

Performance Engineering of Image Processing
Systems Through Benchmarking Techniques

Daniel F. García
Department of Informatics

University of Oviedo
Gijon, Spain

dfgarcia@uniovi.es

Francsico J. de la Calle
Department of Informatics

University of Oviedo
Gijon, Spain

UO224689@uniovi.es

Abstract—Currently, a multitude of systems are developed
that process a continuous flow of images. They are used, for
example, for video surveillance, inspection and control of
products manufactured in production lines, automatic guidance
of robots, vehicles, etc. For these systems to be useful, they must
be able to process and store images at a minimum frequency.
Therefore, when designing these systems it will be essential to
determine the frequency at which they can operate depending on
the characteristics of the images, the algorithms used to process
them, and the computer hardware selected. Despite the
importance of estimating and adjusting the performance of these
imaging systems, there are hardly any methodologies for
developing the performance engineering of them. With the aim of
covering this gap, this article presents a simple experimental
method to develop the performance engineering of the image
processing systems and in particular to determine their
maximum operational frequency or throughput. Using the
proposed method, any performance engineer can determine the
maximum working frequency of a system systematically and
check that it exceeds the minimum required frequency. In
addition, the engineer can also obtain the necessary information
to reconfigure the system, eliminate performance bottlenecks,
and take advantage of the computing power of the hardware
properly.

Keywords—image processing; performance engineering;
benchmarking techniques

I. INTRODUCTION
Currently, the number of image processing applications is

increasing more and more, for multiple purposes like
continuous video-vigilance, entertainment, etc.

One particular sector is manufacturing, where image
processing techniques are being extensively used to inspect
and check the quality of manufactured products. Generally,
the requirements for the development of new automatic
inspection systems include a high defect-detection ratio, a low
cost of the system, easy procedures for maintenance, etc. To
meet these contradictory requirements, the system developers
generally use standard image sensors and a powerful personal
computer running a common operating system, such as
Windows.

The utilization of standard computing hardware and
operating systems allows lowering the cost of the system and
makes maintenance easier, but it complicates the fulfillment of

performance requirements, like the throughput or deadlines for
processing the stream of acquired images.

The solution presented in this work is the utilization of a
benchmarking technique. The developer must configure an
adaptable benchmark to emulate the expected operational
conditions of the target image processing application and its
underlying hardware components. The experiments developed
with the benchmark will provide insights about the maximum
achievable performance.

Generally, the image processing system must achieve
predefined minimum requirements to be useful, but if the
system has sufficient computational resources, they can be
used to improve the results provided. For example, the
developer can weigh the achievable acquisition and processing
rate of images against the size or resolution of the images used
by the system.

Therefore, the developer can effectively use the
benchmark to achieve an optimal compromise between the
different configuration options for the system.

The rest of the paper is organized as follows: in Section
two a review of related work is presented. The proposed
benchmark is introduced in Section three and the performance
engineering method is explained in Section four. Finally,
Section five presents the conclusions of this work.

II. RELATED WORK
The estimation of achievable performance of image

processing systems is a research topic of permanent interest.
In this work, the term performance must be associated with the
minimum execution time or the maximum throughput that a
system can provide by optimally tuning the image processing
algorithms to the underlying computing hardware. However,
there are many other research works that use the term
performance to describe the level of success of segmentation,
classification, object detection, etc., of image processing
algorithms.

The performance engineering process can be developed
using techniques based on measurement, analytical modeling
and simulation [1]. In general, an initial prototype of the
system is required to take measurements of the execution time
of the basic algorithms used in the system. Then, the

measurements can be used to adjust analytical or simulation
models of the system.

Before starting a detailed software performance
engineering process, benchmarking experiments can be
developed to obtain insights about the achievable
performance. But this performance depends on the computing
architecture used to implement the system. There are several
research works that study the benchmarking of image
processing systems based on standard multi-core processors
[2] [3] [4] [5]. Other works have extended the analysis
comparing a classical superscalar processor with specialized
architectures like SIMD and VLIW [6]. Furthermore, other
works address the performance evaluation of systems
developed on GPUs [7] [8].

