
RESEARCH ARTICLE

Evaluating freshwater macroinvertebrates

from eDNA metabarcoding: A river Nalón case

study
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Abstract

Rivers are a vital resource for human wellbeing. To reduce human impact on water bodies,

the European Union has established an essential regulatory framework for protection and

sustainable management (WFD; 2000/60/EC). In this strategy, reliable and economic bioin-

dicators are a fundamental component. Benthic macroinvertebrates are the group most

commonly used as bioindicators through all European countries. However, their conven-

tional assessment currently entails serious cost-efficiency limitations. In this study, we have

tested the reliability of metabarcoding as a tool to record river macroinvertebrates using

samples from a mock community (in vitro validation) and eDNA extracted for field validation

from water from six sites within a north Iberian river (River Nalón, Asturias, Spain). Two

markers (V4 region within the nuclear 18S rDNA and a fragment of the mitochondrial COI

gene) were amplified and sequenced using an Illumina platform. The molecular technique

has proven to be more sensitive than the visual one. A cost-benefit analysis shows that the

metabarcoding approach is more expensive than conventional techniques for determining

macroinvertebrate communities but requires fewer sampling and identification efforts. Our

results suggest metabarcoding is a useful tool for alternative assessment of freshwater

quality.

Introduction

Rivers are one of the most important resources for human society, supplying the population

with different goods and services: from drinking and industrial water to fisheries to recrea-

tional activities [1]. Due to these anthropogenic uses, running water ecosystems are constantly

changing and have generally experienced a reduction in the ecosystem services they provide

[2]. As an attempt to reduce the impacts on European water bodies, the European Water

Framework Directive (WFD; 2000/60/EC) has established a framework for their protection

and sustainable management, with the aim of achieving at least a ‘good water status’ [3]. Good

water quality is one of the essential requirements to accomplish the status required within this

directive.
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Multiple indicator groups (macrobenthic fauna, fish fauna, and aquatic flora) have been

widely used to measure the ecological quality of rivers across Europe [4–8]. Benthic macroin-

vertebrates are biotic indicators of water quality because they reflect a diversity of anthropo-

genic perturbations, thus serving to detect both habitat and overall stream degradation [9].

They are organisms that usually inhabit the bottom substrates and are large enough to be seen

without magnification. The dominant groups are arthropods, mollusks, and annelids [10].

Their use as bioindicators is widespread across Europe, and, together with algae, they are the

most common biological water quality assessment indicators [9]. For these reasons, the moni-

toring of resident macroinvertebrate communities has become a primary component of water-

resource evaluations with regard to the WFD [11].

Collection and identification of macroinvertebrates with traditional methodologies is gen-

erally costly. It requires a high sampling effort and the contribution of expert taxonomists for

morphological identification that is sometimes difficult to obtain because of the lack of diag-

nostic characteristics for many macrozoobenthic larvae [12].

However, the use of environmental DNA (eDNA), where the genetic material is obtained

directly from environmental samples (soil, sediment, water, etc.) [13], could overcome these

cost-efficiency limitations. The samples needed for applying eDNA-based methodologies are

easy to collect without the need for sampling individuals from the river, which can be diffi-

cult in river zones with no accessibility to the river bottom or in areas where netting is ineffi-

cient because of a low or nonexistent current. Due to the substantial number of taxa that

compose ‘benthic macroinvertebrates’, from arthropods to annelids, the use of a metabar-

coding approach appears to be a good option. Metabarcoding has been defined as the combi-

nation of high-throughput sequencing (HTS) platforms and DNA sequence association with

taxonomic information to surveying [14]. Although it requires next-generation sequencing

(NGS) technologies and the use of expensive platforms, the process can be externalized to

specialized companies, reducing costs and becoming relatively affordable for monitoring

aquatic communities [15]. NGS has been used to assess macroinvertebrates in a few studies

[16–19], demonstrating its potential ability to monitor such a varied group of organisms.

