
Early Integration Testing for Entity Reconciliation in the

Context of Heterogeneous Data Sources

Raquel Blanco, J.G. Enríquez, F.J. Domínguez-Mayo, M.J. Escalona, Javier Tuya, Member, IEEE

Abstract—Entity reconciliation (ER) aims to combine data from

different sources for a unified vision. The management of large

volumes of data has given rise to significant challenges to the ER

problem due to facts such as data becoming more unstructured,

unclean and incomplete or the existence of many datasets that

store information about the same topic. Testing the applications

that implement the ER problem is crucial to ensure both the

correctness of the reconciliation process and the quality of the

reconciled data. This paper presents an approach based on Model-

Driven Engineering that allows the creation of test models for the

early integration testing of ER applications, contributing in three

main aspects: the description of the elements of the proposed

framework, the definition of the testing model and the validation

of the proposal through two real world case studies. This

validation verifies that the early integration testing of the ER

application is capable of detecting a series of deficiencies, which a

priori are not known and that will help to improve the final result

that the ER application offers.

Index Terms—Early testing, entity reconciliation,

heterogeneous data sources, model-driven engineering, software

testing, specification-based testing.

ACRONYMS AND ABBREVIATIONS

ER Entity Reconciliation

ICT Information and Communications Technology

MDE Model-Driven Engineering

ETL Extract, Transform and Load

ITR Integration Testing Rules

I. INTRODUCTION

URRENTLY, information management is critical in many

aspects of our lives. However, the incorporation of

Information and Communications Technology (ICT) into

everyday life causes people to experience an overload of

information, also known by the term “infoxication”. This term

refers to the difficulty that someone has in understanding a

problem and making decisions about it because of an excess of

information [1].

In the first era of ICT, the main problem that researchers had

was how to find information and how to store and manage it

efficiently. Currently, due to the existence of Big Data and

cloud computing, the biggest problem is how to extract

knowledge from the information depending on the needs of

each user [2]. Considering the large number of data sources that

store information related to the same topic, the need for

heterogeneity and cross-domain reconciliation become

important features. In this context, the problem of entity

reconciliation plays an important role in data management,

being one of the major research problems in data quality

management [3].

Entity reconciliation (also called entity resolution or ER) is a

fundamental problem in data integration. It refers to combining

data from different sources for a unified vision or, in other

words, identifying entities from the digital world that refer to

the same real-world entity. It is an uncertain process because

the decision to allocate a set of records with the same entity

cannot be taken with certainty unless these records are identical

in all their attributes or they have a common key [4], [5]. This

problem can be applied to many different scenarios such as

terrorist screening, insurance fraud detection or e-health

environments, among others.

While this problem is not new, the management of large

volumes of data presents new challenges and the necessity of

carrying out high quality reconciliation of entities continues to

grow in the era of Big Data [2], [6]. Getoor and

Machanavajjhala [7] expose some of the main challenges of the

ER in the Big Data environment such as:

 Data heterogeneity, where it is becoming more

common that data are unstructured, unclean or

incomplete and also there are diverse data types;

 Data being more linked, where it is necessary to infer

relationships in addition to equality;

 Making multi-relational data, dealing with structure of

entities;

 Building multi-domain systems, trying to customize

methods that span across domains.

Due to the important challenges of the ER problem, it is

crucial to test the operations designed to carry out the

reconciliations and the applications that implement them, in

C

This work was supported in part by the Spanish Ministry of Science and

Technology, under the projects PERTEST (TIN2013-46928-C3-1-R), MeGUS
(TIN2013-46928-C3-3-R), TestEAMos (TIN2016-76956-C3-1-R), POLOLAS
(TIN2016-76956-C3-2-R) and SoftPLM Network (TIN2015-71938-REDT), in
part by the Principality of Asturias (Spain), under the project GRUPIN14-007,
in part by ERDF funds and in part by Fujitsu Laboratories of Europe (FLE).

R. Blanco and J. Tuya are with the Department of Computer Science,
University of Oviedo, Asturias, Spain (e-mail: rblanco@uniovi.es,
tuya@uniovi.es).

J. G. Enríquez, F. J. Domínguez-Mayo and M. J. Escalona are with the
Department of Computer and Language Systems, University of Seville, Seville,
Spain (email: jose.gonzalez@iwt2.org, fjdominguez@us.es,
mjescalona@us.es).

order to ensure both the correctness of the reconciliation and the

high quality of the reconciled data.

In this paper, we propose an approach based on the Model-

Driven Engineering (MDE) paradigm for testing applications

that implement ER problems. This approach relies on the ER

problem specification and the conceptual data models of the

sources and the solution to be achieved in order to define test

models composed of a set of business rules, which specify the

system requirements. From these business rules, the situations

of interest to be tested (test coverage items) can be

automatically derived to guide the generation of the test cases.

MDE [8], emerged to address the complexity of software

systems in order to express the concepts of the problem domain

in an effective way. In this way, the basic principle of MDE is

“Everything is a model” [9]. The main idea of the MDE is to

use a set of models to decrease the level of abstraction. Thus, in

the early stages of development, models are more abstract than

in the final stages where the models are much closer to

implementation. One of the advantages of MDE is its support

for automation, as the models can be automatically transformed

from the early stages of development to the final stages.

Therefore, MDE allows automating the tasks involved in

software development, such as the testing tasks.

In an earlier work [10], a first approach based on MDE that

allows the creation of test models for the integration testing of

ER applications was presented. In this new work the test model

for integration testing, called the ITR model (Integration

Testing Rules Model), is developed in depth. In addition, we

describe the application of the ITR model to two real world

problems. The main contributions of this work are:

 The description of the elements that constitute the

framework for testing the ER applications.

 The definition of the ITR model for integration testing,

which represents the testing objectives as a set of

business rules, called integration rules.

 The application of the proposal to two real world

problems.

The remainder of this paper is organized as follows: Section

II provides background and related work. Section III formulates

the ER testing problem. Sections IV and V describe the

framework for testing ER applications and the ITR model.

Section VI presents a real-world case study. Finally, the paper

ends with conclusions and future work.

II. BACKGROUND AND RELATED WORK

ER is a well-known problem and it has been investigated

since the birth of relational databases. With the advent of Big

Data, it has received significant attention due to the new

challenges that arise as mentioned above. The techniques for

solving this kind of problem can be broadly classified into:

deterministic rule-based methods [11]–[13], probabilistic-

based methods [14]–[17], learning based techniques [18]–[21]

and graph-based techniques [22]–[26].

The approach in which early testing has been integrated is

the one presented in [2], where authors proposed an ER

approach based upon Model-Driven Engineering and virtual

graphs. This approach has some relation with ETL (Extract,

Transform and Load) [27] although the main goal of these

kinds of tools is not the development of the ER process but the

integration of information from different data sources into one

or legacy systems integrations. It has been very difficult to find

related work about testing in ER: However, taking into account

that the proposal bears some resemblance to the ETL, some

works are presented.

A variety of works can be found in the literature about testing

ETL processes. Some of them are related to analyzing the

impact of automated ETL testing on the data quality or to

evaluating the quality of different approaches [28], [29]. [30]

proposed a testing framework to automate testing data quality

at the stage of the ETL process by automating the creation and

execution of these tests. [31] proposed an approach of big data

transformation testing based on the concept of data reverse

engineering. The closest work that has been found is the one

presented in [32]. The authors developed a test framework that

generates a small and representative data set from an original

large data set using input space partition testing. However, the

present paper proposes using early testing in the ER process,

and as the approach developed is not an ETL system, the

objectives of the two papers are different.

Early testing focuses on the first phases of the software

development lifecycle [33]. One of the reasons for integrating

early testing in the selected approach is the benefits that it

produces in reducing costs in the Verification and Validation

(V&V) phase, and the reduction of its complexity [34]. Most of

the works related to early testing study the automation of test

case generation [35]–[38]. The present work differs from

foregoing works in that it is not based on test case generation,

but on the automation of test coverage items that will guide the

generation of test cases.

III. PROBLEM STATEMENT

Consider, for example, the following scenario: The

information stored into two databases DB1 and DB2, composed

of the tables R and S respectively, is going to be reconciled into

a graph structure. Each row ri of R and sj of S is considered an

entity. The information that will constitute the solution of the

ER process, called the reconciled solution, is represented in

nodes and edges, where each node is an entity and the edges are

relationships between entities. The software engineer defines

the conceptual data model of this reconciled solution

(henceforth reconciled solution model), which contains the

types of nodes (that is, the types of entities) T and U, as well as

the type of edge (that is, the type of relationship) V.

Fig. 1 depicts the schemas of the data sources (DB1 and

DB2) and the model of the reconciled solution. The attributes

C1, D1 and D2 do not uniquely identify the entities tk of T and

um of U.

According to the reconciliation specification, an entity ri of

R is represented in the reconciled solution by some related

entities tk of T and um of U. An entity sj of S is also represented

by some related entities of T and U. Besides, an entity ri and an

entity sj could be represented by the same related entities of T

and U. The projection from R and S to the reconciled solution

is carried out via functions over their attributes (for example,

f1(A1,A2) leads the projection from an entity ri to entities tk

when the result of its evaluation is equal to C1). The

reconciliation specification also indicates that the value of the

attribute D2 is derived from the entities of R and S that

correspond to the same related entities of T and U: D2 takes its

value from A4 only if a predicate p(A4) is found to hold true,

otherwise it takes its value from the function f5(A4, B3).

