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Abstract—Currently, a multitude of systems are developed 
that process a continuous flow of images. They are used, for 
example, for video surveillance, inspection and control of 
products manufactured in production lines, automatic guidance 
of robots, vehicles, etc. For these systems to be useful, they must 
be able to process and store images at a minimum frequency. 
Therefore, when designing these systems it will be essential to 
determine the frequency at which they can operate depending on 
the characteristics of the images, the algorithms used to process 
them, and the computer hardware selected. Despite the 
importance of estimating and adjusting the performance of these 
imaging systems, there are hardly any methodologies for 
developing the performance engineering of them. With the aim of 
covering this gap, this article presents a simple experimental 
method to develop the performance engineering of the image 
processing systems and in particular to determine their 
maximum operational frequency or throughput. Using the 
proposed method, any performance engineer can determine the 
maximum working frequency of a system systematically and 
check that it exceeds the minimum required frequency. In 
addition, the engineer can also obtain the necessary information 
to reconfigure the system, eliminate performance bottlenecks, 
and take advantage of the computing power of the hardware 
properly. 

Keywords—image processing; performance engineering; 
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I.  INTRODUCTION 
Currently, the number of image processing applications is 

increasing more and more, for multiple purposes like 
continuous video-vigilance, entertainment, etc. 

One particular sector is manufacturing, where image 
processing techniques are being extensively used to inspect 
and check the quality of manufactured products. Generally, 
the requirements for the development of new automatic 
inspection systems include a high defect-detection ratio, a low 
cost of the system, easy procedures for maintenance, etc. To 
meet these contradictory requirements, the system developers 
generally use standard image sensors and a powerful personal 
computer running a common operating system, such as 
Windows. 

The utilization of standard computing hardware and 
operating systems allows lowering the cost of the system and 
makes maintenance easier, but it complicates the fulfillment of 

performance requirements, like the throughput or deadlines for 
processing the stream of acquired images. 

The solution presented in this work is the utilization of a 
benchmarking technique. The developer must configure an 
adaptable benchmark to emulate the expected operational 
conditions of the target image processing application and its 
underlying hardware components. The experiments developed 
with the benchmark will provide insights about the maximum 
achievable performance. 

Generally, the image processing system must achieve 
predefined minimum requirements to be useful, but if the 
system has sufficient computational resources, they can be 
used to improve the results provided. For example, the 
developer can weigh the achievable acquisition and processing 
rate of images against the size or resolution of the images used 
by the system. 

Therefore, the developer can effectively use the 
benchmark to achieve an optimal compromise between the 
different configuration options for the system. 

The rest of the paper is organized as follows: in Section 
two a review of related work is presented. The proposed 
benchmark is introduced in Section three and the performance 
engineering method is explained in Section four. Finally, 
Section five presents the conclusions of this work. 

II. RELATED WORK 
The estimation of achievable performance of image 

processing systems is a research topic of permanent interest. 
In this work, the term performance must be associated with the 
minimum execution time or the maximum throughput that a 
system can provide by optimally tuning the image processing 
algorithms to the underlying computing hardware. However, 
there are many other research works that use the term 
performance to describe the level of success of segmentation, 
classification, object detection, etc., of image processing 
algorithms. 

The performance engineering process can be developed 
using techniques based on measurement, analytical modeling 
and simulation [1]. In general, an initial prototype of the 
system is required to take measurements of the execution time 
of the basic algorithms used in the system. Then, the 



 

 

measurements can be used to adjust analytical or simulation 
models of the system. 

Before starting a detailed software performance 
engineering process, benchmarking experiments can be 
developed to obtain insights about the achievable 
performance. But this performance depends on the computing 
architecture used to implement the system. There are several 
research works that study the benchmarking of image 
processing systems based on standard multi-core processors 
[2] [3] [4] [5]. Other works have extended the analysis 
comparing a classical superscalar processor with specialized 
architectures like SIMD and VLIW [6]. Furthermore, other 
works address the performance evaluation of systems 
developed on GPUs [7] [8]. 

All the previous works provide insights into how to 
evaluate the capabilities of general-purpose or specialized 
processors to execute image processing algorithms. However, 
the approach followed in this work is more particular, because 
the focus is on determining the achievable performance of an 
image processing application on a general-purpose multi-core 
processor using multithreading. 

The benefits and limitations of parallel image processing 
techniques are summarized in [9], including many references 
to other research works. Any multithreaded application can 
take advantage of a multi-core processor in two basic ways: 
reducing the processing time of each image or increasing the 
number of images processed per second [10]. 