Within the mentioned studies, some authors have used a metabarcoding approach to assess

benthic macroinvertebrates from tissue samples [19,20], showing its feasibility and higher

sensitivity than morphological methods. Others validated the use of NGS for environmental

samples to evaluate water quality in marine ecosystems [16] and in biodiversity studies in

freshwater ecosystems [17], including macroinvertebrate species assessment. The application

of these technologies to environmental samples is increasing [21]. Most of the recently devel-

oped studies have been based on advancing eDNA based approaches implementation (e.g.,

[13,21,22,23]), focusing on field validation, platform and barcode choice or database limita-

tions [24–26]. However, there is a lack of information about the reliability of taxonomic

assignment criteria. In this study, we tested the reliability of next-generation sequencing

(NGS) for the detection and identification of macroinvertebrate families from running water

samples using two different metabarcodes for checking the consistency of the taxonomic

assignments and determining the proportion of positive and negative results by comparison

of eDNA results with physical macroinvertebrate samples from the field, and a mock com-

munity created in vitro from known DNA samples. Field samples obtained along a river will

also serve to test the hypothesis of rivers being like conveyer belts of biodiversity [17]. From

this hypothesis, DNA from terrestrial species will be found in water samples as well, so the

assessment using eDNA could cover landscapes. And it is expected that the species diversity

will increase downstream for macroinvertebrates and for the whole community identified

from eDNA.

eDNA macroinvertebrates evaluation
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Methods

Ethics statement

This project, and in particular the collection of samples in protected spaces, was authorized by

the entity legally entitled to do so in Spain, the Government of the Asturias Principality, with

permit reference 101/16. The authors adhered to the European Code of Conduct for Research

Integrity (ESF 2011).

Sample collection

Water samples were collected in November 2016 from six sites along the upper zone of the

Nalón River (Fig 1), a river area belonging to the Nalón-Narcea basin in Asturias in the north

of Spain. Study sites are located within the UNESCO (United Nations Educational, Scientific

and Cultural Organization) Biosphere Reserve and the Redes Natural Park, a protected area

with high faunal diversity [27]. In this area, river connectivity is interrupted by the presence of

two big dams (Fig 1).

At each site, four liters of water were collected with a sterile bottle placed at the river bottom

without disturbing the sediment. One liter of Milli-Q water was transported to the field and

analyzed in the laboratory with the rest of the samples to monitor for contamination. After

water sample collection, macroinvertebrate individuals were sampled after superficially kick-

ing the riverbed substrates about for one minute (Kick-net method), as is performed in con-

ventional macroinvertebrate sampling [28]. The released individuals were then collected with

a 0.09 m2 stainless steel sieve (1-μm mesh). The specimens collected were identified down to

the family level using an identification key [29].

Processing and next-generation sequencing

Four one-liter samples were analyzed per sampling point. These water samples and the Milli-Q

negative control were vacuum filtered using a Supor1 200 Membrane Filter (Pall Corporation,

Fig 1. Upper Nalón basin. Distribution of sampling points along the Upper Nalón River. The two reservoirs in the area are

indicated (Rioseco and Tanes reservoirs).

https://doi.org/10.1371/journal.pone.0201741.g001
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Life Sciences, Ann Arbor, MI, USA) with 0.2-μm pore size. The filtration room was free of

external sources of contamination, and it was separate from the molecular laboratory. The fil-

tration system was cleaned with 10% commercial chlorine-based bleach between samples to

avoid contamination between sampling points. Milli-Q water was filtered as the last sample,

following the same steps to monitor for filtration cross-contamination. Lastly, the filters were

placed into 15 mL tubes using sterile forceps and stored at −20 ˚C until DNA extraction.

DNA was extracted from filters with the PowerWater1 DNA Isolation Kit (QIAGEN labo-

ratories) under sterile conditions inside a laminar flow PCR-cabinet following the manufactur-

er’s instructions. A negative control was added at this step to monitor contamination during

the extraction process.

Metabarcoding molecular work was performed at the Cawthron Institute (www.cawthron.

org.nz). PCR was performed for two target genes, the eukaryotic V4 region of the nuclear

small subunit ribosomal DNA (18S rRNA gene, 18S from now) using the universal primers

Uni18SF and Uni18SR [30] and a mitochondrial COI gene region using the universal primers

COI NexF-mlCOIintF and NexR-jgHCO2198 [31]. The primers were modified to include Illu-

mina™ overhang adaptors.