Fig. 1. Introductory example

The left side of Fig. 2 shows an example of the information

stored in the data sources, which is going to be reconciled by an

application that implements the aforementioned ER

specification. The output of the execution of this application is

depicted on the right of Fig. 2. The entities r1 and r2 of R give

rise to the pair of entities (t1, u1) and (t2, u2) in the reconciled

solution respectively, as well as the relationships between them.

On the other hand, the entity s1 of S has already been reconciled

in the related entities t1 and u1, while the entity s2 derives the

related entities t3 and u3. The value of the attribute D2 in the

entities u1 and u3 are obtained through the function f5, whereas

its value in the entity u2 is taken from r2.

Consider that the application has a defect in the projection

from S to the reconciled solution, and an entity sj is considered

to be reconciled when f3(B1) is equal to the value of C1 in some

entity of T or f4(B2) is equal to the value of D1 in some entity

of U. If the application is not tested with meaningful data, the

defect may not be detected and, as a result, the application could

fail (for example, if the application is tested with the data of Fig.

2, the defect is not detected).

Due to the fact that it is crucial to ensure the correctness of

the reconciliation process, it is essential to identify the

important features to be tested, called test conditions [39]. From

these test conditions, the situations of interest that are to be

tested, called test coverage items, are derived by means of some

adequacy criterion [40]. The test coverage items guide the

generation of the test inputs of the test cases, and allow the

tester to evaluate their adequacy. Regarding the testing of ER

applications, the elaboration of these test inputs involves the

state of the data sources before executing the reconciliation

process (henceforth test data sources) and the information that

constitutes a reconciled solution that is going to be updated

during the reconciliation process (henceforth test reconciled

solution).

For instance, one of the test conditions of the introductory

example is “testing the generation of new entities and

relationships in the reconciled solution from the table S”. The

test coverage items derived from this test condition that can

detect the aforementioned defect are: (1) there is an entity sj that

corresponds to an entity tk, but does not meet any related entity

um, (2) there is an entity sj that corresponds to an entity um, but

does not meet any related entity tk. Fig. 3 shows the test inputs

derived from these test coverage items (the number next to each

node and each row of S indicates the test coverage item that is

being covered).

Creating both the test data sources and the test reconciled

solution is a crucial challenge, as the data stored are

transformed to produce the test output and they have to contain

enough meaningful data to adequately exercise the ER

application.

The work presented in this paper deals with the definition of

test models for integration testing, called Integration Testing

Rules Models (ITR), which define the testing objectives (that is

the test conditions) from the entity reconciliation specification

by means of a set of business rules called integration rules.

These integration rules are specially focused on the subsequent

derivation of test coverage items that guide the creation of the

test data sources and the test reconciled solution.

Fig. 2. Example of information stored in the data sources and the reconciled solution

Fig. 3. Test inputs of the introductory example

The business rules, which are statements that define or

constrain the business structure or the business behaviour [41],

have been used in other approaches focused on testing database

applications, such as [42] and [43]. On the other hand, as the

integration rules are based on the system specification, they

could also be used to generate some implementation of the ER

application.

IV. FRAMEWORK FOR TESTING ENTITY RECONCILIATION

APPLICATIONS

The framework for testing ER applications was proposed in

our earlier work [10]. Fig. 4 depicts the architecture of the

framework, which is composed of four main blocks: the data

source models, the reconciled solution model, the

transformation model and the test models.

Fig. 4. Framework architecture

 Data Source models: allow the representation of the

information in the data sources that are to be

reconciled, as well as the way of accessing them.

These data sources can be a structured or an

unstructured database, a web service, a warehouse or

other information generator.

 Reconciled Solution model: allows the software

engineer, once data sources have been defined, to

design the conceptual data model that represents the

reconciled solution to be achieved, according to the

ER problem domain, as a virtual graph.

 Transformations model: represents the different

transformations that the data in the sources must

undergo in order to carry out the ER and to be

consistent with the reconciled solution model. The

description of this model is out of the scope of this

work.

 Test models: allow the representation of the testing

objectives for the ER application in the early stages of

the development (once the data sources and reconciled

solution models have been defined). The test models

can be focused on different levels, such as unit testing,

component testing or integration testing. This paper is

focused on the definition of models for integration

testing, called Integration Testing Rules Models (ITR),

which are described in sections C and V.

The following subsections describe the aforementioned

models, which are representations of abstract models called

metamodels. These metamodels provide all the elements that

are necessary to create the models and include the attributes

required to meet the standard ISO/IEC TR 24774 [44].

A. Data source models

Fig. 5 displays the metamodel that allows the creation of the

data sources models. The metaclass DataSource represents

each data source involved in the ER process. Data retrieved

from each data source through the instantiation of the metaclass

Wrapper will be structured in a set of types of entities

(metaclass DataSourceEntity) that may be related to each other

using the metaclass DataSourceEntityLink. These types of

entities will be composed of a set of attributes (instantiation of

the metaclass DataSourceAttribute) that describe the entities

themselves.

B. Reconciled solution model

The next block of the framework is the reconciled solution

model, which is based on a virtual graph. Graph technology is

a natural solution to dealing with problems related to Big Data

and especially for the relationships between entities. The wide

variety of existing algorithms, for example Dijkstra, A* or

Kruskal among others, offer a great flexibility in providing

solutions to different problems. Theoretically, graphs can be

displayed in two ways: explicit and implicit. An explicit graph

is a collection of items (vertices and edges) that can be

completely stored in memory. An implicit (or virtual) graph is

a graph that cannot be completely stored in memory for various

reasons, such as size or hardware limitations [25].

Fig. 5. Data source metamodel

With the implicit approach, it is possible to build structures

on the fly. This will allow the building of different solutions to

address many scenarios within a business logic where the

predefined data model cannot meet the extensibility or

availability of the required data sources. Considering the

advantages that virtual graphs provide and the large amount of

data that an entity reconciliation process uses, this option has

been the one selected for this proposal.

The elements that compose a reconciled solution model are

shown in the metamodel of Fig. 6, which is an extended version

of a graph metamodel [45]. It contains a set of vertices

(metaclass EntityVertex) that represent the types of entities,

which are composed of a set of attributes (metaclass Attribute).

The vertices are related by a set of edges (metaclass

AssociationEdge) that represent the types of relationships that

can be established among entities. A VirtualGraph is modeled

as an abstract class that implements the metaclass Graph.

Fig. 6. Reconciled solution metamodel

Thus, the instantiation of the reconciled solution model is a

virtual graph that stores the entities (and their relationships) that

have been reconciled. The information stored in this virtual

graph at a specific stage of the reconciliation process is called

current reconciled solution, whereas the information stored

after finishing the reconciliation process is called final

reconciled solution.

C. ITR: a test model for integration testing

As stated above, this work is focused on the definition of test

models for integration testing (called ITR: Integration Testing

Rules Models), which are formed by a set of business rules,

called integration rules, that represent the test conditions. The

ITR model is created in the early stages of software

development, taking into account the data source models, the

reconciled solution model and the ER specification stated by

the expert.

Fig. 7 depicts the metamodel that represents the elements of

the integration rules (represented by the metaclass

IntegrationRule) that constitute the ITR:

 Integration context (represented by the metaclass

IntegrationContext) establishes the connections

between the types of entities of one or several data

source models and the types of entities of the

reconciled solution model that are involved in a test

condition, taking also into account the types of

relationships among them. These types of entities and

relationships are called context entities and context

relationships, respectively. The connections impose

conditions to be fulfilled in order to project the entities

of the data sources to the entities of the reconciled

solution. For instance, in the introductory example of

Fig. 1 the integration context of test condition 1 would

relate R with T and U via the predicates

f1(A1,A2)==C1 and f2(A3)==D1, as well as via the

relationship V.

 Integration context view or view, for short,

(represented by the metaclass IntegrationView)

connects a subset of the context entities involved in an

integration context. A view is focused on a part of the

projection defined by means of an integration context.

For instance, a possible view of the integration context

described above would relate R only with T, as the

testing objective is focused on the projection between

these two context entities.

 Integration pattern (represented by the metaclass

IntegrationPattern) imposes conditions on the context

entities and context relationships involved in an

integration context or view, as well as on their

attributes, which are called context attributes. These

conditions lead the actions of the ER process to be

tested.

Fig. 7. ITR metamodel

According to the integration pattern, our approach classifies

the integration rules into structural rules (represented by the

metaclass Structural) and load rules (represented by the

metaclass Load). The structural rules impose conditions to be

fulfilled in order to create new entities and relationships in the

current reconciled solution. The load rules establish conditions

to be fulfilled in order to derive the value of the attributes of the

entities that belong to the current reconciled solution from the

data sources. In addition, the load rules are classified into

several types, according to two dimensions: the existence of

preconditions (conditional and non-conditional rules) and the

kind of condition to be fulfilled by the attributes (IS, OR, AND,

XOR rules).

