ACTAS

DE LAS

VXXXVIII Jornadas de Automática

Gijón · Palacio de Congresos · 6, 7 y 8 de Septiembre de 2017

Actas de

XXXVIII Jornadas de Automática

© 2017 Universidad de Oviedo © Los autores

Servicio de Publicaciones de la Universidad de Oviedo Campus de Humanidades. Edificio de Servicios. 33011 Oviedo (Asturias) Tel. 985 10 95 03 Fax 985 10 95 07 http: www.uniovi.es/publicaciones servipub@uniovi.es

DL AS 2749-2017

ISBN: 978-84-16664-74-0

Todos los derechos reservados. De conformidad con lo dispuesto en la legislación vigente, podrán ser castigados con penas de multa y privación de libertad quienes reproduzcan o plagien, en todo o en parte, una obra literaria, artística o científica, fijada en cualquier tipo y soporte, sin la preceptiva autorización.

JA2017 Prefacio

Prefacio

Las Jornadas de Automática se celebran desde hace 40 años en una universidad nacional facilitando el encuentro entre expertos en esta área en un foro que permite la puesta en común de las nuevas ideas y proyectos en desarrollo. Al mismo tiempo, propician la siempre necesaria colaboración entre investigadores del ámbito de la Ingeniería de Control y Automática, así como de campos afines, a la hora de abordar complejos proyectos de investigación multidisciplinares.

En esta ocasión, las Jornadas estarán organizadas por la Universidad de Oviedo y se han celebrado del 6 al 8 de septiembre de 2017 en el Palacio de Congresos de Gijón, colaborando tanto la Escuela Politécnica de Ingeniería de Gijón (EPI) como el Departamento de Ingeniería Eléctrica, Electrónica de Computadores y de Sistemas del que depende el Área de Ingeniería de Sistemas y Automática.

Además de las habituales actividades científicas y culturales, esta edición es muy especial al celebrarse el **50 aniversario de la creación de CEA**, Comité Español de Automática. Igualmente este año se conmemora el 60 aniversario de la Federación Internacional del Control Automático de la que depende CEA. Así se ha llevado a cabo la presentación del libro que se ha realizado bajo la coordinación de D. Sebastián Dormido, sobre la historia de la Automática en España en una sesión en la que han participado todos los ex-presidentes de CEA conjuntamente con el actual, D. Joseba Quevedo.

Igualmente hemos contado con la presencia de conferenciantes de prestigio para las sesiones plenarias, comunicaciones y ponencias orales en las reuniones de los 9 grupos temáticos, contribuciones en formato póster. Se ha celebrado también el concurso de CEABOT, así como una nueva Competición de Drones, con el ánimo de involucrar a más estudiantes de últimos cursos de Grado/Máster.

En el marco de las actividades culturales programadas se ha podido efectuar un recorrido en el casco antiguo situado en torno al Cerro de Santa Catalina y visitar la Laboral.

Gijn, septiembre de 2017

Hilario López Presidente del Comité Organizador

JA2017 Program Committee

Program Committee

Antonio Agudo Institut de Robòtica i Informàtica Industrial

Rosa M Aguilar University of La Laguna. Luciano Alonso University of Cantabria Ignacio Álvarez García Universidad de Oviedo

Antonio Javier Artuñedo García Centre for Automation and Robotics (CSIC-UPM)

José M. Azorín Miguel Hernandez University of Elche

Pedro Balaguer Universitat Jaume I Antonio Javier Barragán Piña Universidad de Huelva Alfonso Baños Universidad de Murcia Guillermo Bejarano University of Seville

Gerardo Beruvides Centro de Automática y Robótica

Carlos Bordons University of Seville
Jose Manuel Bravo University of Huelva
Jose Luis Calvo-Rolle University of A Coruña

Fernando Castaño Romero Centro de Automática y Robótica (UPM -CSIC)

José Luis Casteleiro-Roca University of Coruña

Alvaro Castro-Gonzalez Universidad Carlos III de Madrid Ramon Costa-Castelló Universitat Politècnica de Catalunya

Abel A. Cuadrado University of Oviedo

Arturo De La Escalera Universidad Carlos III de Madrid

Emma Delgado Universidad de Vigo

Jose-Luis Diez Universitat Politecnica de Valencia

Manuel Domínguez Universidad de León Juan Manuel Escaño Universidad de Sevilla Mario Francisco University of Salamanca Maria Jesus Fuente Universidad de Valladolid Juan Garrido University of Cordoba Antonio Giménez Universidad de Almeria Evelio Gonzalez Universidad de La Laguna José-Luis Guzmán Universidad de Almería

Rodolfo Haber Center for Automation and Robotics (UPM-CSIC)

César Ernesto Hernández Universidad de Almería

Eloy Irigoyen UPV/EHU

Agustin Jimenez Universidad PolitAcnica de Madrid

Emilio Jiménez
University of La Rioja
Jesus Lozano
Universidad de Extremadura
Centro de Automática y Robótica
Luis Magdalena
Universidad Politécnica de Madrid
David Martin Gomez
Universidad Carlos III de Madrid
Fernando Matia
Universidad Politecnica de Madrid

Joaquim Melendez

Juan Mendez

Luis Moreno

Universidad de La Laguna

Universidad Carlos III de Madrid

Universidad de Extremadura

Universidad de Sorilla

David Muñoz Universidad de Sevilla Antonio José Muñoz-Ramirez Universidad de Málaga