All the previous works provide insights into how to
evaluate the capabilities of general-purpose or specialized
processors to execute image processing algorithms. However,
the approach followed in this work is more particular, because
the focus is on determining the achievable performance of an
image processing application on a general-purpose multi-core
processor using multithreading.

The benefits and limitations of parallel image processing
techniques are summarized in [9], including many references
to other research works. Any multithreaded application can
take advantage of a multi-core processor in two basic ways:
reducing the processing time of each image or increasing the
number of images processed per second [10].

Several works have evaluated the reduction of the
processing time of a complete image by partitioning the image
in regions and devoting one thread to process each region,
working all threads in parallel [11]. The partition can be
defined manually and the threads are scheduled statically [12]
or dynamically [13] to compensate the irregularities in the
execution times provoked by slow threads. The partitions of
the image can also be defined automatically using an API
integrated with a tool like MATLAB [14].

There are very few works on methodologies focused on
increasing throughput in image processing systems
systematically. General ideas are presented in [15] and other
works simply present high-throughput imaging systems [16]
[17] but they do not explain their configuration or their
computational optimization. Therefore, this paper covers a gap
in the technical literature presenting a methodology for
carrying out the performance engineering of image processing
systems focusing on maximizing the achieved throughput.

Finally, with the measurements obtained from the
prototype, a performance model of the image processing
system can be developed and used for predicting the
performance of the system [18], although this approach is
complementary to that proposed in this work.

III. THE CONFIGURABLE BENCHMARK
The configurable benchmark is composed of three

programs executed in two computers. The first program
emulates the device that generates the images, a camera, and it
runs alone in a computer. The second program emulates the

driver of the device. Its primary objective is to receive images
from the camera and place them in a shared memory. The
third program is a consumer of the images placed in the shared
memory. This consumer processes each received image using
one or more algorithms sequentially, and optionally, stores the
image on a disk. Both programs, the driver and the consumer,
run on the computer initially selected to host the final image
processing application. Fig. 1 shows this benchmarking
environment, in which the two computers are communicated
through 1 Gbps Ethernet link.

Device Driver

Computer 1
Computer 2

Shared
Memory Consumer

Disk

Alarm
1 Gbps
Eth Link

Fig. 1. Benchmarking environment

The following subsections explain the main components of
the benchmarking environment.

A. The device emulator program
The program that emulates the camera operates as a

network server that waits for a TCP connection from a driver.
Just after the connection is established, the emulator starts a
loop. In each cycle of the loop an image is generated and sent
to the driver. Although a real device would be sending images
until its disconnection or powering off, in this program a fixed
large number of cycles is commonly used to develop the
experiments.

At the beginning of each cycle, the program waits for the
signaling of an event called StartCycle. This event is
periodically signaled by a timer. The period between two
successive signals can be easily configured.

Within the cycle, an image is generated with the required
pixel format (graylevel8, rgb24, rgba32, etc.) and the desired
number of rows and columns. The content of the image
depends on the processing to be developed by the consumer.
The images can have several backgrounds, such as random
noise, patterns, gradients, etc., and they can have some
foreground objects, like simple geometrical figures and text or
numbers.

The image is then sent to the driver through the Ethernet
link, using the sockets API and controlling the possible
fragmentation of information. A number identifying the image
is sent with each image.

Immediately after sending the image, the program waits
for the reception of an acknowledge message from the driver,
containing the identifier of the image received by the driver.
Logically, the identifiers of the sent image and the received
image must be identical.

Before the end of the cycle, the image generated is stored
on a disk in a common format, like .bmp, to check the
correctness of the generated images.

In order to check the performance of the device emulator,
the time at the beginning and at the end of each cycle is stored

in arrays. At the end of the programmed cycles, the times
required to generate and send the images are processed to
obtain performance metrics.

