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Abstract

This paper describes an approach to compute the maximum value of energy storage systems (ESS) in
grid applications under uncertain energy prices. The value obtained is based on an optimal operation
(consisting of charge/discharge sequences) of the ESS. In other words, it is the maximum value that may
be obtained when the ESS charge/discharge sequence is adapted to the expected operational conditions.

To obtain that optimal value, this paper describes a dynamic program approach, with the particularity
that the switching decisions are optimized considering an uncertain price evolution and a dynamic calcu-
lation of the aging cost. A practical implementation of this approach is proposed, in which the problem
is conveniently sliced into matrices corresponding to single decisions. It is shown that such an arrange-
ment, combined with shift and re-indexing operators, provides a fast solution to the optimization problem
consisting of a huge number of decision evaluations. The algorithm is then applied to a number of Euro-
pean electricity markets, with a particular focus on arbitrage. The particularities of the algorithm solutions
are analyzed, and it is shown that not considering the imperfect foresight and the aging impacts leads to
considerable errors in valuing an ESS.
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1. Introduction

1.1. Motivation

In developing a perspective on the viability of energy storage systems (ESS) in grid applications, it is

necessary to calculate a figure of their cost. In this line, Lazard has recently introduced the concept of

levelized cost of storage (LCoS) in an attempt to assimilate ESS to other generation technologies that have

been conventionally valued by means of the well-known levelized cost of energy (LCoE). At the time of

writing this paper, Lazard has published its second report on LCoS, where it articulates a cost framework

with similar implications to those of the LCoE [1]. The interpretation of the LCoS is as simple as for LCoE:

it is the cost of generating one kWh. However, it is particularly stressed in Lazard’s report that the LCoS is
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not as straightforwardly calculated as the LCoE, because it depends on one or several “revenue streams,”

such as frequency regulation, demand response, arbitrage, etc.

Different operating (charge/discharge) policies responding to those revenue streams lead to notably

different economic values [1, 2]. The charge/discharge pattern affects the operating expenses included in

the ESS value by affecting (i) the cost associated to the purchase of energy from the grid, instead of the cost

of purchasing primary energy or fuel [3], (ii) the opportunity cost incurred by not selling generated energy

in case that the ESS is associated to a distributed generator [4], and (iii) the replacement costs because of the

different aging caused to the ESS through is activation. It also affects the revenues, because differently from

generation technologies, in grid-connected ESS positive and negative cash-flow terms cannot generally

occur at the same time.

Lazard’s calculations rely on the classical components of the LCoE: CAPEX, OPEX, and incomes. But

apparently Lazard’s report does not include the cost of aging derived from different charge/discharge pat-

terns into its calculations; though that cost would directly modify the CAPEX over the calculation period by

means of the replacement cost. This omission is in striking conflict with the fact that the ESS life cycle can be

appreciably altered by the way in which it operates. In energy arbitrage in spot markets, the ESS must fol-

low an uncertain electricity price evolution [5]. In supporting distributed generation, the ESS additionally

follows the stochastic evolution of generation and load [6]. Ultimately it is the grid application—the rev-

enue stream—that defines the ESS idle times and cycling pattern, hence ultimately altering the value of the

CAPEX. However, the aging issue is notably left out of many comparative economic analysis [7, 8, 9, 10].

1.2. Literature review

Aging of a battery ESS (BESS) can be defined as the modification of its properties—essentially the avail-

able energy and power, and the mechanical integrity of cells—with time and use. Two types of aging

mechanisms are usually differentiated: during use (on cycling) and on storage (idle). Cycling generally

damages the reversibility of materials, whereas storage aging, due to the interactions between active mate-

rials and the electrolyte, depends mostly on time and temperature. Storing aging determines the “calendar

life” of the cell. Both mechanisms are usually considered as additive, but they can also interact between

them [11]. Particularly the cycle-life of batteries, of chief interest in the generation of revenue streams, is

affected by the depth of discharge (DoD) and the state of charge (SoC), as well as the operating tempera-

ture and the BESS chemistry. For instance, the anodes of Li-ion batteries undergo mechanical strain during

cycling at high C-rate and high SoC. This is due to the insertion and de-insertion of the lithium ions, which

produces cracks and fissures, and splits the graphite particles, making them less oriented compared to the

original platelets. Eventually, it is the nature and orientation of the graphite particles that influences the

reversibility of the anode [12]. Also it has been found that overcharging in long-term cycling induces a

cumulative damage on LiCoO2 cathodes in rechargeable lithium batteries, producing severe strain, high

defect densities, and occasional fracture of particles [13]. Cation disorder, microcracks of the LiCoO2, parti-

cles in the cathode, and the increase in thickness of the passive film on the anode due to the reduction of the

electrolyte have been linked to the capacity fade of the battery during cycling as well [14]. When the DoD

is increased during cycling, also positive active mass degradation quickens [15] and provokes a non-linear

2



loss of lithium mass [16]. On the whole, cycle aging as a function of the battery operating characteristics is

a complex mechanism.

Notably, these electrochemical mechanisms are of difficult implementation in an algorithm devoted to

finding the BESS value in grid applications. Necessarily these degradation mechanisms must be translated

into mathematical models for efficient integration into an optimization program. Those models must cal-

culate the inflicted damage as a function of the exogenous variables that drive the ESS in its interaction

with the electrical system. The alternatives in the literature differ amply in their complexity. In some cases,

the figure of degradation is directly approximated as a percentage of the annual use of ESS, regardless of

the cycle information [17]. On the opposite side, proposals such as [18] are comprehensive, though remark-

ably too complex to be applied in economic optimization programs. Other models are simpler, such as [19]

for lead-acid batteries, which estimates the capacity degradation of the ESS following a current through-

put profile. Wang and colleague’s model is still much simpler, opting for a multiparametric exponential

formulations that can be regressed against laboratory data [16]. However, it must be stressed that these

models still appear to be too focused on the BESS maximum capacity reduction. In applied cost analysis

it is actually an “approximate” figure of cost that is needed to evaluate the optimality of a decision. In

this respect, Xu et al. proposed a formulation also based on stress factors as in [19]. But alternatively in

their model, the degradation of a Li-ion battery is a function of the DoD and the average state of charge

following a load profile [20]. In some sense, the approach is altogether similar to that in [19], but it concen-

trates on the exogenous aspects of the BESS operation, producing a simpler model that can be calibrated

from degradation test data, as provided by the BESS manufacturer. Moreover, their model decomposes the

degradation into a sum of stress factors (again as in [19]), which allows separate analysis of calendar and

cycling degradation.

