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Abstract

We prove the well-posedness of a general evolution reaction-nonlocal diffusion problem
under two sets of assumptions. In the first set, the main hypothesis is the Lipschitz continuity
of the range kernel and the bounded variation of the spatial kernel and the initial datum.
In the second set of assumptions, we relax the Lipschitz continuity of the range kernel to
Hölder continuity, and assume monotonic behavior. In this case, the spatial kernel and the
initial data can be just integrable functions. The main applications of this model are related
to the fields of Image Processing and Population Dynamics.
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1 Introduction

In this article, we study the well-posedness of a general class of evolution reaction-nonlocal
diffusion problems expressed in the following form. Let T > 0 and Ω ⊂ Rd (d ≥ 1) be an open
and bounded set with Lipschitz continuous boundary. Find u : [0, T ]× Ω → R such that

∂tu(t,x) =



Ω
J(x− y)A(t,x,y, u(t,y)− u(t,x))dy + f(t,x, u(t,x)), (1)

u(0,x) = u0(x), (2)

for (t,x) ∈ QT = (0, T )× Ω, and for some u0 : Ω → R.
The main examples we have on mind are connected to the fields of Population Dynamics

and of Image Processing. In the first case, choosing for instance A(t,x,y, s) = s, we describe
the balance of population coming in and leaving from x, as



Ω
J(x− y)u(t,y)dy − u(t,x),

where the convolution kernel J ≥ 0, with

J = 1, determines the size and the shape of the

influencing neighborhood of x. In absence of a reaction term, the resulting equation is a nonlocal
diffusion variant of the heat equation, usually written as

∂tu(t,x) =



Ω
J(x− y)


u(t,y)− u(t,x)


dy.
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In this context, the nonlocal p−Laplacian diffusion operator, corresponding to A(t,x,y, s) =
|s|p−2s, for p ∈ [1,∞], is also a well known example, leading to the equation

∂tu(t,x) =



Ω
J(x− y) |u(t,y)− u(t,x)|p−2 u(t,y)− u(t,x)


dy.

These two examples correspond to a choice for which A is a non-decreasing function of s. These
kind of problems have been studied at great length by Andreu et al. in a series of works, see
the monograph [2]. Their results, strongly dependent on the monotonicity of A, include the
well-posedness as well as properties such as the stability with respect to the initial data or the
convergence of related rescaled nonlocal problems to their corresponding local versions. It is
worth mentioning that problems of the type (1) related to monotone functions, A, can be seen
as gradient descents of convex energies. For instance, for the p−Laplacian, the nonlocal energy
is given by

Jp(u) =
1

p



Ω



Ω
J(x− y) |u(t,y)− u(t,x)|p .

In the examples arising in Image Processing, the monotonicity of A is not the rule. A very
useful denoising filter, the bilateral filter [18, 19, 4, 5], which provides results similar to the
Perona-Malik equation [15, 10] or to the Total Variation restoration filter [16, 6], takes the form

Bu(x) =
1

C(x)



Ω
exp


− |x− y|2

ρ2


exp


− |u(x)− u(y)|2

h2


u(y)dy,

where u is the image to be filtered, ρ and h are constants modulating the sizes of the space and
range neighborhoods where the filtering process takes place, and C is the normalizing factor

C(x) =



Ω
exp


− |x− y|2

ρ2


exp


− |u(x)− u(y)|2

h2


dy.

Neighborhood filters like B may also be derived from variational principles [13], being their
correspondent gradient descent approximations given by nonlocal equations of the type (1).
Indeed, defining

J(x) = exp

− |x|2

ρ2


, A(t,x,y, s) = exp


− s2

h2


, (3)

we have that (1) is the gradient descent associated to the nonconvex energy functional

JB(u) =



Ω



Ω
exp


− |x− y|2

ρ2


1− exp


− |u(x)− u(y)|2

h2


dxdy,

for which the filter Bu(x) is just a one step algorithm in the search direction.
From the definition of A given in (3), we readily see its lack of monotonicity. Thus, the

approach followed by Andreu et al. may not be employed to show the well-posedness of the
related gradient descent problem.

Besides, there are other situations that we would like to cover for this kind of nonlocal
diffusion problems which have been not treated, as far as we know, in the literature. One of
them is allowing the convolution kernel, J , to be discontinuous. This is the case we encounter
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for the Yaroslavsky filter [21], with much faster numerical implementations than that of (3), see
[8, 20, 9], which is given by

J(x) = 1Bρ(x)(y), A(t,x,y, s) = exp

− s2

h2


, (4)

where 1Bρ(x) is the characteristic function of the ball Bρ(x).
Another situation we are interested in is that in which the power, p, of the p−Laplacian is

not constant, which finds applications in image restoration. Two important examples are the
following:

1. The power p depends on the nonlocal gradient of the solution, that is p ≡ p(u(t,y)−u(t,x)),
for some even non-increasing smooth function p : R → R. Typically, one takes p(s) such
that p(0) = 2, leading to linear diffusion for small values of the nonlocal gradient of u, and
p(s) → 1 as s → ∞, implementing in this case the nonlocal Total Variation minimization
in regions around sharp edges of u. Observe that the corresponding local version of this
variational problem is the minimization of the functional introduced by Blomgren et al.
[3],

JG(u) =



Ω
|∇u(x)|p(|∇u(x)|)−2∇u(x)dx.

For the nonlocal version of JG, the resulting gradient descent is given, in the form of
equation (1), by

∂tu(t,x) =



Ω
J(x− y) |u(t,y)− u(t,x)|p(u(t,y)−u(t,x))−2

×

u(t,y)− u(t,x)


dy, (5)

see Remark 1.

