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1 Introduction

Wilson loop operators are some of the most fundamental observables in gauge theories.

They can be defined on any closed curved C as the path-ordered exponential of the holonomy

of the gauge field on the curve

W(C) = tr P ei
∮
C A, (1.1)

with the trace in the fundamental representation. In pure Yang-Mills they, and their

products, form a complete basis of gauge-invariant observables. In general, computing the

expectation value of a Wilson loop is an arduous task even at weak coupling, as it requires

summing over an infinite number of diagrams even when interactions are neglected.

Remarkably, in supersymmetric theories there are closely related BPS line operators1

whose expectation value takes a very simple form for symmetric shapes, like a straight line

1For general curves the operators look BPS along small segments, but supersymmetry is broken. In a

slight abuse of language BPS will be used in the local sense.
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or a circle. The simplest example is the 1/2 BPS loop of N = 4 super Yang-Mills (SYM)

WBPS(C) = tr P ei
∮
C(Aµdxµ+φIθIds), (1.2)

where φI are the six scalar fields of N = 4 SYM and θI ( θ2 = 1) are parameters associated

to the SO(6)R symmetry. The expectation value of the BPS operator on a line is a trivial

constant (independent of the coupling) or it is determined by a Gaussian matrix model [1–

3]. That the two are different could be surprising at first sight, as N = 4 SYM is conformal

invariant and the line and the circle are related by a conformal transformation. The origin

of the difference can be understood in terms of boundary conditions [1] or a conformal

anomaly [2]. Nevertheless, conformal invariance implies that the expectation value of the

Wilson loop is independent of the length of the circle.

The expectation value of the circular BPS loop in N = 4 U(N) SYM was first computed

in the large-N , strong ’t Hooft coupling limit by means of the AdS/CFT correspondence [4,

5], following [6, 7]. At weak coupling, Erickson, Semenoff and Zarembo [1] found the leading

behavior using a resummation of ladder planar diagrams. They showed that the planar

expectation value is determined by a large-N Gaussian matrix model, and they speculated

that diagrams with internal vertices would not modify the result, as the extrapolation to

strong coupling agreed with the result from AdS/CFT. Soon after, Drukker and Gross [2]

argued that the relation to the matrix model extends beyond the planar limit, and that the

matrix model determines the exact result to all orders in the coupling and N , although the

question of whether interactions modify the matrix model was still open. That the Gaussian

matrix model determines the expectation value was finally established by Pestun [3], who

derived the exact result using supersymmetric localization for a circular BPS loop on the

sphere. The result from localization also showed that for less symmetric N = 2 SYM

theories, perturbative and non-perturbative corrections do appear, with the perturbative

ones limited to one-loop.

These very appealing results suggest that a simpler description of the (non-BPS) Wil-

son loop may also exist. The string theory description of BPS loops hints as to what could

be a frutiful approach in this direction. The holographic description of BPS loops in dif-

ferent representations consists of D-branes wrapping some of the directions in the internal

geometry [8], either D5 branes wrapping a S4 ⊂ S5 or D3 branes wrapping a S2 ⊂ AdS5.

The weak coupling description is a one-dimensional intersection of color D3 branes with

the other D3 or D5 branes. On this intersection live dynamical fields corresponding to the

strings connecting the color D3 branes with the other D-branes, with the matter content

determined by the representation of the Wilson loop. Although supersymmetry plays a

very important role regarding the properties of the BPS loop, it does not really enter in

its formulation as a defect theory.

It seems reasonable to expect that a similar defect theory description applies to ordi-

nary Wilson loops, and indeed it will be shown that such a formulation is possible and that

it leads to a Gaussian matrix model for the expectation value of the circular Wilson loop

from the leading order terms in the weak coupling expansion of the effective action. The

leading order contribution is not just the first correction proportional to the coupling, but

it captures all ladder diagrams (planar and non-planar) and loop contributions to the gauge
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coupling renormalization. Furthermore, the calculation of the leading order contribution

to the circular Wilson loop using the defect theory is extremely simple and only requires

straightforward manipulations of matrix integrals and the calculation of a functional deter-

minant of free fermions. It should be noted however that vertex corrections will modify the

expectation value of the Wilson loop at subleading order in the weak coupling expansion

(starting at O(g4)), so the ladder result cannot be used to find the precise value beyond

the leading order, even though it captures infinitely many contributions.

The matrix model of the Wilson loop is the same as the one found for the N = 4

SYM BPS loop. This may sound strange at first for two reasons, the first being that in the

localization result of [3] the matrix integral is obtained from an integration over constant

values of scalar fields. However, this may be a feature which depends on the particular Q-

exact functional chosen to implement the calculation, and indeed the arguments presented

in the perturbative calculation of [1, 2] point to a seemingly different origin of the matrix

model. This leads to the second apparent issue, in the perturbative calculation of the

BPS loop it was crucial that there is an exact cancellation between the gauge and scalar

contributions such that the result is finite and independent of the length of the circle.

This was understood as an effective reduction to a zero-dimensional theory (the matrix

model). In the Wilson loop there are no contributions from the scalar and the leading

order term has a linear divergence proportional to the length of the circle, so one would

have expected that the Wilson loop is described by a one-dimensional rather than zero-

dimensional theory, even at leading order in the coupling. This argument however relies

on a particular gauge choice. A linear divergence also exists in the BPS loop, but it is

gauge dependent and can be removed by going to Feynman gauge. Therefore, the linear

divergence can be understood as a gauge artifact with no physical consequences for the

BPS loop. It turns out that the linear divergence of the Wilson loop can also be removed

by going to Yennie gauge and therefore the same type of arguments should apply to both,

at least before interactions are taken into account. At leading order in the weak coupling

expansion of the effective action the only dependence of the expectation value on the length

of the circle enters indirectly, though the renormalization of the gauge coupling.

The paper is organized as follows. In section 2 the defect theory for (S)U(N) gauge

theories is introduced and it is shown that it gives the expectation value of a Wilson loop

on a smooth closed curve. In section 3 the action of the defect theory is expanded to next-

to-leading order in the coupling and it is found to be free of divergences in Yennie gauge.

The connection to IR divergences is also discussed. In section 4 the expectation value of

a circular Wilson loop is computed and found to be equal to a Gaussian matrix integral

at leading order in the weak coupling expansion of the effective action. The dependence

on the length of the circle through the renormalized gauge coupling is briefly discussed. A

summary and a discussion of the results can be found in section 5. Some technical details

have been collected in the appendices.
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2 Defect theory description of a Wilson loop

The discussion will apply to four-dimensional Yang-Mills theories with gauge fields in the

adjoint representation of U(N) or SU(N)

Aµ = AaµT
a, tr (T aT b) =

1

2
δab, a, b,= 0, 1, . . . , N2 − 1. (2.1)

The generators a = 1, . . . , N2 − 1 correspond to the su(N) algebra, and the generator for

the Abelian component of u(N) ' su(N)⊕ u(1) is

T 0 =
1√
2N

1. (2.2)

The matter content can in principle be arbitrary, but it will be assumed that the theory is

either asymptotically free or conformal.