The above considerations about aging would allow incorporating the variable replacement cost into the

computation of a BESS value. Indeed, some models in the line of Xu and colleagues’ only require cycle in-

formation (number of cycles, DoD, and/or SoC) to produce an estimate of the BESS damage [20]. They are

remarkably simpler to implement. For instance, the model in [20] has been used in [21] to calculate the eco-

nomic value of exchanging energy using a Li-ion battery, by means of Matlab/Simulink simulations. But in

the field of optimization—regarding the valuation of the BESS based on an optimal operation under elec-

tricity prices—only recently some authors have incorporated the cost of aging; revealing a more involved

problem. A relevant and complete example was provided in [22]. In a regulation market framework, the

authors considered that the cost of cycling at different depths of discharge (DoD) can be prorated and in-

cluded into a constrained optimization program. The process needs to be simplified, nevertheless, because

each time that the optimization program works out a prospective non-optimal solution, the aging value

has to be re-assessed by means of new iterations. So the authors resorted to an equivalent cycling count

to reduce the computational burden. A similar example, in which BESS was employed to avoid imbalance

costs, can be found in [23]. In [24, 25], again the cost derived from aging was calculated ex-post, as a func-

tion of daily operation. That is, ex-post calculation of aging seems a requisite of constrained optimization

programs.

Incorporating aging into an optimization program is further complicated if the stochasticity of the state
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variables is considered. Most of the times, unique historical time series have been employed (instances are

[26, 4, 27, 28]), or single realizations of time-of-use tariffs [29]. However, this procedure entails that there is

a perfect knowledge about the evolution of electricity price; which is a particularly inaccurate assumption

in spot electricity markets. In other cases where the uncertainty in parameters and price are explicitly

incorporated in the optimization procedure, the aging is not considered in turn [30]. Some exceptions

are [25], employing Monte Carlo samples to recurrently run an optimization routine with ex-post aging

calculation; [31, 32] using a constrained optimization program where energy demand is randomly obtained

and aging is computed through BESS total energy throughput; [33] proposing a dynamic program that

incorporates calendar aging in a multiobjective function, where the uncertainty in loads is accounted for

by using two representative days; and [34] where a stochastic dynamic program is, solved iteratively to

account for uncertainty.

1.3. Aim and contributions

Our approach to incorporating stochasticity and aging into the valuation problem is different to the

approaches based on constrained optimization problems. This paper proposes using a stochastic dy-

namic program approach to calculate the value of grid-connected ESS, operating under uncertain electricity

prices.

Approached in this way, the problem can be sequentially solved as a set of subproblems. It does not

require specialized optimization libraries, because it is entirely based on matrix operations. The decision

of charging/discharging is made at each time step by observing (i) the expected payoff from switching and

(ii) the aging cost derived from the decision.

Our approach is close to that in [34]. But particularly this paper introduces two distinctive contributions:

� First, we considered the stochasticity of prices by conditioning the charge/discharge decisions on the

regressed value of the state variable (the price). This negates assuming a perfect foresight of electricity

price at the time of the decision, as explained in [35, 36]. Particularly, each charge/discharge decision

is made observing ex-ante modeled uncertainty.

� We also integrated the computation of aging dynamically. Whereas in [34] the authors employed

a history of decisions to obtain the cycle information (ex-post assessment) we integrated the aging

calculation at the time of the decision, by using a recursive cycle count based on the approach in [37].

In other words, the degradation induced by a charge/discharge decision is taken into account at the

time of valuing the decision (again, ex-ante assessment).

A second approach related to this paper can be found in [38], where the authors provided an interesting

comparison of several BESS technologies, based specifically on aging estimates. Particularly, Ciez et al. pro-

vided a detailed procedure on the valuation of BESS under optimal operation. Our paper also approaches

the economic value of BESS under optimal operation but, differently, it details a penalization system of

the ESS cycling, depending on the cycling characteristics. This is different to the proposal in [38], which is

based on the number of cycles.
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Table 1: Summary of citations

Aging models Optimization programs Economic valuation Programming details
[17], [18], [19], [16],
[42], [43], [20], [41],
[44]

[43], [25], [24], [26], [4],
[27], [28], [30], [33], [34],
[22]

[39], [40], [7], [8], [21],
[22], [23], [24], [25],
[38], [9], [10]

[35], [36], [37], [45], [46],
[47], [48], [49]

Another two recent papers dealing with the same problem—the valuation of ESS employed in energy

arbitrage considering cycle aging—are [39, 40]. Our paper shows a different approach again because we

integrated Musallam’s model to categorize the damage caused by different switching policies rather than

using the number of yearly cycles [40] or the transferred energy [39].This integration is made seamlessly in

the dynamic program.

In addition, other contributions of this paper are:

� The approach is based on simple rules to evaluate the optimality of a decision. The different payoff

terms are considered additive and can be reformulated easily. In this sense, adaptation to the dif-

ferent revenue streams is simple. We employed an arbitrage setting to illustrate our approach in this

paper—the payoff is the product of the charging/discharging decision times the electricity price—but

because the market operation payoff is separated from aging, it can be readily reformulated as any

other function of the state variable. Also, the separated aging payoff can be reformulated by using a

number of degradation functions based on damage by cycling at high SoC as in [41] or other models

based on cycling or calendar aging [20].

� Finally, this paper proposes a solution to the management of the huge amount of decision evaluations

that must be conducted at each time step. It is based on a re-ordering procedure conditional on the

decision indices. In our approach the decisions are classified by types and evaluated in indexed

blocks. This provides a structured and fast way of obtaining the solution.

1.4. Document organization

Section 2 details the theoretical background behind the two main component blocks: the stochastic

dynamic program and the aging payoff dynamic calculation. Next, Section 3 proposes a practical imple-

mentation through an algorithm based on slicing the problem into matrices that evaluate single decisions.

In Section 4, the validity of the algorithm results are discussed, and the practical implications resulting from

considering (i) the stochasticity of the problem and (ii) the aging of the ESS through cycling are discussed.

We particularly employed an analysis of energy arbitrage in several European electricity markets. Finally,

Section 5 summarizes the conclusions.

A summary of citations, split according to the use we have made of them in the paper, is shown in Table

1.

2. Methodology

This section describes the employed methodology. A summary is represented in the chart in
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Figure 1: Procedure to compute the optimal operation of the ESS.
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2.1. Operation without ESS aging

The problem of computing the economic value of a BESS influenced by exogenous inputs such as elec-

tricity price, load demand or power generation, requires defining its optimal operating sequence. The

reason is that the optimal operation sequence will produce the best cost-benefit result.

We propose here a dynamic programming approach. It requires the discretization of the problem to

obtain a dynamic step-by-step and level-by-level evaluation of payoffs and, by extension, to a definition

of the optimal operating policy. The discretization drastically reduces the number of decision variables,

naturally concentrating on obtaining the optimal decision at each step, employing a sort of memory to

keep track of the influence of results derived in previous steps.

Let IL = {1, . . . , L} be the discretization of the ESS capacity into L levels, and dt = (t, ∆`t) a decision at

time t to reach a level `t ∈ IL from the current SoC. The decision is made under the uncertain evolution of

a state variable Xt (market price, power generation,...), which can be defined by means of K samples. Asso-

ciated to that decision is a payoff function Π(Xt, t, `t, dt), which accounts for the profit made by observing

Xt and changing the level `t.