2. Since proving the existence of a minimum of JG is not evident, simpler functionals with
p ≡ p(x) have been introduced [7, 11], with, for instance, p(x) ≡ p(∇uσ0 (x)), being uσ0 a
regularization of the inital image. As long as u0 ∈ L∞(Ω)∩BV (Ω), its nonlocal counterpart
does not need of such regularization, and the resulting gradient descent takes the form

∂tu(t,x) =



Ω
J(x− y) |u(t,y)− u(t,x)|p̃(x,y)−2 u(t,y)− u(t,x)


dy.

with p̃(x,y) ≡ p(u0(y)− u0(x)), and p satisfying the properties aforementioned.

Turning to the results proved in this paper, the first theorem establishes the well posedness of
problem (1)-(2) under the main assumptions of Lipschitz continuity of A(t,x,y, s) as a function
of (x,y, s), and of L∞ ∩ BV regularity of the initial data. The latter is the usual regularity
assumed for image representation, due to the convenience of allowing discontinuities through
level lines, which are the way in which object edges are represented within the image. The
Lipschitz continuity condition is satisfied, for instance, by the bilateral type filters and the
nonlocal p(u(t,y)− u(t,x))-Laplacian, see Remark 1.

Although, in contrast to local diffusion, one of the relevant properties of nonlocal diffusion
is its lack of a regularizing effect, we show that the regularity of the initial data and of the
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function A are enough to use a compactness technique to deduce the existence of solutions. The
solution lies, therefore, in the same space, L∞ ∩ BV , that the initial data which is, in fact, a
good property for image processing transformations.

In our second result we relax the regularity of A to just Hölder continuity with respect to s,
but we additionally assume its monotonic behavior. This is the case of the nonlocal p−Laplacian
for p ∈ (1,∞), extensively analyzed by Andreu et al. [2]. However, with our approach we are also
able to deal with the p(t,x,y)−Laplacian and with very general spatial kernels, J . In addition,
our result is based on a constructive technique that gives clues for the discrete approximation
of such non-regular problems, see [12] for a complementary approach.

2 Assumptions and main results

Since Ω ⊂ Rd is bounded, we have x−y ∈ B for all x,y ∈ Ω, for some open ball B ⊂ Rd centered
at the origin. Thus, for J defined on Rd, we may always replace it in (1) by its restriction to B,
J |B. Abusing on notation, we write J instead of J |B in the rest of the paper, and assume that
J is defined in a bounded domain.

We always assume, at least, the following hypothesis on the data.
Assumptions (H)

1. The spatial kernel J ∈ L1(B) is even and non-negative, with



B
J(x)dx = 1. (6)

2. The range kernel A ∈ L∞((0, T )× Ω× Ω)× C0,α
loc (R), with α ∈ (0, 1), satisfies:

A(·, ·, ·,−s) = −A(·, ·, ·, s), A(·, ·, ·, s)s ≥ 0

in (0, T )× Ω× Ω, for all s ∈ R, and

A(·,x,y, ·) = A(·,y,x, ·) in (0, T )× R, for x,y ∈ Ω. (7)

3. The reaction function f ∈ L∞((0, T )× Ω)×W 1,∞
loc (R) satisfies

QUITAR f(·, ·, 0) ≥ 0 in QT ,

|f(·, ·, s)| ≤ Cf (1 + |s|) in QT , for s ∈ R, and constant Cf > 0. (8)

4. The initial datum u0 ∈ L1(Ω) is non-negative.

Before stating our results, let us introduce the notion of solution we employ for problem
(1)-(2). We interpret both equations in the a.e. pointwise sense.

Definition 1. A solution of problem (1)-(2) is a function u ∈ W 1,1(0, T ;L1(Ω)) such that

∂tu(t,x) =



Ω
J(x− y)A(t,x,y, u(t,y)− u(t,x))dy + f(t,x, u(t,x)),

for a.e. (t,x) ∈ QT , and with u(0, ·) = u0 a.e. in Ω.
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Our first result states the well-posedness of problem (1)-(2) in the case of regular data.
The spatial regularity required in (9) is due to the integral relationship that J and A play
on equation (1). Thus, it can be somehow varied by, for instance, weakening the regularity
demanded for A at the cost of requiring more regularity for J . We comment on this variations
at the end of this section. In particular, Theorem 1 ensures the existence of solution of the
gradient dependent nonlocal p-Laplacian evolution problem (5), or to the gradient descent for
the functionals corresponding to bilateral filters of the type (3) and (4).

Theorem 1. Assume (H) and, additionally,

J ∈ BV (B), A ∈ L∞(0, T ;W 1,∞(Ω× Ω)×W 1,∞
loc (R)), (9)

f(t, ·, s) ∈ BV (Ω), u0 ∈ L∞(Ω) ∩BV (Ω), (10)

for t ∈ (0, T ) and s ∈ R. Then there exists a unique solution of problem (1)-(2),

u ∈ W 1,∞(0, T ;L∞(Ω)) ∩ C([0, T ];L∞(Ω) ∩BV (Ω)),

such that, for some constant C1 > 0 depending only on u0L∞(Ω) and Cf ,

uL∞(QT ) ≤ C1.

In addition, if f(·, ·, 0) ≥ 0 in QT then the solution is non-negative. Finally, suppose that
J ∈ L∞(B) and let u1, u2 be the solutions of problem (1)-(2) corresponding to the initial data
u01, u02 then, for a.e. t ∈ (0, T ),

u1(t, ·)− u2(t, ·)L∞(Ω) ≤ C2u01 − u02L∞(Ω), (11)

for some constant C2 > 0, depending only upon Cf , LA, Lf and JL∞(B), where LA and Lf are
Lipschitz continuity constants for A and f .

Our second result establishes the well-posedness of problem (1)-(2) for non-regular data, at
the cost of assuming a monotonic behavior on the range kernel, A. This result ensures the
existence of solution for the nonlocal p(t,x,y)−Laplacian evolution problem, with p ∈ (1,∞).