Jose Luis Navarro Universidad Politecnica de Valencia

Manuel G. Ortega University of Seville

Andrzej Pawlowski UNED

Mercedes Perez de La Parte University of La Rioja

Ignacio Peñarrocha Universitat Jaume I de Castelló, Spain

José Luis Pitarch Universidad de Valladolid

JA2017 Program Committee

Daniel Pérez University of Oviedo
Emilio Pérez Universitat Jaume I
Juan Pérez Oria Universidad de Cantabria
MiguelÁngel Ridao Universidad de Sevilla
Gregorio Sainz-Palmero Universidad de Valladolid

Antonio Sala Universitat Politecnica de Valencia

Ester Sales-Setién Universitat Jaume I

Jose Sanchez UNED

Javier Sanchis Saez Universitat Politecnica de Valencia (UPV)

José Pedro Santos ITEFI-CSIC

Matilde Santos Universidad Complutense de Madrid

Alvaro Serna University of Valladolid

José Enrique Simó Universidad Politécnica de Valencia

José A. Somolinos ETS I Navales. Universidad Politecnica de Madrid

Fernando Tadeo Univ. of Valladolid

Alejandro Tapia Universidad de Loyola Andalucía

David Tena Universitat Jaume I
Jesús Torres Universidad de La Laguna
Pedro M. Vallejo Universidad de Salamanca
Guilherme Vianna Universidad de Sevilla

Alejandro Vignoni AI2 - UPV Ramón Vilanova UAB

Francisco Vázquez Universidad de Cordoba Jesús M. Zamarreño University of Valladolid JA2017 Revisores Adicionales

Revisores Adicionales

Al-Kaff, Abdulla

Balbastre, Patricia Beltrán de La Cita, Jorge Bermudez-Cameo, Jesus Blanco-Claraco, Jose-Luis Blanes, Francisco Bonin-Font, Francisco

Cancela, Brais

Ferraz, Luis

Garita, Cesar Gimenez, Antonio Gruber, Patrick Guindel, Carlos

Hernandez Ruiz, Alejandro Hernandez, Daniel

Jardón Huete, Alberto

López, Amable

Marin, Raul Marín Plaza, Pablo Mañanas, Miguel Angel Morales, Rafael Moreno, Francisco-Angel

Nuñez, Luis Ramón

Ponz Vila, Aurelio Posadas-Yague, Juan-Luis Poza-Luján, Jose-Luis Pumarola, Albert

Raya, Rafael Revestido Herrero, Elías Rocon, Eduardo Ruiz Sarmiento, José Raúl Ruiz, Adria

Torres, Jose Luis

Vaquero, Victor

Table of Contents

Ingeniería de Control	
TÚNEL DE AGUA PARA PRUEBAS Y CARACTERIZACIÓN DE DISEÑOS EXPERIMENTALES DE TURBINAS HIDROCINÉTICAS Eduardo Alvarez, Manuel Rico-Secades, Antonio Javier Calleja Rodríguez, Joaquín Fernández Francos, Aitor Fernández Jiménez, Mario Alvarez Fernández and Samuel Camba Fernández	1
Reduction of population variability in protein expression: A control engineering approach. Yadira Boada, Alejandro Vignoni and Jesús Picó	8
CONTROL ROBUSTO DEL PH EN FOTOBIORREACTORES MEDIANTE RECHAZO ACTIVO DE PERTURBACIONES	16
Control reset para maniobra de cambio de carril y validación con CarSim	23
Maniobra de aterrizaje autom atica de una Cessna 172P modelada en FlightGear y controlada desde un programa en C	31
Alternativas para el control de la red eléctrica aislada en parques eólicos marinos Carlos Díaz-Sanahuja, Ignacio Peñarrocha, Ricardo Vidal-Albalate and Ester Sales-Setién	38
CONTROL PREDICTIVO DISTRIBUIDO UTILIZANDO MODELOS DIFUSOS PARA LA NEGOCIACIÓN ENTRE AGENTES	46
Control Predictivo en el espacio de estados de un captador solar tipo Fresnel	54
Control predictivo para la operación eficiente de una planta formada por un sistema de desalación solar y un invernadero	62
Depuración de Aguas Residuales en la Industria 4.0	70
Control robusto con QFT del pH en un fotobioreactor raceway	77
Ángeles Hoyo Sánchez, Jose Luis Guzman, Jose Carlos Moreno and Manuel Berenguel	
Revisión sistemática de la literatura en ingeniería de sistemas. Caso práctico: técnicas de estimación distribuida de sistemas ciberfísicos	84
Carmelina Ierardi, Luis Orihuela Espina, Isabel Jurado Flores, Álvaro Rodriguéz Del Nozal and Alejandro Tapia Córdoba	
Desarrollo de un Controlador Predictivo para Autómatas programables basado en la normativa IEC 61131-3	92
Diseño de un emulador de aerogenerador de velocidad variable DFIG y control de pitch1 Manuel Lara Ortiz, Juan Garrido Jurado and Francisco Vázquez Serrano	100

