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Abstract In the last decades, multiple-testing problems have received much
attention. Many different methods have been proposed in order to deal with
this relevant issue. Most of them are focused on controlling some weak ver-
sion of the Type I error such that the False Discovery Rate. Type II error is
frequently forgotten. In this work, the multitesting problem is treated from
a diagnostic test approach in which the p-values play the role of the studied
predictive marker. In this context, the receiver operating characteristic, ROC,
curve is estimated. Several Monte Carlo simulations help for a better under-
standing of the problem. Finally, a real dataset studying the relationship
between atosomal CpG sites and characteristic of hepatocellular carcinoma
is considered.

1 Introduction

Modern science frequently produces data on thousands of different features.
Probably, the -omics technologies (genomics, transcriptomics, proteomics,
etc.) stand for the most relevant examples although other fields like astro-
physics, brain imaging or spatial epidemiology have also increased substan-
tially the size of the collected data. Conventionally, statistical analyses of
those data often include a huge number of hypotheses to be tested at the same
time. In this context, standard statistical concepts, like the p-value, lose their
original probabilistic interpretation. Notice that, for any fixed nominal level,
the probability of spurious effects, or false positives, greatly increases when a
massive number of null hypotheses are simultaneously tested. Classical multi-
ple comparison procedures focus on controlling the probability of committing
any Type I error i.e., to control the family wise error rate (FWER). Unfortu-
nately, this objective is too ambitious in this context and more liberal criteria
must be used (see Farcomeni [8] for a recent and extensive review of modern
multiple hypothesis testing methods).
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In the multiple testing context, conventionally N (null) hypotheses are
contrasted simultaneously from adequate tests. The classical Table 1 depicts
schematically the possible practical situations. Of course, in practice, only
the total number of hypotheses, N , and the total number of rejections, r, are
really known.

Table 1 Number of mistakes committed when N null hypotheses are simultaneously
tested.

Reject Not Reject Total

Null true r −R U N0

Alternative true R u−U N −N0 (= N1)

Total r N − r (= u) N

Notice that controlling the FWER is equivalent to control the probability
P{r − R > 0}. Seeger [16] introduced and later Benjamini and Hochberg [1]
revised and popularized the false discovery rate (FDR), defined as the ex-
pected proportion of spurious effects i.e., FDR= E[(r−R)/(r∨1)] (a∨ b = b
if a ≤ b). The FDR is a frequentist well established definition for the multiple
hypothesis testing error and, undoubtedly, the most used procedure.

Several generalizations for the FWER and the FDR criteria and differ-
ent procedures to implement them have been proposed (see, for instance,
Sarkar [15] and references therein). Most recent works deal with the problem
of controlling the tail probability of false positives. Genovese and Wasser-
man [11] proposed to control the tail probability of the false discovery pro-
portion (FDP) by the so labeled FDX (false discovery exceedance) i.e., for a
fixed α, to control P{1−R/r > α}. In addition, we highlight the sequential
goodness of fit (SGoF) strategy, proposed by Carvajal-Rodŕıguez et al. [2] and
deeply explored by de Uña-Álvarez [5]. The SGoF method rejects an amount
of null hypotheses equal to the difference between the observed and the ex-
pected amounts of p-values below a given threshold under the assumption
that all nulls are true (we denote by H0 = ∩Ni=1H0,i, in bold, this hypothe-
sis). The outcome of most of those methods is a cutoff point; p-values below
this threshold are declared significant while p-values above it are declared
non-significant.

Considering each test as a sampling unit and its p-value as a marker of
the null hypothesis credibility, the multiple hypothesis testing problem has
a clear connection to the classification theory (this point of view was briefly
explored by Storey [18]). In this paper, assuming that p-values follow a mix-
ture distribution (see Section 2), multitesting problem is dealt with from
a diagnostic test approach; in particular, the well-known receiver-operating
characteristic (ROC) curve is derived. This curve does not provide a cut-off
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point but graphical information about the real diagnostic capacity of the
studied marker, in this case, the p-value. One of the main goals of this work
is pointing out the limitation of the process. Notice that, depending on the
power of the study, the p-value is not always a good diagnostic marker. And
even when it is a good diagnostic marker, the classification could be difficult
depending on the prevalence of untrue nulls. In Section 3, some particularities
of the ROC curve when it is applied on multitesting problems are considered.
Section 4 is devoted to the ROC curve estimation. The performance of the
proposed method is empirically studied via Monte Carlo simulations. In Sec-
tion 5, a real data problem is analyzed. Finally, in Section 6, we present our
main conclusions.