Theorem 2. Assume (H) and suppose that A(t,x,y, ·) is non-decreasing in R, for t ∈ (0, T )
and for x,y ∈ Ω. Let u0 ∈ Lq(Ω) for some q ∈ [1,∞], and assume that

J ∈ L
q

q−α (B) if q ∈ [1,∞) or J ∈ L1(B) if q = ∞.

Then, there exists a unique solution u ∈ W 1,1(0, T ;L1(Ω)) ∩ Lq(QT ) of problem (1)-(2). In
addition, if f(·, ·, 0) ≥ 0 in QT then the solution is non-negative. Moreover, if u1, u2 are solutions
corresponding to the initial data u01, u02 ∈ Lq(Ω) then, for a.e. t ∈ (0, T ),

u1(t, ·)− u2(t, ·)Lq(Ω) ≤ Cu01 − u02Lq(Ω), (12)

for some constant C > 0. Besides, C = 1 if f is non-increasing.

Some extensions and variations are possible for the hypothesis assumed in Theorems 1 and
2. We have omitted them to keep a reasonable clarity in the exposition. However, the proofs
may be easily modified to incorporate them. We list here some possibilities.
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For both theorems, we may directly consider a symmetric space kernel J : Rd × Rd → R,
that is, satisfying J(x,y) = J(y,x). This is in connection to the symmetry of A assumed on (7),
which is essential for the integral term of equation (1) to be a dissipative operator, and, thus, a
nonlocal diffusion, see Lemma 1. In addition, the integral condition (6) is not necessary, and has
been introduced just for avoiding recurrent unimportant constants arising in the estimations.

The sub-linearity assumption for f given in (8) is imposed to obtain global in time existence
of solutions. It can be dropped for a local existence result. Besides, in Theorem 2, we may
replace the assumption on local Lipschitz continuity on f by requiring Hölder continuity and
decreasing monotony.

For the existence of solutions in both theorems, a nonlocal reaction term of the form



Ω
Jr(x− y)F (u(t,y))dy,

may be included in the equation (1), with Jr and F satisfying similar properties than those
imposed on J and f .

Finally, in Theorem 1, we may replace the Lipschitz continuity assumed on the space variables
of A by A(t, ·, ·, s) ∈ W 1,β(Ω×Ω), with β = d/(d− 1) if Ω ⊂ Rd with d > 1, or β = ∞ if d = 1.
This is related to the optimal embedding of the space BV into Lp spaces. Moreover, if we further
assume in that theorem that J ∈ L∞(B), then the result holds for A(t, ·, ·, s) ∈ BV (Ω× Ω).

Remark 1. The nonlocal p(u(t,y)− u(t,x))-Laplacian.

Let us consider the range kernel given by

A(s) = |s|p(|s|)−2s, (13)

for some Lipschitz continuous non-increasing p : [0,∞) → R satisfying, at least, one of the
following conditions:

1. p(0) > 2, or

2. p(0) = 2 and p′(0) < 0.

Then, Theorem 1 provides the existence of a unique solution of problem (1)-(2) for A given by
(13). Indeed, we have for σ = |s|

A′(s) = σp(σ)−2(p(σ) + σ log(σ)p′(σ)− 1),

which is bounded in bounded intervals, and thus satisfies the conditions of the theorem. Observe
that the function p may take values smaller than one outside s = 0, including in this way the
hyper-Laplacian diffusion [14].

3 Proofs

The following integration formula, resembling integration by parts in differential calculus, is a
consequence of the symmetry properties of the kernels J and A. It also implies that the integral
term of equation (1) is dissipative. The proof is straightforward, so we omit it.
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Lemma 1. Assume (H) and let u,ϕ ∈ L∞(QT ), ρ ∈ L∞(0, T ), with ρ ≥ 0 in (0, T ). Then, for
a.e. t ∈ (0, T ),



Ω



Ω
J(x− y)A


t,x,y, ρ(t)(u(t,y)− u(t,x))


ϕ(t,x)dydx (14)

=− 1

2



Ω



Ω
J(x− y)A


t,x,y, ρ(t)(u(t,y)− u(t,x))



× (ϕ(t,y)− ϕ(t,x))dydx.

In particular, for ϕ = φ(u), with φ ∈ L∞(R) non-decreasing, we have, for a.e. t ∈ (0, T ),


Ω



Ω
J(x− y)A


t,x,y, ρ(t)(u(t,y)− u(t,x))


φ(u(t,x))dydx ≤ 0. (15)

Proof of Theorem 1. We divide the proof in two steps. In the first step, we prove the
result for data with more regularity than the assumed in the theorem. We discretize in time,
find estimates for the time-independent sequence of problems, and pass to the limit in the
discretization parameter with the use of compactness arguments. In the second step, we pass to
the limit with respect to the regularized data using a similar compactness technique.

Step 1. Regularized problem.
We first prove the existence of solutions of problem (1)-(2) for the case in which, in addition

to (H), (9) and (10), we have

J ∈ W 1,1(B), u0 ∈ W 1,∞(Ω), f(t, ·, s) ∈ W 1,∞(Ω), (16)

for t ∈ (0, T ), and s ∈ R. We also assume the following sub-linearity condition on the range
kernel,

|A(·, ·, ·, s)| ≤ CA|s|, in (0, T )× Ω× Ω, for s ∈ R. (17)

for some constant CA > 0. This condition is instrumental to this step. It will be used to obtain
preliminar L∞ estimates for the solutions of some time semi-discrete approximated problems.
After passing to the limit in the time discretization, the L∞ estimate of the emerging solution
is shown to be independent of CA.