This device emulator can also be used to develop a
tolerance strategy against disconnection and reconnection of
the Ethernet cable, network failure, etc., and also to emulate a
control protocol for the device. However, these issues are not
related to performance aspects, and therefore, will not be
presented in this work.

B. The driver program
The program working as a driver of the camera operates as

a network client that establishes a TCP connection with the
camera emulator.

As soon as the connection is established, the driver starts a
loop. At the beginning of each cycle, the driver waits blocked
in a socket for the reception of an image. When the driver
returns from the Receive call, it checks that all expected bytes
have arrived, and then, it sends an acknowledge message to
the camera emulator indicating the correct reception of the
image. Afterwards, the driver writes the image in a shared
memory, from which any consumer program can read it.

C. The consumer program
The consumer program follows a master-worker approach

implemented with multiple threads. This software architecture
allows the maximization of the system throughput easily. The
main thread of the consumer waits, in a blocked state, for the
driver to write a new image in the shared memory. When the
driver finishes the writing of an image, it unblocks the
consumer. Then, the consumer copies the image to a private
buffer and starts a new thread to process the image.
Optionally, a second thread can be started to store the image
on a disk. Fig. 2 shows the expected behavior of this software
architecture.

3

4

5

6

7

2

1

M

W1

W2

W3

1 2 3
0 2 4 6 7 9 11 13 14 16 18 201 3 5 8 10 12 15 17 19

W4

W5

W6

W7

4 5 6 7 8 9

1

2

3

4

5

6

7

· · ·

Fig. 2. Behavior of the master-worker application

In the prototype the processing algorithm must emulate
realistically the processing required by the real application.
The time taken by the processing depends on the computations
carried out by the processing thread.

IV. THE PERFORMANCE ENGINEERING METHOD
The primary objective of the method is to determine the

maximum useful frequency achievable for an image
processing system, implemented on a multi-core computer.
But there is a broad objective beyond obtaining this frequency.
The method must also provide metrics about the correct
utilization of computer resources, giving indications about the
presence of performance bottlenecks in software and hardware
and the way to solve them.

In order to obtain the values of the metrics, a sequence of
experiments must be developed. But before defining any
sequence, each individual experiment must be defined.

A. Characterization of a basic experiment
Any experiment developed with the configurable

benchmark can be modeled as the black-box shown in Fig. 3
with several inputs and outputs.

ExperimentFrequency Number of threads used

Execution time

Device utilization (CPU, Disk, Net)

Software
Configuration

Hardware
Configuration

Fig. 3. Inputs and outputs of an experiment

Following the terminology used in Experimental Design,
each experiment has response variables (outputs) and factors
(inputs), whose influence on outputs must be quantified.

In Fig. 3 there are three response variables and multiple
factors. At the top of the Experiment are the factors of the
software, defined by the configuration of the image processing
benchmark (image size, pixel format, image processing
algorithms, etc.). At the bottom of the Experiment are the
factors of the hardware, defined by the configuration of the
computer used (processor type, number of cores, type and
number of disks, etc.). On the left of the Experiment is the
primary factor, the frequency of image generation, which
defines the computational load supported by the system. This
factor takes several values during an experiment, while the
other factors remain constant.

B. Determining the maximum operational frequency
The method to determine the maximum operational

frequency starts selecting the hardware and software
configurations.

The main factors of hardware configuration are defined by
the characteristics of the multi-core computer used to execute
the software, which has an Intel Core i7 920 CPU at 2.66 GHz
and 6 GB of DDR3-1066 RAM. There are two main factors of
the software configuration. The first is related to the
characteristics of the images, mainly defined by the image size
and pixel format. For the basic experiments the size is 512 KB

using pixels of one byte (graylevel8). The second is the
algorithm(s) to process each image, in this case, a median
filter with a radius of two pixels applied to each image for
smoothing.

With these factors selected, each experiment is developed
varying the frequency of image generation. Typically, the
engineer begins with a frequency of one image/second, and
then progressively increases to two, four, etc., images/second
exploring the whole range of frequencies at which the system
can work in acceptable conditions.