The next section describes each type of integration rule and

the language used in their construction.

V. SPECIFICATION OF INTEGRATION RULES

This section describes how the integration rules are

constructed, using a language based on the SBVR specification

[46] called RaQUEL (business Rules QUEry Language). The

following subsections present the patterns that allow the

expression of the integration context, the integration context

view and the integration patterns of each type of integration

rule, which are represented as attributes in the metaclasses of

the ITR metamodel.

A. Specification of integration contexts and integration

context views

In order to describe the integration context and the

integration context views of an integration rule, it is necessary

to define the concept path that is used in their construction:

Definition 1: a path P is a set of one or more types of entities

(instances of the metaclasses DataSourceEntity and

EntityVertex) and/or types of relationships (instances of the

metaclasses AssociateEdge and DataSourceEntityLink) R1, R2,

…, Rn, where each pair (Ri, Ri+1) is directly connected via some

attributes in the predicate qi,i+1:

Path P is R1 [q1,2] R2 [q2,3] … [qn-1,n] Rn

Each qi,i+1 can contain arithmetic and logical expressions and

functions, which involve attributes of R1, R2, …, Ri+1.

Example 1: consider the introductory example of Fig. 1, the

path that relates the types of entities R, T and U is defined as:

Path P1 is R [f1(A1,A2)==C1] T [C1==source] V

[destination== D1 and f2(A3)==D1] U

The definition of the concept path suggests the redefinition

of the integration context and the integration context view, as

well as the context entities, context relationships and context

attributes in terms of this concept, as explained below:

Definition 2: an integration context (IC) is a set of one or

more paths P1, P2, …, Pm that define the connections between

the data source models and the reconciled solution model that

are involved in a test condition:

Integration context IC is P1, P2, …, Pm

If an integration context is formed by only one path, it can be

defined directly by:

Integration context IC is R1 [q1,2] R2 [q2,3] … [qn-1,n] Rn

Example 2: consider the introductory example of Fig. 1 and

the path P1 defined in Example 1, the integration context of the

test condition 1 is defined as:

Integration context IC1 is P1

Definition 3: an integration context view or view, for short,

(VIC) of an integration context IC is a subset Rj, Rj+1, Rj+2, …,

Rk of a path P of IC, where each pair (Ri, Ri+1) (i=j..k-1) is

directly connected via the predicate defined in P:

Integration context view VIC is Rj [] Rj+1 [] … [] Rk of IC.P

Example 3: consider test condition 1 of the introductory

example depicted in Fig. 1 and the integration context IC1 of

Example 2. Consider that one of the testing objectives is

focused on the projection from R to T. The view focused on this

projection is defined as:

Integration context view V1IC1 is R [] T of IC1.P1

Definition 4: a context entity is a type of entity R of a path P

of an integration context IC denoted by IC.R. If R is not unique

in IC it is denoted by IC.P.R, where P is a path of IC that

contains R. A context entity of a view VIC of an integration

context IC is denoted by VIC.R.

Definition 5: a context relationship is a type of relationship

R of a path P of an integration context IC denoted by IC.R. If R

is not unique in IC it is denoted by IC.P.R, where P is a path of

IC that contains R. A context relationship of a view VIC of an

integration context IC is denoted by VIC.R.

Definition 6: a context attribute is an attribute A of a context

entity or a context relationship of an integration context IC

denoted by IC.A. If A is not unique in IC it is denoted by

IC.P.R.A or IC.R.A, where P is a path of IC and R is a context

entity of P that contains A. A context attribute of a view VIC of

an integration context IC is denoted by VIC.A or VIC.R.A.

The set of paths involved in the definition of an integration

context, as well as the specification of this integration context

and its views are represented by the attributes paths,

integrationContext and view of the ITR metamodel,

respectively.

Fig. 8 depicts the connections between the data source

models and the reconciled solution model of the introductory

example, along with the previous concepts for the test condition

1. R and S (instances of DataSourceEntity) are connected to T

and U (instances of EntityVertex) to represent the projections

defined in the introductory example. The figure shows the path

that relates R with T and U, which is used to define the

integration context IC1 of test condition 1 and the view V1IC1,

as well as the context entities, the context relationship, and the

context attributes of both IC1 and V1IC1. Note that a type of

entity (and also a type of relationship) can have several names,

according to the different integration contexts and views in

which they are involved. For example, the type of entity R is

denoted by IC1.R, when it is involved in the integration context

IC1, and V1IC1.R, when it is involved in the view V1IC1.

Once the data source models and the reconciled solution

model have been instantiated, the integration contexts allow the

identification of the data that have been reconciled, called

reconciled context domain, and the data that have to be

reconciled, called unreconciled context domain:

 The reconciled context domain is composed of the

instances of the context entities and context

relationships that meet the conditions imposed by the

paths that form this integration context.

 The unreconciled context domain is composed of the

rest of the instances that do not meet the conditions

imposed by the paths of the integration context.

Fig. 8: Example of integration context and integration context view

Similarly, the integration context views allow the

identification of the reconciled and unreconciled data that are

derived from the conditions they impose, called reconciled view

domain and unreconciled view domain respectively. These four

data domains constitute the information on which the

conditions imposed by the integration patterns of the integration

rules are applied.

The following definitions indicate how the aforementioned

data domains are obtained, taking into account the definitions 1

to 6:

Definition 7: a path domain (DP) of a path P is the data

domain obtained from the Cartesian product of the instances of

Ri (i=1..n) involved in P that fulfil the predicates qi,i+1. Each

element of a data domain is called from now on tuple.

Definition 8: a reconciled context domain (RDIC) of an

integration context IC is the data domain obtained from the

Cartesian product of the tuples of the path domains DPi of the

paths Pi (i=1..m) of IC that are equal on their common context

attributes, along with the tuples of DPi that do not match any

tuple.

Definition 9: an unreconciled context domain (UDIC) of an

integration context IC is the data domain formed by the

instances of the context entities and context relationships of IC

that are not included in the reconciled context domain RDIC of

IC.

Definition 10: a reconciled view domain (RDV) of an

integration context view VIC is the data domain obtained from

the Cartesian product of the instances of the subset Rj, Rj+1, Rj+2,

…, Rk of the path P of IC involved in VIC, which fulfil the

predicates defined in P between each pair (Ri, Ri+1) (i=j..k-1) .

Definition 11: an unreconciled view domain (UDV) of an

integration context view VIC is the data domain composed of

the instances of the context entities and context relationships

involved in VIC that are not included in the reconciled view

domain RDV of VIC.

B. Specification of structural rules

A structural rule establishes the projection from a context

entity IC.R (or VIC.R) that belongs to a data source model to

one or more context entities and context relationships IC.Si (or

VIC.Si) that belong to the reconciled solution model. It also

establishes one or several conditions on the context attributes

IC.Si.Aj (or VIC.Si.Aj) that constrain their values when the new

entities and relationships are added to the current reconciled

solution.

The projection imposed by the structural rule must be

fulfilled by each instance of IC.R (or VIC.R) that belongs to the

unreconciled context domain of IC (or the unreconciled view

domain of VIC). The integration pattern of a structural rule is

described below, using the EBNF notation [47]:

Definition 12: The integration pattern of a structural rule

(represented by the attribute pattern of the metaclass Structural

of the ITR metamodel) is defined as:

structural_rule = “Each unreconciled” (IC.R | VIC.R) “generates”

gen_cond {“and” gen_cond};

gen_cond = “exactly one” (IC.Si | VIC.Si) “with” att_cond;

att_cond = (IC.Si.Aj | VIC.Si.Aj) “=” pj {“and” (IC.Si.Aj | VIC.Si.Aj)

“=” pj};

where each pj is a predicate over context attributes of IC.R

(or VIC.R) and/or IC.Si (or VIC.Si).

Example 4: consider the introductory example of Fig. 1 and

the view described in Example 3, the integration pattern of the

structural rule that imposes conditions to project R to T is

defined as:

Each unreconciled V1IC1.R generates exactly one V1IC1.T with

V1IC1.T.C1=f1(A1,A2)

This structural rule establishes that each instance of R that

belongs to the unreconciled view domain of V1IC1 generates a

new instance of T in the current reconciled solution. It also

indicates that the value of the attribute C1 of this new instance

of T must be the result of the function f1 over the attributes A1

and A2 of R.

C. Specification of load rules

A load rule imposes one or more conditions that constrain the

value of a context attribute IC.S.A that belongs to the reconciled

solution model, according to one or several context attributes

IC.Ri.Bj that belong to the data source models. The conditions

must be fulfilled by each tuple of the reconciled context domain

of IC.

As stated in Section C, the load rules are classified according

to two dimensions. The first dimension indicates whether a load

rule establishes preconditions that have to be fulfilled before

constraining the value of a context attribute (conditional rules),

or it does not establish any precondition (non-conditional

rules).

The second dimension indicates the types of conditions that

constrain the value of the context attributes according to one or

several predicates (IS, OR, AND, XOR rules). These predicates

can be either arithmetical or logical expressions or functions

over context attributes of the integration context IC, as well as

constants or context attributes of IC. The evaluation of the

predicates returns a value that fits the type of the context

attribute constrained or a null value, which indicates that the

predicate was not able to reach a concrete value (for example,

because of a context attribute used in a function does not exist,

or because a context attribute has a unknown value in its data

source).