The process of driving the ESS SoC from an initial value `τ1 at time τ1 to a final value `τN can be summa-

rized by a decision vector d = (τn, `n)n=1,...,N . The goal of the optimization program is to define an optimal

operation sequence d∗ that maximizes the total profit

J(Xτ1 , τ1, u) = E

[
τN

∑
t=τ1

Π(Xt, t, `t, dt) + ζ(XτN , τN , `τN )|Ft

]
, (1)

where ζ(XτN , τN , `τN ) is the residual value at the end of the ESS operation trajectory, and the operator

E[·|Ft] is the expectation conditional on the flirtation Ft. In other words, E[·|Ft] it is the expectation

conditional on all the available information until time t [45, §5.1], which is but an estimate of the realization

of the payoff based on that information. This conditioning, thoroughly explained in [35], is what makes it

possible to avoid the perfect foresight of the payoff evolution in the stochastic framework.

To find the optimal value, a dynamic program splits the problem into subproblems. Rather than finding

the optimal sequence d∗ of dimension N that maximizes (1) by “testing” different values of d, it divides

the problem into N decision problems. At each of these steps, it finds the optimal value

V(Xt, t, ∆t, `t) = arg max
dt

{E [Π(Xt, t, `t, dt) + ζ(Xt+∆t, t + ∆t, `t+∆t)|Ft]} . (2)

arising from an optimal decision d∗t . That is, it operates by analyzing what is the optimal decision in each

interval [t, t + ∆t].

The ESS valuation problem has a distinct feature. Optimal values cannot be obtained independently in

each [t, t + ∆t]. A decision taken at step t necessarily affects the decision at t + 1. For instance, completely

discharging the ESS at step t makes it impossible to allow for further discharging at t + 1. Bellman’s

principle of optimality provides a way of solving this problem by stating that an optimal policy has the

property that whatever the initial state and initial decision are, the remaining decisions must constitute an

optimal policy with regard to the state resulting from the first decision [46, Ch. 3]. This means that the

problem can be started at the ending step τN and be solved backwards, with the functional ζ(·) accounting
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Figure 2: Sample of two operation sequences.

for the optimal decisions ahead. This functional will be the continuation value, which will progressively

accumulate the optimal values obtained previously in the steps ahead. Bellman’s principle ensures that in

this way the obtained policy will be optimal.

2.2. Incorporating ESS aging

The value of Π(Xt, t, `t, dt) in (2) represents the immediate payoff obtained from exercising a decision dt

at time t from a SoC level `t, after a state realization Xt is obtained. It must incorporate the incomes (energy

sale, for instance) and costs (energy purchase) deriving from the decision. But we claim in this paper that it

also has to incorporate the prorated cost of replacement arising from the aging of the ESS. Next, we discuss

a possible way of dynamically incorporating the cost of cycling aging. For simplicity, we do not include

calendar aging, mindful that it would be easy to incorporate by valuing the ESS idle times.

Most of the previous works on valuing the degradation of ESS by counting the number of switching

cycles can be related to the procedure summarized in [44]. This is a standard procedure that makes use

of the information provided by a complete time series to find the number of cycles and half-cycles. It

servers well to the purpose of counting cycles ex-post, when the entire operation series is available. But

the limitation to apply this procedure to our approach is immediately evident, however, precisely because

it requires the complete time series. But by contrast, our DP approach builds the SoC series backwards

progressively as it selects the optimal decisions, which in turn depend on the cycle counting.

Musallam and Johnson proposed in [37] a dynamic alternative, different to the “static” procedure de-

scribed in [44]. Their approach consists of progressively counting and canceling out cycles and half-cycles

as new points are supplied to a rolling time series. To that end, they introduce two memory stacks in which

the maximum and minimum values of the time series are dynamically stored and updated. Their paper

gives a detailed example of application, with which the rules for cycle counting can be readily understood.

In what follows, we build on that algorithm to propose a backwards-counting version that accounts for the

calculation of the number of cycles and their depth, using also the same memory stack idea that allowed

the dynamical counting in [37].
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To provide a simplified explanation about how Musallam and Johnson’s paper translates into our ap-

proach, we shall use in what follows the schematic shown in Fig. 2. It represents two possible decisions

that are evaluated at step 1. We assume that the two continuation paths, A and B, have been already com-

puted (the algorithm proceeds backwards) from step 2 onwards, and of course they are optimal. Both paths

might have merged in the future, but never crossed because of Bellman’s principle. We also assume that

the memory stack of maxima for path A stores the maxima uA (the latest that has been recorded proceeding

backwards) and u′A. The stack for minima stores vA. The same would be of application to path B. That is,

each optimal path would have two memory stacks.

A memory stack may be used to split the decision space into four intervals. In the case of path A,

its information defines the decision space as [0, vA) ∪ [vA, uA) ∪ uA ∪ (uA, u′A] ∪ (u′A, L], where L is the

maximum SoC level. By doing this, we can propose the following counting rules:

a. If `1 = uA, where `1 is the level investigated at step 1 (denoted by a square in Fig. 2), then it means

that the decision investigated is to remain idle. Neither the cycle count nor the memory stacks would

be modified.

b. If `1 ∈ (vA, uA], the investigated decision at step 1 is a charge. (Note importantly that the action is

reversed from what would be a forward calculation like in [37].) However, it is not a change in the SoC

level large enough to trigger a count calculation. But being a variation in sign with respect to the next

decision (discharge), it must modify the memory stack of minima.

c. If `1 ∈ (0, vA], the change would be significant. This is particularly the case represented by path A in

Fig. 2. Translating the procedure in [37], it means that the cycle count must be updated. Looking into

the future, from `1’s perspective, a successive maximum uA would occur, followed by a minimum vA;

and possibly another maximum u′A. So, reverting the procedure by Musallam and Johnson, this case

means that a charge decision is investigated, with sufficient magnitude so as to amount to a half-cycle of

height uA − vA. Alternatively, as it is the case represented in Fig. 2, the existence of u′A indicates that the

decision investigated constitutes a full-cycle of the same height. In both cases, the minimum vA must

be removed from its stack, which would be updated with `1. In the second case, where u′A exists, the

maximum uA must be similarly removed from its stack.

d. If `1 ∈ (uA, u′A] the decision that is investigated from `1 is a future discharge. According to [37], and

again reverting the reasoning, the change is not significant. It is similar to the case in which `1 ∈
(vA, uA], but in this case the updating of the maximum stack amounts to substituting `1 with uA.

e. Finally, if `1 ∈ (u′A, L], a half-cycle of depth u′A − vA must be declared, with `1 subsequently replacing

u′A.

The above procedure systematically adapts the forward, one-path dynamic counting methodology in

[37] to deal with the backward, multi-path framework addressed in this paper. When a SoC level is inves-

tigated to see how possible decisions will result in different cycle counts, it suffices to examine the content

of the two stacks of each level and determine which is the interval in which they fit best. Thus for instance

in Fig. 2, the decision to increase the level from `1 to uA would be case c. The decision to charge the ESS

up to level uB would be case b. Note that only the two last values of both stacks, which importantly are
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Figure 3: Relationship between maximum estimate of cycles to failure and DoD [20].

