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Abstract The depth of a multivariate observation assesses its degree of cen-
trality with respect to a probability distribution, and thus it can be inter-
preted as a measurement of the fit of the observation wrt the distribution.
If such depth is transformed into a (depth-based) rank, then we obtain a
kind of p-value of a goodness-of-fit test run on a single observation. For a
sample of observations, the goal is to combine their ranks in order to decide
whether they were taken from some prescribed distribution. From the meta-
analysis literature, it is well known that there does not exist a combination
procedure for such p-values (or ranks) that outperforms the remaining ones
in all possible scenarios. Here we explore several combination procedures of
the depth-based ranks and analyse their behaviour in the detection of some
given shifts from a prescribed distribution.

1 Introduction

In multivariate Statistics, a depth function assesses the degree of centrality of
an observation with respect to a probability distribution or a data cloud, see
[2, 8, 12, 18, 19]. Based on the ordering provided by such a depth function,
it is possible to build a rank for multivariate observations defined as the
proportion of observations that are at most as central as the given one. A
central observation has thus a rank close to 1, while the rank of a peripheral
observation is close to 0.

Based on such depth-based ranks, Liu [9] proposed three control charts
for multivariate observations. Specifically, she proposed an individuals chart
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that monitors the rank of each individual observation, a chart for rational
samples of a given size, and a chart with memory that combines all obser-
vations until the current one. These two last charts combine the information
of the individual observations by averaging their respective (depth-based)
ranks. The idea is simple, since peripheral observations have small ranks, an
alarm must be risen at the individuals chart whenever a very small rank is
detected. When several observations are considered, the alarm is risen when
their average rank is small. We will show here that other combination pro-
cedures different from averaging ranks provide better results at some given
scenarios.

In the Statistical Process Control literature, there is a considerably large
number of proposals of nonparametric univariate control charts that monitor
on-going processes either in location, scale, or in location and scale, see [5, 13].
Notice that the (usual) rank of a univariate observation, defined as the cdf
evaluated at it, locates the observation throughout the range of the random
variable, while the depth-based ranks that we consider here only establish
how central an observation is wrt a distribution. In this sense, if each point
of a control chart is to be interpreted as the statistic of a goodness-of-fit test
with H0 establishing that the distribution of the process has not departed
from some prescribed one, and H1 that some shift has altered the location
parameter (and the scale parameter might have also increased), then the test
built out of a (classical) univariate rank is two-sided, while the one built out
of a depth-based rank is one-sided. The fact that the test is one-sided, means
that the control chart has only one Control Limit, and it is also relevant that
the departure of an observation from the center cannot be compensated by
some other observation, simply because when we use a depth function, we
miss the information of the direction of the departure. A possible alternative
to the usage of a depth-based rank that would make use of the information
of the direction of the departure is to estimate a parameter over each sample
and then evaluate the depth over such estimates of the parameter either with
a parameter depth notion as in [4] or with a classical depth evaluated over
artificial samples of parameters as in [11].

Consider now a depth-based rank evaluated over a single observation.
When the process distribution has not departed from the original one, and
under fairly weak assumptions, the distribution of such rank is uniform in
the unit interval and an alarm is to be risen if it is very small, so essentially
the rank can be considered as the p-value of a goodness-of-fit test. If we have
a rational sample of a given size, the combination of ranks is equivalent to
the combination of p-values, so we face a meta-analysis problem, see [1, 14],
with p-values coming from one-sided tests.

In Section 2 we introduce several classical notions of depth, together with
the depth-based rank and some classical control charts built from it. In Sec-
tion 3 some alternative combination methods of ranks are presented, and the
performance of the control charts built from them is presented in Section 4.
Finally, an application of the proposed procedure is discussed in Section 5.
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2 Depths, depth-based ranks, and control charts

The standard charts for monitoring a production process are the individu-
als X-chart (for individual observations), the X-chart (for rational samples
of a given fixed size), and the CUSUM-chart (for samples of an increasing
size, and thus with memory). These charts are very simple and efficient in
the univariate framework under some parametric hypothesis. However, their
multivariate generalizations are quite sensitive to departures from the distri-
butional assumptions.