The following definitions describe the patterns of each

category, using the EBNF notation.

Definition 13: a conditional rule is a load rule whose

integration pattern is defined as:

conditional_rule = “If” p “then” rule_pattern;

where p is a predicate over context attributes IC.S.A and/or

IC.Ri.Bj whose evaluation returns a boolean value. This

predicate defines the preconditions to be fulfilled before

constraining the value of the context attribute IC.S.A by means

of rule_pattern. This pattern is written according to Definitions

14 to 17 described below.

Definition 14: an IS rule is a load rule that constrains the

value of a context attribute IC.S.A, such that it must be equal to

the evaluation of a predicate p. The integration pattern is

defined as:

IS_rule = “Each” IC.S.A “is” p;

Definition 15: an AND rule is a load rule that constrains the

value of a context attribute IC.S.A, such that it must be formed

by the union of the evaluations of the predicates pi that do not

return a null value. The integration pattern is defined as:

AND_rule = “It is obligatory that” IC.S.A “is composed of ” pi

{“and” pi};

Definition 16: an OR rule is a load rule that constrains the

value of a context attribute IC.S.A, such that it can be formed

by the evaluation of one or several predicates pi that do not

return a null value. The integration pattern is defined as:

OR_rule = “It is permitted that” IC.S.A “is composed of ” pi

{“or” pi};

Definition 17: an XOR rule is a load rule that constrains the

value of a context attribute IC.S.A, such that it must be equal to

the evaluation of only one predicate pi. Each predicate pi has a

different priority ni (ni=1, 2, etc., where 1 is the highest priority)

that indicates the order in which they are evaluated. IC.S.A

takes the value of the first predicate pi that does not return a null

value. The integration pattern is defined as:

XOR_rule = prioritization “Each” IC.S.A “is only ” pi {“or” pi};

prioritization = pi “has priority” ni {pi “has priority” ni};

The integration patterns of non-conditional IS, non-

conditional AND, non-conditional OR and non-conditional

XOR rules (or IS, AND, OR and XOR rules, for short) are

directly described by Definitions 14 to 17 respectively. These

integration patterns are represented by the attribute rulePattern

of the metaclass ConditionType of the ITR metamodel. In

contrast, the conditional IS, conditional AND, conditional OR

and conditional XOR rules are defined by combining Definition

13 with Definitions 14 to 17 respectively. The integration

pattern of these conditional rules is represented by the

combination of the attributes conditionalPattern of the

metaclass Conditional and rulePattern of the metaclass

ConditionType of the ITR metamodel.

Example 5: consider the introductory example of Fig. 1. The

conditional IS rules that represent the reconciliation of the

attribute D2 are defined as:

(1) Path P1 is R [f1(A1,A2)==C1] T [C1==source] V

[destination== D1 and f2(A3)==D1] U

(2) Path P2 is S [f3(B1)==C1] T [C1==source] V

[destination== D1 and f4(B2)==D1] U

(3) Integration context IC is P1, P2

(4) If p(IC.A4) then IC.D2 is IC.A4

(5) If ! p(IC.A4) then D2 is f5(IC.A4, IC.B3)

Statements 1 to 3 define the integration context IC, whereas

statements 4 and 5 define the integration pattern of two

conditional IS rules. Note that the integration context IC can be

used to define several integration rules.

After defining the test conditions as a set of the integration

rules, the test coverage items can be derived by means of

applying logic criteria [48] [49] over the conditions imposed by

these integration rules. This process is illustrated in the next

section through a case study.

VI. CASE STUDY

To evaluate the proposed framework and the ITR model for

integration testing, two real-word problems have been used as

case studies. The first case study makes use of the specification

of an application called DIPHDA (Dynamic Integration for

Patrimonial Heritage Data in Andalucía) that aims to reconcile

historical heritage data of Andalusia (Spain). The second case

study involves a real-word problem that is being studied by the

University of Seville pertaining to reconciling the digital

information related to the research publications of its

researchers and collaborators, known as the REPORTS project

(Reconciling rEsearch PrOjects infoRmation and publicaTions

for the university of Seville).

The DIPHDA application is also used in this section to

illustrate how the ITR model can be created and how it can be

used to derive the test coverage items from the test conditions.

The following subsections present both the DIPHDA

application and the REPORTS project, describe the ITR models

created, and provide a summary of the test coverage items that

were derived. Finally, a discussion of the approach is presented.

A. Case study 1: DIPHDA application

The management of historical and cultural heritage

information in Andalusia (Spain) is being addressed by the

cultural council of the region using a horizontal and global

system called "MOSAICO" [50]. The aims of this system are:

(i) to offer a global information system that stores information

about the historical and cultural heritage of the region; (ii) to

offer technological resources and tools for the management of

this information; and (iii) to bring the general public and

Government more specific (and relevant) information related to

historical heritage. This system was developed to meet the

objectives of the cultural council, such as managing, protecting,

preserving and promulgating the cultural heritage of Andalusia,

as well as bringing government services to the citizens of the

region.

The information related to the numerous cultural and

historical monuments of Andalusia is stored in several data

sources, and therefore it is very difficult to control all

information published about historical heritage in a global

context. In addition, the size and complexity of these data

sources make the management of these systems complicated

due to the large amount of information stored on them. It is

therefore necessary to reconcile the existing information about

monuments from all available data sources.

Considering this problem, the DIPHDA application is being

developed with the collaboration of the Fujitsu Laboratories of

Europe (FLE). The objective of DIPHDA is to achieve

significantly improved accuracy and data management

efficiency, based on reconciliation logic applied to open data

information, as opposed to simple string matching

reconciliation. This solution will be capable of integrating

different data sources. For this particular case, the data sources

“MOSAICO”, Wikipedia and Yelp are going to be used.

Our approach aims to generate the ITR model while

DIPHDA is being developed, so that it can be used not only to

guide the testing of the application but also to verify the

requirements of the ER problem. Due to the ITR model is

composed of a set of business rules written in a language based

on SBVR, the ER expert can easily understand it, with the result

that missing requirements may be discovered or inconsistent

requirements may be detected.

Fig. 9 depicts the data source models and the reconciled

solution model of DIPHDA. The classes Mosaico, DBPedia

and Yelp (instances of the metaclass DataSourceEntity) model

the historical heritage elements of the data sources MOSAICO,

Wikipedia and Yelp respectively, that the cultural council of

Andalusia is going to use to perform the entity reconciliation.

The reconciled solution model is composed of the classes

Monument, City and Province (instances of the metaclass

EntityVertex) that represent the types of entities considered

necessary to carry out the reconciliation of the historical

heritage elements, as well as the association classes Belong_to

and Sited_in (instances of the metaclass AssociationEdge),

which represent the relationships between these types of

entities. The attribute p_name of the reconciled solution model

must be unique for each instance of Province, while the

attributes of the other classes are not constrained by the unique

restriction due to the possibility of two cities that belong to

different provinces having the same name, or two monuments

with the same name being sited in two different cities.

Fig. 10 shows an example of the instances of DBPedia, as

well as a current reconciled solution. The instances of DBPedia

are rows of a table stored in a database, and each row represents

a historical heritage element to be reconciled. Similarly, the

instances of Mosaico and Yelp are rows of a table of a database

too. On the other hand, the instances of Monument, City and

Province are the nodes of the virtual graph that represent the

entities stored in the current reconciled solution, whereas the

instances of Belong_to and Sited_in are the edges between

nodes (that is, the relationships between entities).

B. Case study 2: REPORTS project

The information related to the research activities and the

results of the researchers at the University of Seville, such as

research projects and publications, can be found in many

different resources: proprietary databases like SISIUS (the

institutional repository for community members at the

University of Seville), SICA (the institutional repository for

researchers of the Andalusian region in Spain), the data sources

of other universities, abstract and citation databases, and social

networking sites like ResearchGate, etc. The reconciliation of

this information is an important issue to address, not only to

maintain knowledge about the research activities of the

university and community but also to report correct information

to the research community.

Researchers at the University of Seville have to report their

research activities and results to be disseminated and evaluated

by different institutional authorities. These research activities

and results are included and managed in sources like SICA [53],

SISIUS [54], or even in ResearchGate by researchers and

institutional authorities. In lot of cases, this information has

many inconsistencies, most frequently due to the mistakes made

by researchers and institutional authorities when information is

managed and, in some cases, due to other factors including the

maintainability of different systems, among others. For

instance, a new version of the SICA system was developed and

an important migration was performed in recent years. The

consequences of this migration were that a lot of information

was affected. In addition, most publications are automatically

indexed in international systems like Scopus, Springer Link,

Web of Science, etc. As a result, it is a very complex task for

researchers and institutional authorities to control, manage and

evaluate all of this information. The REPORTS projects aims

to help researchers and institutional authorities to reduce efforts

and improve the information quality for the dissemination and

evaluation of their research activities and results, by means of

the entity reconciliation of several data sources.

As with the case study of the DIPHDA application, this case

study is focused on the early testing of the REPORTS project,

while it is still under study.