Several works have evaluated the reduction of the 
processing time of a complete image by partitioning the image 
in regions and devoting one thread to process each region, 
working all threads in parallel [11]. The partition can be 
defined manually and the threads are scheduled statically [12] 
or dynamically [13] to compensate the irregularities in the 
execution times provoked by slow threads. The partitions of 
the image can also be defined automatically using an API 
integrated with a tool like MATLAB [14]. 

There are very few works on methodologies focused on 
increasing throughput in image processing systems 
systematically. General ideas are presented in [15] and other 
works simply present high-throughput imaging systems [16] 
[17] but they do not explain their configuration or their 
computational optimization. Therefore, this paper covers a gap 
in the technical literature presenting a methodology for 
carrying out the performance engineering of image processing 
systems focusing on maximizing the achieved throughput. 

Finally, with the measurements obtained from the 
prototype, a performance model of the image processing 
system can be developed and used for predicting the 
performance of the system [18], although this approach is 
complementary to that proposed in this work. 

III. THE CONFIGURABLE BENCHMARK 
The configurable benchmark is composed of three 

programs executed in two computers. The first program 
emulates the device that generates the images, a camera, and it 
runs alone in a computer. The second program emulates the 

driver of the device. Its primary objective is to receive images 
from the camera and place them in a shared memory. The 
third program is a consumer of the images placed in the shared 
memory. This consumer processes each received image using 
one or more algorithms sequentially, and optionally, stores the 
image on a disk. Both programs, the driver and the consumer, 
run on the computer initially selected to host the final image 
processing application. Fig. 1 shows this benchmarking 
environment, in which the two computers are communicated 
through 1 Gbps Ethernet link. 

Device Driver

Computer 1
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Shared
Memory Consumer

Disk

Alarm
1 Gbps
Eth Link

 
Fig. 1. Benchmarking environment 

The following subsections explain the main components of 
the benchmarking  environment. 

A. The device emulator program 
The program that emulates the camera operates as a 

network server that waits for a TCP connection from a driver. 
Just after the connection is established, the emulator starts a 
loop. In each cycle of the loop an image is generated and sent 
to the driver. Although a real device would be sending images 
until its disconnection or powering off, in this program a fixed 
large number of cycles is commonly used to develop the 
experiments. 

At the beginning of each cycle, the program waits for the 
signaling of an event called StartCycle. This event is 
periodically signaled by a timer. The period between two 
successive signals can be easily configured. 

Within the cycle, an image is generated with the required 
pixel format (graylevel8, rgb24, rgba32, etc.) and the desired 
number of rows and columns. The content of the image 
depends on the processing to be developed by the consumer. 
The images can have several backgrounds, such as random 
noise, patterns, gradients, etc., and they can have some 
foreground objects, like simple geometrical figures and text or 
numbers. 

The image is then sent to the driver through the Ethernet 
link, using the sockets API and controlling the possible 
fragmentation of information. A number identifying the image 
is sent with each image. 

Immediately after sending the image, the program waits 
for the reception of an acknowledge message from the driver, 
containing the identifier of the image received by the driver. 
Logically, the identifiers of the sent image and the received 
image must be identical. 

Before the end of the cycle, the image generated is stored 
on a disk in a common format, like .bmp, to check the 
correctness of the generated images. 

In order to check the performance of the device emulator, 
the time at the beginning and at the end of each cycle is stored 



 

 

in arrays. At the end of the programmed cycles, the times 
required to generate and send the images are processed to 
obtain performance metrics. 

This device emulator can also be used to develop a 
tolerance strategy against disconnection and reconnection of 
the Ethernet cable, network failure, etc., and also to emulate a 
control protocol for the device. However, these issues are not 
related to performance aspects, and therefore, will not be 
presented in this work. 

B. The driver program 
The program working as a driver of the camera operates as 

a network client that establishes a TCP connection with the 
camera emulator. 

As soon as the connection is established, the driver starts a 
loop. At the beginning of each cycle, the driver waits blocked 
in a socket for the reception of an image. When the driver 
returns from the Receive call, it checks that all expected bytes 
have arrived, and then, it sends an acknowledge message to 
the camera emulator indicating the correct reception of the 
image. Afterwards, the driver writes the image in a shared 
memory, from which any consumer program can read it. 