PCR for the 18S gene was performed on an Eppendorf Mastercycler (Eppendorf, Germany)

in a total volume of 35 μl containing 18 μl of AmpliTaq Gold1 360 PCR Master Mix (Life

Technologies, USA), 5 μl of AmpliTaq PCR Enhancer (Life Technologies, USA), 2 μl of BSA,

1 μM of each primer, and 3 μl of template DNA. The reaction cycling conditions were as fol-

lows: 95 ˚C for 3 min; followed by 35 cycles of 94 ˚C for 30 s, 52 ˚C for 30 s, and 72 ˚C for 90 s;

and a final extension at 72 ˚C for 8 min. PCR of the COI gene was performed in a total volume

of 35 μl containing 1x MyTaq™Red Mix (Bioline, USA), 1 μM of each primer and 3 μl of tem-

plate DNA. The reaction cycling conditions were as follows: 95 ˚C for 1 min; followed by 35

cycles of 95 ˚C for 15 s, 46 ˚C for 15 s, and 72 ˚C for 10 s; and a final extension at 72 ˚C for 3

min. Negative and positive controls were included for all PCR reactions. The amplification

success was visually assessed on a 1.5% agarose gel.

PCR amplicons were purified using the AMPureTM XP system (Agenecourt, USA), quanti-

fied using the QuBit BR dsDNA kit (Invitrogen, USA), diluted to a concentration of 3 ng/μl

and sent to New Zealand Genomics Limited (University of Auckland) for library preparation

and sequencing. Sequencing adaptors and sample-specific indices were added to each ampli-

con via a second round of PCR using the Nextera™ Index kit (Illumina™) following the manu-

facturer’s instructions. Amplicons were pooled into a single library and paired-end sequences

(2 × 250) were generated on a MiSeq instrument using the TruSeq™ SBS kit v3 (Illumina™).

The MiSeq Control Software Version 2.2 including MiSeq Reporter 2.2 was used for raw

read primary analysis and demultiplexing and to assign the forward and reverse reads to the

samples.

Bioinformatics analyses

Run quality was assessed using three processes, SolexaQA++, fastQC and fastQscreen. Using

the VSEARCH tool [32], the pair-end reads from each sample were merged, filtered (discard-

ing all reads with>1 error per assembled read and reads that were too long and too short com-

pared to the expected amplicon length) and dereplicated into unique sequences. Chimeras

were identified and removed in de novo mode using the UCHIME algorithm [33]. All the

sequence reads were assessed for quality by applying a Phred quality score threshold of 30

(Table 1; Cleaned). Then, BLAST alignment was completed for the 18S rDNA dataset (maxi-

mum E-value = 10−50 and minimum percent identity = 80.0) against NCBI 18S sequences

using QIIME [34].

eDNA macroinvertebrates evaluation
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For COI, BLAST alignment was also performed against NCBI COI sequences using

QIIME, but with four different threshold criteria to further determine the most adequate for

macroinvertebrate family assignation: Criteria #1 (maximum E-value = 10−10 and minimum

percent identity = 97.0); Criteria #2 (maximum E-value = 10−50 and minimum percent iden-

tity = 97.0); Criteria #3 (maximum E-value = 10−10 and minimum percent identity = 90.0);

and Criteria #4 (maximum E-value = 10−50 and minimum percent identity = 90.0). The E-

value or Expect value is the number of different alignments with scores equivalent to or better

than S (the raw alignment score), which is expected to occur in a database search by chance.

The lower the E-value, the more significant the score and the alignment. The percentage of

identity measures the extent to which two sequences have the same nucleotides at the same

positions in an alignment [35]. The two partial NCBI databases (for 18S and COI genes)

were built using the algorithm described by Baker [36] in 2017. Genetic assignments for both

markers were performed by employing the ‘‘assign_taxonomy. py” python script. Reference

databases were constructed using the work flow developed by Baker [36]. Finally, OTU (Oper-

ational Taxonomic Unit) tables, a list of OTUs obtained for each sample and the number of

sequences assigned to them, were constructed with the ‘fromTaxassignments2OtuMap.py’

algorithm.