The case study considers three data sources; a proprietary

store (SICA), Scopus and ResearchGate. Fig. 11 depicts the

data source models and the reconciled solution model. The

classes Organization, Author, Paper and Reference (instances

of the metaclass EntityVertex) represent the type of entities

involved in the reconciliation process, which are related by the

associations Member_of, Written_by, and Has (instances of the

metaclass AssocciationEdge).

Fig. 9. Data source models and reconciled solution model of DIPHDA

Fig. 10. Example of several instances of DBPedia and a current reconciled solution

Fig. 11. Data source models and reconciled solution model of the REPORTS project

C. ITR models

The ITR models of DIPHDA and the REPORTS project were

designed from their ER specifications, considering both the data

sources and the reconciled solution models. The ITR model of

DIPHDA is composed of 18 integration rules: 9 structural rules,

2 conditional IS rules, 1 conditional OR rule, 3 IS rules, 1 AND

rule and 2 XOR rules. The ITR model of the REPORTS project

is formed by 21 integration rules: 11 structural rules, 3

conditional XOR rules, 2 IS rules, 1 OR rule, 1 AND rule and

3 XOR rules. First, we designed the structural rules that lead the

creation of new entities and relationships in the current

reconciled solution. After that, we designed the different types

of load rules that constrain the value of the attributes.

To illustrate how the structural and load rules are created, the

next subsections present the details regarding the DIPHDA

application.

1) Structural Rules of the DIPHDA application

According to the ER specification, each historical heritage

element stored in MOSAICO, Wikipedia and Yelp is

represented in the reconciled solution by means of an entity

Monument sited in an entity City that belongs to an entity

Province. The specification also indicates the attributes and

functions that lead the projection from the data sources to the

reconciled solution. For example, Fig. 12 shows the statements

of the three structural rules designed to project DBPedia to the

reconciled solution.

Statement 1 and 2 specify the integration context IC1 formed

by the path P1, which relates DBPedia with Province, City and

Monument. This integration context is shared by the three

structural rules. The order of the connections between the

context entities was established according to the cardinalities

one-to-many of the reconciled solution model. The predicates

of P1 impose the conditions to be fulfilled to reconcile the

instances of the aforementioned context entities, and they

usually involve a similarity function called Equals. This

function determines whether two strings can be considered

equal, according to a specific degree of similarity. For example,

to determine whether an instance of DBPedia corresponds to

some instance of Province, the evaluation of the function

GetProvince (which returns the name of a province from the

angular distances represented by the attributes latitude and

longitude of DBPedia) must be equal to the attribute p_name of

Province.

The integration context IC1 allows the identification of the

data that have been reconciled from the data source Wikipedia

(represented by the context entity DBPedia), that is, the

reconciled context domain RDIC1, and the data that have not

been reconciled yet, that is, the unreconciled context domain

UDIC1. Fig. 10 shows both data domains.

Statements 3 and 4 of Fig. 12 define the integration context

views V1 and V2, which are focused on the projection from

DBPedia to Province and City, respectively. Note that V2

relates DBPedia with City via Province, due to the one-to-many

cardinality between Province and City. V1 and V2 are subsets

of the path P1 that relax the conditions imposed by IC1 in order

to obtain the unreconciled view domains that contain the

instances of both Province and City to be reconciled. Fig. 13

depicts the reconciled view domain RDV1 and the unreconciled

view domain UDV1 of the view V1.

Integration context:

(1) Path P1 is DBPedia

 [Equals(GetProvince(latitude, longitude), p_name)] Province

 [Belong_to.destination=p_name] Belong_to

 [Belong_to.source=c_name and Equals(location, c_name)] City

 [Sited_in.destination=c_name] Sited_in

 [Sited_in.source=m_name and Equals(name, m_name)] Monument

(2) Integration context IC1 is P1

Integration context views:

(3) Integration context view V1 is DBPedia [] Province of IC1.P1

(4) Integration context view V2 is DBPedia [] Province [] Belong_to [] City of IC1.P1

Integration patterns:

(5) Each unreconciled V1.DBPedia generates exactly one V1.Province

 with V1.p_name= GetProvince(V1.latitude, V1.longitude)

(6) Each unreconciled V2.DBPedia generates exactly one V2.City with V2.c_name=V2.location

 and exactly one V2.Belong_to with V2.source=V2.c_name and V2.destination=V2.p_name

(7) Each unreconciled IC1.DBPedia generates exactly one IC1.Monument with IC1.m_name=IC1.name

 and exactly one IC1.Sited_in with IC1.Sited_in.source=IC1.m_name and

 IC1.Sited_in.destination=IC1.c_name

Fig. 12. Structural rules to project DBPedia to the reconciled solution

Fig. 13. Example of the reconciled view domain and unreconciled view domain of the view V1

Statements 5, 6 and 7 of Fig. 12 define the integration

patterns of the three structural rules that state the conditions that

lead the creation of new entities and relationships into the

current reconciled solution: instances of Province (statement 5),

City and Belong_to (statement 6), as well as Monument and

Sited_in (statement 7). The order of these statements constrains

the order in which the entities and relationship have to be

created, according to the cardinalities one-to-many established

in the reconciled solution model. Thus, the instances of

Province should be created before the instances of City, which

should be created before the instances of Monument.

For example, statement 5 establishes that each instance of

DBPedia that belongs to the unreconciled view domain of V1

(see UDV1 in Fig. 13) generates a new instance of Province.

Therefore, DIPHDA should generate the node Province

“Málaga”. On the other hand, statement 6 indicates that each

instance of DBPedia included in the unreconciled view data

derived of V2 generates a new instance of City and Belong_to.

As a result, DIPHDA should create the nodes City “Santiponce”

and “Nerja”, as well as two relationships Belong_to: one

relationship between “Santiponce” and “Sevilla” and another

one between “Nerja” and “Málaga”.

2) Load Rules of the DIPHDA application

The ER specification establishes several requirements to

derive the value of the attributes of the new entities stored in the

reconciled solution from the aforementioned data sources.

Thus, 9 load rules were designed. Fig. 14 displays one of these

load rules: an XOR rule that reconciles the value of the context

attribute IC2.Monument.m_building_type from attributes of the

context entities DBPedia and Yelp.

Statements 1, 2 and 3 define the integration context IC2

composed of the paths P1 and P2, which relate DBPedia and

Yelp with Province, City and Monument, as explained in the

section above. Statements 4, 5 and 6 define the integration

pattern of the XOR rule that imposes the conditions to be

fulfilled to derive the value of the context attribute

IC2.Monument.m_building_type. Statements 4 and 5 specify

the prioritization of the context attributes

IC2.DBPedia.building_type and IC2.Yelp.categories, whereas

statement 6 establishes that IC2.Monument.m_building_type

can only obtain its value from one of these context attributes.

As a result, for each tuple that belongs to the reconciled context

domain of IC2, first IC2.DBPedia.building_type is evaluated. If

this evaluation does not return a null value,

IC2.Monument.m_building_type takes this value. Otherwise, it

takes the value of the evaluation of IC2.Yelp.categories. Note

that if both evaluations of IC2.DBPedia.building_type and

IC2.Yelp.categories return a null value, the context attribute

IC2.Monument.m_building_type also has an unknown value.

D. Test coverage items

After defining the ITR models, we applied a Masking

MCDC-based criterion over the conditions imposed by the

integration rules to derive the test coverage items, that is, the

situations of interest to be tested. This criterion has

demonstrated its utility in previous work, such as [51] (for

testing SQL queries) and [42] (for testing the user-database

interaction).

The Masking MCDC criterion requires that every condition

in a logical decision has taken on all possible outcomes at least

once, every decision has taken all possible outcomes at least

once, and each condition in a decision has been shown to

independently affect the decision’s outcome [52]. In our case,

each integration rule gives rise to a logical decision, formed by

the conditions imposed by the integration context (or the

integration context view) and the integration pattern.

To automatically obtain the test coverage items, we used the

SQLFpcWS web service [51], which implements the Masking

MCDC criterion. Table I and Table II show the number of test

coverage items derived from each type of integration rule. After

that, we generated the test inputs, which are composed of the

test data sources and the test reconciled solution that cover the

test coverage items, as a part of our early testing strategy.

Afterwards, we automatically evaluated the coverage achieved.

