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Pedro Terán

Abstract Shige Peng’s sublinear expectations generalize ordinary linear
expectation operators. It is shown that the behaviour of sample averages of
Peng i.i.d. variables may be very different from the probabilistic intuition.
In particular, Peng’s generalization of the Monte Carlo method is shown to
be wrong. It is also observed that sublinear expectations coincide with Peter
Walley’s coherent upper previsions on a linear space.

1 A tale of (improbably) three Pedros

It is my great pleasure to contribute to this volume honouring professor Pedro
Gil. I met Pedro after participating in the local phase of the Mathematical
Olympiad (which he organized) and he played a heavy role in my decision
to become a Math student, a possibility I had not considered before. Some
years later, I got a fellowship associated to his research project, which made
it possible for me to get a doctoral degree and thus eventually led me to my
current job. On that count alone, he has been one of the few most influential
people in my life.

When I started as a fellow, the Department of Statistics at Oviedo had
just spinned off from the Department of Mathematics. Both entities would
continue to share equipment (like the copier machine) for some time but
action was taken almost immediately to divide the post-graduates’ room. So
I found myself arriving there and being assigned no space until the works
were done.

About one month later, I went to Pedro’s office to inform him (in his
capacity as head of the department) that I finally had a desk. ‘But I have
nothing to put on it anyway’, I added nonchalantly. To my surprise, he smiled,
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emptied his pencil holder, and handed it to me. He went on to explain that it
had been given to him decades earlier by Pedro Abellanas after a remarkably
parallel conversation, and had been with him for all of his career. That token
of appreciation I have cherished ever since.

This contribution is connected to Pedro’s work on imprecise probability,
a topic on which he was the advisor of Inés Couso and Enrique Miranda.
It makes some observations about Shige Peng’s theory of sublinear expec-
tations. One is that a sublinear expectation is in fact the same thing as a
coherent upper prevision on a linear space of gambles, in Walley’s termi-
nology. Another is that, although Peng’s approach and particularly Peng’s
restrictive definition of independence allow one to obtain analogs of classical
limit theorems, unfamiliar behaviours are possible too.

Finally, Peng’s Monte Carlo method for computing sublinear expectations
is wrong. That is a (rare, one should hope) instance of a counterexample
to a result presented at a plenary lecture of the International Congress of
Mathematicians, therefore something I’m happy to present in return for a
pencil holder.

2 Introduction and preliminaries

Shige Peng devised a purely analytical approach to stochastic analysis. While
that provides a path to learning stochastic calculus without any knowledge
of probability theory, we are interested here in a different side effect. Peng’s
technical machinery, which in essence is based on viscosity solutions of nonlin-
ear partial differential equations, allows one to extend the reach of probability
theory in such a way that the usual expectation is replaced by more general
functionals which are sublinear.

Extended results include fundamental limit theorems like the law of large
numbers [6] (to be discussed below), the central limit theorem, and the large
deviation principle. Peng also constructed a non-additive generalization of the
Brownian motion with its associated stochastic calculus. For an introduction
to Peng’s approach, the reader is referred to the lecture notes [6], survey [4],
and 2010 ICM plenary lecture [5].

A sublinear expectation space is a triple (Ω,H,E) where Ω is a set, H is a
linear space of real functions on Ω (including the constants and closed under
taking the absolute value), and E : H → R is a mapping such that

(SE.i) E[X] ≤ E[Y ] if X ≤ Y ,
(SE.ii) E[c] = c for all constant c.
(SE.iii) E[X + Y ] ≤ E[X] + E[Y ],
(SE.iv) E[cX] = c · E[X] for c ≥ 0.

Elements of H will be called random variables. A subset A ⊂ Ω whose in-
dicator function IA is in H will be called an event (although, events are
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conspicuously absent from Peng’s approach). Its complement will be denoted
Ac.

It turns out, as a consequence of the Hahn–Banach theorem, that every
sublinear expectation admits the representation

E[X] = sup
E∈E

E[X]

for some family of linear functionals E (whose restrictions to events are thus
finitely additive probabilities).

Set
Cl.Lip(Rn) = {ϕ : Rn → R | ∃C,m ≥ 0 | ∀x, y ∈ Rn,

|ϕ(x)− ϕ(y)| ≤ C(1 + |x|m + |y|m)|x− y|}.