In vitro and field validation

In vitro validation. A mock community was set up to verify that our laboratory methods

and bioinformatics pipeline were able to correctly detect the taxa of interest (Table 2). It was

composed of a known DNA mixture of nine species from different taxonomic groups (one

crustacean, one insect, two acorn barnacles, two goose barnacles, and three fish) that occur in

water samples at any life stage. This mock community was analyzed together with the set of

eDNA samples obtained from the field. The taxonomic assignation of raw sequences for the

mock community was manually checked with the BLAST tool included on the NCBI webpage

[35] to confirm the assignations were correctly done using our pipeline or if there were errors

or incongruences.

Field validation and statistics. The field validation was based on the coincidences

between families found from the direct individual sampling of macroinvertebrates—taxo-

nomically classified de visu—and the families found from metabarcoding at the six sampling

points.

Table 1. HTS and pipeline output. The number of sequences obtained along the process in the six samples analyzed and the Mock community for each gene. The

sequences remaining after bioinformatics filtering (Merged and Cleaned) and the following different assignment criteria: #1 (maximum E-value = 10−10 and minimum per-

cent identity = 97.0); #2 (maximum E-value = 10−50 and minimum percent identity = 97.0); #3 (maximum E-value = 10−10 and minimum percent identity = 90.0); #4 (max-

imum E-value = 10−50 and minimum percent identity = 90.0); and 18S Assigned (maximum E-value = 10−50 and minimum percent identity = 80.0).

18S COI

Sample Raw Merged Cleaned Assigned Raw Merged Cleaned Assigned

Criteria#1 Criteria#2 Criteria#3 Criteria#4

C 91464 58671 32413 29253 126701 116138 113204 32507 5218 94383 15889

N 127708 85499 49037 45067 137023 127237 124397 29890 7550 108993 22052

T 95941 64785 53671 43050 199512 158686 154766 31224 1956 117332 12327

EE 114814 77896 44074 38823 254680 228560 222835 108083 16100 187941 32368

R 56441 32407 24433 23191 56074 52845 51497 29517 25076 70618 34884

NB 112483 88051 70862 64364 149794 139942 136701 39918 8269 114634 16589

Mock community 30604 10490 8739 8728 34132 32468 31781 628 4613 31746 31593

% of Assigned OTU 89% 32% 8% 87% 20%

https://doi.org/10.1371/journal.pone.0201741.t001
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Alpha diversity was estimated using species richness (S). This index was chosen as represen-

tative of simple indices that give greater weight to rare species and are better than compound

indices for detecting diversity disturbances (e.g.[37]). The statistical significance of the differ-

ences between diversity indices from different sites was determined by employing permutation

tests. For these tests, 9999 random matrices with two columns (samples) are generated, each

with the same row and column totals as in the original data matrix.

To check if there were significant differences between the two different molecular mark-

ers and the visual methodology, the Fisher’s exact test (based on contingency tables) was

employed.

The diversity indices and statistical tests were computed using the PAST software [38].

Cost-benefit analysis (CBA)

A CBA was performed following the methodology explained in Borrell et al. [15]. Briefly, the

time employed performing molecular and morphological analyses was calculated for each step

to estimate an effort measurement (sampling, extraction and identification processes). The

cost of both methods was calculated based on the Spanish official technician wage (10.83

€/hour), as the study took place in Spain. Laboratory costs for DNA extraction included filters

for retrieving DNA from water samples and the costs of DNA extraction kits. Sequencing costs

charged from Cawthron Institute (where the samples were analyzed) were also added for the

metabarcoding approach.

Results

High-throughput sequencing and pipeline output

Good quality 18S amplicons were obtained for all the analyzed samples, while good quality

COI amplicons were obtained for 20 of 24 samples. Raw NGS sequences are available on

NCBI’s sequence read archive (SRA) with the Study number SRP124881.

The number of raw sequences obtained varied from 91,464 to 127,708 sequences per sample

for the 18S region and from 56,074 to 254,680 sequences per sample for the COI fragment

(Table 1). Sequence quality filtering (cleaning) retained 45% of 18S regions and 87.2% of COI

sequences. The percentage of assigned COI sequences ranged from 8% with Criteria#2 to 87%

with Criteria#3. A total of 89% of 18S sequences were assigned with the criteria followed for

this DNA region (Table 1).

