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Abstract

Real space bonding descriptors are orbital invariant indices that can be obtained indepen-

dently of the theoretical framework used to compute a given wavefunction. Here we show how

to use them to read in real space some widely used concepts in Valence Bond (VB) theory, such

as ionic/covalent characters or covalent-ionic resonance energies. All of these are essential in-

gredients used when building VB chemical insight. Electron number distribution functions are

employed to directly map ionic and covalent weights with real space delocalization indices.

We show that all covalency emerges in position space from the fluctuation of electron popu-

lations or, in other words, from covalent-ionic resonance. The reasons why this is not so in

non-orthogonal VB are examined. A simple ionic character index that maintains the essence

of its VB equivalent is defined and examined in simple model systems. The conclusions of

this work ease travelling among the sometimes conflicting molecular orbital, real space, and

valence bond interpretations in chemical bonding theory.

Historical as well as computational reasons have been put forward over the years to explain

the predominance of molecular orbital (MO)1 theory over the valence bond (VB) approach.2–4

Given that chemical interpretations of quantum mechanical results heavily depend on theoretical
∗To whom correspondence should be addressed

1



frameworks, it is not unexpected that insights on chemical bonding issues may get very different

answers when the MO or VB interpretation toolkits are used. The pervasiveness of MOs does also

explain why MO arguments dominate chemical bonding reasoning. Be that as it may, theoretical

and computational advances in the last decade are changing the scenario, and as VB calculations

become more and more feasible, so do VBish interpretations permeate the literature. An example

of new concepts that emanate from the new VB methods is the charge shift bond (CSB),5 which

has been publicized as a genuine third chemical bond category besides the traditional covalent

and ionic classes. Central to the CSB concept is the covalent-ionic resonance energy, which has

no direct MO counterpart although several tricks can be used to reframe it in the traditional MO

context.1

Another conceptual edifice in chemical bonding theory exists that provides descriptors which

are invariant under orbital transformations. These indices are thus independent on whether MO

or VB are used to construct a given wavefunction. We are referring to the real (or position) space

approaches to the chemical bond, which are collectively gathered under the quantum chemical

topology (QCT) umbrella. In QCT, reduced density matrices (RDMs) are the pillars used to build

chemical insight. Through them, space may be partitioned into regions bearing chemical infor-

mation, like when the quantum theory of atoms in molecules6 (QTAIM) is employed to provide

atomic domains. Once a space partitioning is at hand, an energetic decomposition is also available

through the interacting quantum atoms approach7,8 (IQA), and information about how electrons

distribute themselves in those real space fragments can be recovered through electron number dis-

tribution functions9–11 (EDFs).

A large body of knowledge is now available that relates QCT with the standard MO paradigm.12

QCT provides both local and global bonding indicators. The former include properties at distin-

guished points in space, usually the critical points of a scalar field with chemical meaning, like the

electron density. Global indicators are obtained by integrating operator densities over the spatial

domains, and they include energy components, atomic net charges or delocalization indices, which

are the real space analogues of bond orders. Although some works have been published,13 not
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much is known about the relation between QCT and VB. Here we provide some decoding tips

regarding the concepts of covalent and ionic weights, as well as on the meaning of covalent-ionic

resonance in real space.

To do so we will consider two-center two-electron model systems together with IQA and EDF

concepts which we briefly review. Given a QTAIM partition of space into quantum atoms Ai, R3 =⋃
i Ai, IQA writes the binding energy of a system as sum of intra- and interatomic contributions,

known as deformation and interaction energies, respectively:7,8

Ebind = ∑
A

EA
de f + ∑

A>B
EAB

int . (1)

As atomic deformation energies are generally destabilizing,7,8 chemical bonding is driven by how

two given atoms or fragments interact with each other. The interatomic interaction energy, EAB
int can

be further decomposed into an ionic or classical term, EAB
cl , and a covalent or exchange-correlation

one, EAB
xc : EAB

int = EAB
cl +EAB

xc . We stress at this point that the ionic component EAB
cl is the total

classical electrostatic interaction energy of all the particles contained in region A with those lying

in region B. Except in the case of intermolecular interactions where dipole, quadrupole or further

multipolar terms may provide (weak) stabilizations, Ecl can only lead to strong bonding when there

is substantial net charge transfer between the two regions. It is in this charge-transfer sense that the

term ionic is used in IQA. Since we will be using here this word also to consider the ionic structures

of VB theory, which may or may not be accompanied by net charge transfer, we will take care not to

confuse both meanings. EAB
xc is obtained by computing the interatomic Coulombic energy of pairs

described by the the exchange-correlation density ρxc(rrr1,rrr2) = ρ(rrr1)ρ(rrr2)− ρ2(rrr1,rrr2), which

defines how the pair density ρ2 deviates from the independent product of one-electron densities