abierto
Julio Luna and Ramon Costa-Castelló
Control Predictivo Basado en Datos
José María Manzano, Daniel Limón, Teodoro Álamo and Jan Peter Calliess
Control MPC basado en un modelo LTV para seguimiento de trayectoria con estabilidad garantizada
Sara Mata, Asier Zubizarreta, Ione Nieva, Itziar Cabanes and Charles Pinto
Implementación y evaluación de controladores basados en eventos en la norma IEC-61499.136 Oscar Miguel-Escrig, Julio-Ariel Romero-Pérez and Esteban Querol-Dolz
AUTOMATIZACIÓN Y MONITORIZACIÓN DE UNA INSTALACIÓN DE ENSAYO DE MOTORES
Alfonso Poncela Méndez, Miguel Ochoa Vega, Eduardo J. Moya de La Torre and F. Javier García Ruíz
OPTIMIZACIÓN Y CONTROL EN CASCADA DE TEMPERATURA DE RECINTO
MEDIANTE SISTEMAS DE REFRIGERACIÓN
Diseño LQ e implementación distribuida para la estimación de estado
Álvaro Rodríguez Del Nozal, Luis Orihuela, Pablo Millán Gata, Carmelina Ierardi and Alejandro Tapia Córdoba
Estimación de fugas en un sistema industrial real mediante modelado por señales aditivas. 160 Ester Sales-Setién, Ignacio Peñarrocha and David Tena
Advanced control based on MPC ideas for offshore hydrogen production
Transfer function parameters estimation by symmetric send-on-delta sampling
An Estimation Approach for Process Control based on Asymmetric Oscillations
Robust PI controller for disturbance attenuation and its application for voltage regulation in islanded microgrid
Infraestructura para explotación de datos de un simulador azucarero
Automar
INFRAESTRUCTURA PARA ESTUDIAR ADAPTABILIDAD Y TRANSPARENCIA EN EL CENTRO DE CONTROL VERSÁTIL
Juan Antonio Bonache Seco, José Antonio Lopez Orozco, Eva Besada Portas and Jesús Manuel de La Cruz
ARQUITECTURA DE CONTROL HÍBRIDA PARA LA NAVEGACI ÓN DE
VEHÏCULOS SUBMARINOS NO TRIPULADOS

Acústicos
Oscar L. Manrique Garcia, Mario Andrei Garzon Oviedo and Antonio Barrientos
AUTOMATIZACIÓN DE MANIOBRAS PARA UN TEC DE 2GdL 220
Marina Pérez de La Portilla, José Andrés Somolinos Sánchez, Amable López Piñeiro, Rafael Morales Herrera and Eva Segura
MERBOTS PROJECT: OVERALL DESCRIPTION, MULTISENSORY AUTONOMOUS PERCEPTION AND GRASPING FOR UNDERWATER ROBOTICS INTERVENTIONS
Pedro J. Sanz, Raul Marin, Antonio Peñalver, David Fornas and Diego Centelles
Bioingeniería
MARCADORES CUADRADOS Y DEFORMACIÓN DE OBJETOS EN NAVEGACIÓN QUIRÚRGICA CON REALIDAD AUMENTADA
Eliana Aguilar, Oscar Andres Vivas and Jose Maria Sabater-Navarro
Entrenamiento robótico de la marcha en pacientes con Parálisis Cerebral: definición de objetivos, propuesta de tratamiento e implementación clínica preliminar
Cristina Bayón, Teresa Martín-Lorenzo, Beatriz Moral-Saiz, Óscar Ramírez, Álvaro Pérez-Somarriba, Sergio Lerma-Lara, Ignacio Martínez and Eduardo Rocon
PREDICCIÓN DE ACTIVIDADES DE LA VIDA DIARIA EN ENTORNOS INTELIGENTES PARA PERSONAS CON MOVILIDAD REDUCIDA
Francisco Javier Badesa and Nicolas Garcia-Aracil
Sistema de Visión Estereoscópico para el guiado de un Robot Quirúrgico en Operaciones de Cirugía Laparoscópica HALS
Lidia Santos Del Blanco
Head movement assessment of cerebral palsy users with severe motor disorders when they control a computer thought eye movements
Alejandro Clemotte, Miguel A. Velasco and Eduardo Rocon
Diseño de un sensor óptico de fuerza para exoesqueletos de mano
POSIBILIDADES DEL USO DE TRAMAS ARTIFICIALES DE IMAGEN MOTORA PARA UN BCI BASADO EN EEG
Josep Dinarès-Ferran, Christoph Guger and Jordi Solé-Casals
EFECTOS SOBRE LA ERD EN TAREAS DE CONTROL DE EXOESQUELETO DE MANO EMPLEANDO BCI
Santiago Ezquerro, Juan Antonio Barios, Arturo Bertomeu-Motos, Luisa Lorente, Nuria Requena, Irene Delegido, Francisco Javier Badesa and Nicolas Garcia-Aracil
Formulación Topológica Adaptada para la Simulación y Control de Exoesqueletos Accionados con Transmisiones Harmonic Drive