In vitro validation

COI gene. From the Mock community, 8 of the 9 species added were detected. One of

the added species, the crustacean Caprella andreae, was not detected with any of the criteria

employed. For manual BLAST (Table 2, right) all the sequences obtained from NGS were cor-

rectly assigned to at least the genus level with a 90% identity threshold. Using the 97% identity

threshold (Criteria#1 and #2), Rhithrogena sp. could not be assigned to a species because this

sequence has a maximum of 94% identity with the references available in the NCBI database

(see manual BLAST).

The number of sequences assigned to the reference species in the mock community was not

proportional to the DNA quantity for each species. Even though the same amount of extracted

DNA was added for Rhithrogena sp., Salmo trutta, and Chthamalus stellatus (5 ng), there is an

enormous difference in the number of assigned sequences, with only 28–29 sequences being

assigned to Chthamalus stellatus compared with 26,941–26,464 and 4,002–4,011 sequences

assigned to Rhithrogena sp. and Salmo trutta, respectively. Differences were also found in the
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rest of the species assignations. Even though the same amount of DNA (0.5 ng) was added for

Lepas anatifera, Oncorhynchus mykiss and Austrominius modestus, the number of assigned

sequences was much higher for Lepas anatifera than for the other two species (Table 2). For

Salmo salar and Lepas pectinata species, the number of sequences assigned to the detected spe-

cies were 18–19 and 69, respectively (Table 2). Finally, 0.05 ng of Caprella andreae DNA was

not detected.

Regarding the assignment criteria tested here, only one was able to correctly detect eight

of the species present in the mock community with no false positives, Criteria#4 (E-value of

e10-50 and 97% identity thresholds; Table 2, left). Using an E-value of e10-10, false positives

appeared for 97% (Criteria#1, 47 sequences were incorrectly assigned to the fish Myctophum
lychnobium) and 90% (Criteria#3, 19 sequences wrongly assigned to the arachnid Teutonia
cometes) identity thresholds. Regarding false negatives, the insect Rhitrogena sp. could not be

detected from Criteria#1 or #2 (Table 2, left).

18S gene. For the 18S gene, five species from the DNA added to the mock community

were not assigned (Caprella andreae, Salmo trutta, Oncorhynchus mykiss, Lepas pectinata, and

Austrominius modestus). There were 12 sequences for one nematode species that were wrongly

assigned (Eumonhystera cf. hungarica), and two of the assignments were under low quality cri-

teria (Salmo salar and Chthamalus stellatus). Low quality criteria refers to sequences that were

aligned using the BLAST tool on the NCBI webpage [39] (Manual BLAST). The real added

species (Query) had the same punctuation of assignment (score, identity and coverage) with

various species (best match species) (Table 2), so it was not possible to determine the best

match. For the 18S gene, the number of sequences assigned correctly to the reference species

from the mock community were roughly proportional to the DNA quantity of each species,

but we can only refer to Rhithrogena sp. and Lepas anatifera, as incongruences were not found.

Field validation

The overall taxonomic composition found in the analyzed sampling points was different

depending on the genetic barcode employed (Fig 2).

More taxonomic groups were found with COI barcodes, which detected red algae, diatoms,

and fungi; these organisms remained undetected with the 18S barcode. In decreasing order of

abundance, the more relevant macroinvertebrate groups detected with the COI gene are as fol-

lows: Arthropoda > Cnidaria > Annelida >Mollusca. The order was different for the 18S bar-

code, as follows: Nematoda > Porifera > Arthropoda > Cnidaria (Fig 2). Many terrestrial

species were found in the water from the two metabarcodes (S1 and S2 Tables), such as the

birds Cincla cincla (European dipper) and Passer domesticus (sparrow) and many insects with-

out an aquatic phase (Lepidoptera, etc.) that can be found on the river banks or nearby.

The community composition was different at the different sampling points. For example,

the fungi Ascomycota were much more abundant at the Tanes sampling point for the COI

marker than at the other points, while the abundance of Mollusca DNA was much higher at

Anzó than at the other points (Fig 2 and S1 Table).

Considering only freshwater Metazoans for a more homogenous biota profile when com-

paring the two barcodes and genus richness given the less accurate taxonomic identification of

the 18S barcode, the taxa richness was different at the six sampling points using COI and 18S

as barcodes (Fig 3).