The expectation value of the Wilson loop along a closed curve C is given by the path

integral

〈W(C)〉 =
1

Z

∫
DAµDΦW(C) eiSYM [Aµ,Φ], (2.3)

where Φ denotes any matter fields and Z the path integral without the Wilson loop inser-

tion. The action includes the pure Yang-Mills term plus the action of the matter fields and

their interactions

SYM = −
∫
d4x

1

2g2
tr (FµνF

µν) + Smatter[Aµ,Φ] (2.4)

The Yang-Mills path integral will be left implicit and we will refer to the expectation value

of the Wilson loop simply as “Wilson loop” in the rest of the discussion.

The curve C will be parametrized by a trajectory x(τ), where the worldline is a circle

defined in the range τ ∈ [0, 1). The trajectory closes as one completes a period along the

circle x(0) = x(1). The holonomy is the integral of the pullback of the gauge field on the

circle Aτ (τ): ∮
C
A =

∮
C
dxµAµ =

∫ 1

0
dτ ẋµAµ[x(τ)] ≡

∫ 1

0
dτ Aτ (τ). (2.5)

In the following it will be shown explicitly that the Wilson loop can be computed from a

path integral involving dynamical fields localized on the curve C, and coupled to the Yang-

Mills gauge fields. The defect fields consist of complex fermions χ in the fundamental

representation of (S)U(N), and a compact U(1) gauge field aτ . Fermions satisfy anti-

periodic boundary conditions around the circle χ(1) = −χ(0), while the gauge field is

periodic aτ (1) = aτ (0). The Wilson loop is

〈W(C)〉 = N
〈∫
DχDχ†Daτ eiSW+iSCS

〉
, (2.6)

where N is a normalization factor and the different contributions to the defect action are

SW =

∫
dτχ† i(∂τ − iaτ − iAτ )χ,

SCS =

∫
dτ

(
k aτ +

1

2
tr Aτ

)
, k =

N

2
− 1.

(2.7)
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The coefficient k of the Chen-Simons term for aτ is chosen in such a way that integrating

over the defect gauge field will fix the representation of the Wilson loop to be in the

fundamental. Näıvely, the right choice would have been k = −1, however it is necessary to

shift by N/2 in order to compensate an anomalous contribution coming from the integration

over the fermionic fields. For the same reason, it is necessary to add a Chern-Simons term

for the Abelian component of the U(N) Yang-Mills group. If the group is SU(N) this term

simply vanishes.

2.1 Gauge-fixing of the defect gauge field

The Abelian gauge symmetry at the defect will be fixed to the Lorenz gauge in one dimen-

sion

∂τaτ = 0. (2.8)

The gauge fixing can be done following the usual BRST procedure. The gauge fixed path

integral becomes

〈W(C)〉 = N
∫
DχDχ†DaτDbDcDc̄

〈
eiSW+iSCS+iSbc

〉
, (2.9)

where b is the Nakanishi-Lautrup field and c, c̄ are the ghost and anti-ghost fields. The

BRST-exact gauge-fixing action is

Sbc =

∫ 1

0
dτ

1

e

(
b∂τaτ − ic̄ ∂2

τ c
)
. (2.10)

A factor of the einbein e = |ẋ| is introduced to preserve invariance under reparametrizations

of τ . In this simple case of Abelian symmetry the ghosts decouple, so integrating them

out only contributes to the total normalization. After integrating out b, aτ can just be

replaced by a constant aτ = a0 and the functional integral becomes an ordinary integral

over a periodic variable (as the U(1) is compact). The range of integration can be deduced

from the periodicity of the Abelian holonomy. The defect theory contains a set of Abelian

Wilson loop operators

Wn = ein
∫ 1
0 dτaτ , n ∈ Z. (2.11)

They remain invariant under large gauge transformations, which are a symmetry of the

theory

aτ → aτ + ∂τλ, λ = 2πkτ, k ∈ Z. (2.12)

Therefore, the periodicity of the Abelian holonomy is

a0 ∼ a0 + 2π. (2.13)

Then, the gauge-fixed path integral reduces to

〈W(C)〉 = N
∫ 2π

0
da0

∫
DχDχ†

〈
eiSW [a0]+ika0+iSCS [A]

〉
, (2.14)

where SCS [A] = 1
2

∫ 1
0 dτ tr Aτ .

– 5 –
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2.2 Gauge-fixing of the Yang-Mills field

For the Yang-Mills fields, the equivalent to the Lorenz gauge on the defect would be a

condition on the pullback such that

∂τAτ = 0. (2.15)

With this gauge fixing, the holonomy along C is a constant matrix∮
C
dxµAµ =

∫ 1

0
dτ Aτ ≡ Ā, (2.16)

and the expectation value of the Wilson loop will depend only on the eigenvalues ai of the

constant holonomy

〈W(C)〉 =

〈
N∑
i=1

eiai

〉
. (2.17)

However, the Yang-Mills field lives on the whole spacetime, and not just at the defect. In

order to fix the gauge appropriately, one should introduce a condition that is well-defined

everywhere and that particularizes to (2.15) when evaluated along the curve where the

defect is extended.

The simplest example where the gauge-fixing can be done is for a curve C that is a

circle of radius R on a fixed plane in space. Without loss of generality, one can choose a

coordinate system such that

x(τ) =
(

0, R cos(2πτ), R sin(2πτ), 0
)
. (2.18)

The circle span by τ can be though of as part of an auxiliary four-dimensional space,

parametrized by worldvolume coordinates σµ in such a way that τ corresponds to an

angular direction, for instance the azimuthal angle of spatial spherical coordinates

σ0 = t, σ1 = r sin θ cos(2πτ), σ2 = r sin θ sin(2πτ), σ3 = r cos θ. (2.19)

The auxiliary space is mapped to the real space through a set of embedding functions

Xµ(σ). For the simple case of the circular Wilson loop, these are

Xµ(σ) = σµ. (2.20)

In this case C corresponds to the curve at t = 0, r = R, θ = π/2. The gauge-fixing condition

for the Yang-Mills fields is defined over the whole spacetime using the embedding functions

0 = ∂τX
µ∂τX

ν∂µAν [X] + ∂2
τX

µAµ[X]. (2.21)

Evaluating the gauge condition on C, one obtains the Lorenz gauge condition on the pull-

back

0 = ẋµẋν∂µAν [x] + ẍµAµ[x] = ∂τAτ (τ). (2.22)

If x(τ) is a more complicated curve, one should find first a smooth change of coordinates

that maps it to a circle on a plane.

– 6 –
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The gauge-fixing is introduced in the path integral following the BRST procedure

〈W(C)〉 = N
∫ 2π

0
da0

∫
DχDχ†DBaDcaDc̄a

〈
eiSW+iSCS+iSBRST

〉
, (2.23)

where Ba is the Nakanishi-Lautrup field and ca, c̄a are the ghost and anti-ghost fields, all

in the adjoint representation of the group. The BRST-exact gauge-fixing action is

SBRST =

∫
d4x

1

g2
(Ba (ζµν∂µAν + ηµAµ)− ic̄a (ζµν∂µDνc

a + ηµDµc
a)) . (2.24)

Where the tensors ζµν and ηµ are defined as

ζµν(x) =

∫
d4σ δ(4)(x−X(σ)) ∂τX

µ∂τX
ν ,

ηµ(x) =

∫
d4σ δ(4)(x−X(σ)) ∂2

τX
µ.