Identificación de contracciones isométricas de la extremidad superior en pacientes con lesión medular incompleta mediante características espectrales de la electromiografía de alta densidad (HD-EMG)
Diseño de una plataforma para analizar el efecto de la estimulación mecánica aferente en el temblor de pacientes con temblor esencial
DEFINICIÓN DE UN PROTOCOLO PARA LA MEDIDA PRECISA DEL RANGO CERVICAL EMPLEANDO TECNOLOGÍA INERCIAL
SISTEMA BRAIN-COMPUTER INTEFACE DE NAVEGACIÓN WEB ORIENTADO A PERSONAS CON GRAVE DISCAPACIDAD
ESTRATEGIAS DE NEUROESTIMULACIÓN TRANSCRANEAL POR CORRIENTE DIRECTA PARA MEJORA COGNITIVA
COMPARATIVA DE ALGORITMOS PARA LA DETECCIÓN ONLINE DE IMAGINACIÓN MOTORA DE LA MARCHA BASADO EN SEÑALES DE EEG 328 Marisol Rodriguez-Ugarte, Irma Nayeli Angulo Sherman, Eduardo Iáñez and Jose M. Azorin
DETECCIÓN, MEDIANTE UN GUANTE SENSORIZADO, DE MOVIMIENTOS SELECCIONADOS EN UN SISTEMA ROBOTIZADO COLABORATIVO PARA HALS 334 Lidia Santos, José Luis González, Eusebio de La Fuente, Juan Carlos Fraile and Javier Pérez Turiel
BIOSENSORES PARA CONTROL Y SEGUIMIENTO PATOLOGÍAS REUMATOIDES
Amparo Tirado, Raúl Marín, José V Martí, Miguel Belmonte and Pedro Sanz
Assessment of tremor severity in patients with essential tremor using smartwatches 347 Miguel A. Velasco, Roberto López-Blanco, Juan P. Romero, M. Dolores Del Castillo, J. Ignacio Serrano, Julián Benito-León and Eduardo Rocon
INTERFAZ CEREBRO-ORDENADOR PARA EL CONTROL DE UNA SILLA DE RUEDAS A TRAVÉS DE DOS PARADIGMAS DE NAVEGACIÓN
$Fern\'andez-Rodr\'iguez \'Alvaro, \ Velasco-\'Alvarez \ Francisco \ and \ Ricardo \ Ron-Angevin$
Control Inteligente
Aprendizaje por Refuerzo para sistemas lineales discretos con dinámica desconocida: Simulación y Aplicación a un Sistema Electromecánico
Diseño de sistemas de control en cascada clásico y borroso para el seguimiento de
trayectorias

ANALISIS FORMAL DE LA DINAMICA DE SISTEMAS NO LINEALES MEDIANTE REDES NEURONALES
Eloy Irigoyen, Mikel Larrea, A. Javier Barragán, Miguel Ángel Martínez and José Manuel Andújar
Predicción de la energía renovable proveniente del oleaje en las islas de Fuerteventura y Lanzarote
G.Nicolás Marichal, Deivis Avila, Ángela Hernández, Isidro Padrón and José Ángel Rodríguez
Aplicación de Redes Neuronales para la Estimación de la Resistencia al Avance en Buques 393 Daniel Marón Blanco and Matilde Santos
Novel Fuzzy Torque Vectoring Controller for Electric Vehicles with per-wheel Motors 401 Alberto Parra, Martín Dendaluce, Asier Zubizarreta and Joshué Pérez
REPOSTAJE EN TIERRA DE UN AVIÓN MEDIANTE ALGORITMOS GENÉTICOS . 408 Elías Plaza and Matilde Santos
VISUALIZACIÓN WEB INTERACTIVA PARA EL ANÁLISIS DEL CHATTER EN
LAMINACIÓN EN FRÍO
BANCADA PARA ANÁLISIS INTELIGENTE DE DATOS EN MONITORIZACIÓN DE SALUD ESTRUCTURAL
Daniel Pérez López, Diego García Pérez, Ignacio Díaz Blanco and Abel Alberto Cuadrado Vega
CONTROL DE UN VEHÍCULO CUATRIRROTOR BASADO EN REDES NEURONALES
Jesus Enrique Sierra and Matilde Santos
CONTROL PREDICTIVO FUZZY CON APLICACIÓN A LA DEPURACIÓN BIOLÓGICA DE FANGOS ACTIVADOS
Educación en Automática
REFLEXIONES SOBRE EL VALOR DOCENTE DE UNA COMPETICION DE DRONES EN LA EDUCACIÓN PARA EL CONTROL
Uso del Haptic Paddle con aprendizaje basado en proyectos
Juan M. Gandarias, Antonio José Muñoz-Ramírez and Jesus Manuel Gomez-De-Gabriel PERPESENTACION INTEGRADA DE ACCIONAMIENTOS MECANICOS V
REPRESENTACION INTEGRADA DE ACCIONAMIENTOS MECANICOS Y CONTROL DE EJES ORIENTADA A LA COMUNICACIÓN Y DOCENCIA EN MECATRONICA
Julio Garrido Campos, David Santos Esterán, Juan Sáez López and José Ignacio Armesto Quiroga
Construcción y modelado de un prototipo fan & plate para prácticas de control automático 465 Cristina Lampon, Javier Martin, Ramon Costa-Castelló and Muppaneni Lokesh Chowdary