C. The consumer program 
The consumer program follows a master-worker approach 

implemented with multiple threads. This software architecture 
allows the maximization of the system throughput easily. The 
main thread of the consumer waits, in a blocked state,  for the 
driver to write a new image in the shared memory. When the 
driver finishes the writing of an image, it unblocks the 
consumer. Then, the consumer copies the image to a private 
buffer and starts a new thread to process the image. 
Optionally, a second thread can be started to store the image 
on a disk. Fig. 2 shows the expected behavior of this software 
architecture. 
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Fig. 2. Behavior of the master-worker application 

In the prototype the processing algorithm must emulate 
realistically the processing required by the real application. 
The time taken by the processing depends on the computations 
carried out by the processing thread. 

IV. THE PERFORMANCE ENGINEERING METHOD 
The primary objective of the method is to determine the 

maximum useful frequency achievable for an image 
processing system, implemented on a multi-core computer. 
But there is a broad objective beyond obtaining this frequency. 
The method must also provide metrics about the correct 
utilization of computer resources, giving indications about the 
presence of performance bottlenecks in software and hardware 
and the way to solve them. 

In order to obtain the values of the metrics, a sequence of 
experiments must be developed. But before defining any 
sequence, each individual experiment must be defined. 

A. Characterization of a basic experiment 
Any experiment developed with the configurable 

benchmark can be modeled as the black-box shown in Fig. 3 
with several inputs and outputs. 

ExperimentFrequency Number of threads used

Execution time

Device utilization (CPU, Disk, Net)

Software
Configuration

Hardware
Configuration

 
Fig. 3. Inputs and outputs of an experiment 

Following the terminology used in Experimental Design, 
each experiment has response variables (outputs) and factors 
(inputs), whose influence on outputs must be quantified. 

In Fig. 3 there are three response variables and multiple 
factors. At the top of the Experiment are the factors of the 
software, defined by the configuration of the image processing 
benchmark (image size, pixel format, image processing 
algorithms, etc.). At the bottom of the Experiment are the 
factors of the hardware, defined by the configuration of the 
computer used (processor type, number of cores, type and 
number of disks, etc.). On the left of the Experiment is the 
primary factor, the frequency of image generation, which 
defines the computational load supported by the system. This 
factor takes several values during an experiment, while the 
other factors remain constant. 

B. Determining the maximum operational frequency 
The method to determine the maximum operational 

frequency starts selecting the hardware and software 
configurations. 

The main factors of hardware configuration are defined by 
the characteristics of the  multi-core computer used to execute 
the software, which has an Intel Core i7 920 CPU at 2.66 GHz 
and 6 GB of DDR3-1066 RAM. There are two main factors of 
the software configuration. The first is related to the 
characteristics of the images, mainly defined by the image size 
and pixel format. For the basic experiments the size is 512 KB 



 

 

using pixels of one byte (graylevel8). The second is the 
algorithm(s) to process each image, in this case, a median 
filter with a radius of two pixels applied to each image for 
smoothing. 

With these factors selected, each experiment is developed 
varying the frequency of image generation. Typically, the 
engineer begins with a frequency of one image/second, and 
then progressively increases to two, four, etc., images/second 
exploring the whole range of frequencies at which the system 
can work in acceptable conditions. 

The number of images to process in each experiment must 
be enough for the system to work on a stationary regime for 
sufficient time so that average values of output metrics can be 
calculated with a low variance. 
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Fig. 4. Evolution of the main output metrics along an experiment 

Fig. 4 shows the typical values measured along the time in 
any experiment: the processing time of each image, the 
number of threads active when the processing of each image 
starts, and the utilization of hardware devices. 

From each experiment, the engineer must obtain the 
average values of the defined output metrics. With these 
averages, the graphs of Fig. 5 must be drawn by the engineer. 
All the graphs have the same horizontal axis, which represents 
the frequency of image generation, and all points of the graphs 
in a vertical line correspond to the same experiment. 
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Fig. 5. Output metrics as a function of the generation frequency 

The proposed methodology relies on the direct analysis of 
the graphs. The main output variable is the processing time, 
whose behavior can be related to the other output variables. 



 

 

The average number of concurrent threads used to process the 
stream of images indicates the number of software resources 
dynamically deployed to process the stream. The utilization of 
hardware resources, mainly the CPU utilization, indicates how 
the software threads consume the available CPU time. 

Three sections can be seen in the graph of processing time, 
which must be interpreted by the engineer in combination with 
the other graphs as explained in the following paragraphs. 

 In the left part, with a low frequency of image generation 
(<10 images/s), the system is underloaded, the processing time 
is the minimum possible, and increments of the frequency do 
not provoke perceptible increments of the processing time. 
The number of average active threads is low (<5) and does not 
reach the available processing units (8). The utilization of 
CPU is under 50%. 