(2.25)

Integrating out Ba will fix the gauge to (2.21), but clearly the ghost action is highly non-

trivial, as it is coupled to the Yang-Mills field and depends on the curve in this gauge. The

integration over the ghost fields will be left implicit in the following. The defect action can

be further simplified by doing a global SU(N) transformation on the fermions χ → Uχ,

such that the holonomy of the Yang-Mills field is diagonalized

U †ĀU = ĀD = diag(a1, · · · , aN ). (2.26)

Then, the completely gauge-fixed expectation value of the Wilson loop is

〈W(C)〉 = N
〈∫ 2π

0
da0

∫
DχDχ† eiSW [a0,ĀD]+ika0+ i

2

∑N
i=1 ai

〉
g.f

. (2.27)

2.3 Expectation value of the Wilson loop

In the Lorenz gauge the action of the defect fermions only depends on the constant

holonomies along the curve where the Wilson loop is defined. Since the action for the

fermions is quadratic, integrating them out just introduces a determinant factor in the

path integral

〈W(C)〉 = N
〈∫ 2π

0
da0 det((i∂τ + a0)1 + ĀD)eika0+ i

2

∑N
i=1 ai

〉
g.f

. (2.28)

The determinant can be evaluated using standard methods, the details can be found in

appendix A. The result is, up to a normalization factor that does not depend on the

holonomies

det((i∂τ + a0)1 + ĀD) ∝ e−i
N
2
a0− i

2

∑N
j=1 aj

N∏
i=1

(
1 + eia0+iai

)
. (2.29)

The overall phase factor corresponds to an anomalous contribution that cancels with the

Chern-Simons term in the action, as advertised. Expanding the product and integrating

over the holonomy of the defect gauge field, the result is

〈W(C)〉 = N

〈∫ 2π

0
da0e

−ia0

N∏
i=1

(
1 + eia0+iai

)〉
g.f.

= N

〈
N∑
i=1

eiai

〉
g.f.

. (2.30)

– 7 –
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Therefore, up to the undetermined constant normalization, the path integral over the defect

fields indeed produces the expectation value for the Wilson loop (2.17).

3 Weak coupling expansion of the defect theory

The calculation of the Wilson loop can be done by integrating out the Yang-Mills fields

and working with the effective action of the fields at the defect. The defect action will

be split in two parts, one corresponding to the interaction with the Yang-Mills fields and

another involving only the defect fields

〈W(C)〉 = N
∫
DχDχ†Daτ

〈
ei
∫
J ·A
〉
eiS̃W+iS̃CS , (3.1)

where the defect action in the path integral is

S̃W =

∫ 1

0
dτ χ† i(∂τ − iaτ )χ, S̃CS =

∫ 1

0
dτ kaτ , (3.2)

and the interaction term is∫
J ·A =

∫
d4xJaµAaµ, Jaµ(x) =

∫ 1

0
dτẋµ ja(τ) δ(4)(x− x(τ)). (3.3)

The U(N) worldline current ja is defined as

ja = χ†T aχ+

√
N

2
√

2
δa0. (3.4)

The constant piece introduces in the defect action the Chern-Simons term for the Abelian

component of the U(N) gauge field. If the group is SU(N), the constant piece is absent.

Integrating out the Yang-Mills fields will give the generating functional for an external

current in the adjoint representation

〈W(C)〉 = N
∫
DχDχ†Daτ eiS̃W+iS̃CS+iW [J ]. (3.5)

A proper calculation of the generating functional needs to take into account renormaliza-

tion of the Yang-Mills theory. The renormalization scale will be fixed to a value µ such

that the renormalized coupling g is small enough to do a weak coupling expansion. In

perturbation theory, n-point correlators of Yang-Mills fields start at least at O(gn), so

the generating functional admits a weak coupling expansion in terms of the connected

time-ordered correlators of the Yang-Mills fields in vacuum

iW [J ] = iW0 + i

∫
d4x

〈
Aaµ(x)

〉
Jaµ(x)

+
i2

2

∫ ∫
d4xd4y

〈
T (Aaµ(x)Abν(y))

〉
c
Jaµ(x)Jbν(y) + · · · .

(3.6)

In perturbation theory Yang-Mills correlators can be computed systematically from tree-

level diagrams involving the exact propagators and vertices obtained from the renormalized

– 8 –
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x1 x2 + x1 x3

x2

+ x1 x3

x2

x4

+
x1

x4

x2

x3

+ · · ·

Figure 1. Diagrammatic expansion of the action at the defect, up to the four-current vertex. The

solid line represents the curve where the Wilson loop is supported. Each curly line represents a full

gluon propagator and each thick dot a full vertex from the 1PI effective action.

one-particle irreducible (1PI) action. The expansion only involves propagators and vertices

of the gauge fields, as all the external legs attached to the Wilson loop in the diagrammatic

expansion have to be gauge field propagators. The first terms in the expansion are drawn

in figure 1.

Exact propagators and vertices are at least O(g2(n−1)), but they also have an additional

weak coupling expansion, so at each order in g there can be several contributions from

different connected correlators. Since the constant term can be absorbed in the path

integral normalization and
〈
Aaµ(x)

〉
= 0, the leading order correction is O(g2).

To make formulas more compact a shorthand notation will be used for integrals and

functions of the worldline coordinate∫
12···n

=

∫ 1

0
dτ1

∫ 1

0
dτ2 · · ·

∫ 1

0
dτn, f(τ1, τ2, · · · , τn) = f12···n. (3.7)

From the point of view of the defect theory, the term corresponding to the n-point correlator

in the expansion of the generating functional introduces a n-current vertex

iW =
∞∑
n=2

iWn =
∞∑
n=2

in

n!

∫
1···n

K
(n) a1···an
1···n ja1

1 · · · j
an
n . (3.8)

The kernels that determine the vertex between the currents in (3.8) are

K
(n) a1···an
1···n = ẋµ1

1 · · · ẋ
µn
n Ga1···an

µ1···µn(x1, · · · , xn), (3.9)

where G are the renormalized time-ordered connected correlators

Ga1···an
µ1···µn(x1, · · · , xn) =

〈
T (Aa1

µ1
(x1) · · ·Aanµn(xn))

〉
c
. (3.10)

Once the gauge for the defect field is fixed to the Lorenz gauge, the expectation value of

the Wilson loop becomes

〈W(C)〉 = N
∫ 2π

0
da0e

ika0

∫
DχDχ†eiŜW+iW [J ] (3.11)

where

ŜW =

∫ 1

0
dτ χ† i(∂τ − ia0)χ. (3.12)

– 9 –
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3.1 UV divergences and regularization of the defect action at leading order

Assuming that the renormalization of the gauge coupling has been properly taken into

account, the only divergence a Wilson loop defined on a smooth curve can have is linear

in the cutoff Λ and proportional to the length L of the loop [9–11]

〈W(C)〉 ∼ e−ΛL × finite factors. (3.13)

As the divergent part appears as an overall factor, it can be removed by multiplicative

renormalization of the Wilson loop operator. Once this has been done, the resulting value

is a finite function of the gauge coupling. Both the direct calculation of the Wilson loop

and the defect action involve the pullbacks on the curve of the gauge field correlators. The

same renormalization properties are then expected of the defect action, once the linear

divergence has been taken care of, the remaining action depending on the renormalized

gauge coupling should be finite.