EDUCACION EN AUTOMATICA E INDUSTRIA 4.0 MEDIANTE LA APLICACIÓN DE TECNOLOGÍAS 3D
Jose Ramon Llata, Esther Gonzalez-Sarabia, Carlos Torre-Ferrero and Ramon Sancibrian
Desarrollo e implementación de un sistema de control en una planta piloto hibrida47 Maria P. Marcos, Cesar de Prada and Jose Luis Pitarch
LA INFORMÁTICA INDUSTRIAL EN LAS INGENIERÍAS INDUSTRIALES
Ventajas docentes de un flotador magnético para la experimentación de técnicas control 49 Eduardo Montijano, Carlos Bernal, Carlos Sagües, Antonio Bono and Jesús Sergio Artal
PROGRAMACIÓN ATRACTIVA DE PLC
MODERNIZACIÓN DE EQUIPO FEEDBACK MS-150 PARA EL APRENDIZAJE ACTIVO EN INGENIERÍA DE CONTROL
INNOVACIÓN PEDAGÓGICA EN LA FORMACIÓN DEL PERFIL PROFESIONAL PARA EL DESARROLLLO DE PROYECTOS DE AUTOMATIZACIÓN INDUSTRIAL A TRAVÉS DE UNA APROXIMACIÓN HOLÍSTICA
Aprendiendo Simulación de Eventos Discretos con JaamSim
RED NEURONAL AUTORREGRESIVA NO LINEAL CON ENTRADAS EXÓGENAS PARA LA PREDICCIÓN DEL ELECTROENCEFALOGRAMA FETAL52 Rosa M Aguilar, Jesús Torres and Carlos Martín
ANÁLISIS DEL COEFICIENTE DE TRANSFERENCIA DE MATERIA EN REACTORES RACEWAYS
MODELADO DINÁMICO DE UN SISTEMA DE ALMACENAMIENTO DE FRÍO VINCULADO A UN CICLO DE REFRIGERACIÓN
Predictor Intervalar basado en hiperplano soporte
Dynamic simulation applied to refinery hydrogen networks

3
9
5
2
9
6
1
1
3
6
3
1
9
7

DISEÑO DE UNA PRÓTESIS DE MANO ADAPTABLE AL CRECIMIENTO 664 Marta Ayats and Raul Suarez
COOPERATIVISMO BIOINSPIRADO BASADO EN EL COMPORTAMIENTO DE LAS HORMIGAS
Brayan Bermudez, Kristel Novoa and Miguel Valbuena
PROCEDIMIENTO DE DISEÑO DE UN EXOESQUELETO DE MIEMBRO SUPERIOR PARA SOPORTE DE CARGAS
Badesa Clemente, Miguel Ignacio Sanchez and Nicolas Garcia Aracil
Estructura de control en ROS y modos de marcha basados en máquinas de estados de un robot hexápodo
USING AN UAV TO GUIDE THE TELEOPERATION OF A MOBILE MANIPULATOR
Estudio de los patrones de marcha para un robot hexápodo en tareas de búsqueda y rescate
SISTEMA DE INTERACCIÓN VISUAL PARA UN ROBOT SOCIAL
Mejora del Comportamiento Proxémico de un Robot Autónomo mediante Motores de Inteligencia Artificial Desarrollados para Plataformas de Videojuegos
Micrófonos de contacto: una alternativa para sensado tactil en robots sociales
Clasificación de información táctil para la detección de personas
Planificación para interceptación de objetivos: Integración del Método Fast Marching y Risk-RRT738
David Alfredo Garzon Ramos, Mario Andrei Garzon Oviedo and Antonio Barrientos
ESTABILIZACIÓN DE UNA BOLA SOBRE UN PLANO UTILIZANDO UN ROBOT PARALELO 6-RSS
TELEOPERACIÓN DE INSTRUMENTOS QUIRÚRGICOS ARTICULADOS
CONTROL OF A ROBOTIC ARM FOR TRANSPORTING OBJECTS BASED ON NEURO-FUZZY LEARNING VISUAL INFORMATION
Juan Hernández Vicén, Santiago Martínez de La Casa Díaz and Carlos Balaguer
PLATAFORMA BASADA EN LA INTEGRACIÓN DE MATLAB Y ROS PARA LA DOCENCIA DE ROBÓTICA DE SERVICIO

Estimadores de fuerza y movimiento para el control de un robot de rehabilitación de extremidad superior
Aitziber Mancisidor, Asier Zubizarreta, Itziar Cabanes, Pablo Bengoa and Asier Brull
Definiendo los elementos que constituyen un robot social portable de bajo coste
Interfaces táctiles para Interacción Humano-Robot
HERRAMIENTAS DE ENTRENAMIENTO Y MONITORIZACIÓN PARA EL DESMINADO HUMANITARIO
Control a Baja Velocidad de una Rueda con Motor de Accionamiento Directo mediante Ingeniería Basada en Modelos
SIMULACIÓN DE VEHÍCULOS AUTÓNOMOS USANDO V-REP BAJO ROS
Cinemática y prototipado de un manipulador paralelo con centro de rotación remoto para robótica quirúrgica
ANÁLISIS DE ESTABILIDAD DE SINGULARIDADES AISLADAS EN ROBOTS PARALELOS MEDIANTE DESARROLLOS DE TAYLOR DE SEGUNDO ORDEN821
Adrián Peidró Vidal, Óscar Reinoso, Arturo Gil, José María Marín and Luis Payá
INTERFAZ DE CONTROL PARA UN ROBOT MANIPULADOR MEDIANTE REALIDAD VIRTUAL
Evolución de la robótica social y nuevas tendencias
Carlos Castillo Montoya and Miguel A. Salichs DISEÑO MECÁNICO DE UN ASISTENTE ROBÓTICO CAMARÓGRAFO CON APRENDIZAJE COGNITIVO
CÁLCULO DE FUERZAS DE CONTACTO PARA PRENSIONES BIMANUALES852 Francisco Abiud Rojas-De-Silva and Raul Suarez
Modelado del Contexto Geométrico para el Reconocimiento de Objetos
Estimación Probabilística de Áreas de Emisión de Gases con un Robot Móvil Mediante la Integración Temporal de Observaciones de Gas y Viento