The number of images to process in each experiment must
be enough for the system to work on a stationary regime for
sufficient time so that average values of output metrics can be
calculated with a low variance.

0

100

200

300

400

500

600

700

800

900

0 10 20 30 40 50 60 70 80 90 100 110

Im
ag

e
Pr

oc
es

si
ng

 T
im

e
(m

s)

Initial Processing Time (seconds)

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80 90 100 110

Ac
tiv

e
Pr

oc
es

si
ng

 T
hr

ea
ds

Initial Processing Time (seconds)

0

10

20

30

40

50

60

70

1 11 21 31 41 51 61 71 81 91 101 111 121 131

D
ev

ic
e

ut
ili

za
tio

n
(%

)

Sampling time (seconds)

CPU

Network

Fig. 4. Evolution of the main output metrics along an experiment

Fig. 4 shows the typical values measured along the time in
any experiment: the processing time of each image, the
number of threads active when the processing of each image
starts, and the utilization of hardware devices.

From each experiment, the engineer must obtain the
average values of the defined output metrics. With these
averages, the graphs of Fig. 5 must be drawn by the engineer.
All the graphs have the same horizontal axis, which represents
the frequency of image generation, and all points of the graphs
in a vertical line correspond to the same experiment.

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25

Pr
oc

es
sin

g
tim

e
(m

s)

0

5

10

15

20

25

30

0 5 10 15 20 25

Av
er

ag
e

 T
hr

ea
ds

0
10
20
30
40
50
60
70
80
90

100

0 5 10 15 20 25

De
vi

ce
 U

til
iza

tio
n

(%
)

Generation Frequency (images / s)

Ucpu

Unet

Fig. 5. Output metrics as a function of the generation frequency

The proposed methodology relies on the direct analysis of
the graphs. The main output variable is the processing time,
whose behavior can be related to the other output variables.

The average number of concurrent threads used to process the
stream of images indicates the number of software resources
dynamically deployed to process the stream. The utilization of
hardware resources, mainly the CPU utilization, indicates how
the software threads consume the available CPU time.

Three sections can be seen in the graph of processing time,
which must be interpreted by the engineer in combination with
the other graphs as explained in the following paragraphs.

 In the left part, with a low frequency of image generation
(<10 images/s), the system is underloaded, the processing time
is the minimum possible, and increments of the frequency do
not provoke perceptible increments of the processing time.
The number of average active threads is low (<5) and does not
reach the available processing units (8). The utilization of
CPU is under 50%.

In the right part, with a high frequency of image generation
(>10 images/s), the system is progressively overloaded and the
processing time increases significantly when the frequency
also increases. The number of threads running concurrently in
the system is larger and increases because each thread needs a
longer time to complete its task, due to the fact it has to share
the processors of CPU with other threads. With high loads
there is not one processor available per thread. The utilization
of CPU increases quickly and soon reaches saturation (>90%)
for a frequency of 15 images/s.

Between these two operational regimes, there is the
inflexion point of performance, which can be considered the
point in which the system changes from one regime to another
(from low to high load operation).

Using the graphs, the engineer can select the frequency
corresponding to the inflexion point as the maximum
frequency achievable for the system. But this is the maximum
frequency to guarantee the optimal performance,
corresponding to the minimum processing time. In Fig. 5 this
frequency is 10 images/second. However, the engineer could
also select the lower frequency at which the CPU reaches
saturation. From a practical point of view, the CPU is
saturated when its utilization exceeds 90%. In Fig. 5 this
frequency is approximately 15 images/second.

The performance engineer can select as the maximum
operational frequency for this system any frequency between
10 and 15 images/second, depending on the main objective of
the system.

Selecting a frequency close to 10 images/second, the
processing times are the lowest possible, very predictable and
with a low dispersion. However, only half of the capacity of
the CPU is used.