Since the vertices obtained from the 1PI renormalized action are UV finite, UV singu-

larities can only appear when the points connected by an exact propagator in one of the

connected correlators become coincident. Taking as an example the three-point connected

correlator (second term in figure 1), the correlator is determined by a diagram with three

propagators starting at points x1, x2, x3 on the curve C and joining at a vertex at an

arbitrary position in space x. One should integrate over all positions, so the position of

the vertex can become coincident with any of the points at the curve, in which case the

propagator becomes singular. However, for generic points on the curve the connected cor-

relator is not singular, otherwise it would be singular when evaluated at any three arbitrary

points in spacetime. The same argument applies to higher order connected correlators, so

the only possible singular contributions are when two or more points on the defect become

coincident and a vertex comes close to the coincident points, or for the two-point connected

correlator, when the two points on the curve become coincident.

At leading order in the weak coupling expansion, the UV divergence is the one associ-

ated to the Yang-Mills field two-point correlator in the two-current vertex

iW2 =
i2

2

∫
12
K

(2) a1a2

12 ja1
1 ja2

2 , (3.14)

and it appears when the two points on the curve become coincident x1 = x2. In the absence

of self-intersections of the curve, this happens at equal values of the worldline coordinate

τ1 = τ2. The UV divergence can be regulated using a cutoff Λ and allowing for the addition

of counterterms that will remove the divergence when Λ →∞. The regulated two-current

vertex is

iWΛ
2 =

i2

2

∫
12

∫
12
K

(2) a1a2

12 ja1
1 ja2

2 Θ

(
|x1 − x2| −

1

Λ

)
+ iSct. (3.15)

The kernel K(2) in the two-current vertex is given in eq. (3.9).

A straightforward computation (see appendix B) shows that the divergence is linear

in the cutoff Λ. The defect action can be renormalized by adding a local counterterm that
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exactly cancels it. The counterterm in Rξ gauge is

iSct = Λ(ξ − 3)
(ig)2

4π2

∫ 1

0
dτ e ja(τ)ja(τ). (3.16)

The UV divergence is gauge-dependent and vanishes in Yennie gauge ξ = 3. This gauge

has been used in some QED studies for its infrared properties. The Ward identity of the

electromagnetic current fixes the relation between the wavefunction renormalization of the

current and the renormalization of the vertex. In a general covariant gauge each of them

has spurious IR divergences that are gauge-dependent and cancel out in physical quantities.

In Yennie gauge, these IR divergences are absent, thus the wavefunction renormalization

is IR finite [12, 13]. This would translate into an IR finite renormalization of an infinitely

extended Wilson line, which acts as an off-shell current, and it turns out it is also related to

the cancellation of the UV divergence in the Wilson loop. Similar types of relations between

UV and IR divergences have been known for a long time in the context of perturbative

QCD amplitudes [14–16].

3.2 UV and IR finiteness in Yennie gauge

The connection of the IR finiteness of Yennie gauge to the UV divergence in the Wilson loop

defect action may be traced to the properties of the two-point correlator under inversion

at the coincidence point

(x1 − x2)µ → (x1 − x2)µ

(x1 − x2)2
. (3.17)

The defect action is schematically of the form (color indices will be omitted in this discus-

sion)

∼
∫
dτ1 ẋ

µ
1

∫
dτ2 ẋ

ν
2Gµν(x1 − x2) j1j2. (3.18)

For each fixed value of x1 inside the τ2 integral, the coincident point can be taken to

infinity by doing an inversion of the x2 coordinate centered on x1. The UV divergent

diagram where two endpoints of the Yang-Mills propagator become coincident becomes an

IR divergent diagram where one of the endpoints is at a point in the original curve and

the other endpoint is taken to infinity along the trajectory resulting from the inversion

(see figure 2). The IR properties of the propagator in the Yennie gauge are thus connected

through the inversion to the absence of the UV divergence at coincident points.

Under the inversion, the defect action is transformed to

∼
∫
dτ1 ẋ

µ
1

∫
dτ2

ẋα2
(x1 − x2)2

I ν
α (x1 − x2)Gµν

(
x1 − x2

(x1 − x2)2

)
j1j2. (3.19)

where

Iµν(x1 − x2) = ηµν − 2
(x1 − x2)µ(x1 − x2)ν

(x1 − x2)2
. (3.20)

Effectively, this amounts to a transformation of the two-point correlator

G̃µν(x1 − x2) = (x1 − x2)2ηµρIνσ(x1 − x2)Gρσ(x1 − x2). (3.21)
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−→

Figure 2. An inversion maps a UV divergent diagram where the two endpoins of the correlator

are very close on the Wilson loop curve to an IR divergent diagram where one of the endpoints is

taken to infinity on the image of the Wilson loop curve.

In Yennie gauge the two-point correlator is

GYµν(x1 − x2) =
1

2π2(x1 − x2)2

[
ηµν −

(x1 − x2)µ(x1 − x2)ν
(x1 − x2)2

]
, (3.22)

and satisfies the property of being transverse to the separation vector

(x1 − x2)νGYµν(x1 − x2) = 0. (3.23)

Thanks to this, it transforms trivially under the inversion

G̃Yµν(x1 − x2) = (x1 − x2)2GYµν(x1 − x2). (3.24)

In other gauges, the two-point correlator is

Gξµν(x1 − x2) = GYµν(x1 − x2) +
ξ − 3

8π2

Iµν(x1 − x2)

(x1 − x2)2
. (3.25)

The tensor structure of the last term is not invariant under the inversion

G̃ξµν(x− y) = (x1 − x2)2GYµν(x1 − x2) +
ξ − 3

8π2
ηµν . (3.26)

The non-invariant term can be cast as a total derivative contribution using

∂1
µ∂

2
µ (x1 − x2)2 = −2ηµν . (3.27)

Then, the transformed correlator is

G̃ξµν(x− y) = (x1 − x2)2GYµν(x1 − x2)− ξ − 3

16π2
∂1
µ∂

2
µ (x1 − x2)2. (3.28)

In the limit |x1 − x2| → ∞, the contribution from the Yennie part of the transformed

correlator is finite. The argument is simpler if one uses a coordinate system such that
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the coincidence point is at the origin before the inversion, and it is approached along the

trajectories

xµ1 = vµτ +
1

2
aµτ2 + · · · , xµ2 = −vµτ +

1

2
aµτ2 + · · · . (3.29)

The inversion changes xµ2 → xµ2/(x2)2,

xµ2 = −v
µ

v2

1

τ
− vµ

v2

(v · a)

v2
+

aµ

2v2
. (3.30)

An explicit calculation shows that 1/τ2 and 1/τ divergences cancel out in the contribution

from the Yennie correlator

K
(2)
Y 12 = ẋµ1 ẋ

µ
2 (x1 − x2)2GYµν(x1 − x2) ∼ O(τ0). (3.31)

For ξ 6= 3, the total derivative term in the transformed correlator (3.28) gives IR-divergent

contributions localized at the endpoints introduced by the regulator.