LIFO lists, are needed. With longer stacks, further delving into the future decisions makes it necessary to

evaluate recursively their contents, as in [37]. But the classification proposed above would still hold. The

DoD corresponding to each cycle or half-cycle event would be computed as the minimum level occurring

in that event.

At each step, this dynamic rainflow counting method yields the number of cycles and half-cycles, along

with the additional information regarding their depth and amplitude, ahead of each decision. This infor-

mation must be translated into a figure of cost. The procedure is straightforward. We use the relationship

between DoD and expected maximum cycle number represented in Fig. 3 [20]:

cF(DoD) = (1.40×DoD−0.501 − 1.23)× 105. (3)

By application of Palmgren-Miner’s rule (see for instance [47, 48]), the equivalent total damage or spent

life can be obtained as the sum of damage at each DoD as a fraction of the total life estimated by the

manufacturer. This damage is but a reduction of the lifetime of the BESS. So the cost of following a decision

can be calculated as a portion of the CAPEX given by that number of consumed cycles:

pa =

(
L

∑
DoD=0

c(DoD)

cF(DoD)

)
×CAPEX, (4)

where c(DoD) is the equivalent number of cycles obtained by the rainflow count at a given DoD.

3. Practical implementation

Essentially, the practical implementation must provide a means to assess the payoff of any possible

decision at a given step by observing a given state (for instance, price) realization. The payoff is indeed a

combination of the instant payoff from exercising a decision and the uncertain future payoff from continu-

ing at the decided new level. Moreover, the instant payoff from exercising a decision is also a combination

of income and aging cost.

In what follows, we propose a program that combines these payoff calculations by means of simple

matrix operations. The program uses payoff matrices at time step t that store the payoff from a decision
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taken after a given price realization (matrix row) at a given starting SoC level (matrix column). There will be

one payoff matrix for each possible charge/discharge decision and, eventually, it will suffice to compare all

these matrices to obtain the optimal decision. Each of these payoff matrices will additionally be calculated

as the summation of instant payoffs (aging and charge/discharge) and the expected continuation payoff,

which will be obtained from a regression of the optimized payoff in the previous step t + 1. Key to all these

operations will be the pre-conditioning of matrices by re-indexing them using a distinctive decision code.

3.1. Main dynamic program

The algorithm must operate in a three-dimensional framework, where the time path of a stochastic

variable—mostly a price signal—and the SoC of the ESS dictate the decisions to follow to reach optimality.

That space can be discretized into N time steps, K realizations of the price, and L levels of SoC; so that

each “cell” of the (K × N × L)-order array will represent a unique SoC, which observes a price realization

in a given instant. It is in that setting that the complexity of the practical implementation arises from the

problem formulation: How, for each and every cell of that three-dimensional array, is it decided which

decision to make (charge, discharge, or stand by), if optimality depends on the SoC at the time of deciding?

Moreover: How can it be assessed the aging cost at each and every of those cells, when this also depends

on the evolution of the SoC (which turns out to depend on the decisions taken)?

To simplify this problem, we followed an approach based on operating at each time step with a kind of

step-ahead memory, either for the optimality of the decisions ahead in the Bellman’s sense or for the accu-

mulation of aging through ESS operation. Regardless, although this reduces the complexity, the amount

of decisions to check at any time step still remains huge. The space is of dimension K × L, and looping

through each element to evaluate the cost of each and every possible decisions would render the proce-

dure cumbersome and computationally expensive.

But by working with stacks of cost matrices computed from plain decision arrays, we reach a solution

that actually simplifies the task of evaluating the huge amount of options. Particularly for each possible

decision, we define a (K × L)-order array, in which we code the charge/discharge action by means of an

integer representing the number of levels that the SoC trajectory would move up or down. For instance, if

the ESS capacity is discretized in a number of levels so that each one means a charge/discharge of 10 kWh,

and if the maximum allowed rate of change is 100 kWh, then the possible decisions are encoded in a vector

of M = 21 entries as d = (−10,−9, . . . , 0, . . . ,+9,+10)= (d1, . . . , dM).

Each element of this vector eventually produces an array of order K× L with all its entries equal to that

element. Thus we have M decision arrays of the type

D(i) =


di . . . di
...

. . .
...

di . . . di

 , i = 1, . . . , M, (5)

which must be evaluated with regard to the their effect on the payoff. If the decision is to buy/sell energy
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at price samples x = (x1, . . . , xK), then the corresponding payoff is

P(i)
e =


di × x1 . . . di × x1

...
. . .

...

di × xK . . . di × xK

 , i = 1, . . . , M, (6)

Similarly, payoff arrays P(i)
a , also of order K× L, are obtained by submitting each D(i) to the aging calcula-

tion algorithm (later explained). Eventually, a set of M payoff arrays P(i)
e and P(i)

a would be available, each

one corresponding to a unique decision; tested for every price and SoC.

These immediate payoffs—derived from the decision to change the SoC at the current time step—must

be supplemented with those payoffs that will follow in the future as a consequence of the change now de-

cided. It is not acceptable an immediate large payoff if the decision leads the SoC to a level that will entail

a continuation path of low value. So the optimal decision must also take into account the accumulated

payoff from the SoC following an optimal trajectory in the future; which depends on the current SoC, the

price observation, and the decision taken. To again avoid evaluating such a huge number of possible tra-

jectories, we employed the concept of continuation value in the sense explained by Longstaff and Schwartz

in [35]. The continuation value accumulates the payoff obtained from following optimal policies from the

step ahead up to the end. It is based on Bellman’s Principle of Optimality, which states that whatever

the initial state (price) and initial decision are, the remaining decisions must constitute an optimal policy

with regard to the state resulting from the first decision [46, Ch. 3]. So the continuation values can be

regarded as a kind of summary about the payoffs ensuing from taking only optimal decisions in the future.

Longstaff and Schwartz employed continuation values for each price path. We simply expand that concept

to a two-dimensional framework to incorporate the current SoC levels.

The matrix of continuation values cannot be exactly the data stored from the previous optimization

during the step ahead, however. This would mean that we know what is going to happen in the next step—

meaning a perfect foresight flaw [35, 36]. We employed two three-dimensional arrays, of order K× N × L,

to store the continuation values (array V ) and the optimal decisions (array D). These are filled backwards,

as the optimization process progress. So the certain step-ahead continuation value is the slice matrix V =

V :t+1: (this notation is detailed in [49]), which is a matrix of order K× L. But because we want to avoid the

perfect foresight, matrix V cannot be directly used, and instead we use a matrix W, which is a regression

of the columns of V and the state vector x [35, 36].