Consider the following auxiliary problem, obtained using the change of unknown u = eµtw
in (1), for some positive constant µ to be fixed:

∂tw(t,x) = e−µt



Ω
J(x− y)A


t,x,y, eµt(w(t,y)− w(t,x))


dy

+ e−µtf(t,x, eµtw(t,x))− µw(t,x), (18)

w(0,x) = u0(x), (19)

for (t,x) ∈ (0, T )× Ω.

Time discretization. Let N ∈ N, τ = T/N and tj = jτ , for j = 0, . . . , N . Assume that
wj ∈ W 1,∞(Ω) is given and consider the following time discretization of (18):

wj+1(x) =wj(x) + τe−µtj



Ω
J(x− y)A


tj ,x,y, e

µtj (wj(y)− wj(x))

dy

+ τe−µtjf(tj ,x, e
µtjwj(x))− τµwj+1(x). (20)
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Uniform estimates with respect to τ . Let us show that wj+1 is uniformly bounded in W 1,∞(Ω).
On one hand, using in (20) the growth conditions (17) and (8) on A and f , together with the
normalization property (6) on J , we obtain

wj+1L∞ ≤ 1

1 + τµ


wjL∞ + τ(2CA + Cf )wjL∞ + τCf



=
1 + τ(2CA + Cf )

1 + τµ
wjL∞ +

τCf

1 + τµ
.

Taking µ > 2CA + Cf , this differences inequality yields the uniform estimate

wj+1L∞ ≤ M0, (21)

with M0 depending on the regularity assumed on this step only through CA.

On the other hand, taking into account the assumptions (10) and (16), and the estimate
(21), we deduce from (20) that wj+1 ∈ W 1,∞(Ω). This regularity allows to differentiate in (20)
with respect to the k−th component of x, denoted by xk, to obtain for a.e. x ∈ Ω,

(1 + τµ)
∂wj+1

∂xk
(x) = F1(x)

∂wj

∂xk
(x) + τe−µtjF2(x),

with

F1(x) =1− τ



Ω
J(x− y)

∂A

∂s


tj ,x,y, e

µtj (wj(y)− wj(x))

dy

+ τ
∂f

∂s
(tj ,x, e

µtjwj(x)),

F2(x) =



Ω

∂J

∂xk
(x− y)A


tj ,x,y, e

µtj (wj(y)− wj(x))

dy

+



Ω
J(x− y)

∂A

∂xk


tj ,x,y, e

µtj (wj(y)− wj(x))

dy

+
∂f

∂xk
(tj ,x, e

µtjwj(x)).

We deduce

∇wj+1L∞ ≤ 1

1 + τµ


1 + τ(LA + Lf )


∇wjL∞ + τ2LA∇JL1wjL∞

+ τ(LA + Lf )

,

where LA is the Lipschitz constant of A(tj , ·, ·, ·) in Ω× Ω× [−2eµTM0, 2e
µTM0], and Lf is the

Lipschitz constant of f(tj , ·, ·) in Ω× [−eµTM0, e
µTM0]. Choosing

µ > max{2CA + Cf , 2M0LA∇JL1 + LA + Lf},

and solving this differences inequality, we obtain the uniform estimate

∇wj+1L∞ ≤ M1, (22)
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with M1 depending on the regularization introduced in this step only through JW 1,1 , LA, CA,
and u0W 1,∞ .

Time interpolators and passing to the limit τ → 0.

We define, for (t,x) ∈ (tj , tj+1]×Ω, the piecewise constant and piecewise linear interpolators
of wj given by

w(τ)(t,x) = wj+1(x), w̃(τ)(t,x) = wj+1(x) +
tj+1 − t

τ
(wj(x)− wj+1(x)),

and the piecewise constant approximations

e±µt
τ = e±µtj , Aτ (t, ·, ·, ·) = A(tj , ·, ·, ·), fτ (t, ·, ·) = f(tj , ·, ·),

which converge in Lp(0, T ), for any p ∈ [1,∞), and pointwise for a.e. t ∈ (0, T ) to the exponential
function, to A(t, ·, ·, ·), and to f(t, ·, ·), respectively.

We also introduce the shift operator στw
(τ)(t, ·) = wj . With this notation, equation (20)

may be rewritten as, for (t,x) ∈ QT ,

∂tw̃
(τ)(t,x) =e−µt

τ



Ω
J(x− y)Aτ


t,x,y, eµtτ (στw

(τ)(t,y)− στw
(τ)(t,x))


dy

+ e−µt
τ fτ (t,x, e

µt
τ στw

(τ)(t,x))− µw(τ)(t,x). (23)

Using the uniform L∞ estimates (21) and (22) of wj+1 and ∇wj+1, we deduce the corre-
sponding uniform estimates for ∇w(τ)L∞(QT ), ∇w̃(τ)L∞(QT ) and ∂tw̃(τ)L∞(QT ), implying
the existence of w ∈ L∞(0, T ;W 1,∞(Ω)) and w̃ ∈ W 1,∞(QT ) such that, at least for subsequences
(not relabeled)

w(τ) → w weakly* in L∞(0, T ;W 1,∞(Ω)),

w̃(τ) → w̃ weakly* in W 1,∞(QT ), (24)

as τ → 0. In particular, by compactness

w̃(τ) → w̃ uniformly in C([0, T ]× Ω̄).

Since, for t ∈ (tj , tj+1],

|w(τ)(t,x)− w̃(τ)(t,x)| =

(j + 1)τ − t

τ
(wj(x)− wj+1(x))



≤ τ∂tw̃(τ)L∞(QT ),

we deduce both w = w̃ and, up to a subsequence,

w(τ) → w strongly in L∞(QT ) and a.e. in QT . (25)

With the properties of convergence (24) and (25) the passing to the limit τ → 0 in (23) is justified,
finding that w ∈ W 1,∞(QT ) is a solution of (18)-(19), and therefore, u = weµt ∈ W 1,∞(QT ) is a
solution of (1)-(2).
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A posterior estimates. Using properties (14) and (15), we show uniform estimates with respect
to the local Lipschitz continuity and the growth condition on A (constants LA and CA), and to
the Lipschitz continuity of f(t,x, ·) (constant Lf ).