Integration context:

(1) Path P1 is DBPedia

 [Equals(GetProvince(latitude, longitude), p_name)] Province

 [Belong_to.destination=p_name] Belong_to

 [Belong_to.source=c_name and Equals(location, c_name)] City

 [Sited_in.destination=c_name] Sited_in

 [Sited_in.source=m_name and Equals(name, m_name)] Monument

(2) Path P2 is Yelp

 [Equals(GetProvince(GetZipCode(display_address)), p_name)] Province

 [Belong_to.destination=p_name] Belong_to

 [Belong_to.source=c_name and Equals(city, c_name)] City

 [Sited_in.destination=c_name] Sited_in

 [Sited_in.source=m_name and Equals(name, m_name)] Monument

(3) Integration context IC2 is P1, P2

Integration Pattern:

(4) IC2.DBPedia.building_type has priority 1

(5) IC2.Yelp.categories has priority 2

(6) Each IC2.Monument.m_building_type is only IC2.building_type or IC2.categories

Fig. 14. XOR rule that reconciles the attribute m_building_type of Monument from DBPedia and Yelp

TABLE I

NUMBER OF INTEGRATION RULES AND TEST COVERAGE ITEMS OF CASE

STUDY 1 (DIPHDA APPLICATION)

Type of

Integration Rule

Number of

Rules

Number of Test

Coverage Items

Structural 9 108

Conditional IS 2 53

Conditional OR 1 30

IS 3 60

AND 1 21

XOR 2 52

Total: 18 324

TABLE II

NUMBER OF INTEGRATION RULES AND TEST COVERAGE ITEMS OF CASE

STUDY 2 (REPORTS PROJECT)

Type of

Integration Rule

Number of

Rules

Number of Test

Coverage Items

Structural 11 183

Conditional XOR 3 115

IS 1 44

OR 2 35

AND 1 35

XOR 3 144

Total: 21 556

In order to generate the test inputs for the first case study

(DIPHDA application), our first approach began from the

populated data sources MOSAICO, Wikipedia and Yelp, which

accumulated 26,632 rows. Despite the large number of rows,

the percentage of coverage achieved was about two percent.

Since comparison between actual and expected outputs

becomes more difficult with large test databases, we began

from empty test data sources, in order to keep them small and

meaningful. The same approach was taken for the REPORTS

project, and we began from empty test data sources.

Table III and Table IV display the number of instances

inserted into the test data sources and the reconciled solution to

achieve total coverage for both case studies. All 324 coverage

items derived for the DIPHDA application and all 556 coverage

items derived for the REPORTS project are covered when

evaluated over 493 and 633 instances of test data, respectively.

TABLE III

NUMBER OF INSTANCES OF THE TEST DATA SOURCES AND TEST RECONCILED

SOLUTION OF CASE STUDY 1 (DIPHDA APPLICATION)

 Type of Entity or

Relationship

Number of

instances

Test Data Sources

 Mosaico 48

 DBPedia 77

 Yelp 40

Test Reconciled

Solution

 Province 69

 City 65

 Belong_to 75

 Monument 58

 Sited_in 61

 Total: 493

TABLE IV

NUMBER OF INSTANCES OF THE TEST DATA SOURCES AND TEST RECONCILED

SOLUTION OF CASE STUDY 2 (REPORTS PROJECT)

 Type of Entity or

Relationship

Number of

instances

Test Data Source

SICA

Publication 21

Publication_Author 27

Author 65

Test Data Source

Scopus

Publication 22

Publication_Author 29

Author 64

Other_Sign 59

Reference 11

Test Data Source

ResearchGate

Publication 21

Publication_Author 26

Author 64

Reference 10

Test Reconciled

Solution

Organization 6

Author 63

Member_of 71

Paper 22

Written_by 27

Reference 14

Has 11

 Total: 633

E. Fault detection

Achieving a high test coverage is essential in order to test the

functionality of the application thoroughly, with the aim of

improving the quality of the final software product.

Furthermore, developing test cases for increasing the coverage

will also increase the fault detection ability of the test cases

[51]. The above results show that the information stored in the

data sources of the DIPHDA application (26,632 rows) covers

a low number of test coverage items (about 2%), with the result

that most of the meaningful situations to be tested are not

exercised and therefore, a fairly large number of possible

defects are not detected.

In contrast, by covering all the test coverage items derived

from the ITR models of both case studies (using 493 rows for

the DIPHDA application and 633 rows for the REPORTS

project), the following types of defects may be detected:

(1) Faults in the projection from the context entities of the

data source models to the reconciled solution model.

These faults may produce failures in the creation of

new instances in the current reconciled solution, as

well as during the derivation of the value of the

attributes that belong to the instances that form the

current reconciled solution.

(2) Faults in the implementation of the ER specification

that guide the reconciliation of the context attributes of

the instances stored in the current reconciled solution,

causing failures when their values are derived.

(3) Faults owing to the incorrect management of null

values or missing information. These faults may cause

failures when the instances of the data sources are

projected to the current reconciled solutions and when

the attribute values are derived.

To illustrate how we can detect the aforementioned faults and

failures, consider the following test coverage items derived for

the DIPHDA application. The test coverage item 1 is derived

from the structural rule whose integration pattern is depicted in

statement 7 of Fig. 12, whereas the test coverage items 2, 3 and

4 are derived from the XOR rule of Fig. 14:

 Test coverage item 1: There is an instance of DBPedia

that meets an instance of City and an instance of

Monument, which are related by an instance of

Sited_in, but it does not meet any instance of Province.

 Test coverage item 2: There is an instance of DBPedia

(di) that meets a set of instances Province (pi), City (ci)

and Monument (mi), which are related by instances of

Belong_to and Sited_in. There is an instance of Yelp

(yj) that meets a set of instances Province (pj), City (cj)

and Monument (mj), which are related by instances of

Belong_to and Sited_in. Besides, mi.m_name is equal

to mj.m_name, ci.c_name is different to cj.c_name,

pi.p_name is equal to pj.p_name and di.building_type

is different to yj.categories.

 Test coverage item 3: There is an instance of DBPedia

(di) that meets a set of instances Province (pi), City (ci)

and Monument (mi), which are related by instances of

Belong_to and Sited_in. There is an instance of Yelp

(yj) that meets the same instances pi, ci and mi. Besides,

di.building_type is different to yj.categories.

 Test coverage item 4: There is an instance of DBPedia

(di) that meets a set of instances Province (pi), City (ci)

and Monument (mi), which are related by instances of

Belong_to and Sited_in. There is an instance of Yelp

(yj) that meets the same instances pi, ci and mi. Besides,

the evaluation of di.building_type returns a null value

and the evaluation of yj.categories does not return a

null value.

Fig. 15 depicts an example of some test data sources and a

test reconciled solution that covers the foregoing test coverage

items. The number on the left of each row of the test data

sources and the numbers in brackets below each node and

relationship of the test reconciled solution indicate the test

coverage items that need these instances so that they can be

covered. For example, to cover the test coverage item 1, row 1

of DBPedia that does not meet any Province node, along with

the related nodes City with c_name=c1 and Monument with

m_name=m1 are needed. Note that the test reconciled solution

represents the current reconciled solution at the initial stage of

the reconciliation process to be tested, which is going to be

updated during the execution of the test cases.

Fig. 15. Example of test data sources and test reconciled solution

Fig. 16. Expected reconciled solution

The expected output of the execution of the test cases that use

the previous test data sources and test reconciled solution,

according to the structural rules of Fig. 12 and the XOR rule of

Fig. 14, is shown in Fig. 16. This expected output is formed by

the state that the final reconciled solution should have after the

execution of the test cases and it is called expected reconciled

solution. DIPHDA should generate the three new nodes

highlighted in the figure, along with their relationships, from

row 1 of DBPedia. It should also derive the value of the

attribute m_building_type of the Monument nodes (highlighted

in the figure) from the other rows of DBPedia and Yelp.

Next, we illustrate that generating test inputs to exercise the

test coverage items allows a more thorough testing that is able

to detect a number of defects in the implementation. Consider a

faulty implementation of DIPHDA that transforms the test

inputs of Fig. 15 into the final reconciled solution of Fig. 17.

This final reconciled solution, which is the observed output of

the execution of the test cases and is called observed reconciled

solution, reveals the existence of several defects:

 Fault 1: The implementation does not check the

cardinality between Province and City, which was

specified in the reconciled solution model (that is, it

has a defect in the management of the reconciled

solution model during the projection of the entities).

This defect produces failure 1 of Fig. 17: the node City

with c_name=c1 is connected with two different

Province nodes. As a result, the observed reconciled

solution does not conform to the reconciled solution

model.

 Fault 2: The decision that checks whether a row of

DBPedia corresponds to a set of related nodes

Province, City and Monument of the current

reconciled solution is not correct, because it only

checks the nodes Province and Monument (that is, the

implementation has a defect in the projection from

DBPedia). This defect causes DIPHDA to consider

that row 2 of DBPedia corresponds to the set of related

nodes Province with p_name=p1, City with

c_name=c1 and Monument with m_name=m1, which

is the same set of related nodes that corresponds to row

1 of Yelp. As a result, when the context attribute

m_building_type is derived through the XOR rule of

Fig. 14, it has the value “bt1” instead of “cat1” (see

failure 2 of Fig. 17).

 Fault 3: The implementation considers that the context

attribute categories has the higher priority, instead of

building_type, when the context attribute

m_building_type is derived (that is, it has a defect in

the prioritization of the context attributes involved in

the XOR rule of Fig. 14). This defect produces failure

3 of Fig. 17: the context attribute m_building_type of

the Monument node with m_name=m2 has the value

“cat2”, instead of “bt2”.

 Fault 4: The implementation does not include a

decision to check whether the context attribute

building_type of DBPedia has a missing value when it

is used to derive the value of m_building_type through

the XOR rule of Fig. 14 (that is, it has a defect in the

management of missing information). This defect

produces failure 4 of Fig. 17: the attribute

m_building_type is missing in the Monument node

with m_name=m3, instead of having the value “cat3”.