An additional practical problem arises when the M immediate payoff matrices (P(m)
e and P(m)

a , with

m = 1, . . . , M) have to be compared to the continuation value in the step ahead. By construction, the

element p(m)
e,k` of matrix P(m)

e is the payoff from exercising the decision m under a price realization k when

the SoC is at level `. p(m)
e,k` is the element of P(m)

e in the k-th row and `-th column. In our algorithm, the

continuation value is also an array of order K × L that stores the sum of payoffs obtained from exercising

an optimal policy. Its element wk` refers to the continuation of the SoC trajectory starting at level ` (using

price path k). But importantly, P(m)
e and W refer to different time steps: P(m)

e to the current step and W to the

step ahead. The former is the payoff from exercising now, whereas the latter is the payoff from following

an optimal trajectory in the future. To be congruent, therefore, the total payoff from the decision must

12



be evaluated as p(m)
e,k` + p(m)

a,k` + wk(`−m), because taking the decision to change the SoC m levels makes the

continuation to start m levels apart. It is evident, therefore, that this prevents the algorithm from evaluating

the total payoff as P(m)
e + P(m)

a + W.

The solution that we employ takes advantage of having split the problem into M matrices, each one

containing the result of a unique decision at the current time step. Each matrix informs about one unique

charge/discharge decision, of application to every level and path. This is relevant because if the decision

is to change the SoC m units, then it is readily observed that it will suffice to horizontally shift the entire

matrix W by an amount −m; completing the unavailable entries after the shift with −∞ to indicate that

the decisions lying out of bounds are of infinite cost. For instance, for a two-observation sample of prices,

(x1, x2), with three levels of SoC, the payoff (immediate and future, combined) from reducing one level the

SoC when d = (−2,−1, 0,+1,+2) is represented as:

C(2) =

(
2x1 2x1 2x1

2x2 2x2 2x2

)
︸                      ︷︷                      ︸

P(2)
e

+

(
p(2)a,11 p(2)a,12 p(2)a,13

p(2)a,21 p(2)a,22 p(2)a,23

)
︸                           ︷︷                           ︸

P(2)
a

+

(
w13 −∞ −∞

w23 −∞ −∞

)
︸                       ︷︷                       ︸

shifted
[
W=

(w11 w12 w13
w21 w22 w23

)]
(7)

This procedure ends up producing a set of matrices C(m), m = 1, . . . , M, which must be investigated

to finally extract the optimal decisions as those that maximize the results. Again to avoid costly loops, we

devised a simple procedure consisting on stacking the M matrices. This yields an array of order K×M× L.

And because each component of the stack corresponds by design to an only decision, it suffices to obtain

the index of the stack in the second dimension to get the optimal decision. Indeed, this procedure can be

conducted in bulk, extracting a (K× L)-sized array that contains the indices. These can be finally mapped

into the optimal decision matrix, D∗, by means of the vector d. (For instance in the previous example where

M = 21, if for the k` entry of price realization and SoC, the index of the maximum in the stack analysis is

m = 2, it means that the optimal decision is −9, which is the second entry of d, i.e. discharging 9 units or

90 kWh.)

Once the optimal decisions for all prices and SoCs are embedded in the matrix D∗, the step is abandoned

after repeating the previous procedure of immediate payoff calculation to accumulate to the continuation

value and store it in V .

The procedure is summarized in Algorithm 1.

3.2. Aging computation

The calculation of the immediate payoff in Algorithm 1 requires a computation of the cost related to

the ESS aging. Cycling the ESS through different DoDs will entail a degradation that a supplementary

algorithm to Algorithm 1 should compute in an efficient way to not overload the calculation procedure.

This must be conducted in a dynamic way, because the decisions are influenced at each step by the amount

of degradation that they can cause. In other words, the traditional ways of counting cycles reported in [44]

that require the whole loading cycle are of not application in this setting, because precisely the loading cycle

will be decided at each step regarding the degradation caused and the profit obtained. Our implementation

of a rainflow counting algorithm based on the work by Musallan and Johnson makes the computation in
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Algorithm 1: Dynamic program to compute the optimal switching
1 Function OptimalSwitch
2 Input : a time series (state variable)
3 Output : optimal decision and related cost
4 Init : V ← −∞; V :N`N ← 0;

5 for t← N to 1 step −1 do
6 V← V :t+1: ;
7 D′ ← D:t+1: ;
8 Define : W← E[V|x], the continuation values conditional on the state vector
9 foreach d = dmin, . . . , dmax do

10 Define : D = [dij ]← [d], an all-d matrix of order K× L
11 Pe ← [dij × xi ];
12 Pa ← RainflowCount(D, D′);
13 W′ = [w′ij ]← [w(i−d)j ];
14 Pile Pe + Pa + W′ on the decision stack;

15 Define : D∗ = [d∗ij ], with the position of maxima in the stack of Pe + Pa + W′

16 P∗e ← [d∗ij × xi ];
17 P∗a ← RainflowCount(D∗ , D′);
18 W′∗ = [w′∗ij ]← [w(i−d∗ )j ];
19 V :t: ← P∗e + P∗a + W′∗ ;
20 D:t: ← D∗ ;

21 return V , D

Algorithm 2: Dynamic, multilevel rainflow counting algorithm
1 Function RainflowCount
2 Input : D = [dk` ], D′ = [d′k` ], maxSOCStack, minSOCStack
3 Output : cycle count for minimum and mean SoCs
4 Get : preconditioned reindexed versions of D′ , maxSOCStack, and minSOCStack, using D

5 foreach level (`) and path (k) do
6 u← maxSOCStack; v← minSOCStack;
7 ∆`k ← dk` ;
8 ∆`′k ← d′k` ;
9 if ∆`k > 0 then

10 if ∆`′k > 0 then
11 remove last entry from u;

12 CountCharging(`k , ∆`k , u, v);

13 if ∆`k < 0 then
14 if ∆`′k < 0 then
15 remove last entry from v;

16 CountDischarging(`k , ∆`k , u, v);

17 Compute : ESS degradation, ∑L
DoD=0

c(DoD)
cF(DoD) , using Palmgren-Miner’s rule

18 return spent CAPEX

19 Function CountCharging
20 Input : `k , ∆`k , u, v
21 Output : charging cycle count for minimum and mean SoCs

22 Compute : min SoC (related to DoD) is the last recorded min SoC
23 if `k > last recorded maximum SoC in u then
24 remove that last entry from u;
25 if there is more than one recorded event in v then
26 remove last entry from v;
27 declare full cycle;
28 else
29 declare half cycle;

30 return CountCharging(`k , ∆`k , u, v)
31 else
32 U ← U ∪ {`k};
33 return updated u and v, and number and composition of cycles

a dynamic way. Again, the main challenge is to manage the sizable combination of decisions, levels, and

paths.

14



We refer to Algorithm 2 for details. The inputs to the algorithm are K × L matrices of current decision

and ahead-decisions—respectively D = D:t: and D′ = D:t+1:. Also inputs are the stacks of maximum and

minimum SOCs. These stacks are L vectors of variable dimension, depending on the history of the SoC

trajectory. For each level, each of this vectors or sets will be here denoted as u and v; the maximum (peaks)

and minimum (valleys) recorded SoCs, respectively.