2 The mixture model

When it is assumed that there exist N independent hypotheses (H0,i, 1 ≤
i ≤ N) which are going to be tested from adequate tests and that F0 and F1

are the cumulative distribution functions (CDFs) for the p-values when the
null is true and untrue, respectively, then, the CDF of the p-values will be
the mixture distribution

GN (t) = π0 · F0(t) + (1− π0) · F1(t),

where π0 (= N0/N) is the true null proportion. In this case, for each t ∈ [0, 1],
the function GN (t) represents the probability that the p-value associated with
a randomly selected hypothesis will be less or equal to t. However, it should be
noted that this model assumes that all true nulls follow the same distribution
(F0), which can be plausible, but also that all untrue nulls follow the same
distribution (F1), which is a quite more unrealistic proviso. Without this
assumption, the probability that a p-value from an untrue hypothesis will
be less or equal to t depends on the particular hypothesis from which this
p-value has been drawn. Although depending on the particular experiment
studied a random effects or hierarchical model can be more appropriate (see
Efron et al. [6]), we adopt the most common situation in which the set of
hypotheses to be tested are previously fixed, therefore F1 = N−11 ·

∑
i∈J1 F1,i,

where J1 ⊆ {1, . . . , N} stands for the set of indices in which the null is untrue.
For each t ∈ [0, 1], GN (t) stands for the average probability that the p-value
associated with a randomly selected hypothesis will be less or equal to t. This
interpretation is still valid in the presence of dependency structures.

Notice that, on the usual assumption that, under the null, the CDF of each
individual p-value is t · I[0,1](t) (IA stands for the standard indicator function
on the set A), i.e., each individual p-value follows a uniform distribution
within [0, 1], it is derived



4 Mart́ınez-Camblor, Pérez-Fernández and Corral

GN (t) = π0 · t · I[0,1](t) + (1− π0) · F1(t). (1)

Remark 1. Although it is reasonable to assume that, under the null, each sin-
gle p-value is uniformly distributed on [0, 1], and this proviso is true when
the null is simple and the distribution of the test statistic is continuous and
known, the true p-value distribution is only stochastically dominated by the
uniform if its distribution is discrete or the p-value is estimated by a resam-
pling method (see, for instance, Farcomeni [8]).

From the mixture model, the traditional BH procedure for controlling the
FDR at level α proposed by Benjamini and Hochberg [1] can be seen as a
plug-in method for estimating the threshold (Genovese and Wasserman [10]),

TBH(α) = sup{t ∈ [0, 1] : GN (t) ≥ t/α}, (2)

and, assuming independence among tests, the SGoF method (taking γ = α)
tries to estimate the threshold (de Uña-Álvarez [5]) as

TSGoF(α) = G−1N
(
GN (α)− α− zα ·

√
α · (1− α)/N +N−1

)
, (3)

where G−1N (t) = inf{s : GN (s) ≥ t} and zα = Φ−1(1 − α) (Φ stands for the
standard normal CDF).

3 Receiver operating characteristic curve in the
multitesting problem

The receiver-operating characteristic, ROC, curve is a popular graphical
method frequently used in order to study the diagnostic capacity of con-
tinuous markers. It represents in a plot the true-positive rate (TPR) against
the false-positive one (FPR) of all thresholds of the marker. Both practical
and theoretical aspects of the receiver operating characteristic curve have
been extensively studied in the specialized literature (see Zhou et al. [19] for
a recent review). Assuming that smaller values of the marker indicate larger
confidence that a given subject is positive, let χ and ξ be two continuous ran-
dom variables representing the marker values for the negative and positive
subjects, respectively. Therefore, for a fixed point t ∈ [0, 1], the ROC curve
is defined as follows,