Selecting a frequency close to 15 images/second, the
processing times will be greater, very unpredictable and with a
high dispersion. But with this selection the full capacity of the
CPU is used.

C. Sensitivity Analysis
After finding the maximum operational frequency and

knowing the behavior of the system as a function of the
frequency, the engineer needs to know the sensitivity of the

output metrics against variations in the input factors (software
and hardware configuration).

This analysis can be done for the operational frequency
selected for the system, for example 10 images/second. But it
can also be developed for other frequencies building new
curves. As an example, two software configuration factors are
varied:

1) The size of the image, which is decremented and
incremented by 25%, using image sizes of 384 KB and
640 KB instead of the original size of 512 KB.

2) A parameter of the image processing algorithm, the
radius of the median filter. The initial value of this parameter
is 2. In the sensitivity analysis this parameter is decreased to 1
and increased to 3.

Fig. 6 shows the processing times for the new values of
image size. Clearly, the system is very sensitive to variations
of the image size. Processing images of 640 KB, the CPU
reaches saturation at a frequency of 10 images/second and
with images of 384 KB, saturation is reached at a frequency of
20 images/second. Figures of the other metrics have not been
included due to lack of space.

0

500

1000

1500

2000

2500

3000

0 5 10 15 20 25

Pr
oc

es
sin

g
tim

e
(m

s)

Generation Frequency (images / s)

640 KB

512 KB

384 KB

Fig. 6. Sensitivity of the processing time to variations of the image size

Fig. 7 shows the processing times for new values of the
radius of the median filter. When the radius increases from 2
to 3, the CPU reaches saturation at a very low frequency,
between 5 and 10 images/second, and the processing time
increases to unacceptable values. On the contrary, when the
radius decreases from 2 to 1, the CPU never saturates and the
processing times practically do not change within the range of
frequencies considered in this analysis.

Of course, this sensitivity analysis can be carried out for
each of the software and hardware factors that the engineer
considers could be changed. Furthermore, the engineer can
analyze the effect of changing simultaneously 2, 3, or more
factors. For a fixed frequency, the analysis of the influence of
K factors which can take only two values (low, high) on a
single output metric can be developed using the well-known
theory of 2K experimental designs.

0

1000

2000

3000

4000

5000

6000

0 5 10 15 20 25

Pr
oc

es
sin

g
tim

e
(m

s)

Generation Frequency (images /s)

R = 3

R = 2

R = 1

Fig. 7. Sensitivity of the processing time to variations of the radius of the
median filter (the image processing algorithm)

V. CONCLUSIONS
In this work we have presented a method to develop the

performance engineering of image processing systems. The
proposed method is empirical and requires the development of
an initial prototype of the application and the development of
a sequence of experiments taking performance measurements.
The method focuses on the determination of the maximum
operational frequency of image processing, and optionally its
storage, when the application is executed on multi-core
computers.

The experimental environment required by the method is
minimal, because it consists of only two computers. A multi-
core computer is used to execute the image processing
application. This computer must be similar to the final
computer selected for the system. Another computer is
required to execute the camera emulator. It is essential that
this computer has enough computing power to generate
images at the frequencies required by the experiments, without
generating undesired delays.

Although the method may seem a little cumbersome, it
provides very realistic performance metrics, and furthermore,
the use of prototypes is always necessary to provide data to
other analytic or simulation-based methods that could be less
awkward.

Acknowledgment
This work has been partially funded by the project

TIN2014-56047-P of the National Spanish Research,
Development & Innovation Program.

References

[1] J. Jain, The Art of Computer Systems Performance Analysis:
Techniques for Experimental Design, Measurement, Simulation, and
Modeling. Wiley, 1991.

[2] J.W.V. Miller, C. Eddy, F.M. Waltz, R Hack, J. Wood and D. Stokes,
“Image processing benchmark study,” Proc. SPIE 3521, Machine Vision
Systems for Inspection and Metrology VII, November 1998.