The algorithm starts by determining which levels and paths will behave as charging or discharging

events. This is decided after consulting the value of the current decisions in the K × L decision array (see

line 8). A decision to discharge the ESS is revealed by ∆`k > 0, and it would trigger the charging count.

Before proceeding, however, the step-ahead decision would be checked. Were the ahead decision also

charging—which is tracked on the preconditioned step-ahead optimal decisions—then the last element

of the vector of maximum recorded SoC u would be removed (line 11). This amounts to the peak-valley

filtering described in [44, §5.4.4].

We divide the counting into charging and discharging counts, resulting in dedicated algorithms; which

are quite similar, but operate on different SoC stacks. See for instance the charging count function starting

in line 19 of Algorithm 2. The SoC amplitude and mean value, and the DoD (or the related minimum SoC)

are computed before modifying the u and v stacks. Thereafter, if the investigated storage level exceeds the

last recorded maximum, the count is triggered, following two possible scenarios. If there was a previous

minimum SoC, more than one so that a charge-discharge action can be declared, a full cycle is counted.

Conversely if the minimum SoC stack was empty or had one only value, a (discharging) half cycle would

have been counted, without emptying the stack.

The algorithm works recursively (see line 2). Thus, before updating the SoC maximum level, the eval-

uation is recalled, with now the last maximum (and possibly the last minimum) removed, to investigate

if more updating of the stacks and further cycle counting is necessary. Eventually, if the analyzed storage

level `k does not trigger more cycle counts, its value is stored in the maximum SoC stack. This level will

hence become the last recorded maximum.

It is easy to see that the counting of a discharging decision follows the opposite pattern, but it has the

same structure. The level `k would be tested to be lower than the last recorded minimum SoC. And the roles

of the stacks u and v would be exchanged.

To speed up the computation, our algorithm employs reindexed versions of the “continuation” data.

The reindexed versions consist in a reordering of the data, taking as indices the current decision codes.

This preconditioning can be efficiently and easily obtained by array indexing in implementations in Matlab,

Python or R, for instance. As a result, for each storage level and path the current and step-ahead values will

be aligned. We have found that this preconditioning of the arrays notably improves speed and simplicity,

because it later avoids complex looping to discover which will be the decisions and stack contents one step

ahead of each level and path. Indeed, because current and step-ahead decisions become aligned, matrix

operations can be easily performed between current and step-ahead conditions.

This algorithm is called several times during the computation of each step optimal decision. A first set of

calls are made during the building of the payoff stack regarding the evaluation of the prospective decisions

(line 12 of Algorithm 1). But it is important to realize that these calls must not modify the SoC stacks. They
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are queries meant to assess the aging provoked by potential decisions. It is only after obtaining the optimal

decision matrix that in a second call (line 17 of Algorithm 1) the SoC stacks must be modified, so that in the

next optimization step the record about the cycle count is available.

Eventually, at each step the optimal decision is based on the sum of all the three constituent pay-

offs or costs (see line 19 in Algorithm 1): future expected payoff, aging cost, and payoff from charg-

ing/discharging. Interestingly, this disaggregation leads to think that the model may be upgraded by

adding other payoffs or penalties, which could represent some other operational constraints (see for in-

stance in [50] an interest selection and detailed explanation of some). For instance, high charge rates could

be easily penalized by affecting the decision vector with a non-linear cost function.

4. Results and discussion

In this Section we provide an account of numerical tests conducted to clarify and validate the perfor-

mance of the algorithm. We start with a simple deterministic analysis, just to show the optimal operation

policy foundation and how the incorporation of the aging subroutine affects the decision process. Then,

we expand the analysis to a more generic stochastic case, examining the reasons why the deterministic

analysis might offer inaccurate results in some scenarios of high ESS CAPEX. Finally, we elaborate on a

wider analysis of how the algorithm produces different policies under different input series with varied

structural composition.

In all the numerical analyses we employed an energy arbitrage focus, because of its simplicity compared

to other ESS applications. Based on the simple policy “buy low sell high,” it allowed us to concentrate on

the numerical performance of the algorithm. The payoff function that was evaluated at every cell was

simply defined as the energy traded times the price, with a sign depending on the decision code (meaning

sale or purchase). We modeled the electricity prices of several European spot markets using the approach

detailed in [36].

Importantly, the aim of this section is not to provide a detailed account of the impact that using BESS

has on the long-term profitability of operation in different markets. Neither this section is intended to

constitute an assessment of the effect that different price structures provoke on the full life cycle of the

BESS. Its aim is to illustrate the methodology and compare the different results that are obtained when the

aging is incorporated into the decision analysis under different price signals.

4.1. Deterministic optimal operation policy

Fig. 4 serves to clarify the meaning of optimal operation in an arbitrage scenario, as well as to verify

the correctness of the algorithm decisions. The analysis shown is based on the Fingrid spot price (January,

2017), where remarkable spikes happened in two occasions, along with a string of spikes in the last week.

These events make the series ideal for arbitraging purposes.

The results of arbitraging without taking the cost of aging into account show some particular, recogniz-

able features. First, the largest discharges are placed at moments that exhibit the largest price variations—

the spikes. Obviously, the charges happen before those events. Also, when there is a string of spikes such

as that starting on January 23, the discharge is organized in a sawtooth pattern, to take advantage of the
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Figure 4: Switching analysis from a deterministic point of view. (a) Spot price in January, 2017, of Fingrid market. (b) Switching policy
for optimal energy arbitrage with (dark, thin line) and without (light, thick line) aging cost. ESS CAPEX was 125 e/MWh.

lower prices in between spikes. But on the whole, a discharging trend can be observed. Finally, the ESS

uses the whole SoC range—from fully charged to fully discharged—regardless of the damaging large DoD

events. This is further corroborated by the histogram in Fig. 5a, where the prevalence of high DoD cycles

is readily observed.

The inclusion of the cycle count routine and the associated cost visibly changes the arbitrage policy.

Still the computed policy tries to get the most benefit from the price variations during the spikes. But

differently now, the payoff contains the information about the ESS reposition due to cycling at large DoDs.

Thus, the payoff obtained from lowering the SoC below 50% does not make up for the prorated cost of

reposition, which increases when the SoC is reduced. This is in clear contrast with the policy disregarding

the cost of reposition derived from the aging count. Also, because higher operation frequencies are less

damaging at lower DoDs, larger number of cycles are observed in the high-SoC trajectories. In Fig. 5b, the

operation is concentrated to the left of the panel, meaning a significant attempt to avoid a damaging high

DoD operation. Note that this result obtained by the algorithm can be related to the shape of Fig. 3.

Definitely, the optimal operation of the BESS is a compromise solution between two conflicting policies.