ρ(rrr):

EAB
xc =−

∫
A

drrr1

∫
B

drrr2
ρxc(rrr1,rrr2)

r12
. (2)

If in the above expression we exclude the r−1
12 term we get the delocalization index DI(A,B) =

δ AB = 2
∫

A drrr1
∫

B drrr2 ρxc(rrr1,rrr2). The DI is a measure of the extent of inter-domain electron de-
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localization, and may be shown to transform smoothly into the Wiberg-Mayer bond order14 when

a Mulliken instead of a QTAIM condensation is performed. It can also be shown to be simply

the covariance of the electron number probability distribution, δ AB =−2cov(nA,nB), where nA,nB

count the number of electrons in the A,B regions, respectively. This last relation provides a first

link between chemical bonding ideas and the statistics of the electron distribution.

Let us now restrict ourselves to a two-center (domains A and B) closed-shell two-electron bond

for the sake of simplicity. We will specifically consider the H2 and LiH molecules, where in the

last case the Li core electrons are treated as chemically inert. It is clear15 that there are only three

possible spinless distributions of the electrons in the two domains: two electrons in the left (A)

domain and none in the right one, one in A and one in B, or the two in the right (B) domain.

We call them real space resonance structures (RSRSs). Their probabilities will be p(2,0), p(1,1),

and p(0,2), respectively, fulfilling an obvious sum rule p(2,0)+ p(1,1)+ p(0,2) = 1. General

expressions for the probability of a given partition of an N electron system divided in m regions

can be found.9,15 If spin is taken into account, the (1,1) distribution gives rise to two spin-resolved

structures, with probabilities p(↑,↓) and p(↓,↑) and the total number of structures is now four.

Any possible spinless electron distribution can be mapped onto a point in a triangular diagram in

which each corner corresponds to a pure resonance structure with p = 1.15

Spatial resonance structures correspond closely to their VB counterparts. For a two-electron

homodiatomic like H2, the simplest Heitler-London covalent structure is written as

ψcov =
1√

2(1+S2
(φA(1)φB(2)+φB(1)φA(2))

1√
2
(α(1)β (2)−β (1)α(2)) , (3)

where we have simplified the description of electron coordinates, φ is a 1s hydrogenic function,

and S = 〈φA|φB〉 is the standard atomic orbital overlap. Similar expressions can be written down

for the two (equivalent) ionic structures,

ψ
C
ion = φC(1)φC(2)

1√
2
(α(1)β (2)−β (1)α(2)) , (4)
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with C being either A or B. A typical VB wavefunction is constructed by a linear combination of

the above, ψ = λcovψcov + µA
ionψA

ion + µB
ionψB

ion. Standard notation would write ψcov as HA · ·HB,

and ψA
ion as H−A H+

B . In H2, ψcov provides a reasonable description of H2 binding, with De ≈ 96

kcal/mol.5 Mixing the ionic structures in ψ leads to a covalent weight wcov of about 0.76 and a

much better De = 105 kcal/mol, the difference in both energies being nothing but the covalent-

ionic resonance energy. In F2, a prototype of CSB, both ψcov and ψion provide repulsive energy

curves, and only when they are allowed to mix a stable molecule is recovered.5 It is customary to

imagine, and quote, covalent structures as those sharing one electron in each atom, in agreement

with the Lewis pair concept, while ionic terms are thought as those in which one of the electrons

of the pair has been transferred to the other atom.

The equal number of VB and real space resonance structures is obviously not casual. There is

a clear one-to-one correspondence among them, and the VB covalent structure is to be associated

with the (1,1) distribution as well as the VB ionic structures match the (2,0) and (0,2) ones. This

is the starting point of several important conclusions we now detail.

A first relevant insight comes from the relation between the DI or Exc, which is the only stabi-

lizing interaction term in a homodiatomic molecule, and the fluctuation of the electron populations.