MANIPULADOR AEREO CON BRAZOS ANTROPOMORFICOS DE ARTICULACIONES FLEXIBLES
Alejandro Suarez, Guillermo Heredia and Anibal Ollero
EVALUACIÓN DE UN ENTORNO DE TELEOPERACIÓN CON ROS
Sistemas de Tiempo Real
GENERACIÓN DE CÓDIGO IEC 61131-3 A PARTIR DE DISEÑOS EN GRAFCET892 Maria Luz Alvarez Gutierrez, Isabel Sarachaga Gonzalez, Arantzazu Burgos Fernandez, Nagore Iriondo Urbistazu and Marga Marcos Muñoz
CONTROL EN TIEMPO REAL Y SUPERVISIÓN DE PROCESOS MEDIANTE SERVIDORES OPC-UA
Francico Blanes Noguera and Andrés Benlloch Faus
Control de la Ejecución en Sistemas de Criticidad Mixta
GENERACIÓN AUTOMÁTICA DEL PROYECTO DE AUTOMATIZACIÓN TIA PORTAL PARA MÁQUINAS MODULARES
DDS en el desarrollo de sistemas distribuidos heterogéneos con soporte para criticidad mixta
Hector Perez and J. Javier Gutiérrez
ARQUITECTURA DISTRIBUIDA PARA EL CONTROL AUTÓNOMO DE DRONES EN INTERIOR
Ingeniería Conducida por Modelos en Sistemas de Automatización Flexibles
Estudio e implementación de Middleware para aplicaciones de control distribuido
Visión por Computador
Real-Time Image Mosaicking for Mapping and Exploration Purposes
ALGORITMO DE SLAM UTILIZANDO APARIENCIA GLOBAL DE IMÁGENES OMNIDIRECCIONALES
Medición de Oximetría de Pulso mediante Imagen fotopletismográfica
Algoritmo de captura de movimiento basado en visión por computador para la teleoperación de robots humanoides

COMPARACIÓN DE MÉTODOS DE DETECCIÓN DE ROSTROS EN IMÁGENES DIGITALES
Natalia García Del Prado, Victor Gonzalez Castro, Enrique Alegre and Eduardo Fidalgo Fernández
LOCALIZACIÓN DEL PUNTO DE FUGA PARA SISTEMA DE DETECCIÓN DE LÍNEAS DE CARRIL
Oculus-Crawl, a Software Tool for Building Datasets for Computer Vision Tasks
Clasificación automática de obstáculos empleando escáner láser y visión por computador999 Aurelio Ponz, Fernando Garcia, David Martin, Arturo de La Escalera and Jose Maria Armingol
T-SCAN: OBTENCIÓN DE NUBES DE PUNTOS CON COLOR Y TEMPERATURA EN INTERIOR DE EDIFICIOS
EVALUACIÓN DE MÉTODOS PARA REALIZAR RESÚMENES AUTOMÁTICOS DE VÍDEOS1015
Pablo Rubio, Eduardo Fidalgo, Enrique Alegre and Víctor González
SIMULADOR PARA LA CREACIÓN DE MUNDOS VIRTUALES PARA LA ASISTENCIA A PERSONAS CON MOVILIDAD REDUCIDA EN SILLA DE RUEDAS. 1023 Carlos Sánchez Sánchez, María Cidoncha Jiménez, Emiliano Pérez, Ines Tejado and Blas M. Vinagre
Calibración Extrínseca de un Conjunto de Cámaras RGB-D sobre un Robot Móvil 1031 David Zúñiga-Nöel, Rubén Gómez Ojeda, Francisco-Ángel Moreno and Javier González Jiménez

ESTABILIZACIÓN DE UNA BOLA SOBRE UN PLANO UTILIZANDO UN ROBOT PARALELO 6-RSS

Daniel González Lluís Ros Federico Thomas Institut de Robòtica i Informàtica Industrial, UPC-CSIC Llorens Artigas 4-6, 08028 Barcelona, Spain

Resumen

Una bola rodando sobre un plano constituye un sistema no lineal cuya estabilización suele utilizarse en el campo de la ingeniería de control con propósitos de investigación y educativos. En las implementaciones habituales, la inclinación del plano se controla con dos motores, y la posición de la bola se detecta con una cámara o un sensor táctil que cubre el plano. Sin embargo, una actuación basada en un robot paralelo con 6 grados de libertad aumenta notablemente las posibilidades del sistema. En primer lugar, un robot como el mencionado permite rotar el plano con respecto a un eje instantáneo arbitrario del espacio; y, en segundo lugar, la utilización de sensores de fuerza en las seis cadenas serie del robot permite localizar la posición de la bola con precisión, sin tener que recurrir a sensores táctiles o cámaras externas. Basándonos en una formulación de la cinetostática del problema que utiliza la teoría de torsores, en este artículo mostramos cómo es posible derivar la relación entre las fuerzas y las velocidades en la plataforma y en los sensores y en los actuadores de forma simple y directa. A partir de esta formulación, se deriva un control basado en dos PIDs cuya efectividad es evaluada experimentalmente.