A few simple examples can illustrate the absence of UV divergences in Yennie gauge.

Consider the trajectories

spatial line xµ = (0, 0, 0, Lτ),

spatial circle xµ = (0, R cos(2πτ), R sin(2πτ), 0),

boosted xµ = γ(τ, βτ, 0, 0),

accelerated xµ = (a sinh τ, a cosh τ, 0, 0).

(3.32)

The two-current kernel as defined in (3.9) is, in each case,

spatial line K
(2)
12 = 3−ξ

8π2(τ1−τ2)2 ,

spatial circle K
(2)
12 = −1

2 + 3−ξ
8 sin2(π(τ1−τ2))

,

boosted K
(2)
12 = 3−ξ

8π2(τ1−τ2)2 ,

accelerated K
(2)
12 = 1

8π2 + ξ−3

32π2 sinh2
(
τ1−τ2

2

) .
(3.33)

All are finite in Yennie gauge ξ = 3, and in fact the kernel for the spatial line and boosted

trajectory vanishes, while for the spatial circle and the accelerated trajectory is a constant of

opposite sign (the different magnitude just coming from the normalization of the worldline

coordinate). Note however that only for the spatial circle the trajectory follows a closed

curve of finite length, so the calculation of the Wilson loop using the defect action does not

apply directly to the other examples. It would be interesting to study whether the analysis

can be extended to those cases.

The conclusion from the above discussion is that the UV divergence that appears when

the endpoints of the propagator coincide is directly related through an inversion to spurious

IR divergences like the ones observed in the wavefunction renormalization of the current.

Working in the Yennie gauge the two-current vertex is manifestly finite and no regulator

is needed, although in principle one could also use a different gauge and introduce the

counterterm (3.16). The finiteness properties of the propagator also suggests that UV sin-

gularities appearing at coincident points of n-point correlators in higher order terms might

be dealt with in the same way, so the resulting effective action would finite in Yennie gauge.
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3.3 Subleading corrections

There are two possible corrections to the defect action at O(g4). The first is coming from

the leading order contribution of the three-point correlator of the gauge fields, entering in

the kernel of the three-current interaction (second term in figure 1). The second is coming

from the renormalization of the two-point function of the gauge field, and modifies the

two-current interaction. At O(g6) there are contributions from both the renormalization

of the two-point and three-point correlators, and the leading contributions of the three

and four-point gauge field vertices to the four-point connected correlator (last two terms

in figure 1). The expansion goes on with further renormalization factors and new effective

vertices involving more than four gauge fields at higher order.

In each diagram, the bosonic nature of the gauge bosons should be manifest in the

form of a symmetry of the connected correlator under the exchange of two endpoints

at the Wilson loop. The color structure of diagrams with vertices is antisymmetric due

to the properties of the structure constants. Then, the spacetime structure should be

antisymmetric as well to make the total diagram symmetric. When all the points are

coincident, the connected correlator is contracted with a tensor proportional to the product

of velocities ẋµ at the coincident point. Since this tensor is symmetric and the connected

correlator antsymmetric, the resulting contribution to the kernel vanishes. Therefore, the

leading divergence when all the points of the diagram are coincident always vanishes.

In the following it will be shown that all the potentially singular contributions to the

three-current kernel vanish, so the resulting defect action is finite at O(g4). This gives some

evidence in favor of the absolute finiteness of the defect action, but a complete systematic

analysis of UV divergences will be deferred for future work.

The connected three-point correlator is

Gabcµνρ(x1, x2, x3) =
g4

8π6
fabc

∫
d4y Γµνρ(x1, x2, x3, y), (3.34)

where

Γµνρ(x1, x2, x3, y) =
∑
σ∈S3

sign(σ)Γσ(1)σ(2)σ(3)
µνρ (x1, x2, x3, y). (3.35)

The sum is over all possible permutations of pairs (x1, µ), (x2, ν), (x3, ρ), weighted by their

sign, of the basic building block

Γ123
µνρ(x1, x2, x3, y) = ηαβ∂γyGµα(x1 − y)Gνβ(x2 − y)Gργ(x3 − y). (3.36)

In this expression the gauge field propagators stripped of color and constant factors are, in

Yennie gauge,

Gµν(x− y) = f(|x− y|)
[
ηµν −

(x− y)µ(x− y)ν
(x− y)2

]
, (3.37)

where f(|x − y|) = 1/(x − y)2 to leading order in perturbation theory but can be a more

general function if renormalization factors are taken into account. The following notation

will be used for the separation vectors and the transverse projector

ui = xi − y, Pi µν = ηµν −
ui µui ν
u2
i

. (3.38)
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The derivative of the projector is

∂ρyPi µν =
ui ν
u2
i

P ρ
i µ +

ui µ
u2
i

P ρ
i ν . (3.39)

Then, one finds the following expression for Γ123 (fi = f(|ui|))

Γ123
µνρ = f1f2f3

[
1

u2
1

u1µP2 ν · P1 · P3 ρ +
f ′1
|u1|f1

(P1µ · P2 ν)(u1 · P3 ρ)

]
. (3.40)

If two points, say x1 and x2, approach each other in a symmetric way

xµ1 = xµ + vµσ, xµ2 = xµ − vµσ, x3 6= x1, x2, (3.41)

then, from (3.40), the superficial degree of divergence at the two coincident points is loga-

rithmic∫
σ→0

dσ

∫
d4y

1

|vσ − y|3(vσ + y)2
∼

y=σz

∫
dσ

1

σ

∫
d4z

1

|v − z|3(v + z)2
∼ log σ (3.42)

However, the first term in (3.40) is symmetric under an odd (23) permutation, and actually

cancels out when the sum over all permutations is done for any three points x1, x2, x3, as

well as all other terms with similar structure. The second term in (3.40) becomes symmetric

under the odd (12) permutation when x1 = x2 and thus cancels out when the sum over

all permutations is done. There is also a cancellation from the contraction of separation

vectors with the projectors. Two terms survive in the sum

Γµνρ(x1, x1, x3, y) = f1f2
f ′3
|u3|

((P1µ · P3 ρ)(u3 · P1 ν)− (P1 ν · P3 ρ)(u3 · P1µ)) . (3.43)

This is an antisymmetric tensor in the µν indices, so when contracted with the worldsheet

velocities at the coincident points to compute the kernel, the result is vanishing

ẋµ1 ẋ
ν
1 ẋ

ρ
3Γµνρ(x1, x1, x3, y) = 0. (3.44)

Therefore, the logarithmic divergence in the three-current kernel cancels out and the action

is finite to O(g4).