There is no bonding without fluctuation. At dissociation, for instance, the probability distribution15

in H2 has obviously only one component, and p(1,1) = 1. Since only one of the three RSRSs is

populated there is no fluctuation at all in the electron populations, and the DI and Exc vanish. The

same can be said if a molecule displays, for instance, p(2,0) = 1 and one electron has been com-

pletely transferred from the right to the left basin. This system may be stabilized by electrostatics,

but both Exc and the covalent DI vanish. There is no covalency without population fluctuations.

Were the p(1,1) probability equal to one in H2 at its equilibrium distance and its covalent energy

would also vanish. For covalency to occur in this molecule we need the ionic structures populated.

This means that the role of the covalent structures in VB has to be reinspected carefully.

How can the covalent VB structure in H2, described by ψcov, lead to such a good description of

the molecule in the light of the above insights? The answer is disappointingly simple. Fig. Figure 1
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Figure 1: Isolines of the total electron density (red) in H2 at the CAS[2,2]//6-311++G* theoretical
geometry on one of the planes containing the nuclei. Isocurves of the left φ 2

A and right φ 2
B densities

are also shown in blue and green, respectively. The two real space atomic domains are separated
by the perpendicular midplane intersecting the internuclear axis, and the position of the nuclei is
pointed out with crosses.

shows how deeply the two H atomic densities interpenetrate each other (S ≈ 0.68). This means

that, in real space, even ψcov shows very large p(2,0) and p(0,2) probabilities, i.e. the VB covalent

structure includes effectively ionic contributions, exactly those that cause a non-vanishing fluctu-

ation of the electron population. How large this effect is depends of S, the atomic overlap. This

returns us to the no-bonding without overlap motto that summarizes the know-how of chemical

bonding in Fock space. Our analysis permits to disentangle the actual role of overlap. A similar

conclusion about the role of p(2,0) and p(0,2) may be reached by using orthogonal flavors of

VB.2 In these VB implementations, any covalent structure effectively includes all the ionic ones.

Table 1: Probabilities and DIs of the spin-resolved resonance structures associated to the ideal VB
and HF models of a homonuclear two-center two-electron bond

State p(↑,↓) p(↓,↑) p(↑↓,0) p(0,↓↑) DIσσ DIσσ ′ DI p(0,2)+ p(2,0)
VB Covalent 1/2 1/2 0 0 1 -1 0 0.0
HF 1/4 1/4 1/4 1/4 1 0 1 0.5
VB Ionic 0 0 1/2 1/2 1 1 2 1.0

6



A second conclusion we want to point out is that in real space all covalent bonding comes from

the covalent-ionic resonance. Since any system in which only one resonant structure is populated

(with p = 1) has no covalent energy component, it is actually the resonance among several of the

structures that provides covalency. Usually the population of the (1,1) term is non-zero, but it is

in principle possible that pure ionic resonance, in which only the (2,0) and (0,2) structures fluctu-

ate/resonate, may stabilize a system alone. All this has important consequences on the possibility

to define the CSB in an orbital invariant manner, but we will defer this investigation which will be

offered in a subsequent publication.

We now turn to propose a quantification of VBish concepts, like covalent and ionic weights,

together with their role in determining bond orders or covalent energies from QCT descriptors.

Table Table 1 contains the probabilities of the spin-resolved resonance structures associated to

ideal models, in which electrons are associated to atomic domains with probabilities according

to the chemical image of each of the models. The Hartree-Fock row is easy to write down.15

In a HF two-electron system opposite spin electrons are statistically independent so they delo-

calize freely giving rise to identical probabilities for the four possible spin-spatial distributions.

It should be taken into account that any two-electron density or descriptor can be spin-resolved

into same spin (Fermi) and opposite spin (Coulomb) contributions. For instance, the DI can

be obtained as DI = DIσσ + DIσ ,σ ′ , where DIσσ = DIαα + DIββ and DIσ ,σ ′ = DIαβ + DIβα .

Similarly, we can calculate these DI components by computing spin-resolved covariances, as in

DIσσ =−2
(

cov(n↑A,n
↑
B),+cov(n↓A,n

↓
B)
)

The models of Table Table 1 allow for a straightforward

statistical calculation of all the DI components without any explicit quantum mechanical compu-

tation. These are also contained in the Table. As it can be seen, independently of the model,

DIσσ = 1. This is actually so for any theoretical model of a 2c-2e homosystem that provides a

probability 1/2 of finding the alpha (or the beta) electron in each center. Since this is guaranteed

by the singlet nature of the state under scrutiny, i.e. by spin entanglement, we can also consider

DIσσ as measuring spin entanglement, or as effectively counting the number of spin coupled pairs.