Because the information stored in the 26,632 rows included

in the data sources does not cover the test coverage items 1, 2

and 4, faults 1, 2 and 4 would not be detected. However, we

were able to detect these defects by designing the tests to cover

the aforementioned test coverage items.

Fig. 17. Observed reconciled solution

F. Discussion

The results of the case studies show that we derived a set of

test coverage items from the ITR model to guide the generation

of meaningful test inputs of test cases that are able to detect

defects in the ER application. These test coverage items were

derived systematically from the ITR model and represent

interesting situations that are easy to forget when an application

is being developed. Besides, the number of instances in the test

data sources and the test reconciled solution that cover the test

coverage items of the DIPHDA application is considerably

lower than the number of rows of the production data sources,

and the coverage is considerably higher than that achieved

using these production data sources. Therefore, it is possible to

thoroughly test the functional suitability of these types of

applications with a small amount of data. An additional

advantage is that we reduce the effort of designing the expected

output and comparing it against the actual output. However,

there are several issues that may limit our approach, which are

discussed below.

Firstly, the ITR metamodel may not provide all the elements

that are necessary to describe the whole class of ITR models,

that is, the models that represent the testing objectives of every

entity reconciliation domain. To address this issue, different

entity reconciliation domains should be analyzed to determine

whether the current ITR metamodel has to be extended with

new metaclasses, attributes and relationships, so that it allows

the creation of ITR models for these domains. The extension of

the ITR metamodel could also lead to the extension and/or the

adaptation of other related metamodels of the framework for

testing ER applications.

Secondly, the integration rules that constitute the ITR models

may not be expressive enough to represent all of the important

features that are to be tested of the ER application. To mitigate

this limitation, the integration rules can be extended in order to

include more complex conditions and deal with comparisons

based on functions in detail. Besides, there are some logical

formulations of SBVR that have not been considered in the

definition of the integration rules yet, which can be used to

extend their expressiveness.

Finally, the study is limited to the early testing of the real

application DIPHDA and the REPORTS project, obtaining

similar results on both. Therefore, the real effectiveness of the

test cases that were designed in the early stages of the

development has not yet been validated. This validation is

going to be carried out when the applications of the case studies

are available. However, the results of the case studies

demonstrate that we have obtained test coverage items that

guide the generation of test cases which can detect defects that

could be present in the implementation.

VII. CONCLUSION AND FUTURE WORK

This work presents an integration of early testing to an entity

reconciliation application. The previous work presented in [10]

has been further developed, giving rise to the ITR model. This

model is based on four main pillars: the reconciled solution

model (that represents the solution to be achieved), the data

sources models (that represent to data sources to reconcile), the

transformations model (that represents the transformation that

data must undergo in the different stages of the ER process) and

the test models (that represent the testing objectives for the ER).

Also, testing objectives have been represented as business rules

in order to automatically derive the test coverage items by the

application of the MCDC criterion.

The main contributions of this work may be summarized as:

(i) the description of the elements that constitute the framework

for testing the ER applications, (ii) the definition of the ITR

model for integration testing, which represents the testing

objectives as a set of business rules, called integration rules and

(iii) the application of the proposal to two real world problems.

This approach has been validated with two real world case

studies based on the heritage information management of the

region of Andalusia (Spain) and the publications of the

researchers of the University of Seville. After applying the test

coverage items derived from the ITR models, it was found that

there are three main type of faults: those related to the

projection from the context entities of the data source models to

the reconciled solution model, those related to the

implementation of the ER specification that guide the

reconciliation of the attributes of the instances stored into the

current reconciled solution and those related to the incorrect

management of null values or missing information.

It has been verified that the addition of early integration

testing to the ER application is capable of detecting a series of

deficiencies, which a priori were not known and that will help

to improve the final result that the ER application offers.

Furthermore, applying early testing with a test model that

allows the use of the test coverage to guide the test case design

process has made it possible to reduce the amount of data that

needs to be stored in the data sources used for testing, thereby

achieving a more exhaustive testing that covers 100% of the test

coverage items.

Future work encompasses several avenues such as the

definition of the transformations that automate the process of

generating the test cases, the extension of the test metamodel to

cover the unit testing of the transformations applied over the

data to carry out the ER (represented by the transformation

model) and the identification of different case studies to

validate the approach.

REFERENCES

[1] C. C. Yang, H. Chen, and K. Hong, “Visualization of

large category map for Internet browsing,” Decis.

Support Syst., vol. 35, no. 1, pp. 89–102, 2003.

[2] J. G. Enríquez, F. J. Domínguez-Mayo, M. J. Escalona,

J. A. García-García, V. Lee, and G. Masatomo, “Entity

identity reconciliation based big data federation-A

MDE approach,” in International Conference on

Information Systems Development (ISD2015), 2015.

[3] H. Wang, Innovative techniques and applications of

entity resolution. IGI Global, 2014.

[4] L. Getoor and A. Machanavajjhala, “Entity resolution:

Theory, practice & open challenges,” Proc. VLDB

Endow., vol. 5, no. 12, pp. 2018–2019, 2012.

[5] F. Wang, H. Wang, J. Li, and H. Gao, “Graph-based

reference table construction to facilitate entity

matching,” J. Syst. Softw., vol. 86, no. 6, pp. 1679–

1688, 2013.

[6] A. Gal, “Uncertain entity resolution: re-evaluating

entity resolution in the big data era: Tutorial,” Proc.

VLDB Endow., vol. 7, no. 13, pp. 1711–1712, Aug.

2014.

[7] L. Getoor and A. Machanavajjhala, “Entity resolution

for big data,” KDD ’13 Proc. 19th ACM SIGKDD Int.

Conf. Knowl. Discov. data Min., p. 4503, 2013.

[8] D. C. Schmidt, “Guest Editor’s Introduction : Model-

Driven Engineering,” IEEE Comput., vol. 39, no. 2, pp.

25–31, 2006.

[9] J. Bézivin, “On the unification power of models,”

Softw. Syst. Model., vol. 4, no. 2, pp. 171–188, 2005.

[10] J. G. Enríquez, R. Blanco, F. J. Domínguez-Mayo, J.

Tuya, and M. J. Escalona, “Towards an MDE-based

approach to test entity reconciliation applications,” in

Proceedings of the 7th International Workshop on

Automating Test Case Design, Selection, and

Evaluation, 2016, pp. 74–77.

[11] I. Bhattacharya and L. Getoor, “A latent dirichlet

allocation model for entity resolution,” Proc. 2005

SIAM Int. Conf. Data Min., pp. 47–58, 2005.

[12] H. Galhardas, D. Florescu, D. Shasha, E. Simon, and

C.-A. Saita, “Declarative data cleaning: Language,

model, and algorithms,” Proc. 27th Int. Conf. Very

Large Data Bases, no. JULY, pp. 371–380, 2001.

[13] H. Lee, A. Chang, Y. Peirsman, N. Chambers, M.

Surdeanu, and D. Jurafsky, “Deterministic coreference

resolution based on entity-centric, precision-ranked

rules,” Comput. Linguist., vol. 39, no. 4, pp. 885–916,

2013.

[14] V. S. Verykios, G. V. Moustakides, and M. G. Elfeky,

“A Bayesian decision model for cost optimal record

matching,” VLDB J., vol. 12, no. 1, pp. 28–40, 2003.

[15] N. Vesdapunt, K. Bellare, and N. Dalvi,

“Crowdsourcing algorithms for entity resolution,”

Proc. VLDB Endow., vol. 7, no. 12, pp. 1071–1082,

2014.

[16] T. Williams and M. Scheutz, “POWER : A domain-

independent algorithm for probabilistic, open-world

entity resolution,” pp. 1230–1235, 2015.

[17] W. E. Winkler, “Methods for record linkage and

Bayesian networks,” Res. Rep., no. Jasa 1969, p. 29,

2002.

[18] S. Sarawagi and A. Bhamidipaty, “Interactive

deduplication using Active Learning,” Proc. eighth

ACM SIGKDD Int. Conf. Knowl. Discov. data Min., pp.

269–278, 2002.

[19] W. W. Cohen and J. Richman, “Learning to match and

cluster large high-dimensional data sets for data

integration,” Proc. eighth ACM SIGKDD Int. Conf.

Knowl. Discov. data Min., pp. 475–480, 2002.

[20] J. F. Jiannan Wang, Tim Kraska, Michael J. Franklin,

“CrowdER: Crowdsourcing entity resolution,” Proc.

VLDB Endow., vol. 5, no. July 2012, pp. 1483--1494,

2012.

[21] J. Fisher, P. Christen, and Q. Wang, “Active learning

based entity resolution using Markow logic,” Adv.

Knowl. Discov. Data Min., vol. 5476, p. 2, 2016.

[22] E. Ioannou, W. Nejdl, C. Niedere’e, Y. Velegrakis, and

C. Nieder, “On-the-fly entity-aware query processing

in the presence of linkage,” Proc. VLDB Endow., vol.

3, no. 1, pp. 429–438, 2010.

[23] J. Zhao, P. Wang, and K. Huang, “A semi-supervised

approach for author disambiguation in KDD CUP

2013,” Proc. 2013 KDD Cup 2013 Work. - KDD Cup

’13, pp. 1–8, 2013.