4 Small circular Wilson loop

Consider a spatial Wilson loop defined on a circle of radius R

xµ = (0, R cos(2πτ), R sin(2πτ), 0). (4.1)

In this case the einbein is constant and equal to the length of the circle e = 2πR. If R is

small enough, the renormalization scale can be set to µ = 1/R, so theory remains weakly

coupled g � 1 and perturbation theory is well behaved. The kernel of the two-current

vertex in Yennie gauge is, from (3.33)

K
(2) a1a2

12 = −1

2
δa1a2 . (4.2)
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The two-current vertex can be factored in the square of the integral of the current

iW2 = −(ig)2

4

∫
12
ja1 j

a
2 =

g2

4

(∫ 1

0
dτja(τ)

)2

. (4.3)

The contribution to the Wilson loop from the leading order terms in the weak coupling

expansion of the effective action is

〈W(C)〉lo = N
∫ 2π

0
da0e

ika0

∫
DχDχ†eiŜW+iW2 , (4.4)

where ŜW was given in eq. (3.12). Up to a constant normalization, the two-current vertex

can be manipulated to an integral over hermitian matrices. This is done in appendix C,

with the result

eiW2 ∝
∫

[dM ]eiSM ∝
∫ ( N∏

i=1

dMi

)
∆2(M) δ(s)u(M) eiSM , (4.5)

where ∆2(M) factor is the Vandermonde determinant

∆2(M) =
∏
i<j

(Mi −Mj)
2, (4.6)

and the factor δ(s)u(M) imposes the tracelessness condition when the group is SU(N).

δu(M) = 1, δsu(M) = δ(tr M) = δ

 N∑
j=1

Mj

 . (4.7)

The action in the matrix integral depends only on the eigenvalues after a unitary rotation

of the fermions (MD = diag(M1, · · · ,MN ))

iSM = −g
∫
dτ χ†MDχ− 2 tr M2

D −
g

2
tr MD. (4.8)

With these expressions, the fermion action is quadratic and they can be integrated out to

give a determinant term of the same form as (2.29)

〈W(C)〉lo = N
∫ 2π

0
da0e

ika0

∫
[dM ]e−2 tr M2

D−
g
2

tr MD det
(
(i∂τ + a0)1 + igM̄D

)
. (4.9)

Following the same steps as in section 2.3, the integral over a0 will give

〈W(C)〉lo = N
∫ ( N∏

i=1

dMi

)
∆2(M)δ(s)u(M)

(
N∑
i=1

e−gMi

)
e−2

∑N
j=1 M

2
j . (4.10)

The anomalous contribution from the fermions has been cancelled with the term propor-

tional to tr MD in (4.8). Remarkably, the same expression was found for the supersym-

metric Wilson loop [1–3], but in that case it is exact, while here it is only valid to leading
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order in the weak coupling expansion. The value of the U(N) Wilson loop can then be

read directly from the supersymmetric result.

Normalizing by the zero coupling value one finds for the U(N) Wilson loop [2] (λ = g2N

is the ’t Hooft coupling)

wlo U(N)(λ) ≡
〈W(C)〉loλ
〈W(C)〉0

=
1

N
L1
N−1

(
− λ

4N

)
e
λ

8N , (4.11)

where Lmn (x) is a generalized Laguerre polynomial.

The SU(N) matrix integral can be done by using the representation of the delta func-

tion2

δsu(M) =
1

2π

∫ ∞
−∞

du eiu
∑N
i=1 Mi . (4.12)

Completing squares and shifting all eigenvalues by the same constant Mi → Mi + iu/4

gives

〈W(C)〉lo SU(N) ∝
(∫ ∞
−∞

du e−Nu
2/8−igu/4

)
〈W(C)〉lo U(N) ∝ e

−g2/(8N)〈W(C)〉lo U(N).

(4.13)

This gives the general formula

wlo SU(N)(λ) = e−λ/(8N
2) wladder U(N)(λ). (4.14)

The first orders in the weak coupling expansion are

wlo SU(N)(λ) = 1 +

(
N2 − 1

2N

)
λ

4N
+

(
N2 − 1

2N

)(
2N2 − 3

12N

)
λ2

16N2
+ · · · . (4.15)

For a fixed value of the ’t Hooft coupling, the first terms in the large-N expansion are

wlo SU(N)(λ) =
2√
λ
I1(
√
λ) +

√
λ

4N2

(√
λ

12
I2(
√
λ)− I1(

√
λ)

)
+ · · · , (4.16)

where In(x) are Bessel functions. At very large values of the coupling λ→∞, the leading

behavior of the planar term is I1(
√
λ) ∼ e

√
λ, which is of the form found in AdS/CFT cal-

culations [4, 5]. Note that the expressions presented above correspond to the contribution

obtained from the leading order terms in the effective action. They correspond to a ladder

resummation with the renormalized coupling, but corrections related to vertices and to the

dependence of the coupling on the distance between points at the loop (in non-conformal

theories) will in general start at O(λ2).

4.1 Radial dependence

The final result for the circular Wilson loop (4.11) does not depend explicitly on the radius

but, for a non-conformal theory, there is an implicit dependence through the running of

the coupling constant. At one loop the beta function of the ’t Hooft coupling is

β(λ) = −β0
λ2

8π2N
, (4.17)

2Another way to do it is separating the Abelian and non-Abelian parts before going to the eigenvalue

variables, see e.g. [17].
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where β0 > 0 is a scheme-independent constant coefficient that depends on the matter

content of the theory. The running coupling evaluated at the scale µ = 1/R is

λ = −16π2N

β0

1

log ((ΛYMR)2)
, ΛYMR� 1. (4.18)

The renormalization invariant scale ΛYM determines the size of the loop at which the

weak coupling expansion breaks down. The Wilson loop is defined on a smooth curve,

so it obeys the usual Callan-Symanzik equation: the change of the Wilson loop with the

radius is determined by the beta function of the gauge coupling times an additional factor

obtained from the derivative with respect to the coupling

−R ∂

∂R
logwlo SU(N) =

β(λ)

8N2

[
N − 1 + 2N

L2
N−2

(
− λ

4N

)
L1
N−1

(
− λ

4N

)] =
β(λ)

4N

N2 − 1

2N
F (λ). (4.19)

The normalization F (0) = 1 has been chosen to highlight that the Wilson loop beta function

is proportional to the Casimir of the fundamental representation of SU(N), C2(N) =

(N2 − 1)/(2N), at leading order. F (λ) is a rational function of the ’t Hooft coupling and

has the following expansion

F (λ) = 1 +
1

4

(
1

3
− 1

2N2

)
λ+

1

128

(
1

3
− N2 − 1

N4

)
λ2 + · · · . (4.20)

5 Summary and discussion

One of the main findings of this work is that ordinary Wilson loops share some of the nice

features of their supersymmetric cousins. If the loop is defined on a smooth closed curve

and the right gauge is chosen, they are both free of divergences to leading order in the weak

coupling expansion. The expectation value of (S)U(N) Wilson loops can be computed from

an effective theory of fields localized on a defect along the loop. Most likely this can be

extended to other groups and different representations, taking as guidance the D-brane

actions that describe supersymmetric Wilson loops (e.g. in [8]). The effective defect action

can be constructed systematically from connected tree-level diagrams of the exact gauge

field vertices and propagators obtained from the renormalized 1PI action.

A Wilson loop should be finite except for a possible linear divergence [9–11]. The linear

divergence is removed from the defect action in Yennie gauge, so the resulting action is

finite at O(g2) and, provided the renormalization properties of the Wilson loop hold for the

defect action, it would be expected to be finite at all orders. Some partial evidence is that

the color structure implies that the would-be most divergent terms should be vanishing,

and an explicit check shows that the O(g4) defect action is indeed free of divergences.