In order to avoid these problems, Liu [9] proposed alternative charts based
on data depth. Given a distribution P in the k-dimensional Euclidean space,
the simplicial depth of y ∈ Rk with respect to P is defined in [8] as

SDP (y) = Pr{y ∈ co{Y1, . . . , Yk+1}},

where Y1, . . . , Yk+1 are k+1 independent random variables with distribution
P and co stands for the convex hull. The empirical simplicial depth built out
of a sample Y1, . . . , Ym, is defined as the U -statistic

SDm(y) =

(
m

k + 1

)−1 ∑
1≤i1<...<ik+1≤m

I(y ∈ co{Yi1 , . . . , Yik+1
}).

Other alternative notions of data depth are Tukey’s [16, 18] half-space depth

HDP (y) = inf{P (H) | H closed half-space with y ∈ H},

and Koshevoy and Mosler’s [7] zonoid depth

ZDP (y) = sup{α ∈ (0, 1] | y =

∫
xg(x) dP (x),

with g : Rk 7→ [0, α−1],

∫
g(x) dP (x) = 1} .

The empirical half-space and zonoid depths are obtained after substituting
P by an empirical distribution Pm and denoted by HDm(y) and ZDm(y) .

Based on any of the previously introduced depth notions, denoted by DP ,
we can define the rank of an observation with respect to the P as

rP (y) = Pr{DP (Y ) ≤ DP (y) | Y ∼ P}.

When the available information about P appears in terms of a sample
Y1, . . . , Ym, the empirical rank is given by

rm(y) = #{Yj | Dm(Yj) ≤ Dm(y), j = 1, . . . ,m}/m ,
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where # stands for the cardinality of a set. Both rP and rm measure how
central is a point y with respect to a distribution (either a population P or
an empirical distribution Pm), in the sense that the smaller the rank of y is,
the more peripheral y is with regard to the distribution.

For any of the previous depth notions, if X ∼ P absolutely continuous,
then rP (X) follows a uniform distribution in the unit interval, see Liu and
Singh [10]. Further, since the empirical depths are uniformly consistent es-
timators of the population depths, then each empirical rank rm(X) weakly
converges to a uniform distribution in the unit interval. The uniform con-
sistency of the three empirical depths introduced above for absolutely con-
tinuous distributions can be found at [8] (simplicial depth), [6] (half-space
depth), and [3] (zonoid depth).

Given a sample of observations X1, . . . , Xn, which we will denote by X(n),
Liu and Singh [10] define a quality index to quantify the quality of X(n) as
a random sample from P ,

QP (X
(n)) =

1

n

n∑
i=1

rP (Xi) , (1)

as usual, the quality with respect to the empirical probability Pm is obtained
after substituting the rank with respect to P by the empirical rank and will
be denoted Qm(X(n)) . We turn now our attention to the specific control
charts proposed by Liu [9].

Q-chart

The Q-chart is a non-parametric and multivariate generalization of She-
wart’s X−chart. Rational subgroups of size n are subsequently considered,

X
(n)
1 , X

(n)
2 , . . . and their quality indices QP (X

(n)
1 ), QP (X

(n)
2 ), . . . are plotted

in a time chart. The unique (lower) Control Limit is set at the α-quantile of a
sum of n independent uniform random variables in order to obtain a control
chart with false alarm rate (significance level at the goodness-of-fit test) α.

S-chart

The S-chart is a non-parametric and multivariate counterpart of the CUSUM-
chart. Given the new observations X1, . . . , Xn, it monitors the cumulative
sum of their ranks, that is, for j = 1, . . . , n

Sj =

j∑
i=1

(
rP (Xi)−

1

2

)
= j

(
QP (X

(j))− 1

2

)
.