This is the reason why this index has been advocated as a better bond order descriptor than the DI
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itself.16 We show here that DIσσ does not reflecting bonding, but spin entanglement. Notice that

each of the alpha or beta subcomponents of DIσσ determines how the electron spin delocalizes

over the centers independently of the other. The Coulomb component describes the statistical cor-

relation of opposite spin electrons. In the VB covalent model that corresponds to H2 at dissociation

the alpha-beta pair is negatively correlated. If an alpha electron is in one center, its beta compan-

ion is in the other, and viceversa. Since there are no spin terms in the Coulomb Hamiltonian, the

energy does only feel true spatial (not spin) delocalization, so that the spinless DI vanishes in the

VB covalent state. In the HF approximation the effective electron correlation vanishes, and in the

VB ionic model the correlation is positive. One alpha electron in one center implies that the beta

one is also in that center. A direct way to check that DIσσ = 1 is to recognize that ρ2 has only

σσ ′ components in a two electron system, so that the same spin component comes only from the

integration of the Coulomb part of the exchange correlation density, ρσσ
xc (1,2) = ρ(1)ρ(2)/2. In-

tegrating this expression leads to DIσσ = NANB, where NA is the average electron population of

center A. In the homonuclear case NA = NB = 1, independently of the internuclear distance or the

level of theory.

A real space descriptor measuring the contribution of the VBish ionic terms in a given wave-

function is now easy to construct. A look to Table Table 1 shows that the i = p(0,2)+ p(2,0),

the direct percentage of real space ionic contributions, behaves as desired, being zero for the VB

covalent state, 50% in the HF state, and 100% in the purely ionic resonance. This index is clearly

sensed by the DI. In the general heteroatomic case one can easily show that

i = 1−NANB +
δ AB

2
= 1− 1

2

(
δ

AB,σσ −δ
AB,σσ ′

)
. (5)

Of course, a covalent contribution c = 1− i appears also from this definition. Notice that in the

homoatomic case i = δ AB/2. For instance, it is well known that the change of the delocalization

index in H2 is sigmoidal with the H-H distance,17 so this is also the way in which i changes.

Fig. Figure 2 shows the evolution of i with internuclear distance in H2. At equilibrium the ionic
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Figure 2: Ionic index i for H2 computed at the FCI/cc-pVTZ level as the H-H distance increases.
The equilibrium distance is marked by a vertical line.

contribution for the full CI wavefunction is close, but smaller than the HF 50% value. If we com-

pare this with the aforementioned measure of the covalent weight in a typical VB calculation we

can now understand why our ionic weight is considerably higher and much closer to the canonical

HF percentage. As commented, even the covalent VB structure hides much ionic delocalization

due to the large atomic orbital overlap. This is completely decoupled in the real space i. Since

symmetry imposes the p(2,0) and p(0,2) weights to be equal, they can also be obtained from the

Figure.

Fig. Figure 3 contains the same type of data for LiH. As it can be seen, i is very large at

equilibrium, close to 0.9. Contrarily to H2, i is now completelly dominated by only one of the two

p(2,0) and p(0,2) components, the one transferring electrons from the Li atom to the H moiety.

As we noticed years ago,18 this is an electron charge transfer process, so that i closely follows

the curve of the net charge of the Li atom, Q(Li). LiH is an interesting system from the VB

perspective. A modern non-orthogonal VB calculation performed with the XMVB code19,20 that

includes the covalent and ionic structures with the 6-311++G** basis set, being thus equivalent to

the CAS calculation in the Figure, provides weights equal to 0.88,0.15,−0.03 for the covalent and

two ionic structures, respectively. This has been used as a demonstration of the highly covalent
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Figure 3: Ionic index i for LiH (red curve) computed at the CAS[2,2]/6-311++G** level. the
p(2,0) component (left is the H basin) in blue plus the net charge in Li (in a.u., magenta) are also
shown. The equilibrium distance is marked by a vertical line.

nature of the system. In the light of our results, this striking difference is now easy to rationalize.