In order to consider independence or identical distribution in Peng’s sense,
one must also assume that X ∈ H implies ϕ(X) ∈ H for each ϕ ∈ Cl.Lip(R).
A random variable X will be called Peng independent of a random variable
Y if

E[ϕ(X,Y )] = E[E[ϕ(x, Y )]x=X ] for all ϕ ∈ Cl.Lip(R2),

where E[ϕ(x, Y )]x=X denotes the mapping ω ∈ Ω 7→ E[ϕ(X(ω), Y )]. Ob-
serve that, under this definition, ‘X independent of Y ’ does not imply ‘Y
independent of X’ and, in fact, these are seldom equivalent [2].

Random variables X,Y will be called Peng identically distributed if

E[ϕ(X)] = E[ϕ(Y )] for all ϕ ∈ Cl.Lip(R).

They will be called Peng i.i.d. if they are Peng identically distributed and X
is Peng independent of Y .

A random vector is an element (X1, . . . , Xn) ofHn such that ϕ(X1, . . . , Xn)
∈ H for each ϕ ∈ Cl.Lip(Rn). A random variable Y will be called Peng inde-
pendent of a random vector (X1, . . . , Xn) if

E[ϕ(X1, . . . , Xn, Y )] = E[E[ϕ(x1, . . . , xn, Y )]x1=X1,...,x2=X2 ]

for every ϕ ∈ Cl.Lip(Rn+1). A sequence {Xn}n will be called Peng indepen-
dent and identically distributed (Peng i.i.d.) if Xn is identically distributed
as Xm for all n,m, and Xn+1 is Peng independent of (X1, . . . , Xn) for all
n ∈ N.

Dual to a sublinear expectation E is the superlinear functional E given by
E [X] = −E[−X]. Unlike in ordinary probability theory, in general E 6= E. If
E is linear and E[Xn]→ 0 whenever Xn is a decreasing sequence converging
to 0, then E is the expectation with respect to some probability measure. In
that case one can check that, taking H to be a linear space of measurable
functions, the notions above coincide with the usual ones.

Peng’s PDE background and methods explain the idiosincratic choice of
disregarding events and defining the distribution of a random variable only
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in terms of expectations of the locally Lipschitz functions in Cl.Lip(R). To
handle events, it is convenient to measure them with

ν(A) = E [IA], ν(A) = E[IA] = 1− ν(Ac).

The notation ν, ν reflects the fact that, from a probabilistic point of view, it
seems to be more intuitive to use ν since ν(A) = ν(B) = 1 can happen for
disjoint A,B; hence, a set of ν-measure 1 is not necessarily ‘big’ in the sense
of probability theory. But a set of ν-measure 1 is ‘big’ because, dually, ν is
the infimum of a family of finitely additive probabilities.

We will say that a sequence of random variables {Xn}n converges to
a random variable X almost surely if ν(Xn → X) = 1, in probability if
ν(|Xn −X| < ε) → 1 for each ε > 0, and in law if E[ϕ(Xn)] → E[ϕ(X)] for
each ϕ ∈ Cl.Lip(R).

Of these types of convergence, only convergence in law was considered
by Peng. To ensure {Xn → X} and {|Xn − X| < ε} are events, Peng’s
assumptions on H are not enough. That will not be a problem in this paper.

3 Counterexample to Monte Carlo method, and some
unexpected behaviours

Peng proved the following law of large numbers for sublinear expectations.

Proposition 1. [6, Theorem II.3.1] Let (Ω,H,E) be a sublinear expectation
space. Let {Xn}n be a sequence Peng i.i.d. as a random variable X. Then,

E[ϕ(Sn)]→ sup
x∈[E[X],E[X]]

ϕ(x)

for each ϕ ∈ Cl.Lip(R).

It is interesting to note that, when E is the ordinary expectation against a
probability measure, Peng’s law is equivalent to a weak law of large numbers.

Corollary 1. (Weak law of large numbers) Let X be an integrable random
variable on a probability space (Ω,A, P ). Let {Xn}n be a sequence i.i.d. as
X. Then

Sn → E(X)

in probability.