On the combination of depth-based ranks 5

The process is considered to be out-of-control when the cumulative sum rep-
resented by Sj is too small. Under the assumption that j is large enough

in order to apply the CLT, the Control Limit is given by −(zα
√
j/12). If

instead of P , the historical information about the process appears as a sam-
ple of size m, the Control Limit is corrected due to the variability of such
sample to adopt the expression −(zα

√
(j + j2/m)/12). A modification of the

S-chart appears in the form of the S∗-chart, which monitors the statistic
S∗
j = Sj/

√
j/12. The Control Limit for the S∗

j -chart is constant at −zα.
In Fig. 3 left, Q-, S- and S∗-charts are represented.

3 The proposal

The combination of several ranks is the same problem as the combination
of several p-values in a meta-analysis procedure. In Eq. (1) those ranks were
averaged in order for an alarm to be risen whenever such average was too
small. One reasonable property that any method of combination must satisfy
is admissibility (following the jargon proposed at [1]). This property says that
if an alarm is risen at a sample of ranks r1, . . . , rn, it would also be risen at
any other sample r∗1 , . . . , r

∗
n with r∗i ≤ ri for each i.

We take advantage of the uniformity of the ranks and apply the inverse
transform for some distribution models for which the distribution of the sum
of independent random variables is well-established. That is, each individual
rank is to be transformed and then, the random variables obtained will be
added. The distribution models we consider in our weighting scheme are
right-skewed and supported on the positive half-line in order to be sensitive
to peripheral observations when they are applied to the counter-rank (1− r).

Since we apply an increasing transformation to each counter-rank (resp.
rank), alarms are risen for large (resp. small) aggregated results. If F denotes
the cdf of a continuous distribution, we can aggregate the transformations of
the rank in terms of the quantile function F−1:

QF
P (X

(n)) =

n∑
i=1

F−1(1− rP (Xi)), (2)

and rise an alarm for large values of theQ statistic. Alternatively, it is possible
to use the counter-ranks, whose Q index will be denoted by Q−, and rise an
alarm for small values of the statistic.

When F stands for an exponential Exp(1) distribution or a beta Beta(.5, 1)
distribution, we obtain Q indices whose distribution is know when X ∼ P ,

QExp
P (X(n)) = −

n∑
i=1

log(rP (Xi)) ∼ Gamma(n, 1) , (3)
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QBeta
P (X(n)) =

n∑
i=1

(1− rP (Xi))
2 . (4)

Expression (3) can be alternatively obtained after taking the logarithm of the
product of the ranks and corresponds to Fisher’s (meta-analysis) method,
which usually appears multiplied times 2 in order for its distribution to be
χ2
2n . The distribution of (3) is the one of the sum of squares of uniform

random variables in the unit interval, and a tractable explicit expression for
it, when n is not too large, is given at [17]. For large values of n, we can apply
the CLT.

Other possible choices for F in (2) are the uniform distribution in the
unit interval and the chi-squared distribution χ2

1. In the first case, the index
Q amounts to the sum of the counter-ranks and we obtain n − nQP (X

(n)),
which is a decreasing transformation of (1) since the control limit here is an
upper one, while in the second the Q index would follow a χ2

n distribution.

Remark 1. The aggregation method used at (2) is the addition, which is re-
lated with the product in (3), but it is also possible to consider the maximum,
minimum, or any given intermediate observation.

Q-chart

The Q-chart is based on subgroups of size n of observations, X
(n)
1 , X

(n)
2 ,

. . . For transformations based on the quantile function, the aggregations

QF
P (X

(n)
1 ), QF

P (X
(n)
2 ), . . . are plotted in a time chart, together with a unique

upper Control Limit, which can be exactly computed. In case the counter-
ranks are used, the unique Control Limit is a lower one.