In the right part, with a high frequency of image generation 
(>10 images/s), the system is progressively overloaded and the 
processing time increases significantly when the frequency 
also increases. The number of threads running concurrently in 
the system is larger and increases because each thread needs a 
longer time to complete its task, due to the fact it has to share 
the processors of CPU with other threads. With high loads 
there is not one processor available per thread. The utilization 
of CPU increases quickly and soon reaches saturation (>90%) 
for a frequency of 15 images/s. 

Between these two operational regimes, there is the 
inflexion point of performance, which can be considered the 
point in which the system changes from one regime to another 
(from low to high load operation). 

Using the graphs, the engineer can select the frequency 
corresponding to the inflexion point as the maximum 
frequency achievable for the system. But this is the maximum 
frequency to guarantee the optimal performance, 
corresponding to the minimum processing time. In Fig. 5 this 
frequency is 10 images/second. However, the engineer could 
also select the lower frequency at which the CPU reaches 
saturation. From a practical point of view, the CPU is 
saturated when its utilization exceeds 90%. In Fig. 5 this 
frequency is approximately 15 images/second. 

The performance engineer can select as the maximum 
operational frequency for this system any frequency between 
10 and 15 images/second, depending on the main objective of 
the system. 

Selecting a frequency close to 10 images/second, the 
processing times are the lowest possible, very predictable and 
with a low dispersion. However, only half of the capacity of 
the CPU is used. 

Selecting a frequency close to 15 images/second, the 
processing times will be greater, very unpredictable and with a 
high dispersion. But with this selection the full capacity of the 
CPU is used. 

C. Sensitivity Analysis 
After finding the maximum operational frequency and 

knowing the behavior of the system as a function of the 
frequency, the engineer needs to know the sensitivity of the 

output metrics against variations in the input factors (software 
and hardware configuration). 

This analysis can be done for the operational frequency 
selected for the system, for example 10 images/second. But it 
can also be developed for other frequencies building new 
curves. As an example, two software configuration factors are 
varied: 

1) The size of the image, which is decremented and 
incremented by 25%, using image sizes of 384 KB and 
640 KB instead of the original size of 512 KB. 

2) A parameter of the image processing algorithm, the 
radius of the median filter. The initial value of this parameter 
is 2. In the sensitivity analysis this parameter is decreased to 1 
and increased to 3. 

Fig. 6 shows the processing times for the new values of 
image size. Clearly, the system is very sensitive to variations 
of the image size. Processing images of 640 KB, the CPU 
reaches saturation at a frequency of 10 images/second and 
with images of 384 KB, saturation is reached at a frequency of 
20 images/second. Figures of the other metrics have not been 
included due to lack of space. 
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Fig. 6. Sensitivity of the processing time to variations of the image size 

Fig. 7 shows the processing times for new values of the 
radius of the median filter. When the radius increases from 2 
to 3, the CPU reaches saturation at a very low frequency, 
between 5 and 10 images/second, and the processing time 
increases to unacceptable values. On the contrary, when the 
radius decreases from 2 to 1, the CPU never saturates and the 
processing times practically do not change within the range of 
frequencies considered in this analysis. 

Of course, this sensitivity analysis can be carried out for 
each of the software and hardware factors that the engineer 
considers could be changed. Furthermore, the engineer can 
analyze the effect of changing simultaneously 2, 3, or more 
factors. For a fixed frequency, the analysis of the influence of 
K factors which can take only two values (low, high) on a 
single output metric can be developed using the well-known 
theory of 2K experimental designs. 
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Fig. 7. Sensitivity of the processing time to variations of the radius of the 
median filter (the image processing algorithm) 

V. CONCLUSIONS 
In this work we have presented a method to develop the 

performance engineering of image processing systems. The 
proposed method is empirical and requires the development of 
an initial prototype of the application and the development of 
a sequence of experiments taking performance measurements. 
The method focuses on the determination of the maximum 
operational frequency of image processing, and optionally its 
storage, when the application is executed on multi-core 
computers. 

The experimental environment required by the method is 
minimal, because it consists of only two computers. A multi-
core computer is used to execute the image processing 
application. This computer must be similar to the final 
computer selected for the system. Another computer is 
required to execute the camera emulator. It is essential that 
this computer has enough computing power to generate 
images at the frequencies required by the experiments, without 
generating undesired delays. 

Although the method may seem a little cumbersome, it 
provides very realistic performance metrics, and furthermore, 
the use of prototypes is always necessary to provide data to 
other analytic or simulation-based methods that could be less 
awkward. 
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