(i) L∞ bound. We show that the positive part of u, denoted by u+, is bounded in L∞(QT ).
The result for the negative part is achieved similarly. Consider again the change of unknown
u = eµtw leading to equation (18), and multiply this equation by φ(w) ∈ W 1,∞(QT ), for the
non-decreasing function φ(s) = max{0, s−K}, with K > 0 to be fixed. Using Lemma 1, we get

∂t



Ω
Φ(w(t,x))dx ≤



Ω


e−µtf(t,x, eµtw(t,x))− µw(t,x)


φ(w(t,x))dx,

where Φ(s) = φ(s)2/2. The growth condition on f(t,x, ·) implies

∂t



Ω
Φ(w(t,x))dx ≤(Cf − µ)



Ω
φ(w(t,x))|w(t,x)−K|dx

+



Ω


Cf (e

−µt +K)− µK

φ(w(t,x))dx.

Taking µ = Cf (1 +K)/K, and noticing that φ is non-negative, we deduce

∂t



Ω
Φ(w(t,x))dx ≤ (Cf − µ)



Ω
|φ(w(t,x))|2dx.

Fixing K > u0L∞ , Gronwall’s lemma yields, for the original unknown,

u+L∞(QT ) ≤ eµT u0L∞(Ω), (26)

with µ depending only on Cf and u0L∞ .

(ii) Non-negativity. Assume f(·, ·, 0) ≥ 0 in QT . We multiply (1) by φ(u) ∈ W 1,∞(QT ), for
the non-decreasing function φ(s) = min{0, s}, and use Lemma 1 to get, for t ∈ (0, T ),

∂t



Ω
Φ(u(t,x))dx ≤



Ω
f(t,x, u(t,x))φ(u(t,x))dx,

where Φ(s) =
 s
0 φ(σ)dσ = φ(s)2/2. Since f(·, ·, 0) ≥ 0 in QT , using that φ ≤ 0, u ∈ L∞(QT ),

and the Lipschitz continuity of f(t,x, ·) we get

∂t



Ω
Φ(u(t,x))dx ≤ Lf



Ω
|u(t,x)||φ(u(t,x))|dx = Lf



Ω
|φ(u(t,x))|2dx.

Therefore, Gronwall’s lemma implies



Ω
|φ(u(t,x))|2dx ≤ e2Lf t



Ω
|φ(u0(x))|2dx = 0,

so that u ≥ 0 a.e. in QT .

Step 2. Passing to the limit in the regularization
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We consider sequences of smooth approximating functions Jε and u0ε satisfying assumptions
(H), (9), (10) and (16) such that, as ε → 0,

Jε → J strongly in L1(B), with ∇JεL1(B) → TV(J), (27)

u0ε → u0 strongly in Lq(Ω), u0εL∞(Ω) ≤ K, (28)

fε(t, ·, s) → f(t, ·, s) strongly in Lq(Ω), f(t, ·, s)L∞(Ω) ≤ K, (29)

for t ∈ (0, T ) and s ∈ R, and for any q ∈ [1,∞), where K > 0 is independent of ε, and such that

∇u0εL1(Ω) → TV(u0), (30)

∇fε(t, ·, s)L1(Ω) → TV(fε(t, ·, s)), (31)

where TV denotes the total variation with respect to the x variable.
Sequences with properties (27)-(31) do exist thanks to the regularity J ∈ BV (B), u0 ∈

L∞(Ω) ∩ BV (Ω), and fε(t, ·, s) ∈ BV (Ω), see [1]. In addition, we consider a sequence Aε with
the same regularity as A, see (9), and satisfying the sub-linearity condition (17), which is possible
because A is locally Lipschitz continuous in the fourth variable.

Due to the above convergences, we have

∇Jε is uniformly bounded in L1(B), (32)

∇u0ε is uniformly bounded in L1(Ω). (33)

∇fε(t, ·, s) is uniformly bounded in L1(Ω). (34)

Because of (26) and (28), the corresponding solution uε ∈ W 1,∞(QT ) of problem (1)-(2), ensured
by Step 1 of this proof, is uniformly bounded in L∞(QT ),

uεL∞(QT ) ≤ C, (35)

for some C > 0 independent of the growth condition constant of Aε, CAε . In particular, this
means that we may replace Aε by A, since the sub-linearity condition (17) is trivially satisfied
by the Lipschitz continuous function A(·, ·, ·, s) for |s| ≤ C. Therefore, uε ∈ W 1,∞(QT ) satisfies

∂tuε(t,x) =



Ω
Jε(x− y)A(t,x,y, uε(t,y)− uε(t,x))dy

+ fε

t,x, uε(t,x)


, (36)

uε(0,x) = u0ε(x), (37)

for (t,x) ∈ QT . From (35), the uniform boundedness of Jε in L1(B) and the regularity of A and
f , we obtain from (36) that

∂tuε is uniformly bounded in L∞(QT ). (38)

Being u0ε, Jε smooth functions, we may deduce an L∞ bound for ∇uε as in the Step 1, not
necessarily uniform in ε, but allowing to differentiate equation (36) with respect to xk. After
integration in (0, t), we obtain

∂uε
∂xk

(t,x) = Gε(t,x)
∂u0ε
∂xk

(x) +

 t

0
ηε(s,x)(Gε(s,x))

−1ds

, (39)

11
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with

Gε(t,x) = exp
 t

0

∂fε
∂s

(t,x, uε(τ,x))

−


Ω
Jε(x− y)

∂A

∂s


t,x,y, uε(τ,y)− uε(τ,x)


dy


dτ


,

ηεk(t,x) =



Ω

∂Jε
∂xk

(x− y)A

t,x,y, uε(t,y)− uε(t,x)


dy

+



Ω
Jε(x− y)

∂A

∂xk


t,x,y, uε(t,y)− uε(t,x)


dy

+
∂fε
∂xk

(t,x, uε(τ,x)).