Besides a generalization in terms of groups and representations, interesting extensions

would be to construct a defect action for Wilson loops on curves that are not smooth

everywhere and curves that are not bounded to a finite region. In both cases one can

extract interesting physics. Curves with cusps have UV divergences that modify the Callan-

Symanzik equation of the Wilson loop, so its evolution is not determined uniquely by the
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running of the coupling [18]. The cusp anomalous dimension determines the behavior of

IR divergences in scattering amplitudes [19, 20]. The relation extends even beyond in the

case of N = 4 SYM. Using the holographic dual, it was found that finite terms in the

amplitudes can also be obtained from the expectation value of a Wilson loop [21]. Exact

results for BPS loops [22–24] show that the cusp anomalous dimension in N = 4 SYM is

also related to the radiation emitted by an accelerated charged particle as well. Another

interesting result for BPS loops in N = 4 SYM is that the expectation value of the circular

and Polyakov loops are proportional to each other [25]. Exploring generalizations of these

results to non-BPS loops would be a very interesting direction to follow.

Using the defect action at leading order, the expectation value of the Wilson loop on a

small circle was fairly easy to compute. The only interaction at O(g2) is a quadratic term

for two defect currents, that factorizes in the square of the integral of the current. This

allows to convert the path integral over the defect into a matrix integral, and it is found that

the expectation value is universal as a function of the coupling and the rank of the group

and coincides with the value of the 1/2 BPS loop in N = 4 SYM. In general, subleading

corrections in the effective action will spoil the factorization of the currents. This can

already be seen in the term with two currents, as the renormalization of the coupling will

introduce a term depending on the separation of the currents along the loop. However,

if the theory is conformal, there are no renormalization factors and the O(g2) term will

keep the leading order structure. In any case, the effective theory is simple enough that it

may be possible to use it to compute subleading corrections to the expectation value of the

Wilson loop and even extend it to more complicated curves. Weak coupling corrections

to the circular Wilson loop in N = 4 SYM have been computed in [26, 27]. The value is

indeed the same as the BPS loop at O(g2) but it deviates at O(g4), as expected.

Even though the analysis has been restricted to weak coupling, it is tempting to try to

extrapolate some of the results to strong coupling and make some speculations. The leading

order result can be though of as a resummation of all Feynman diagrams that do not have

internal vertices, i.e. involve only gauge fields propagating from one point to another on

the Wilson loop, and the loop corrections that enter in the renormalization. The fact that

the Wilson loop expectation value is the same as for the BPS operator implies that, in

the large-N and strong ’t Hooft coupling limit, it reproduces the characteristic behavior of

Wilson loops computed in AdS/CFT

〈W(C)〉ladder ∼ e
√
λ. (5.1)

The result at strong coupling will be modified once corrections to the ladder result are

included. In the original N = 4 SYM calculations [1, 2] the ladder result in the large-N

expansion was interpreted as the sum of all the contributions from worldsheets of different

topology with a boundary at the curve that defines the Wilson loop in the field theory

according to the usual AdS/CFT dictionary. This interpretation agrees naturally with the

usual connection between the color structure of Feynman diagrams and topologies of two-

dimensional surfaces. In principle corrections from vertices would also fit in the expansion

in different topologies, but they would add more contributions at each order, which might

be interpreted as a modification of the worldsheet theory from the one corresponding to
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the N = 4 BPS loop (for which the ladder result is exact). Assuming a string theory dual

description exists, it would be interesting to understand how the worldsheet theory repro-

duces the weakly coupled results and the corrections due to the vertices, although this would

require first a formulation of the string dual of N = 4 SYM in highly curved backgrounds.

Another interesting connection to holography is through the worldsheet geometry. The

holographic dual to the circular BPS loop is a surface that covers an AdS2 region of the

full geometry. It has been proposed that the Wilson loop has a similar dual description

with different boundary conditions for the fields living on the surface [28].3 This points to

a relation of the defect theory to the Sachdev-Ye-Kitaev (SYK) model of one-dimensional

fermions [30–33]. Although there are some differences with SYK models, among others

the absence of disorder, the classical Wilson loop defect action is invariant under worldline

reparametrizations. In the quantum theory the symmetry could be broken both explicitly4

and spontaneously. Then, the arguments that determine the low energy effective action

of the SYK model [34] would apply to the defect action as well. The effective action

that would result from this breaking can be connected directly to two-dimensional dilaton

gravity in AdS2 [35–37]. It should also be noted that there are similar defect theories that

have been proposed as models of quantum impurities in strongly correlated systems with

an AdS2 dual, see e.g. the reviews [38, 39] and references therein.
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A Calculation of the fermion determinant

The defect fermions satisfy antiperiodic boundary conditions, χ(1) = −χ(0), so the Fourier

expansion relative to the worldline coordinate is

χ(τ) =
∞∑

n=−∞
χne

−2πi(n+ 1
2)τ . (A.1)

The fermionic determinant has a formal expression as an infinite product over the Fourier

modes and color. Zeta-function regularization is assumed, so the determinant can be

3In this case, the Wilson and BPS loops would be further related by an RG flow, such that the coefficient

of the coupling to the scalar in (1.2) runs with the scale [29], see also [26, 27] for more evidence at weak

coupling.
4For instance, fixing Lorenz gauge for the Abelian gauge field at the defect.
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manipulated to

det
(
i(∂τ + a0)1 + ĀD

)
=

N∏
i=1

∞∏
n=−∞

(
2π

(
n+

1

2

)
+ a0 + ai

)

=

N∏
i=1

[
(π + a0 + ai)

∞∏
n=1

(
−(2πn)2 + (π + a0 + ai)

2
)]

(A.2)

=

N∏
i=1

[
(π + a0 + ai)

∞∏
n=1

(
1− (π + a0 + ai)

2

(2πn)2

) ∞∏
m=1

(−(2πm)2)

]
.

All the factors are manifestly finite except the last infinite product, which is defined using

the Riemmann ζ function

ζ(s) =

∞∑
n=1

1

ns
, ζ ′(s) = −

∞∑
n=1

1

ns
log n. (A.3)

Its regularized value is

∞∏
m=1

(−(2πm)2) = exp

( ∞∑
m=1

log(−(2πm)2)

)
= exp

(
−2ζ ′(0) + (2 log(2π) + iπ) ζ(0)

)
.

(A.4)

As ζ(0) = −1/2 and ζ ′(0) = −1/2 log(2π), the infinite product reduces to phase factor

e−iNπ/2 that will be absorbed in the normalization of the Wilson loop. The integration

over defect ghosts produces a similar factor.

The value of the regularized determinant becomes

det
(
i(∂τ + a0)1 + ĀD

)
=

N∏
i=1

[
(π + a0 + ai)

∞∏
n=1

(
1− (π + a0 + ai)

2

(2πn)2

)]

=
N∏
i=1

2 cos

(
a0 + ai

2

)
= e−i

N
2
a0− i

2

∑N
j=1 aj

N∏
i=1

(1 + eia0+iai).