The diversity decreased at one (18S barcode) or more (COI barcode) points within the area

affected by reservoirs, with a minimum at Rioseco and Anzó in the respective datasets. For the

COI marker, the decrease at Anzó was so sharp that this point was significantly different from

the diversity at all the other points, except upstream at Caleao (Table 3).
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For the 18S metabarcode (Table 3, above diagonal), no significant differences were found

for any pairwise comparisons after applying Bonferroni correction (threshold of P = 0.0083

for significance). The point located downstream exhibited the highest diversity in the two

datasets, but this was not significantly different from several points upstream for any

metabarcode.

Fig 2. Taxonomic composition of the community identified from eDNA in the six sampling points considered from the Upper

Nalón river. A: Percentage of sequences for each taxonomic group found per sampling point with the COI gene. B: Percentage of

sequences for each taxonomic group found per sampling point with the 18S gene.

https://doi.org/10.1371/journal.pone.0201741.g002
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Regarding the macroinvertebrate indicators of water quality for the EU WFD, nineteen

families were found by visual observation at the sampling points from the River Nalón basin

(Table 4).

The same or a higher number of families than those detected by visual identification were

found from each sampling point by employing the COI gene as the barcode (Table 4). Using

the 18S gene, fewer families were found than with COI and from conventional sampling.

The consistency between eDNA-based family detection and visual observation was higher for

COI than for the 18S gene (56.25% and 20.59%, respectively). Considering all the sites, the dif-

ferences in the number of positives for each family detected from the three methods were sta-

tistically significant (Chi-square of contingency value of 44.515 for 19 rows and 3 columns,

Fisher’s exact test with P-value = 0.009). The 18S barcode was able to detect only 8 of the 19

families sampled from the river using the conventional methodology, while the COI barcode

Fig 3. Genus richness at the six sampling points analyzed in this study within the Nalón river using COI and 18S metabarcodes. The points are

ordered with downstream on the right.

https://doi.org/10.1371/journal.pone.0201741.g003

Table 3. P-values obtained by permutations for pairwise differences in genus richness between the sampling

points considered in the Nalón river. Significant values after Bonferroni correction are marked in bold.

COI/18S Caleao Upper Nalón Tanes Anzó Rioseco Downstream

Caleao - 0.0173 0.2029 0.032 0.3623 0.0359

Upper Nalón 0.0001 - 1 0.0464 0.4309 0.185

Tanes 0.0001 0.0153 - 0.0506 0.3952 0.2086

Anzó 0.1003 0.0013 0.0003 - 0.0341 0.8509

Rioseco 0.1622 0.185 0.0855 0.0001 - 0.0569

Downstream 0.0127 0.5654 0.5715 0.0001 0.0001 -

https://doi.org/10.1371/journal.pone.0201741.t003
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detected 13 of them. The Chloroperlidae, Elmidae, Lumbricidae, Phylopotamidae, and Sphaer-

iidae families remained undetected by the eDNA methodology (Table 4).

For false negatives, as expected from the previous results, the number of families found

by visual observation at each site that were not detected by the metabarcoding approach was

indeed higher for 18S than for the COI gene. However, the significant difference was only mar-

ginally (p<0.1) significant (Chi-square of 19.927 for 14 rows and 2 columns, Fisher’s exact test

with P = 0.097, Monte Carlo P = 0.072).

CBA results

The metabarcoding approach required less effort for sampling and identification (in time)

than the morphological approach for sampling and sample processing (53 and 250 min,

respectively) (Table 5).

The time estimated for bioinformatics assumes that only one criteria (Criteria#4 as deter-

mined in this study) is used; thus, it includes the time necessary for writing commands and

retrieving the OTU table in the pipeline employed here. The whole price for the metabarcod-

ing analyses was 61.04 euros per sample, which is higher than that estimated for the morpho-

logical approach in the current study. The CBA was calculated considering the number of

minutes employed, the real metabarcoding costs, and the salaries of technicians in Spain.

Table 4. Comparisons between methods. Macroinvertebrate families found by visual observation (visu) and through next-generation sequencing employing the 18S and

COI genes, with Assignment criteria #4 for the latter, at each sampling point (marked with “X”). Proportion of false negatives considering all the sampling sites. Number of

positives: the number of times each family was detected through sampling points with each methodology (COI,18S and visual); employed to calculate Fisher´s exact test.