R(t) = Fξ(Fχ(t)) = P{ξ ≤ Fχ(t)} = P{F−1χ (ξ) ≤ t} = FF−1
χ (ξ)(t), (4)

where Fχ and Fξ denote the CDFs for the variables χ and ξ, respectively.
In the current context, p-values play the role of marker values and the true
and false nulls are the negative and positive subjects, respectively. Assuming
the mixture model (1), the problem is simplified; in this case, the ROC curve
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stands for the CDF for the untrue nulls; i.e., R(t) = F1(t) (t ∈ [0, 1]). Notice
that the sensitivity (TPR) must be interpreted as the average probability
that an untrue null hypothesis will be correctly classified as untrue i.e., the
average probability of rejecting an untrue null hypothesis (power). Figure 1
depicts the real ROC curve for F1(t) = ta · I[0,1](t) with a such that the
average sensitivity is 0.8 when the specificity (1-FPR) is 0.95. In order to
give more relevance to high specificities, the scale of the x-axis has been
modified. Remember that ROC curve is equal to F1 and the main diagonal
(dotted gray line; since the scale of x-axis is modified) is equal to F0.

Fig. 1 ROC curve under

the mixture model for
F1(t) = ta · I[0,1](t) with

a = log(0.8)/log(0.05).

Remember that, in this
context, R(t) = F1(t).

Notice that the x-axis is

not in linear scale.
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Due to the fact that the ROC curve does not depend on the prevalence
of the studied characteristic, 1− π0, this graphical method provides valuable
information about the real capacity of the marker (p-value) to identify the
subjects (tests) as positives (rejecting) or negatives (no rejecting). Conven-
tionally, the aforementioned thresholds strongly depend on this prevalence;
particularly, for the above situation, TBH(0.1) is 0.0202, 0.0160 and 0.0076 for
π0 = 0.75, 0.80 and 0.90, respectively; with these cut-off points, the obtained
powers would be 0.749, 0.736 and 0.697. The SGoF method also depends
on the number of tests, N ; when N = 10, 000, TSGoF(0.1) takes the values
0.0086, 0.0074 and 0.0043 for π0 = 0.75, 0.80 and 0.90; leading to powers
of 0.703, 0.696 and 0.668. The Youden index, Y , is achieved at point 0.06
(Youden index is often used in diagnostic tests in order to obtain an optimal
threshold, it is defined as Y = maxt∈R{TPR(t)−FPR(t)}); at this point, the
obtained FPR obviously is 0.060 and the average power 0.811 (= TPR); i.e.,
by using this cut-off point, in average 6% of the true nulls would be declared
false and around 19% of the untrue nulls would not be rejected.

Remark 2. As it is well-known, the area under the ROC curve (AUC) is one
of the most commonly used global index of diagnostic accuracy (Faraggi and
Reiser [7]). It ranges between 1/2, when the marker does not contribute to a
correct classification, and 1, if the marker can classify perfectly all subjects.
The AUC has a direct probabilistic interpretation: in particular, it is the
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probability that the value of the marker in a randomly chosen negative subject
will be higher than the value of the marker in a randomly chosen positive
subject. In the current context it can be read as the average of the power
when the Type I error varies between 0 and 1. However, large Type I errors
are not interesting in practice; hence, limiting the range of the Type I error
and considering the partial area under the curve, pAUC (Ma et al. [13]),
seems to be a more adequate measure. In this case, the AUC is 0.931 and the
pAUC between 0 and 0.05 is 0.0372 (0.745 in a 0− 1 scale).

4 Receiver operating characteristic curve estimation

In practice, we observe N p-values, {p1, . . . , pN}, corresponding to N nulls,
{H0,1, . . . ,H0,N}; Γ will denote the subset of untrue nulls. Assuming inde-
pendence between the p-values, the Liapunov’s Central Limit Theorem (see,
for instance, Ibarrola et al. [12]) implies the following result:

Theorem 1. Let {p1, · · · , pN} be an independent random sample where for
each i ∈ 1, . . . , N , pi was drawn from F∗,i. For each t ∈ [0, 1], let be GN (t) =

(1/N) ·
∑N
i=1 F∗,i(t) and ĜN (t) = (1/N) ·

∑N
i=1 I(−∞,t](pi), then

N · ĜN (t)−GN (t)√∑N
i=1 F∗,i(t) · (1− F∗,i(t))

L−→N N (0, 1). (5)

This Central Limit Theorem for non identically distributed variables im-
plies that, if N is sufficiently large, the empirical CDF estimator provides
a good approximation of the real distribution function. In Genovese and
Wasserman [10] this convergence is deeply considered from a stochastic pro-
cess approach.