Proof. It suffices to prove it in the case when X is bounded, since standard
truncation techniques yield then the more general result (see e.g. the proof of
[7, Theorem 7.12]). Thus we assume without loss of generality that X takes
on values in a compact interval [a, b].
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Let f be an arbitrary real continuous bounded function, and fix ε > 0.
By the Weierstrass approximation theorem, there exists a polynomial ϕ such
that supx∈[a,b] |f(x)− ϕ(x)| < ε. With the triangle inequality,

|E[f(Sn)]− f(E[X])| ≤ |E[f(Sn)]− E[ϕ(Sn)]|

+|E[ϕ(Sn)]− ϕ(E[X])|+ |ϕ(E[X])− f(E[X])|.

The first and third terms are bounded above by ε.
We claim now ϕ ∈ Cl.Lip(R). Since Cl.Lip(R) is a linear space, it is enough

to show that the mappings x 7→ xi (i ≥ 1) are in Cl.Lip(R). But

|xi − yi| = |
i−1∑
j=0

xjyi−1−j | · |x− y| ≤ (

i−1∑
j=0

|x|j |y|i−1−j)|x− y|

≤ imax{|x|, |y|}i−1|x− y| ≤ C(1 + |x|m + |y|m)|x− y|

for the choices C = i,m = i− 1.
Having established that claim, and observing that the Xn are Peng i.i.d.,

Proposition 1 gives

E[ϕ(Sn)]→ sup
x∈[E[X],E[X]]

ϕ(x) = ϕ(E[X]),

proving that the second term above goes to 0. In summary,

lim sup
n
|E[f(Sn)]− f(E[X])| ≤ 2ε,

whence the arbitrariness of ε implies E[f(Sn)]→ f(E[X]). By the portman-
teau lemma [1, Theorem 2.1], the arbitrariness of f yields Sn → E[X] in
distribution, which is equivalent to convergence in probability since the limit
is a constant. �

Based on this result, he proposed in [4, Section 5.2] and [5] a Monte Carlo
method relying on the following formula to obtain an almost sure sample
approximation to the expectation:

E[ϕ(X)] = lim sup
n

n−1
n∑
i=1

ϕ(Xi), (1)

for any ϕ ∈ Cl.Lip(R) and Peng i.i.d. Xn. If one can generate a simulated
sequence of Xn, that provides a way of computing the expectation of X (and,
more generally, of nice functions ofX) which would be quite more comfortable
than the representation as a supremum of linear functionals.

We present now a sequence that satisfies Peng’s law of large numbers and
fails (1), showing that the latter does not follow from the former and thus
cannot be used to compute the expectation.
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For a given sequence {Xn}n of random variables, we write

Sn = n−1
n∑
i=1

Xi.

Theorem 1. There exist a sublinear expectation space (Ω,H,E) and a se-
quence {Xn}n ⊂ H such that

(a) The Xn are Peng i.i.d. as some X ∈ H.
(b) E [X] = 0,E[X] = 1.
(c) For every continuous ϕ : R→ R,

E[ϕ(Sn)]→ max
x∈[E[X],E[X]]

ϕ(x).

(d) Sn → E [X] almost surely.
(e) ν(E [X] ≤ Sn ≤ E[X]) = 1.
(f) ν(Sn < E[X]) = 0.

Proof. Set Ω = N ∪ {0}, take H to be the set of all bounded (necessarily
Borel measurable) functions on Ω, and define E[X] = supω∈Ω X(ω) for all
X ∈ H. It is readily checked that E is a sublinear expectation.

Let Xn(ω) be the nth bit in the binary representation of ω, i.e.

ω =

∞∑
n=1

2n−1Xn(ω)

with Xn(ω) ∈ {0, 1}.
Proof of part (a). In this space, Peng identical distribution of two random
variables X,Y amounts to the identity

sup
ω∈Ω

ϕ(X(ω)) = sup
ω∈Ω

ϕ(Y (ω)) ∀ϕ ∈ Cl.Lip(R).

Therefore, any two variables with the same range X(Ω) = Y (Ω) are Peng
identically distributed. Since the range of each Xn is {0, 1}, they are all Peng
identically distributed.