S-chart

Given the observations X1, X2, . . . consider the cumulative sum of the trans-
formed ranks and subtract the mean of distribution F from it, µ(F ), as many
times as observations are available

SF
j = QF

P (X
(j))− jµ(F ), for j = 1, 2, . . .

where again X(j) denotes the first j observations. If each Xi follows distribu-
tion P , then each SF

j is a random variable centred at 0, whose distribution
can be approximated to a normal by the CLT, and thus the upper Control
Limit is established at zασ(F )

√
j.
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4 Comparison results

As stated before, there is no weighting of the ranks that outperforms the
remaining ones in the detection of all possible shifts in a distribution. It is
actually the distribution of the rank of the observation of a shifted process
(known to be uniform in case there is no shift) what determines which is
the best weighting for the detection of each individual shift. In Fig. 1 below
we have represented the density mass function of the (depth-based) rank of
a standard Gaussian (left) and a Cauchy distribution (right) unshifted and
after several possible shifts in the location parameter.
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Rank density, Gaussian(0,1), shifts in location

No shift
1 unit
2 units
3 units
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0
1

2
3

4
5

Rank density, Cauchy(0,1), shifts in location

No shift
1 unit
2 units
3 units

Fig. 1 Density mass functions of the (depth-based) ranks of a standard Gaussian and a
Cauchy distribution after a shift in the location parameter.

If the location parameter of a Gaussian distribution is shifted, the distri-
bution of the rank is close to the one of a Beta(1, a) distribution with a > 1,
as conjectured in [15, Sec. 5.2], but if the reference distribution has heavy
tails, the situation is quite different, as can be observed in Fig. 1 right.

In order to compare the transformation of the ranks introduced in the
previous section, at Fig. 2 we have represented the Operating Characteristic
curves obtained for the detection of shifts in location, on samples of size
n = 5, with α = 0.05, and two different distribution models of the process.
The lines correspond to the probability of not detecting a shift, which is
always 0.95 if there is no shift in location (at x = 0) and should be as low
as possible any real shift. On the left (bivariate Gaussian distribution), the
best transformation is the logarithmic one, then the square, and finally the
pure averaging of the ranks. On the right we considered the Laplace (double
exponential) distribution since it has heavier tails. Here it turns out that
if the shift in location is small, the usage of the counter-ranks in order to
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Fig. 2 Operating Characteristic curves of several Q and Q− charts at the detection of

shifts in location for samples of size n = 5 and false alarm rate α = 0.05.

produce index Q− together with the logarithmic or square transformation is
a good option. For large shifts, the square transformation seems to be the
best option, while overall the pure average of the ranks is the best option.

Proposed procedure

For some reference distribution or historical dataset, fix a sample size, a false
alarm rate, and a target shift. The target shift is the minimal shift in whatever
parameters of the reference distribution that should be detected. With these
reference values, we can apply the shift to the historical dataset and resample
from it. Finally, we select the transformation that detects such a shift with
the largest probability.

5 Application

The data used in this section is borrowed from [9], where 580 observations
were simulated from a bivariate standard normal distribution. The first 500
observations were used as the historical dataset and all depths were computed
with respect to them. For the second group of 80 observations, the first 40 of
them were kept without modifications and the last 40 were first multiplied by
a scale factor of 2 and then vector (2, 2) was added to them, so they suffered
a shift in location and scale. The second group of 80 observations was split
in 40 samples of size n = 4 in order to obtain a Q-chart. The first 10 samples
were taken before the shift, while the last 10 were obtained after the shift.
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The first row of Fig. 3 contains Q-charts, while the second and third con-
tain S- and S∗-charts. On the left column the pure average of the ranks
was considered (as in [9]), while the logarithmic and square transforms were
applied on the middle and right columns.

In the first row of Fig. 3 and for α = 0.025, the three Q-charts have the
same behaviour (fail to detect the shift at sample number 18). If we take
α = 0.1 instead, the last two charts detect that shift, but the three of them
classify as suspicious sample number 7. As for the S-charts, the chart on the
left does not detect the shift until the 49th observation (the shift already
occurred at the 41st), while the other two charts already detect it at the
47th.

As observed in Fig. 2 left, the logarithmic and square transformation detect
shifts in a bivariate Gaussian distribution better than the pure average.
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Fig. 3 Q- and S-charts as described by Liu [9] and other two combination schemes.
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