Using the regularity of A and properties (32), (34), and (35), we deduce that Gε, 1/Gε are
uniformly bounded in L∞(QT ), and that ηε is uniformly bounded in L∞(0, T ;L1(Ω)). Then,
from (39) and the uniform bound (33), we obtain that

∇uε is uniformly bounded in L∞(0, T ;L1(Ω)). (40)

Bounds (38) and (40) allow to deduce, using the compactness result [17, Cor. 4, p. 85], the
existence of u ∈ C([0, T ];L∞(Ω)∩BV (Ω)) such that uε → u strongly in Lq(QT ), for all q < ∞,
and a.e. in QT . The uniform bound (38) also implies that, up to a subsequence (not relabeled),
we have ∂tuε → ∂tu weakly* in L∞(QT ).

These convergences allow to pass to the limit ε → 0 in (36)-(37) (with u replaced by uε) and
identify the limit

u ∈ W 1,∞(0, T ;L∞(Ω)) ∩ C([0, T ];L∞(Ω) ∩BV (Ω)),

as a solution of (1)-(2). Observe that, being uε a sequence of non-negative functions, we deduce
u ≥ 0 in QT .

Uniqueness and stability. Let u01, u02 ∈ L∞(Ω) ∩ BV (Ω) and u1, u2 be the corresponding
solutions to problem (1)-(2). Set u = u1−u2 and u0 = u10−u20. Then u ∈ W 1,∞(0, T ;L∞(Ω))∩
C([0, T ];L∞(Ω) ∩BV (Ω)) satisfies u(0, ·) = u0 in Ω, and

∂tu(t,x) =



Ω
J(x− y)


A(t,x,y, u1(t,y)− u1(t,x))

−A(t,x,y, u2(t,y)− u2(t,x))

dy

+ f(t,x, u1(t,x))− f(t,x, u2(t,x)), (41)

for (t,x) ∈ QT . Multiplying this equation by u, integrating in Ω and using the Lipschitz
continuity of A(t,x,y, ·) and f(t,x, ·), we deduce

1

2
∂t



Ω
|u(t,x)|2dx ≤LA



Ω



Ω
J(x− y)|u(t,y)− u(t,x)||u(t,x)|dydx

+ Lf



Ω
|u(t,x)|2dx.
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Using the inequality |s||t− s| ≤ 2(t2 + s2) and the summability property of J in the first term
of the right hand side, we obtain

1

2
∂t



Ω
|u(t,x)|2dx ≤(2LA + Lf )



Ω
|u(t,x)|2dx.

Therefore, if u10 = u20, Gronwall’s inequality implies u1 = u2.
For the stability result, we assumed J ∈ L∞(B). Multiplying (41) by φ(u), with φ(s) =

|s|q−1s, for q ≥ 1, integrating in Ω and using the Lipschitz continuity of A(t,x,y, ·) and f(t,x, ·),
and the boundedness of J , we deduce

1

q + 1
∂t



Ω
|u(t,x)|q+1dx ≤LAJL∞



Ω



Ω
|u(t,y)− u(t,x)||u(t,x)|qdydx

+ Lf



Ω
|u(t,x)|q+1dx.

By Young’s inequality we find, for fixed t ∈ (0, T ),


Ω



Ω
|u(t,y)||u(t,x)|qdydx = uL1uqLq ≤ |Ω|

2q−1
q uq+1

Lq+1 .

Therefore, we deduce

∂t



Ω
|u(t,x)|q+1dx ≤(q + 1)


Lf + LAJL∞(|Ω|

2q−1
q + |Ω|)



Ω
|u(t,x)|q+1dx,

and Gronwall’s inequality implies, for a.e. t ∈ (0, T ),

u(t, ·)Lq+1(Ω) ≤ exp

t

Lf + LAJL∞(|Ω|

2q−1
q + |Ω|)


u0Lq+1(Ω).

The result follows letting q → ∞. ✷

In the proof of Theorem 2 we use the following lemmas: an approximation result, and a
consequence of the monotonicity of A. We prove them at the end of this section.

Lemma 2. Assume (H) and suppose that A(t,x,y, ·) is non-decreasing in R, for t ∈ (0, T ) and
for x,y ∈ Ω. Then, there exists a sequence An ∈ L∞(0, T ) × W 1,∞(Ω × Ω) × W 1,∞

loc (R), for
n ∈ N, such that

An(·, ·, ·, 0) = 0 in (0, T )× Ω× Ω, for all n ∈ N, (42)

dAn

ds
(·, ·, ·, s) ≥ 0 in (0, T )× Ω× Ω, for all s ∈ R, n ∈ N (43)

|An(·, ·, ·, s1)−An(·, ·, ·, s2)| ≤ C0|s1 − s2|α in (0, T )× Ω× Ω,

for all s1, s2 ∈ R, n ∈ N, (44)

|An1 −An2 | ≤ C0

 |n1 − n2|
n1n2

α
in (0, T )× Ω× Ω× R,

for all n1, n2 ∈ N, (45)

An → A in Lq((0, T )× Ω× Ω)× L∞(R) as n → ∞, (46)

for any q ∈ [1,∞), with AnL∞ ≤ K, where C0,K are positive constants independent of n.
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Lemma 3. Assume (H) and suppose that A(t,x,y, ·) is non-decreasing in R, for t ∈ (0, T ) and
for x,y ∈ Ω. Let φ : R → R be non-decreasing and L be defined by

L(t)u(x) = −


Ω
J(x− y)A(t,x,y, u(y)− u(x))dy, for t ∈ (0, T ).