Palabras clave: Sistema bola sobre plano, teoría de torsores, robots paralelos.

1. INTRODUCCIÓN

Los sistemas dinámicos basados en una bola rodante sobre una guía [10, 15] y su extensión a la bola rodante sobre un plano [7,11,12,16] son fáciles de implementar y dan a los estudiantes e investigadores la oportunidad de ensayar diferentes estrategias de control. En ambos casos el desafío consiste en estabilizar la bola ya sea en un punto de la guía o del plano, lo cual implica que la posición de la bola sea conocida en todo momento por medio de sensores, para así modificar la posición y orientación de la guía o del plano por medio de actuadores [1,9,13].

Se han estudiado muchas estrategias de control

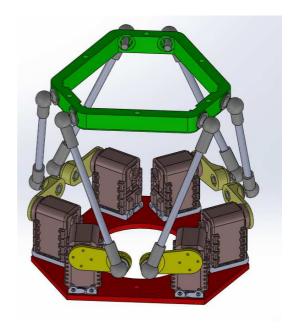


Figura 1: Diseño de un robot $6-\underline{R}SS$.

para este tipo de plantas, que incluyen, por ejemplo, el control de perturbaciones [16], el control difuso [7], el control por deslizamiento [12], o el control mediante redes neuronales [7].

En este trabajo no ahondaremos en el problemas del control sino en el diseño e implementación de la parte de actuación y sensado de la posición de la bola utilizando un robot paralelo. La utilización de una estructura paralela para el sensado del torsor de fuerzas aplicadas sobre una plataforma no es nueva [8] y puede ser utilizada, en el caso particular del problema tratado, para la localización de una bola sobre un plano.

Nos hemos decantado por la utilización de un robot paralelo con topología 6-RSS, una variante de la bien conocida plataforma de Gough-Stewart, por la simplicidad con que puede ser implementado utilizando motores de tipo servo. Este tipo de robots consiste en seis cadenas serie compuestas de una articulación de rotación actuada y anclada sobre una base fija y dos articulaciones esféricas, la última de las cuales está conectada a la plataforma móvil (véase la Fig. 1). Las seis articulaciones de

rotación actuadas de forma independiente proveen a la plataforma móvil de seis grados de libertad, haciendo posible que ésta ejecute cualquier torsor instantáneo de velocidad dentro de su espacio de trabajo.

Este trabajo se ha organizado de la siguiente manera. En primer lugar, en la Sección 2 se analiza la cinetostática del robot paralelo. Utilizando la teoría de torsores, derivaremos las relaciones entre el torsor de velocidad en la plataforma y la velocidad angular de los motores, así como la relación entre el torsor de fuerza aplicado sobre la plataforma y la fuerza leída por los sensores. Esta formulación proporcionará el modelo utilizado para el control del sistema, tal como se describe en la Sección 3. A continuación, en la Sección 4 se describe la implementación del sistema hasta el punto en el que se encuentra en estos momentos y presenta algunos resultados experimentales ya obtenidos. Finalmente, la Sección 5 resume los puntos más importantes de este trabajo.

2. ANÁLISIS CINETOSTÁTICO

Para controlar el movimiento del robot se necesita el Jacobiano cinemático, que proporciona la relación entre la velocidad de la plataforma y las velocidades de los motores. Asimismo, para deducir la posición de la bola se requiere el Jacobiano estático, que proporciona el torsor de fuerza ejercido por la bola sobre la plataforma, dados los pares motor que lo equilibran. Este torsor tiene tres componentes de fuerza y tres de par y por tanto permite recuperar la recta de acción de la fuerza, y su punto de intersección con la plataforma. Obtendremos este punto y ambos Jacobianos constructivamente, apoyándonos en la teoría de torsores y el principio de las potencias virtuales [5, 6].

2.1. ANÁLISIS DE LA VELOCIDAD

Sea $\widehat{T} = [\boldsymbol{\omega}^{\mathsf{T}}, \boldsymbol{v}_O^{\mathsf{T}}]^{\mathsf{T}}$ el torsor de velocidad absoluta de la plataforma, expresado en un sistema de referencia absoluto $\mathcal{A} = \{OXYZ\}$ anclado a la base (Fig. 2). En la expresión de \widehat{T} , $\omega \in \mathbb{R}^3$ es la velocidad angular de la plataforma, y $v_O \in \mathbb{R}^3$ es la velocidad del punto de la plataforma que coincide instantánemente con el origen O. Es bien sabido que este torsor se puede expresar como combinación lineal de los torsores articulares que aparecen a lo largo de cada pata del robot [3, 5, 6]. Consideremos por ejemplo la pata i, esquematizada en la Fig. 2. Cada una de sus articulaciones esféricas es equivalente a tres articulaciones rotacionales de ejes copuntuales, con lo cual la pata se puede ver como un brazo serie formado por siete enlaces, que podemos numerar consecutivamente desde la base (índice 0) hasta la plataforma (índice 7). Con esta convención, y utilizando la notación de Duffy [6], para la pata i podemos escribir