On the other hand, the π0 estimation has been previously considered in
the specialized literature. For instance, Dalmasso et al. [4] took advantage of
the logarithmic function properties and defined the family of estimators

π̂0,k =
(1/N)

∑N
i=1[− log(1− pi)]k

k!
, with k ∈ N. (6)

Once π0 is estimated, from the mixture model and result (5), the estimation
of the ROC curve is direct. However, assuming that for any fixed nominal
level the probability of rejecting an untrue null hypothesis is higher than the
probability of rejecting a true null hypothesis, and taking into account that
R is a non-decreasing function, then

R̂(t) = max

{
sup
s∈[0,t]

{F̂1(s)}, t · I[0,1](t)

}
, (7)
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where F̂1(s) = min{(ĜN (s) − π̂0,2 · s · I[0,1](s)) · (1 − π̂0,2)−1, 1}, is a more
appropriate estimator for the ROC curve. Of course, the estimator is still
valid by using other π0 approximations.

4.1 Simulation study

The behavior of the proposed estimator is empirically studied via Monte
Carlo simulations. Two different strategies were considered: in the first one,
the p-values were directly drawn from different theoretical mixture models;
in the second one, the whole problem is simulated, i.e., one sample is drawn
and the corresponding p-values are computed from an adequate test where
the null hypothesis is µ = 0.

In the first scenario we run independent random samples of size N from the
distribution GN (t) = π0·t·I[0,1](t)+(1−π0)·F1(t) where F1 = (1/N1)

∑N1

i=1 t
ai ·

I[0,1](t) with ai = L + (i/N1) · U and two parameters (L and U) selected in
order to obtain different power averages; particularly, at level 0.05, power
averages (β̄0.05) of 0.6 and 0.8 were studied.

In the second considered scenario the whole problem is simulated. We
consider situations where the nulls to be tested are H0,i : µi = 0, where
µi stands for the expected value of the ith population (1 ≤ i ≤ N). Under
the null, we drawn independent samples (with size n = 25) from a standard
normal distribution while, under the alternative, the samples were drawn from
a N (µ∗, 1) distribution where µ∗ was taken such that the power average was
the desired one (β̄0.05 = 0.6 and 0.8 were considered). Then, the p-values
were computed by using the Student t-test (parametric).

Figure 2, left, depicts the approximate shape of the involved curves in the
first scenario; notice that the real one depends on the number of untrue nulls
(N1). At right, the shape of the respective ROC curve in the second scenario
is displayed.

Table 2 shows the observed results for both scenarios on 1,000 Monte
Carlo iterations. Particularly, we report mean ± standard deviation for the
absolute difference between the real and the estimated proportion of true nulls
(π0), as well as the integrated absolute error committed by the ROC curve
estimator proposed in (7). In addition, information about the committed
errors (measured by E[T̂ ] = |T̂ − T |/T ) for TBH(0.05) and TSGoF(0.05) are
also reported. For N = 1, 000, the observed results are disappointing; both
the mean and the standard deviation of the ROC curve estimates were really
large. However they decrease for N = 10, 000. It is worth to notice that the
observed results in the second scenario were a bit better than the previous
ones but, in any case, really similar to them.
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Fig. 2 Left, ROC curve under the mixture model (F1(t) = (1/N1) ·
∑N1

i=1 t
ai · I[0,1](t)

with ai = L+(i/N1) ·U and L = 0.05) when p-values are obtained from the first described

scenario. Right, ROC curve when p-values are obtained from the second described scenario.

Table 2 Mean ± standard deviation for the absolute difference between π0 and π̂0,2; the

integrated absolute difference between the ROC curve estimation and its target; the errors
E[T̂BH(0.05)] and E[T̂SGoG(0.05)] obtained from 1, 000 Monte Carlo iterations for both

described scenarios.