If aging is neglected, the BESS operation will directly follow an income-maximization policy. This is the

operation reflected in Fig. 5a, where the algorithm proposal is to “vigorously” cycle the BESS, preferring

large charge/discharge cycles that take advantages of price spikes. But this policy would not have into

account the cost derived from the BESS degradation. On the other hand, if the aging is to be minimized,
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Figure 5: Cycling frequencies for optimal operation following the spot price in Fig. 4. (a) Without considering aging costs. (b)
Considering aging costs with ESS CAPEX equal to 125 e/kWh.

the optimal solution would be not to cycle the BESS at all. But in that case the income would be obviously

null. In between these two extreme options, the aging routine produces a cost figure that is subtracted

dynamically from the profits of the first case. As a result, see Fig. 5b, the algorithm produces a sequence

that allows cycling the BESS in an optimal “region,” which mostly produces cycles between 10% and 40%

DoD. That is, the algorithm proposes a cycling that would optimize the use of the curve represented in Fig.

3, without excessively reducing the BESS profitability from arbitraging.

4.2. Need for a stochastic approach

The results shown in Fig. 4 were based on a deterministic analysis, because we employed one only price

realization. This provided clarity in analyzing the operation regime. However, in what follows we show

that that simplified approach is not adequate when we consider the aging mechanism under relatively high

ESS CAPEX prices.

Fig. 6 shows the optimal operation policies for energy arbitrage following the Swissgrid spot prices

of January, 2017. (January 1, 2017, was a Sunday.) We conducted the analysis under different CAPEX

assumptions, ranging from null to a relatively high CAPEX. We employed 50 samples of simulated prices.

First, when the CAPEX of the ESS is not considered—or in other words the aging is neglected because

the cost of reposition is not introduced into the analysis—the arbitrage is carried on continuously. The

algorithm proposes vigorous charges of energy on Saturdays and Sundays, to proceed with progressive

discharges during the weekdays, punctuated by small intermediate charges at night lower prices (see Figs.

6a and 6b). The algorithm finds no reason to change the pattern of weekly arbitrage, even in the presence

of lower price volatility and level spotted during the first two weeks, because the ESS aging is supposed

not to be affected by the continuous operation.

18



40

75

110

145

180

p
ri

ce
, 
E

U
R

/M
W

h

(a)

0

25

50

75

100

S
o
C

, 
%

(b)

0

25

50

75

100

S
o
C

, 
%

(c)

Jan 01 Jan 08 Jan 15 Jan 23 Jan 30

date

0

25

50

75

100

S
o
C

, 
%

(d)

Figure 6: Impact of ESS CAPEX value on the operation decisions under uncertainty. K = 50 samples. (a) Swissgrid spot price in
January, 2017. (b) Null CAPEX. (c) CAPEX equal to 50 e/kWh. (d) CAPEX equal to 100 e/kWh

In Fig. 6c the situation is visibly different, however. The degradation of the ESS does influence the

definition of the optimal policy in the form of a price penalty. As a result, a preference for arbitrage through

the last two weeks is observed; mostly visible over the last week, of largest price volatility. In those final

weeks lower SoCs are tolerated, despite the reduction in the life expectancy that would ensue from such

deep discharges. The expected profit seems to worth it. But differently, the first two weeks do not offer

as much a profit as to make up for the ESS degradation, and thus the operation is kept above 50% SoC.

Compared to the optimal policy shown in Fig. 6b, now in Fig. 6c the total payoff is reduced because of the
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reduction of the amount of exchanged energy.

Whereas the difference between the optimal policies depicted in Figs. 6b and 6c lies mainly in the SoC

level, in Fig. 6d the difference is more related to the spread of possible solutions. This latter is a case of rel-

atively high CAPEX, meaning that the operation of the ESS is appreciably sensitive to the price trajectories.

This is particularly evident in the left part of the panel, corresponding with the two less attractive weeks

from the point of view of arbitrage. The proposed operation implies in some cases maintaining levels above

the 75% SoC to evade a costly degradation. In other cases, the ESS is barely used over the first week, and

it remains almost discharged, without cycling. This is in evident contrast with the the case depicted in

Fig. 6b, where it might have been argued that the complications introduced by a stochastic formulation of

the problem might not be worth the accuracy achieved. Prices might have been treated deterministically,

using only the original series and not the 50 different price paths, because (at least visually) it does not

seem to exist much difference between different trajectories. But our point here is that such a deterministic

approach would be inaccurate when the ESS profitability come closer to the break even. A twofold increase

of the CAPEX with respect to the value in Fig. 6c, would make the optimal path trajectory more uncertain,

as shown in Fig. 6d. Some price paths that in practice were considered to be indistinguishable from others

in the cases Fig. 6b and Fig. 6c now have a large impact on the decisions taken in Fig. 6d. Eventually

it means that selecting one unique price path—the deterministic approach—could entail a high valuation

error.

4.3. Overall performance of the algorithm, including aging impact

The previous two analyses showed different arbitrage opportunities, which the optimization algorithm

solves step by step. This Section shows a comparison of those two cases, along with four additional scenar-

ios. We try to cover different European markets to show how the algorithm adapts the solution to different

structural contents in the input series. The analysis concentrates on the characteristic operation policy

identified by the algorithm, but does not try to infer definite conclusions about the arbitrage chances in

European electricity market. Indeed, these are one-month data, which cannot be considered representative

of long-term operation.

The first series analyzed in Fig. 4a, corresponding to Fingrid, exhibits a reduced trend component, a

relatively reduced seasonality, and some large price spikes. It is similar to NO1 (Norway) and Litgrid, for

instance. As we discussed previously, the arbitrage in this case is based on capitalizing the relatively strong

fluctuations in the price. The results are given under the labels Fingrid 1 and 2 in Fig. 8a. Noticeably in this

case, the introduction of the cost of aging approximately halves the mean payoffs. This is a characteristic

result of this series, and it does not occur in the remaining cases. The reason, as a detailed observation

of the algorithm results attests, is the uncertainty about the peak locations. They do not seem to occur at

predictable dates. This is accounted for by the regression over different simulated paths (line 8, Algorithm

1), which estimates the conditional expectation of the multiple continuation options before calculating the

decisions about operation. As a result, the payoff is reduced more importantly than in the other cases.

Indeed, if we consider the deterministic simulation analyzed in Fig. 4, the payoff reduces only about 30%

compared to the case in which the cost of aging is not introduced. In this case, the uncertainty would have
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Figure 7: From top to bottom, National Grid, Elia, REN, and NO5 (Norway).

been removed, with a precise location of the spikes, giving an inaccurate valuation of the ESS arbitrage

performance. This further serves to demonstrate the need for a stochastic approach.

The second series, Swissgrid, was already used in Fig. 6, and it is an example of strong daily and weekly

seasonality, as well as a more defined level trend. IT-North and RTE are other similar examples in Europe.

The results are more favorable now than for Fingrid, from the arbitrage point of view. This is a consequence

of the noticeably larger number of fluctuations. These oscillations, compared to Fingrid, make the payoff

solutions spread over a wider range (Fig. 8a). This is an expected consequence of the similarly wider range

of prices with frequent repetition. Here the algorithm finds more variety in arbitrage opportunities and

produces a higher mean payoff.