Suppose that φ(u− v)(L(t)u− L(t)v) ∈ L1(Ω) for t ∈ (0, T ). Then



Ω
φ

u(x)− v(x)


(L(t)u(x)− L(t)v(x))dx ≥ 0 for t ∈ (0, T ).

In particular, the conditions of this lemma are satisfied if φ ∈ L∞(R), u, v ∈ Lq(Ω), for q ∈
[1,∞], and J ∈ L

q
q−α (R) if q ∈ [1,∞) or J ∈ L1(B) if q = ∞.

Proof of Theorem 2.
We consider the sequence Ai, for i ∈ N, provided by Lemma 2, and other sequences Ji ∈

BV (B), and u0i ∈ L∞(Ω) ∩BV (Ω) such that, if q ∈ [1,∞)

Ji → J strongly in L
q

q−α (B),

u0i → u0 strongly in Lq(Ω), (47)

or, if q = ∞,

Ji → J strongly in L1(B),

u0i → u0 strongly in Lr(Ω), for r ∈ [1,∞), with u0iL∞(Ω) < C, (48)

for some C > 0 independent of i. We set the problem

∂tu(t,x) =



Ω
Ji(x− y)Ai(t,x,y, u(t,y)− u(t,x))dy + f(t,x, u(t,x)), (49)

u(0,x) = u0i(x), (50)

for (t,x) ∈ QT , for which the existence of a unique solution

ui ∈ W 1,∞(0, T ;L∞(Ω)) ∩ C([0, T ];L∞(Ω) ∩BV (Ω)),

is ensured by Theorem 1.
We start proving the uniform boundedness of ui in Lq(QT ). To do this, we modify the

argument employed for proving the stability result (11) of Theorem 1 to take into account the
monotonicity of Ai.

Taking J = Ji, A = Ai, u1 = ui and u2 = 0 in (41) and using φ(u), with φ(s) = |s|r−1s, for
r ≥ 1, as a test function in (41) we find, due to the monotonicity of Ai and φ, see Lemma 3,
and to the Lipschitz continuity of f ,

1

r + 1
∂t



Ω
|ui(t,x)|r+1dx ≤ Lf



Ω
|ui(t,x)|r+1dx.

Then, Gronwall’s inequality implies, for any r ∈ [1,∞],

uiLr(QT ) ≤ eLfT u0iLr(Ω).
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Due to (47) or (48), we deduce that uiLq(QT ), for whatever the choice of q ∈ [1,∞], is uniformly
bounded with respect to i. In particular, we have that the integral term in (49) is well defined
for all i ∈ N since the Hölder continuity of Ai and Hölder’s inequality imply



Ω
Ji(x− y)Ai(t,x,y, ui(t,y)− ui(t,x))dy ≤ CJi

L
q

q−α (Rd)
ui(t, ·)αLq(Ω).

This bound makes sense for q ∈ [1,∞). In the case q = ∞ we just replace q/(q − α) by 1. In
order to treat both cases jointly, we introduce the notation

q

q − α
=


q

q−α if q ∈ [1,∞)

1 if q = ∞.

The main ingredient of the proof is showing that ui is a Cauchy sequence in L1(QT ).
Let um, un be the solutions of (49)-(50) corresponding to i = m and i = n, respectively.

Subtracting the corresponding equations and multiplying by φε(um − un), for ε > 0, where
φε ∈ C(R) is a non-decreasing bounded approximation of the sign function, e.g. φε(s) = s/ε if
s ∈ (0, ε), φ(s) = 1 if s > ε, and φε(s) = −φε(−s), if s < 0, we get

∂t



Ω
Φε(um(t,x)− un(t,x))dx = I1 + I2 + I3 + I4, (51)

being Φε(s) =
 s
0 φε(σ)dσ an approximation of the absolute value, and

I1 =



Ω



Ω
(Jm(x− y)− Jn(x− y))φε


um(t,x)− un(t,x)



×Am


t,x,y, um(t,y)− um(t,x)


dydx

I2 =



Ω



Ω
Jn(x− y)φε


um(t,x)− un(t,x)



×

Am


t,x,y, um(t,y)− um(t,x)


−Am


t,x,y, un(t,y)− un(t,x)


dydx

I3 =



Ω



Ω
Jn(x− y)φε


um(t,x)− un(t,x)



×

Am


t,x,y, un(t,y)− un(t,x)


−An


t,x,y, un(t,y)− un(t,x)


dydx

I4 =



Ω


f(t,x, um(t,x))− f(t,x, un(t,x))


φε(um(t,x)− un(t,x)


dx

For the rest of the proof, we use C to denote a constant which may change from one expression
to another, but which is independent of m,n and ε.

To estimate the integral I1, we use the boundedness of φε in L∞(R) and the Hölder continuity
of Ai with respect to s, see (44), together with (42), which yield

I1 ≤ CumαLqJm − Jn
L

q
q−α

,

Since φε is non-decreasing and bounded in L∞(R), the term I2 is non-positive due to the mono-
tonicity of the approximants Ai stated in (43), see Lemma 3. For I3, we use the Hölder continuity
of Ai with respect to i, see (45), and again the boundedness of φε in L∞(R), obtaining

I3 ≤ CJnL1k(m,n),
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with k(m,n) = (|n −m|/|mn|)α. Finally, since f(t,x, ·) is locally Lipschitz continuous we get,
using |sφε(s)| ≤ 2Φε(s),

I4 ≤ Lf



Ω
|um − un||φε(um − un)| ≤ 2Lf



Ω
Φε(um − un).

Using these estimates in (51), and that um and Jm are uniformly bounded in L1(QT ) and

L
q

q−α (B), respectively, we deduce

∂t



Ω
Φε(um − un) ≤ C


Jm − Jn

L
q

q−α
+ k(m,n)


+ 2Lf



Ω
Φε(um − un). (52)

Since Jm is a Cauchy sequence in L
q

q−α (B), for all δ > 0 there exists N > 0 such that

Jm − Jn
L

q
q−α

< δ and k(m,n) < δ for m,n > N.