Caleao Upper Nalón Tanes Anzó Rioseco Downstream

Nalón

Number of

positives

Family visu COI 18S visu COI 18S visu COI 18S visu COI 18S visu COI 18S visu COI 18S visu COI 18S

Baetidae X X X X X X X X X X X X X X X X 5 6 5

Caenidae X X 1 0 1

Chironomidae X X X X X X X X X X X X X X X 3 6 6

Chloroperlidae X X 2 0 0

Elmidae X X 2 0 0

Ephemerellidae X X X X X X X X X X 2 2 6

Heptageniidae X X X X X X X X X X 2 5 3

Hydropsychidae X X X X X X X X 1 5 2

Leptoceridae X X X 2 1 0

Leuctridae X X X X X 2 2 0

Lumbricidae X 1 0 0

Lymnaeidae X X X X 1 1 2

Phylopotamidae X 1 0 0

Planorbidae X X X X X X X 1 4 2

Polycentropodidae X X X X X 2 3 0

Sericostomatidae X X X X 2 2 0

Simuliidae X X X X X X X 1 6 0

Sphaeriidae X 1 0 0

Tipulidae X X X X X X 2 4 0

N 7 10 4 6 10 6 2 5 3 6 7 6 8 9 4 5 6 4 34 47 27

False negatives - 2 3 - 2 3 - 0 2 - 2 2 - 5 5 - 3 4

False negative proportion COI = 29.8%

18S = 70.4%

https://doi.org/10.1371/journal.pone.0201741.t004
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Discussion

Although uses of eDNA-based tools are continuously increasing [21,40–42], the molecular

techniques employed, such as the metabarcoding approach, need to be validated depending on

the research purposes. It is important to consider the choice of platform, barcode, and thresh-

old criteria for bioinformatics analyses before the application of those procedures in real-life

cases. In this study, we tested partial COI and 18S genes, two common barcodes for NGS anal-

ysis [20,43,44], and a combination of different assignation criteria. Here, we have been able to

demonstrate the higher accuracy of the COI gene by employing exigent criteria, such as an E-

value (10−50) and 90% identity. All the species were correctly assigned in the mock community,

and assignment incongruences were not observed (Table 2). Although higher identity is gener-

ally employed for species assignation in normal barcoding using this gene [45,46], it should be

considered that the taxonomic level analyzed for water quality indices is family [9,47], not spe-

cies, and 90% appears to be enough to assign invertebrate sequences to the family level [42].

Using a more restrictive identity threshold (97%), we would lose some information [48], such

as in the case of Rhithrogena sp. from the mock community (Table 2). In the mock community,

the number of sequences assigned to a species was not proportional to the amount of DNA for

that species. This could be explained from primer biases: some primers anneal preferentially to

DNA from some taxonomic groups, a bias that has been reported by different authors [24,25].

In other cases, the lack of assignment could be explained from the few reference sequences

in the current databases. This problem of reference scarcity has been repeatedly reported in

many studies [21,49–51]. Expanding databases with barcodes from different regions, especially

for underrepresented species, should be a priority for enabling the application of metabarcod-

ing methodologies in real life environmental analysis.

The nuclear 18S gene did not provide reliable results in this study, and the reasons may be

varied. After the quality filtering processes, a high proportion of COI sequences were left for

assignation (87.2%; 835,181 sequences), while assignation of the 18S gene was only possible for

44% of the raw sequences (283,229 sequences). Despite the assignation criteria for the 18S

gene being quite permissive (minimum percent identity = 80.0), 5 of the 9 species in the mock

community could not be assigned (false negatives). Two of the nonassigned species, Lepas pec-
tinata and Austrominius modestus, have 2 and 3 18S gene sequences, respectively, in the data-

base; thus, they were probably not assigned because of the lack of reference sequences in the

NCBI database. However, the same explanation does not fit for the lack of assignation for

Salmo trutta and Oncorhynchus mykiss, as 18S gene sequences for these two species are more

abundant in the database (211 and 495 sequences, respectively). Moreover, incongruent assig-

nations were found for Salmo salar and Chthamalus stellatus in the mock community using

the 18S gene (Table 2), with higher identity thresholds for various species. The results derived

Table 5. CBA. Cost estimates for effort and measurements for the metabarcoding and morphological approaches in

Spain, where the study took place. Currency: euros (€).