Given the very diffuse character of the 2s orbital of Li, in the covalent VB structure this function

invades a large part of the H atom. Once again, the covalent structure hides a considerable amount

of ionic components. In fact, the overlap between the final VB 1sH and 2sLi orbitals is −0.69. In

other words, the VB ionic character in LiH depends on the chosen neutral reference (with largely

overlapping Li and H atoms), and would be completely different if ionic references were selected.

Orbital invariant descriptors lack this problem, and reveal the nature of the discrepancies between

MO and VB interpretations.

Summarizing, we have shown how to read several Valence Bond concepts, like the ionic/covalent

character or the covalent-ionic resonance energy from real space chemical bonding descriptors.

Electron number distribution functions provide a direct link between VB structures and real space

one. Through the relation between EDFs and delocalization indices in simple cases, a straight-

forward to obtain ionic index has been defined that keeps the physical content of the VB ionic

weights. We have also stressed that in real space there is no covalency without fluctuation of the

atomic electron populations. In this sense, all covalency emanates from covalent-ionic resonance.

This is not so in non-orthogonal VB conventional wisdom because standard covalent structures do
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hide considerable amounts of ionic fluctuation (delocalization). We have shown how this affects

VB interpretations in the H2 and LiH molecules. The large ionic content of the covalent structure

in the latter explains why from a VB point of view LiH is generally considered a covalent molecule.

We expect that these insights may help fill the gap between MO, real space, and VB interpretations

in chemistry.

We thank the Spanish MINECO, grant CTQ2015-65790-P, the FICyT, grant GRUPIN14-049,

and the European Union FEDER for funding.

References

(1) Gimarc, B. M. Molecular structure and bonding. The qualitative molecular orbital approach;

Academic Press: New York, 1979.

(2) Cooper, D. L. Valence Bond Theory; Theoretical and Computational Chemistry; Elsevier

Science, 2002.

(3) Gallup, G. A. Valence Bond Methods; Cambridge: New York, 2003.

(4) Shaik, S.; Hiberty, P. A chemist’s guide to valence bond theory; John Wiley & Sons. Hoboken,

N.J., 2008.

(5) Shaik, S.; Danovich, D.; Wu, W.; Hiberty, P. C. Nat. Chem. 2009, 1, 443–449.

(6) Bader, R. F. W. Atoms in Molecules; Oxford University Press: Oxford, 1990.

(7) Blanco, M. A.; Martín Pendás, A.; Francisco, E. J. Chem. Theory Comput. 2005, 1, 1096.

(8) Francisco, E.; Martín Pendás, A.; Blanco, M. A. J. Chem. Theory Comput. 2006, 2, 90.

(9) Francisco, E.; Martín Pendás, A.; Blanco, M. A. J. Chem. Phys. 2007, 126, 094102.

(10) Francisco, E.; Martín Pendás, A.; Blanco, M. A. Comp. Phys. Commun. 2008, 178, 621.

(11) Martín Pendás, A.; Francisco, E.; Blanco, M. A. J. Chem. Phys. 2007, 127, 144103.

11



(12) Matta, C. F., Boyd„ Eds. The Quantum Theory of Atoms in Molecules: From Solid State to

DNA and Drug Design; Wiley-VC, 2007.

(13) Zhang, L.; Ying, F.; Wu, W.; Hiberty, P. C.; Shaik, S. Chem. Eur. J. 2009, 15, 2979.

(14) Wiberg, K. B. Tetrahedron 1968, 24, 1083.

(15) Martín Pendás, A.; Francisco, E.; Blanco, M. A. Phys. Chem. Chem. Phys. 2007, 9, 1087.

(16) Mayer, I. Bond Orders and Energy Components: Extracting Chemical Information from

Molecular Wave Functions; CRC Press: Boca Raton, FL, 2016.

(17) García-Revilla, M.; Francisco, E.; Popelier, P. L. A.; Martín Pendás, A. ChemPhysChem

2013, 14, 1211.

(18) Martín Pendás, A.; Francisco, E.; Blanco, M. A. Faraday Discuss. 2007, 135, 423.

(19) Song, L.; Chen, Z.; Song, J.; Chen, .; Su, P.; Mo, Y.; Zhang, Q.; Wu, W.

(20) Song, L.; Mo, Y.; Zhang, Q.; Wu, W. J. Comput. Chem. 2005, 64, 514.

12