To establish Peng independence, we need to show

sup
ω∈Ω

ϕ(X1(ω), . . . , Xn+1(ω)) = sup
ω∈Ω

[ sup
ω′∈Ω

ϕ(x1, . . . , xn, Xn+1(ω))]xi=Xi(ω′)

= sup
ω,ω′∈Ω

ϕ(X1(ω), . . . , Xn(ω), Xn+1(ω′)).

The ‘≤’ part is clear. Moreover, from the definition of the Xn, the set
{(X1(ω), . . . , Xn+1(ω))}ω∈Ω exhausts {0, 1}n+1. Hence

sup
ω∈Ω

ϕ(X1(ω), . . . , Xn+1(ω)) = sup
(x1,...,xn+1)∈{0,1}n+1

ϕ(x1, . . . , xn+1)
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≥ sup
ω,ω′∈Ω

ϕ(X1(ω), . . . , Xn(ω), Xn+1(ω′))

as well.
Proof of part (b). Setting X = X1, we have

E[X] = sup
ω∈Ω

X(ω) = 1

and
E [X] = −E[−X] = inf

ω∈Ω
X(ω) = 0.

Proof of part (c). As ω ranges overΩ, the (X1(ω), . . . , Xn(ω)) exhaust {0, 1}n.
Thus the range of Sn is {0, 1/n, . . . , (n − 1)/n, 1}. From the continuity of ϕ
and part (b),

E[ϕ(Sn)] = sup
ω∈Ω

ϕ(Sn(ω)) = sup
0≤k≤n

ϕ(k/n)→ max
x∈[0,1]

ϕ(x) = max
x∈[E[X],E[X]]

ϕ(x).

Proof of part (d). In view of part (b), we have to show Sn(ω) → 0 for each
ω ∈ Ω. But that is clear, since the binary representation of each ω ∈ Ω has
finitely many non-zero terms.
Proof of part (e). Since Xn can only take on 0 and 1 as values, 0 ≤ Sn ≤ 1
and then, from part (b),

ν(E [X] ≤ Sn ≤ E[X]) = ν(0 ≤ Sn ≤ 1) = ν(Ω) = E[1] = 1.

Proof of part (f). Since the first n bits of the binary representation of 2n − 1
are 1,

ν(Sn < 1) = E [I{Sn<1}] = inf
ω∈Ω

I{Sn<1}(ω) ≤ I{Sn<1}(2
n − 1) = 0

because Sn(2n − 1) = n/n = 1. �

Peng’s formula (1) predicts

lim sup
n

Sn = sup
x∈[E[X],E[X]]

x = E[X] = 1

almost surely, but Theorem 1.(d) shows on the contrary that

Sn(ω)→ E [X] = 0 ∀ω ∈ Ω.

Thus Peng’s formula is wrong. It might have been the case that it actually
followed from his law of large numbers and the latter were wrong, but The-
orem 1.(c) implies that {Xn}n fulfils Peng’s law of large numbers. Therefore
the problem is that (1) does not follow from the law of large numbers.

Parts (e) and (f) suggest that the behaviour of Sn in this sublinear expec-
tation space is quite different from the usual probability intuition. That is
confirmed by the following proposition.
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Proposition 2. The sequence in Theorem 1 has the following properties:

(a) n−1
∑n
i=1 aiXi → 0 almost surely for any sequence an ≥ 0, in partic-

ular Sn → 0 almost surely.
(b) Sn does not converge in probability.
(c) Sn → Y in law, with the distribution of Y being given by EY [ϕ]
= maxx∈[0,1] ϕ(x).

Proof. Proof of part (a). For each ω ∈ Ω, it holds that Xn(ω) = 0 for n >
log2 ω + 1. Thus, since Xn takes on values 0 and 1,

0 ≤ n−1
n∑
i=1

anXn(ω) ≤ n−1
∑

i≤log2 ω+1

ai → 0.

Proof of part (b). Fix ε ∈ (0, 1/4). Reasoning by contradiction, assume Sn →
Y in probability for some random variable Y . Accordingly, ν(|Sn−Y | < ε)→
1. For each event A one has

ν(A) = E [IA] = inf
ω∈Ω

IA(ω);

the right-hand side is 0 unless A contains all ω ∈ Ω. Therefore, for all suffi-
ciently large n,

{|Sn − Y | < ε} = Ω

and then
{|Sn − S2n| < 2ε} = Ω.