[24] H. Wang, J. Li, and H. Gao, “Efficient entity resolution

based on subgraph cohesion,” Knowl. Inf. Syst., vol. 46,

no. 2, pp. 285–314, Feb. 2016.

[25] J. Mondal and A. Deshpande, “Managing large

dynamic graphs efficiently,” Proc. 2012 Int. Conf.

Manag. Data - SIGMOD ’12, p. 145, 2012.

[26] P. Malhotra, P. Agarwal, and G. Shroff, “Graph-

parallel entity resolution using LSH and IMM,” CEUR

Workshop Proc., vol. 1133, pp. 41–49, 2014.

[27] P. Vassiliadis, “A survey of Extract–Transform–Load

technology,” Int. J. Data Warehous. Min., vol. 5, no. 3,

pp. 1–27, 2009.

[28] K. Singh, J. and Singh, “Statistically analyzing the

impact of automated ETL testing on the data quality of

a data warehouse,” Int. J. Comput. Electr. Eng., vol. 1,

no. 4, pp. 488–495, 2009.

[29] N. ElGamal, A. El Bastawissy, and G. Galal-Edeen,

“Towards a data warehouse testing framework,” 2011

Ninth Int. Conf. ICT Knowl. Eng., pp. 65–71, 2012.

[30] S. B. Dakrory, T. M. Mahmoud, and A. A. Ali,

“Automated ETL testing on the data quality of a data

warehouse,” Int. J. Comput. Appl., vol. 131, no. 16, pp.

9–16, 2015.

[31] D. G. Tesfagiorgish and L. JunYi, “Big data

transformation testing based on data reverse

engineering,” 2015 IEEE 12th Intl Conf Ubiquitous

Intell. Comput. 2015 IEEE 12th Intl Conf Auton. Trust.

Comput. 2015 IEEE 15th Intl Conf Scalable Comput.

Commun. Its Assoc. Work., pp. 649–652, 2015.

[32] N. Li, A. Escalona, Y. Guo, and J. Offutt, “A scalable

big data test framework,” Softw. Testing, Verif. Valid.

(ICST), 2015 IEEE 8th Int. Conf., pp. 1–2, 2015.

[33] J. Gutiérrez, G. Aragón, M. Mejías, F. Jose, D. Mayo,

and C. M. R. Cutilla, “Automatic test case generation

from functional requirements in NDT,” pp. 176–185,

2012.

[34] P. André, J.-M. Mottu, and G. Sunyé, “COSTOTest: a

tool for building and running test harness for service-

based component models (demo),” Proc. 25th Int.

Symp. Softw. Test. Anal. - ISSTA 2016, pp. 437–440,

2016.

[35] S. Nogueira, A. Sampaio, and A. Mota, “Test

generation from state based use case models,” Form.

Asp. Comput., vol. 26, no. 3, pp. 441–490, 2014.

[36] B. P. Lamancha, M. Polo, D. Caivano, M. Piattini, and

G. Visaggio, “Automated generation of test oracles

using a model-driven approach,” in Information and

Software Technology, 2013, vol. 55, no. 2, pp. 301–319.

[37] J. J. Gutiérrez, M. J. Escalona, and M. Mejías, “A

Model-Driven approach for functional test case

generation,” J. Syst. Softw., vol. 109, pp. 214–228,

2015.

[38] A. A. Sofokleous and A. S. Andreou, “Automatic,

evolutionary test data generation for dynamic software

testing,” J. Syst. Softw., vol. 81, no. 11, pp. 1883–1898,

2008.

[39] ISO/IEC/IEEE, “29119-1:2013 - ISO/IEC/IEEE

International standard for software and systems

engineering — Software testing — Part 1: Concepts

and definitions,” ISO/IEC/IEEE 29119-1:2013(E), vol.

2013, pp. 1–64, 2013.

[40] H. Zhu, P. A. V. Hall, and J. H. R. May, “Software unit

test coverage and adequacy,” ACM Comput. Surv., vol.

29, no. 4, pp. 366–427, 1997.

[41] D. Hay and K. A. Healy, “Defining business rules: what

are they really?,” Final Rep., p. 34, 2000.

[42] R. Blanco, J. Tuya, and R. V. Seco, “Test adequacy

evaluation for the user-database interaction: A

specification-based approach,” in Proceedings - IEEE

5th International Conference on Software Testing,

Verification and Validation, ICST 2012, 2012.

[43] D. Willmor and S. M. Embury, “Testing the

implementation of business rules using intensional

database tests,” in Proceedings - Testing: Academic

and Industrial Conference - Practice and Research

Techniques, TAIC PART 2006, 2006.

[44] ISO/IEC TR 24774, “Systems and software

engineering -- Life cycle management -- Guidelines for

process description,” ISO/IEC TR 247742010, 2010.

[45] S. Mazanek, “HelloWorld! An instructive case for the

transformation tool contest,” in Proceedings Fifth

Transformation Tool Contest, {TTC} 2011, Z{ü}rich,

Switzerland, June 29-30 2011., 2011, vol. 74, pp. 22–

26.[46]OMG, “Sematics of Business Vocabulary and

Business Rules, version 1.4, OMG Document Number:

formal/2017-05-05,” OMG, vol. 2017, 2017.

[47] ISO/IEC 14977, “Information technology - Syntactic

metalanguage - Extended BNF,” Int. Stand.

149771996(E), vol. 1996, pp. 1–24, 1996.

[48] G. Kaminski, G. Williams, and P. Ammann,

“Reconciling perspectives of software logic testing,”

Softw. Test. Verif. Reliab., vol. 18, no. 3, pp. 149–188,

2008.

[49] G. Kaminski, P. Ammann, and J. Offutt, “Improving

logic-based testing,” J. Syst. Softw., vol. 86, no. 8, pp.

2002–2012, 2013.

[50] MOSAICO, “MOSAICO: Sistema de información para

la gestión del patrimonio cultural en Andalucía

(http://www.juntadeandalucia.es/cultura/web/areas/bb

cc/sites/consejeria/areas/bbcc/contenidos/Mosaico/sist

ema_gestion_bienes_culturales)”, Last Access

December 2017, 2017.

[51] J. Tuya, M. J. Suárez-Cabal, and C. De La Riva, “Full

predicate coverage for testing SQL database queries,”

Softw. Test. Verif. Reliab., vol. 20, no. 3, pp. 237–288,

2010.

[52] J. J. Chilenski, “An investigation of three forms of the

modified condition decision coverage (MCDC)

criterion,” Security, no. April, 2001.

[53] SICA, "SICA: Scientific System Information of

Andalusian", (https://sica2.cica.es/), Last Access

December 2017, 2017

[54] SISIUS, "SISIUS: Information System about

researching at the University of Seville",

(https://investigacion.us.es/sisius), Last Access

December 2017, 2017

Raquel Blanco is an assistant professor at the University of

Oviedo, Spain, and is a member of the Software Engineering

Research Group (GIIS, giis.uniovi.es). She obtained her PhD in

Computing from the University of Oviedo in 2008.

Her research focusses on software testing, mainly on testing

database applications and the user-database interaction.

José G. Enríquez received his PhD in Computer Science by

the University of Seville, Spain, in October 2017. He is

researcher in the Web Engineering and Early Testing Research

Group (IWT2).

His lines of research are in the areas of quality assurance,

entity reconciliation, model driven engineering. He has made

research stays in Oviedo, Southampton, Cuba or Berkeley

among others.

He received the Innovation Award from the company Fujitsu

for its innovative activity in the field of research and

development of the Platform for Dynamic Data Integration

Andalusian Historical Heritage.

Francisco J. Domínguez-Mayo received his PhD in Computer

Science by the University of Seville, Spain, in July 2013. He is

a lecturer in the Department of Computing Languages and

Systems at the University of Seville (Spain) and collaborates

with public and private companies in software development

quality and quality assurance.

His lines of interesting research are plotted in the areas of

continuous quality improvement and quality assurance on

software products and software development processes.

M.J. Escalona received her PhD Degree in Computer Science

in 2004 by the University of Seville (Spain). Since 1999, she

has been a lecturer in the Department of Computer Languages

and Systems of the University of Seville, where she is currently

a reader. She leads the Web Engineering and Early Testing

Research Group (IWT2).

Her current lines of research are in the areas of requirement

engineering, web system development, model driven

engineering, quality assurance. She has done research stays in

Nice (University of Nice), Milano (Politecnico di Milano) and

Munich (Ludwig Maximiliam Universitet) among others.

Dr. Escalona collaborates with public and private companies

such the Andalusian Government, Fujitsu TS or Airbus Military

among others in several transfer projects.

Javier Tuya is a Professor at the University of Oviedo, Spain,

where he is the research leader of the Software Engineering

Research Group. He received his PhD in Engineering from the

University of Oviedo in 1995.

His research interests in software engineering include

verification & validation and software testing for database

applications and services.

Dr. Tuya is Director of the Indra-Uniovi Chair, member of

the ISO/IEC JTC1/SC7/WG26 working group for the recent

ISO/IEC/IEEE 29119 Software Testing standard and convener

of the corresponding AENOR National Body working group.

He is a member of the IEEE, IEEE Computer Society, ACM

and the Association for Software Testing (AST).