N π0 β̄0.05 |π̂0,2 − π0|
∫
|R̂ − R| E[T̂BH(0.05)] E[T̂SGoF(0.05)]

Scenario I
1,000 0.95 0.60 0.056 ± 0.04 0.178 ± 0.09 0.190 ± 0.14 1.871 ± 2.21

0.80 0.054 ± 0.04 0.182 ± 0.14 0.103 ± 0.07 4.287 ± 7.61

1,000 0.85 0.60 0.059 ± 0.05 0.109 ± 0.07 0.093 ± 0.07 0.350 ± 0.26
0.80 0.052 ± 0.04 0.074 ± 0.06 0.052 ± 0.04 0.546 ± 0.44

10,000 0.95 0.60 0.019 ± 0.01 0.109 ± 0.06 0.056 ± 0.04 0.257 ± 0.19
0.80 0.018 ± 0.01 0.075 ± 0.06 0.032 ± 0.02 0.381 ± 0.29

10,000 0.85 0.60 0.032 ± 0.02 0.088 ± 0.04 0.031 ± 0.02 0.091 ± 0.07

0.80 0.020 ± 0.02 0.045 ± 0.02 0.016 ± 0.01 0.130 ± 0.10
Scenario II

1,000 0.95 0.60 0.054 ± 0.04 0.168 ± 0.11 2.404 ± 2.50 0.520 ± 0.40

0.80 0.056 ± 0.04 0.189 ± 0.15 0.446 ± 0.33 0.450 ± 0.35
1,000 0.85 0.60 0.055 ± 0.04 0.082 ± 0.06 0.455 ± 0.33 0.158 ± 0.12

0.80 0.055 ± 0.04 0.069 ± 0.07 0.137 ± 0.11 0.164 ± 0.12
10,000 0.95 0.60 0.018 ± 0.01 0.080 ± 0.05 0.865 ± 0.70 0.114 ± 0.08

0.80 0.017 ± 0.01 0.063 ± 0.06 0.150 ± 0.11 0.112 ± 0.08

10,000 0.85 0.60 0.020 ± 0.02 0.044 ± 0.02 0.159 ± 0.12 0.044 ± 0.03

0.80 0.015 ± 0.01 0.027 ± 0.02 0.043 ± 0.03 0.047 ± 0.03
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5 A real-world example: the Shen data

The Shen data contains information of 62 Taiwanese cases of hepatocellular
carcinoma (HCC) on which tumor and adjacent non-tumor tissues were ana-
lyzed using Illumina methylation arrays (Illumina, Inc., San Diego, CA) that
screen 26,538 autosomal CpG sites. The reader is referred to Shen et al. [17]
for a complete information about the original study. The data are publicly
available at the Gene Expression Omnibus (GEO) page, with access number
GSE37988 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE37988).
Probes corresponding to the X and Y chromosomes were removed from the
dataset in order to eliminate the X-inactivation effects. We considered the
raw data (without any previous quality control). Due to the fact that each
CpG is measured on the same subjects, the parametric Student t-test or the
non-parametric Wilcoxon test for paired samples can be used in order to
check the null of equality between, let us abuse, distributions.

The total number of CpG sites with a p-value less than 0.05 (usual nomi-
nal level) was 12,394 (46.7%) using the t-test, and 12,592 (47.4%) using the
Wilcoxon test. Figure 3 shows the p-value histograms and GN function esti-
mates for the Student (black) and the Wilcoxon (gray) test. Table 3 shows
estimations of π0 using different k-values of the estimator defined in (6).
Results are influenced by the p-values close to 1, specially for largest k.
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Fig. 3 Histogram for the p-values obtained from the t (left) and Wilcoxon (middle) tests,

as well as ĜN (·) for the t (black) and Wilcoxon (gray) tests.

π̂0,1 π̂0,2 π̂0,3 π̂0,4

t-test 0.404 0.384 0.450 0.590

Wilcoxon test 0.424 0.427 0.541 0.791

Table 3 Values of π̂0,k for
different k-values.