The case of National Grid, Fig. 7a, is in some aspects similar to Fingrid regarding the large price vari-

ations. But differently, it shows a strong seasonality in the price peaks. This makes the algorithm yield a

distinct solution. First, the idle time, Fig. 8b, is reduced. From 123 out of 720 hours in Fingrid to 70 now
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Figure 8: Results from the analysis of 50-sample simulations of the spot electricity prices shown in Figs. 4a, 6a, and 7. For each
spot market, option 1 means without using the aging penalization and 2 with it. The size of the ESS was 100 kWh and the CAPEX 50
e/kWh. (a) Distribution of payoffs. Positive and negative payoffs are sparated into light and dark boxplots, respectively. The red
square in each box stands for the distribution mean. (b) Frequency of active (either charge or discharge, because the number of events
must be the same) or idle operation.

in National Grid: almost a 50% reduction. This is an obvious, direct consequence of the larger amount of

spikes in National Grid. Indeed, the Fingrid’s case demonstrates exceptional high idle times when the cost

of aging is incorporated, as a consequence that only the few large price spikes make up for the ESS activa-

tion. Secondly, the reduction of the mean payoff when the cost of aging is incorporated is not so prominent

(Fig. 8a). Here the reduced uncertainty in the spike locations plays a key role.

Elia’s time series in Fig. 7b is similar to Swissgrid’s. However, its calibration returns a slightly higher

volatility in its error component. Or in other words, the simulated paths differ more from the original series

than in Swissgrid’s case. As a consequence, the payoff results are actually similar, when the algorithm

cancels out most of the deviations through the conditional expectation analysis at the decision points.

The series plotted in Fig. 7c, corresponding to REN and similar to REE and Transelectrica, is character-

ized by a distinct local level variation. Also a clear daily seasonality defines its structure. Unlike Swissgrid

and Fingrid, however, its weekly seasonality is less perceptibly. Finally, there are no spikes, but more sus-

tained prices at high levels. Again the solution provided by the algorithm agrees with the impressions

obtained after a visual inspection of the input series. Except for some exceptions, the differences between

high and low prices are fairly constant every week day, around 20 e. This actually makes the positive and

negative payoff distributions concentrated toward the means, if aging is not considered (Fig. 8a). (Only

Fingrid, which has a remarkably different price structure, has a similar payoff concentration.) In that case,

the solution proposed by the algorithm clearly agrees with the characteristics of the time series. Differently,

when the cost of aging is considered, the optimal payoffs describe a lower, more even distribution due to

the DoD and cycle number limitations. In this case, the algorithm identifies the level trend as a major player

in the arbitrage process, with the evenly 20 e signals somehow distorted by those limitations.
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The last case, NO5 of Norway in Fig. 7d, is a particular situation with constant prices. They follow

variations of about 5 e. This means that these prices hardly qualify for arbitrage purposes. Indeed, it is a

case in which even without considering the ESS aging the profits obtained are comparatively reduced: the

mean discharging (sale) payoff is +1.40 ce, and the charging (purchase) payoff is −1.34 ce. The values are

the lowest when compared to any other case. And as expected, when the aging is introduced, the small

variations in prices makes it almost impossible to compensate for the negative payoff related to the cost of

aging; effectively resulting in almost null activity.

Elia’s data produced good arbitrage results, compared to the other analyzed series. Without considering

aging, its mean payoffs were +46 and −24 ce, with 314 activations over the 744 hours. A quick calculation

indicates that the mean total payoff would be 314× (46− 24) = 69 e/month. A similar calculation when

the cost of aging is included would give 114× (36− 17) = 22 e. (This is an approximated computation

from the results shown in Fig. 8, which nonetheless approximates well the results obtained from the al-

gorithm: 65.8 and 21.0 e, respectively.) On the cost side, for all the analyzed cases the CAPEX was 50

e/kWh, and the ESS capacity was 100 kWh. Assuming an arbitrary WACC equal to 6% over 10 years, the

capital recovery factor would be 0.136. Therefore, the equivalent annuity would be 679.5 e/year, which

could be prorated to 56.6 e/month, making it clear that the introduction of replacement costs reduces the

profitability below the initial CAPEX.

Of course this is but a rough calculation because it implies arbitrary assumptions, such as the WACC,

the CAPEX, and the investment duration. They are reasonable assumptions, but they are not grounded

on a detailed assessment of prices. Also, it is assumed that the price structure will remain invariable over

time, which is arguable as well. But the main point here is to show how the introduction of aging costs

dramatically reduces the chances of profitability. The above simple calculation shows that the error due to

not introducing the aging costs in an investment analysis may be large, especially if we consider that the

above CAPEX figure is particularly low by actual standards.

5. Conclusions

We have proposed and discussed a dynamic programming approach for valuing ESS, with a particular

focus on grid applications, which shows distinctive features with respect to other works published on the

subject. A first feature is that this approach addresses the optimization of charge/discharge decisions un-

der aging penalties. The difference with respect to other works lies in that the aging cost from a decision

is calculated dynamically (ex-ante), thus being incorporated into the decision evaluation. Second, this ap-

proach tackles the imperfect payoff foresight that ensues from operating the ESS in a stochastic framework,

in which prices and energy demand are uncertain. Again, this feature is ex-ante integrated into the deci-

sion evaluation. Finally, the practical implementation is also singular, consisting in slicing the problem into

unique decision matrices that are conveniently managed by means of shifting and re-indexing operators,

leading to a solution that can cope with the huge amount of decision evaluations in an efficient way.

The program is remarkably flexible, because it is compartmentalized into several blocks. One of them

is the payoff calculation, which is also split into several dedicated functions. Such functions must compute

the payoff from operating in the market, the cost of aging, and indeed any other additional term that may
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well have an impact into the payoff formation. The only requisite they have is that they return a payoff

value when queried about unique operation decisions. We have employed for simplicity in the discus-

sion an energy arbitrage policy, where for instance the function must return the payoff from a decision to

sell/purchase energy subject to the electricity instant price. But other stream revenues can be analyzed as

well, where more sophisticated payoff calculations are employed based not only on electricity prices but

on load/generation profiles or EV driving results. Similarly, the aging payoff calculation responds to the

same structure. We have employed a model based on maximum life as a function of the number of cycles

at different DoD. Yet other models are acceptable as long as they yield the consumed life as a function of

the number of cycles and idle time; which again the dedicated proposed algorithm computes as a function

of the operation decision.

Our analysis of energy arbitrage revenues in different European markets, with different structural com-

ponents, shows on the whole the need for including uncertainty and aging in the valuation of ESS. This is

particularly important when the CAPEX value is increased. In fact, we have found that under some circum-

stances of maximum life cycle and market price structure, the errors from not considering uncertainty and

aging can be readily perceptible for CAPEX above 50 e/kWh, which is a relatively low figure by current

CAPEX values. These results must be interpreted with caution, nonetheless, because they are limited in

scope (one month data of several selected European markets). As we have emphasized before, the analyses

have been performed to illustrate the methodology and demonstrate the changes in the optimal operation

of the BESS when aging is considered.
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