Effort per sample Metabarcoding Morphological

Sampling in the river (time) 3 min 10 min

DNA extraction (time) 30 min -

DNA extraction products (€) 12.7 -

Individual identification (time) - 240 min

Sequencing cost (€) 40.58 -

Bioinformatics (time) 10 min -

Total time 43 min 250 min

Total cost 61.04 45.12

https://doi.org/10.1371/journal.pone.0201741.t005
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from the mock community showed that the 18S gene is not an appropriate barcode for meta-

barcoding analyses for our purpose. Additionally, the number of taxonomic groups assigned

using the 18S marker was lower than the number assigned with the COI gene. A higher num-

ber of Arthropods were assigned with the COI marker; thus, for our purpose of identifying

benthic macroinvertebrates that are mostly arthropods, the COI gene marker has been shown

to be more appropriate.

The field results supported the choice of the COI fragment as the metabarcode for macroin-

vertebrate assessment, as it had a relatively low proportion of false negatives, at least in com-

parison with 18S (29.8% for the COI gene and 70.4% for the 18S gene).

In contrast, in the field results, though significant differences were not found between the

markers and techniques (molecular or visual), more families were obtained from COI meta-

barcoding than from de visu analysis. Thus, the genetic techniques are generally more sensitive

than conventional sampling [52,53]. It is possible that some invertebrates escaped manual

sampling, especially if they were scarce or very small. Alternatively, it is possible that some

floating DNA molecules were released from macroinvertebrates upstream. Another possibility

that cannot be ruled out is that DNA is being released from carcasses or dead individuals

deposited in the substrate. In any case, the presence of a species’ DNA indicated the species

were or had been present at or near the sampling point.

The taxonomic composition of the sampled river points also contained terrestrial species

(i.e., arachnids belonging to the arthropod group) (S1 Table), confirming the hypothesis that

river eDNA incorporates biodiversity for a larger scale or whole landscapes [17]. However, in

our study, the reservoirs interrupted the expected progressive increase in downstream diversity.

Strong diversity decreases were observed in the zones with reservoirs; these results were more

acute for COI than for the 18S metabarcode dataset. The differences between the two datasets

can be explained by two factors. First, the COI metabarcode detected more genera than the 18S

metabarcode; thus, greater statistical significance was obtained in pairwise comparisons. Sec-

ond, some taxa more represented in the COI dataset, such as Mollusca and Annelida, do not

have terrestrial life stages. Thus, they move into the water and their connectivity is interrupted

by dams, while other taxa, like insects (more represented in the 18S dataset), can fly over the

dam or pass it from the river’s edge in their adult phase. This suggests that the interruption of

river connectivity, which is considered one of the worst ecological effects of dams and reser-

voirs [54–57], will differentially affect aquatic organisms depending on their life history.

From a more practical perspective, CBA estimation suggested that the conventional tech-

nique for macroinvertebrate assessment is costlier than the metabarcoding approach in effort,

but not in monetary terms (metabarcoding approach is 15.92 euros more expensive than the

conventional approach). Similar costs have been suggested by other authors [58,59], and the

technical improvements and wider uses of metabarcoding will likely make the sequencing costs

to go down. The use of an eDNA-based tool would therefore improve the effectivity and effi-

ciency of water body assessment, allowing for the routine evaluation of freshwater ecosystems.

Finally, the results obtained in the present study regarding metabarcodes and taxonomic

assignation criteria will lead the way for using metabarcoding in water samples as an alterna-

tive or complementary method for freshwater quality evaluation. As macroinvertebrates

are most commonly used as bioindicators, standardizing this approach [13] will allow for

increased efficiency and time management [43].

Supporting information

S1 Table. COI OTU Table. Raw data obtained with COI marker clustered in family OTUs

(Operational Taxonomic Units). N_genus: Number of genus per family within sampling
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points. NA: non-asignment at that level.

(XLSX)

S2 Table. 18S OTU Table. Raw data obtained with 18S marker clustered in family OTUs

(Operational Taxonomic Units). N_genus: Number of genus per family within sampling

points. NA: non-asignment at that level.

(XLSX)
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