Whatever n may be, since the first n bits of the binary representation of
2n − 1 are ones and the next n bits are zeros, we have

Sn(2n − 1) =
n

n
= 1, S2n(2n − 1) =

n

2n
= 1/2.

But ε < 1/4, whence |Sn(2n − 1)− S2n(2n − 1)| > 2ε, a contradiction.
Proof of part (c). It follows from Theorem 1.(c) or Peng’s law. �

Thus the behaviours of Sn with respect to the three types of convergence
are all different, in particular

1) Almost sure convergence does not imply convergence in probability.
2) The limit of the sequence of laws exists but is not the law of the almost

sure limit.
3) Almost sure convergence does not imply convergence in law.

It must be emphasized that a.s. convergence is not a weak notion in this con-
text. In fact, it implies uniform a.s. convergence over a family of finitely addi-
tive probabilities (and, under appropriate conditions, see e.g. [3], σ-additive
probabilities).
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To make things even more interesting, for this sublinear expectation con-
vergence in probability actually implies almost sure convergence; that is an
instance of a more general phenomenon (see e.g. [8, Proposition 5.1]).

4 Sublinear expectations and coherent upper previsions

The purpose of this section is to observe that Peng’s sublinear expectations
are the same thing as the coherent upper previsions in e.g. Walley’s book [10].
While Peng cites Walley, he seems to have been unaware of the equivalence.

A coherent upper prevision is a functional E on a linear space H of func-
tions (called gambles) on a set Ω, such that, for any n ≥ 0, m ≥ 1, and
X0, X1, . . . , Xn ∈ H,

inf
ω∈Ω

[ n∑
k=1

(Xk(ω)− E[Xk])−m(X0(ω)− E[X0])
]
≤ 0.

Proposition 3. Let E be a functional on a linear space H of bounded func-
tions (closed under taking the absolute value) on a set Ω. Then E is a sub-
linear expectation if and only if E is a coherent upper prevision.

Proof. Walley [10, Section 2.6] showed that E is a coherent upper prevision
if and only if the following three properties are met for any X,Y ∈ H:

(CUP.i) E[X] ≤ supω∈Ω X(ω),
(CUP.ii) E[X + Y ] ≤ E[X] + E[Y ],
(CUP.iii) E[cX] = c · E[X] for c ≥ 0.

Properties (CUP.ii) and (CUP.iii) are the same as properties (SE.iii) and
(SE.iv) of a sublinear expectation. Thus the proof splits into two parts.
1. A sublinear expectation satisfies (CUP.i).
Let X ∈ H. Then, by (SE.i) and (SE.ii),

E[X] ≤ E[ sup
ω∈Ω

X(ω)] = sup
ω∈Ω

X(ω).

2. A coherent upper prevision satisfies (SE.i) and (SE.ii).
(SE.i): If X ≤ Y , then, using (CUP.ii) and (CUP.i),

E[X] = E[Y +(X−Y )] ≤ E[Y ]+E[X−Y ] ≤ E[Y ]+sup
ω∈Ω

(X(ω)−Y (ω)) ≤ E[Y ].

(SE.ii): From (CUP.iii) and (CUP.ii),

0 = E[0] = E[c− c] ≤ E[c] + E[−c].

By (CUP.i), E[c] ≤ c and E[−c] ≤ −c. Combining the three inequalities,
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c ≤ −E[−c] ≤ E[c] ≤ c,

which proves E[c] = c. �

5 Concluding remarks

The sequence {Xn}n in Theorem 1 is interesting when contemplated from
the probabilistic perspective. Each Xn should have, intuitively, a Bernoulli
B(1/2) distribution. The product space {0, 1}N admits then a unique proba-
bility measure (the product measure P) such that all those distributions are
independent. But the subset of {0, 1}N which corresponds to Ω, namely the
0-1 sequences with finitely many ones, is P-null, whence a probability for Ω
cannot be retrieved from P.

Proposition 5.3 in [8] presents an example of behaviours similar to Propo-
sition 2, but the independence in the sense of Peng is not satisfied there
(only a rather weaker form of independence holds), and a different definition
of convergence in law is used as well. Theorem 1.(a) is similar to Proposition
6.1.(a) in [9], but both the notions of independence and identical distribution
used are different.
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