor’s grades is higher
than that of the students. This extension could eventually lead us to compli-
cate the linear model induced by our approach. We could accordingly devise a
deep learning model for this purpose and check whether it improves the results.
Finally, we would like to check the scalability of the models, applying them to
very large datasets originating from MOOCs.
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mans, T., Côté, M.-A., Côté, M., Courville, A., Dauphin, Y. N., Delalleau, O.,
Demouth, J., Desjardins, G., Dieleman, S., Dinh, L., Ducoffe, M., Dumoulin,
V., Kahou, S. E., Erhan, D., Fan, Z., Firat, O., Germain, M., Glorot, X.,
Goodfellow, I., Graham, M., Gulcehre, C., Hamel, P., Harlouchet, I., Heng,
J.-P., Hidasi, B., Honari, S., Jain, A., Jean, S., Jia, K., Korobov, M., Kulka-
rni, V., Lamb, A., Lamblin, P., Larsen, E., Laurent, C., Lee, S., Lefrancois, S.,
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Appendix A. Derivatives used in the gradient descent

The learning method proposed in this paper is based on Stochastic Gradient
Descent (SGD). The idea is to find the parameters of the model being learned
which minimize a given loss function. This is an iterative method which pro-
ceeds by presenting randomly selected training examples, evaluating the output
(comparing the prediction with the ground truth) and modifying the parameters
of the model in the direction that minimizes the error (loss function).

In each iteration, the parameters of the model, Θ (in our case the matrices
W and V ) are modified, as follows:

Θ← Θ− γ
(
∂ err(Θ)

∂Θ
+ ν · ∂‖Θ‖

2
F

∂Θ

)
, (A.1)

where ‖ · ‖2F is the Frobenius norm included for regularization, γ is the learning
rate and ν is the regularization factor. As usual, γ decreases its value in each
iteration. In the experiments reported in Section 4 we have used the following
expression to determine the value of γ in the ith iteration:

γ =
1

1 + γs · i
. (A.2)

The derivatives used in the gradient descent, when the maximum in the loss
function (8) is greater than zero, are given by

∂ err(Θ)

∂W
= V (aw − ab)((ḡ + g)⊕ l)T (A.3)

∂ err(Θ)

∂V
= W ((ḡ + g)⊕ l)(aw − ab)T (A.4)

and the derivative used in the regularization term is

∂‖X‖2F
∂X

= 2X (A.5)

where X is either W or V .
The derivatives (A.3), (A.4) and (A.5) included in this appendix are useful

for those who want to implement their own version of gradient descent, but it
is worth noting that modern machine learning frameworks, like Theano (The
Theano Development Team et al., 2016) or TensorFlow (Abadi et al., 2016),
include automatic differentiation, as well as several improved versions of opti-
mization algorithms, so the developer does not need to know or program these
derivatives.
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