[3] P. Ranganathan, S. Adve and N.P. Jouppiy, “Performance of image and
video processing with general-purpose processors and media ISA
extensions,” Proceedings of the 26th International Symposium on
Computer Architecture, Atlanta, USA, May 1999.

[4] R.E. Artz, B.J. Loe, J.M. Pavelich and J.P. Bergmann, “Exploring multi-
core processors using realistic signal- and image-processing application
benchmarks,” Proceedings of the 11th Annual Workshop on High
Performance Embedded Computing, Lexington, Massachusetts, USA,
September 2007.

[5] P.A. La Fratta, “Performance evaluation of synthetic benchmarks and
image processing (IP) kernels on Intel and PowerPC processors,”
Technical Report RDMR-WD-13-11o US Army Research,
Development, and Engineering Command, August 2013.

[6] D. Talla, L.K. John, V. Lapinskii and B.L. Evans, “Evaluating signal
processing and multimedia applications on SIMD, VLIW and
superscalar architectures,” Proceedings of the International Conference
on Computer Design, pp. 163-172, Austin, TX, USA, September 2000.

[7] I.K. Park, N. Singhal, M.H. Lee, S. Cho and C.W. Kim, “Design and
performance evaluation of image processing algorithms on GPUs,”
IEEE Transactions on Parallel and Distributed Systems, vol. 22, no. 1,
pp. 91-104, January 2011.

[8] A. Asaduzzaman, A. Martinez and A. Sepehri, “A time-efficient image
processing algorithm for multicore/manycore parallel computing,”
Proceedings of the IEEE Southeast Conference, Fort Lauderdale, FL,
USA, April 2015.

[9] S. Saxena, S. Sharma and N. Sharma, “Parallel image processing
techniques, benefits and limitations,” Research Journal of Applied
Sciences, Engineering and Technology, vol. 12, no. 2, pp. 223-238,
2016.

[10] S. Singh, P. Kaur, K. Kaur, “Parallel computing in digital image
processing,” International Journal of Advanced Research in Computer
and Communication Engineering, vol. 4, no. 1, pp. 183-186, January
2015.

[11] C. Nicolescu and P. Jonker, “A data and task parallel image processing
environment,” Parallel Computing, vol. 28, no. 7-8, pp. 945-965, August
2002.

[12] A. Kika and S. Greca, “Multithreading image processing in single-core
and multi-core CPU using Java,” International Journal of Advanced
Computer Science and Applications, vol. 4, no. 9, pp. 165-169, 2013.

[13] D. Akgün, “Performance evaluations for parallel image filter on multi-
core computer using Java threads,” International Journal of Computer
Applications, vol. 74, no. 11, pp. 13-19, July 2013.

[14] Q.W. Samyan, W. Sahar, W. Talha, M. Aslam, and A.M. Martinez-
Enriquez, “Real-time digital image processing using point operations in
multithreaded systems,” Proceedings of 14th Mexican International
Conference on Artificial Intelligence, pp. 25-31, Cuernavaca, Mexico,
October 2015.

[15] R. Petryniak, “Analysis of efficiency of parallel computing in image
processing task,” Czasopismo Techniczne Mechanika, vol. 105,
no. 3-M, pp. 185-193, 2008.

[16] P. Kankaanpää, L. Paavolainen, S. Tiitta, M. Karjalainen, J. Päivärinne,
J. Nieminen, V. Marjomäki, J. Heino and D.J White, “BioImageXD: An
open, general-purpose and high-throughput image-processing platform,”
Nature Methods, vol. 9, no. 7, pp. 683-689, July 2012.

[17] A.C. Knecht, M.T. Campbell, A. Caprez, D.R. Swanson and H. Walia,
“Image Harvest: an open-source platform for high-throughput plant
image processing and analysis,” Journal of Experimental Botany,
vol. 67, no. 11, pp. 3587-3599, 2016.

[18] Z. Juhasz, “An analytical method for predicting the performance of
parallel image processing operations,” The Journal of Supercomputing,
vol. 12, no. 1, pp. 157-174, January 1998.