Therefore, from (52) and Gronwall’s lemma we get


Ω
Φε(um(t, ·)− un(t, ·)) ≤Ce2LfT



Ω
Φε(u0m − u0n) + δ


. (53)

Since u0i is a Cauchy sequence in L1(Ω) and Φε ∈ C(R) with Φε(0) = 0 and Φε → | · | in C(R),
we may redefine N > 0 to also have



Ω
Φε(u0m − u0n) < δ for m,n > N,

with N independent of ε. Using this bound and the theorem of dominated convergence in (53),
we deduce in the limit ε → 0,

um − unL1(QT ) ≤Cδ,

implying that ui is a Cauchy sequence in L1(QT ). Hence, there exists u ∈ L1(QT ) such that
ui → u strongly in L1(QT ). We then have, at least for a subsequence (not relabeled) that
ui → u a.e. in QT . Since ui is uniformly bounded in Lq(QT ), the theorem of dominated
convergence yields, if q ∈ [1,∞),

ui → u strongly in Lq(QT ),

and, if q = ∞,

ui → u strongly in Lr(QT ), for any r ∈ [1,∞), with u ∈ L∞(QT ).

In addition, we have directly from (49) and the uniform bounds of Ji in L
q

q−α (B) and of ui
in Lq(QT ) that ∂tuiL1 is uniformly bounded as well. Thus, at least for a subsequence (not
relabeled), we have

ui → u weakly in W 1,1(0, T ;L1(Ω)).

Therefore, replacing u by ui in (49) and taking the limit i → ∞, we find that the limit u is a
solution of (1)-(2). In addition, if f(·, ·, 0) ≥ 0 then ui ≥ 0 and therefore we also have u ≥ 0.
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Finally, the stability result (12) is easily deduced by modifying the argument employed in
Theorem 1 to take into account the monotonicity of A. Using again φ(u), with φ(s) = |s|q−1s,
for q ≥ 1, and u = u1 − u2, as a test function in (41) we find, due to the monotonicity of A and
φ,

∂t


Φ(u(t,x)) ≤



Ω
φ(u(t,x))


f(t,x, u1(t,x))− f(t,x, u2(t,x))


, (54)

for (t,x) ∈ QT . Then, Gronwall’s inequality implies

uLq(QT ) ≤ eLfT u0Lq(Ω).

Notice that if f(t,x, ·) is non-increasing then we directly obtain from (54) and φ non-decreasing
that uLq(QT ) ≤ u0Lq(Ω). ✷

Proof of Lemma 2. Consider a mollifier ρn ∈ C∞
c (R) given by ρn(s) = nρ(ns) for n ∈ N, for

some even function ρ ∈ C∞
c (R) with ρ ≥ 0 in R and such that


R ρ(s)ds = 1. Observe that since

ρ is of compact support,

Iα =



R
ρ(s)|s|αds < ∞. (55)

We then have that the sequence An(t,x,y, s) =

R ρn(s− σ)A(t,x,y,σ)dσ satisfies (42) due to

the even symmetry of ρ and the odd symmetry of A. Since the variables t,x,y do not play any
role in this proof, we omit them for clarity. We have

An(s1)−An(s2) =



R
ρn(σ)


A(s1 − σ)−A(s2 − σ)


dσ,

from where the monotonicity of An stated in (43) is easily deduced from that of A. We also
check from this identity that the Hölder continuity of An with respect to s stated in (44) holds
with the same continuity constant than that of A, due to the normalization of ρn assumed in
(55). The Hölder continuity with respect to n stated in (45) is deduced as

|An1(s)−An2(s)| ≤


R
ρ(ξ)

(A

s− ξ

n1


−A


s− ξ

n2

 dξ

≤ CH


1

n1
− 1

n2


α 

R
ρ(ξ)|ξ|α ≤ Iα


1

n1
− 1

n2


α

,

where CH is the Hölder continuity constant of A. Finally, for the convergence result (46), we
have

|An(s)−A(s)| ≤


R
ρn(σ) |A(s− σ)−A(s)| dσ

≤ CH



R
ρn(σ)|σ|αdσ =

CH

nα
Iα.

✷
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Proof of Lemma 3. Using the identity (14) of Lemma 1, we get



Ω
φ

u(x)− v(x)


(L(t)u(x)− L(t)v(x))dx = −1

2



Ω



Ω


J(x− y)

×

A(t,x,y, u(y)− u(x))−A(t,x,y, v(y)− v(x))



×

φ(u(y)− v(y))− φ(u(x)− v(x))


dydx.

Let ξ0 ∈ C0,α(R) be non-decreasing and consider a sequence ξε ∈ C∞
c (R) such that ξ′ε ≥ 0 and

ξε → ξ0 in L∞(R) as ε → 0 (see the proof of (43) of Lemma 2 for the construction of such
sequence). Let I : R → R be given by

I(ε) =

φ(s1 − t1)− φ(s2 − t2)


ξε(s1 − s2)− ξε(t1 − t2)


,

for ti, si ∈ R, i = 1, 2. The result of this lemma follows if we prove the pointwise bound I(0) ≥ 0.
We have

ξε(s1 − s2)− ξε(t1 − t2) = ξ′ε(η)(s1 − s2 − (t1 − t2)),

for some intermediate point η between s1 − s2 and t1 − t2. Since φ and ξε are non-decreasing,
we deduce

I(ε) = ξ′ε(η)

φ(s1 − t1)− φ(s2 − t2)


(s1 − t1 − (s2 − t2)) ≥ 0.

Taking the limit ε → 0 we deduce I(0) ≥ 0. ✷
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