The BH method, T̂BH(0.05), declares significant the 10,451 smallest p-
values (cut-off point of 0.019690) for the t-tests and the 10,585 smallest ones
when the Wilcoxon test is used (cut-off point of 0.019943). At these points,
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the estimated average sensibilities (using π̂0,2) were 0.627 and 0.681, for the
t and the Wilcoxon test, respectively.

Figure 4 depicts the estimated ROC curves for the Student (left) and the
Wilcoxon (right) test for the different considered π0 estimates. Obviously,
the results depend on the π̂0,k value; however, it should be recalled that the
x-axis scale was altered and the real difference is not as large as it seems.
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Fig. 4 ROC curve estimations for different π̂0,k (k ∈ {1, 2, 3, 4}) for t-test (left) and

Wilcoxon test (right).

6 Discussion

Currently, a number of researchers, mainly bioinformaticians, must often deal
with multitesting problems. As a consequence, the development of adequate
statistical tools in order to handle and control the involved Type I and Type II
errors is a really hot topic in the specialized literature. Although some authors
as Genovese and Wasserman [9] or Storey [18] have already considered the
false non-discovery rate, most of the works are focused on trying to control,
in some way, the false positive rate. However, the first quantity is crucial in
order to know what the real capacity of detecting true effects is. Notice that,
even when we know the exact number of false nulls, the p-value could not be
an appropriate measure for separating those from the true nulls.

Actually, this work does not propose real practical solutions but it pays
attention to an usually forgotten aspect of the multitesting problem. It in-
tends to ponder the technical limitations which this complex issue provokes.
Remember that, in most cases, we only have one sample drawn from an N -
dimensional vector. By assuming independence among tests, one can perform
some kind of correct inference; furthermore, the independence assumption is
reasonable in a number of practical situations (see Clarke and Hall [3]), but it
may be a source of serious mistakes and misleading conclusions. In the pres-
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ence of arbitrary correlation structures, the limitations are clear. The main
problem lies in the variability of the observed proportion of rejections under
the null; while in the independent case, in the usual practical problems, this
number is really close to the fixed nominal level, under dependent structures
it can vary a lot (see Mart́ınez-Camblor [14]) and both the π0 and the R(·)
estimates are strongly dependent on that observed value.

The simulation studies show the limitation capacity to perform a correct
estimation of the ROC curve in the multitesting context. In addition, the
presence of p-values close to the extremes (zero and one) provokes precision
problems in the obtained estimates; unfortunately, when the number of tests
is large (most frequent case), this problem is not unusual. The accuracy
problem, frequently ignored, gains relevance when the selected cut-off point
strongly depends on the fifth or sixth decimal position.

In this report, we explore the interpretation of the sensibility and speci-
ficity in the multitesting problem by assuming the mixture model and, in this
context, a ROC curve estimator is proposed. The explored methods allow us
to give an estimation of the sensitivity average for each particular problem.
Even taking into account the limitations of the procedures, in each particular
problem, this quantity can help to have a better understanding of what the
actual capacity of p-values to distinguish false from true null hypotheses is.
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13. Ma H, Bandos AI, Rockette HE, Gur D (2013) On use of partial area under the ROC
curve for evaluation of diagnostic performance. Statist Med 32(20):3449–3458

14. Mart́ınez-Camblor P (2014) On correlated z-values distribution in hypothesis testing.
Comp Statist Data Anal 79:30–43

15. Sarkar SK (2007) Stepup procedures controlling generalized FWER and generalized

FDR. Ann Statist 35(6):2405–2420
16. Seeger PA (1968) A note on a method for the analysis of significance en masse.

Technometrics 10:586–593

17. Shen J, Wang S, Zhang YJ, Kappil M, Wu HC, Kibriya MG, Wang Q, Jasmine
F, Ahsan H, Lee PH, Yu MW, Chen CJ, Santella RM (2012) Genome-wide DNA

methylation profiles in hepatocellular carcinoma. Hepatology 55(6):1799–1808

18. Storey JD (2003) The positive false discovery rate: A Bayesian interpretation and the
q-value. Ann Statist 31:2013–2035

19. Zhou X-H, Obuchowski NA, McClish DK (2002) Statistical Methods in Diagnostic

Medicine. Wiley, New York