(A.5)

B Calculation of the divergence in the two-current vertex

The connected two-point correlator is, in Rξ gauge and to leading order in the weak coupling

expansion,

Ga1a2
µ1µ2

(x1, x2) =
g2

4π2

[
1

(x1 − x2)2
ηµ1µ2 +

1− ξ
2

∂

∂xµ1
1

∂

∂xµ2
2

log(µ|x1 − x2|)
]
δa1a2

=
g2

8π2

[
1 + ξ

(x1 − x2)2
ηµ1µ2 + 2(1− ξ)(x1 − x2)µ1(x1 − x2)µ2

((x1 − x2)2)2

]
δa1a2 .

(B.1)

The two-point correlator diverges when |x1−x2| → 0. One can separate the interval around

the singular point introducing a second scale µ < Λ

Θ

(
|x1 − x2| −

1

Λ

)
= Θ

(
|x1 − x2| −

1

µ

)
+Θ

(
|x1 − x2| −

1

Λ

)
Θ

(
1

µ
− |x1 − x2|

)
. (B.2)
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The two-current term is split in a finite µ-dependent part and the Λ-dependent contribution

iWΛ
2 = iWµ

2 + iW̃Λ
2 + iSct, (B.3)

where the divergent piece is

iW̃Λ
2 =

∫
12
K

(2) a1a2

12 ja1
1 ja2

2 Θ

(
|x1 − x2| −

1

Λ

)
Θ

(
1

µ
− |x1 − x2|

)
. (B.4)

In order to evaluate the divergence of the kernel it will be convenient to introduce symmetric

coordinates

τ =
τ1 + τ2

2
, σ = τ1 − τ2. (B.5)

The divergence happens at small values of σ, where one can use the following expansions

xµ1 = xµ(τ) +
1

2
ẋµ(τ)σ +O(σ2), xµ2 = xµ(τ)− 1

2
ẋµ(τ)σ +O(σ2),

|x1 − x2| = e|σ|+O(σ3), ja1 j
a
2 = ja(τ)ja(τ) +O(σ2).

(B.6)

Here e = |ẋ(τ)| is the worldline einbein for the τ coordinate. The two possible singular

contributions to the kernel are

(ẋ1 · ẋ2)

(x1 − x2)2
=

1

σ2
+O(1),

(ẋ1 · (x1 − x2))(ẋ2 · (x1 − x2))

((x1 − x2)2)2
=

1

σ2
+O(1). (B.7)

Adding all together,

K
(2),a1,a2

12 =
3− ξ
σ2

δa1a2 +O(1). (B.8)

Expanding for eµ� 1, the leading term is a linear divergence

iW̃Λ
2 = (3− ξ)(ig)2

8π2

∫
dτja(τ)ja(τ)

∫
dσ

(
1

σ2
+O(1)

)
Θ

(
e|σ| − 1

Λ

)
Θ

(
1

µ
− e|σ|

)
= (3− ξ)(ig)2

4π2
(Λ− µ)

∫ 1

0
dτ eja(τ)ja(τ) +O

(
1

Λ
,

1

µ

)
. (B.9)

C Transformation of the two-current vertex to a matrix integral

The calculation will be done for an imaginary coupling g = −iz and then analytic con-

tinuation will be used to obtain the result for real values. This will be justified by the

final result, that is analytic on the whole complex plane. The quartic term (4.3) equals an

integration over a set of constant N×N hermitian matrices Σ. If the group is SU(N), then

the integral is restricted to traceless matrices. For any hermitian matrix M the following

measure factor is introduced

δu(M) = 1, δsu(M) = δ(tr M). (C.1)

The two-current factor is

eiW2 =

∫
[dΣ]δ(s)u(Σ)δ[Σ−O(s)u]e

− 1
4

(tr (TaΣ))2

, (C.2)
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where

δ[Σ−Ou] =
∏
i,j

δ

[
Σij − z

∫
dτ

(
χ†iχj +

1

2
δij

)]
,

δ[Σ−Osu] =
∏
i,j

δ

[
Σij − z

∫
dτ

(
χ†iχj −

1

N
δij(χ

†χ)

)]
.

(C.3)

One can check easily that integrating over Σ with the delta function gives back the orig-

inal path integral with the current squared term. The delta function has a path integral

representation in terms of a hermitian matrix M

δ[Σ−Ou] =

∫
[dM ]δu(M) exp

[
−iMij

(
Σij − z

∫
dτ

(
χ†iχj +

1

2
δij

))]
,

δ[Σ−Osu] =

∫
[dM ]δsu(M) exp

[
−iMij

(
Σij − z

∫
dτ

(
χ†iχj −

1

N
δij(χ

†χ)

))]
.

(C.4)

The quartic term is thus (all the terms proportional to tr M vanish in the case of SU(N)

group)

eiW2 =

∫
[dM ][dΣ] δ(s)u(Σ)δsu(M) eiSΣ+ iz

2
tr M . (C.5)

In this case the action for Σ is gaussian and the path integral can be done explicitly. Using

the identity for SU(N) generators

N2−1∑
a=1

T aijT
a
kl =

1

2

(
δilδkj −

1

N
δijδkl

)
, (C.6)

the quadratic term is

(tr (T aΣ))2 =
1

2
tr Σ2 +

(
1− 1

2N

)
(tr Σ)2, (C.7)

During the calculation matrices X will be split in traceless Xt and trace tr X parts

X = Xt +
1

N
tr X, tr Xt = 0. (C.8)

This is used to complete squares in the action of the matrix integral

iSΣ = −1

4

(
1

2
tr Σ2 +

(
1− 1

2N

)
(tr Σ)2

)
− i tr (ΣM)

= −1

8
tr Σ2

t − i tr (ΣtMt)−
1

8
(tr Σ)2 − i

N
tr Σ tr M

= −1

8
tr (Σt + 4iMt)

2 − 1

8

(
tr Σ +

4i

N
tr M

)2

− 2 tr M2
t −

2

N2
(tr M)2

= −1

8
tr (Σ + 4iM)2 − 2 tr M2

(C.9)

The integral over Σ contributes with just an overall constant factor that will be absorbed

in the normalization of the Wilson loop. Regarding the integral over M , any hermitian
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matrix can be written as a unitary rotation of a diagonal matrix M = UMDU
†, MD =

diag (Mi, · · · ,MN ). The integral over hermitian matrices can be split in the usual way in

the integral over eigenvalues times the unitary transformations∫
[dM ] =

∫
[dU ]

∫ ∏
i

dMi∆
2(M), (C.10)

where the Vandermonde determinant that appears in the measure of the eigenvalues is

∆2(M) =
∏
i<j

(Mi −Mj)
2. (C.11)

By doing a global SU(N) rotation of the fermions, χ→ Uχ, the action becomes independent

of the unitary matrices U , whose integral will just give a constant factor proportional to

the volume of the group. Then,

eiW2 ∝
∫ ∏

i

dMi∆
2(M) δsu(M) eiSM . (C.12)

Doing the analytic continuation to real values of the coupling,

iSM = −g
∫
dτ χ†MDχ− 2 tr M2

D −
g

2
tr MD. (C.13)
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