$$\widehat{\boldsymbol{T}} = \omega_{i,1} \ \widehat{\boldsymbol{S}}_{i,1} + \omega_{i,2} \ \widehat{\boldsymbol{S}}_{i,2} + \ldots + \omega_{i,7} \ \widehat{\boldsymbol{S}}_{i,7}, \quad (1)$$

donde $\omega_{i,j}$ y $\widehat{\boldsymbol{S}}_{i,j}$ son la velocidad angular y el torsor de velocidad unitario del enlace j+1 relativos al enlace j de la pata. Nótese que en esta expresión $\omega_{i,1}$ es la velocidad angular del motor i, y $\widehat{\boldsymbol{S}}_{i,1}$ se puede ver como el vector de coordenadas de Plücker normalizadas del eje de este motor.

Escribiendo la Eq. (1) para las seis patas se obtiene un sistema de 36 ecuaciones lineales en 42 incógnitas que en principio ya se podría usar para resolver el problema cinemático inverso instantáneo (dado \hat{T} , obtener $\omega_{i,1}$ para $i=1,\ldots,6$). Este sistema, sin embargo, está subdeterminado, y en realidad se puede simplificar mucho como vamos a ver, reduciendo así el tiempo de cálculo de la ley de control resultante. La simplificación se efectúa mediante el método del torsor recíproco [3,6].

Sea \widehat{w}_i el torsor unitario formado por las coordenadas de Plücker de la recta que pasa por los puntos B_i y C_i de la pata i. Este torsor tiene la forma

$$\widehat{\boldsymbol{w}}_i = \begin{bmatrix} \boldsymbol{e}_i \\ \boldsymbol{r}_i \times \boldsymbol{e}_i \end{bmatrix}, \tag{2}$$

donde e_i es un vector director unitario de la recta B_iC_i , y r_i es el vector de posición del punto B_i . Si ahora multiplicamos la Eq. (1) por $\widehat{\boldsymbol{w}}_i^{\mathsf{T}}$, obtendremos

$$\widehat{\boldsymbol{w}}_{i}^{\mathsf{T}} \cdot \widehat{\boldsymbol{T}} = \omega_{i,1} \cdot \widehat{\boldsymbol{w}}_{i}^{\mathsf{T}} \ \widehat{\boldsymbol{S}}_{i,1} \tag{3}$$

puesto que todos los productos $\widehat{\boldsymbol{w}}_i^{\mathsf{T}} \widehat{\boldsymbol{S}}_{i,j}$ son nulos para $j=2,\ldots,7$. Esto es así porque la recta asociada a $\widehat{\boldsymbol{w}}_i$ intersecta las rectas de los torsores asociados a las rótulas esféricas. Debido a esta propiedad, se dice que $\widehat{\boldsymbol{w}}_i$ es el torsor recíproco de la pata i.

Si ahora escribimos la Eq. (3) para todas las patas, obtendremos el siguiente sistema de ecuaciones

$$\underbrace{\begin{bmatrix}
e_{1} & \dots & e_{6} \\
r_{1} \times e_{1} & \dots & r_{6} \times e_{6}
\end{bmatrix}^{\mathsf{T}}}_{\mathbf{A}} \cdot \underbrace{\begin{bmatrix}
\boldsymbol{\omega} \\ \boldsymbol{v}_{O}\end{bmatrix}}_{\widehat{\boldsymbol{T}}} = \underbrace{\begin{bmatrix}\hat{\boldsymbol{w}}_{1}^{\mathsf{T}} \cdot \hat{\boldsymbol{S}}_{1,1} \\ & \ddots & \\ & & \hat{\boldsymbol{w}}_{6}^{\mathsf{T}} \cdot \hat{\boldsymbol{S}}_{6,1}\end{bmatrix}}_{\mathbf{A}} \cdot \underbrace{\begin{bmatrix}\boldsymbol{\omega}_{1,1} \\ \vdots \\ \boldsymbol{\omega}_{6,1}\end{bmatrix}}_{\boldsymbol{\gamma}} \quad (4)$$

que podemos expresar de forma compacta como

$$\mathbf{A} \ \widehat{\mathbf{T}} = \mathbf{B} \ \boldsymbol{\gamma},\tag{5}$$

expresión que proporciona, directamente, la relación entre las velocidades de entrada y salida del

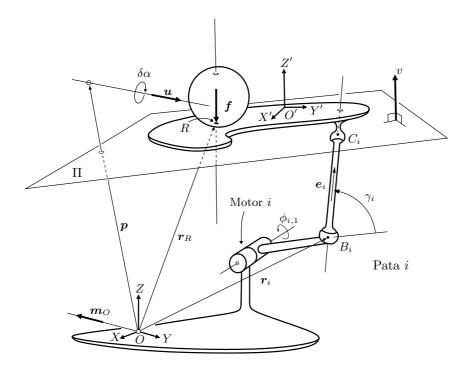


Figura 2: Elementos geométricos que intervienen en el análisis cinetostático del robot.

robot. Si ahora suponemos que det $\mathbf{B} \neq 0$, podemos finalmente escribir la solución del problema cinemático instantáneo inverso como

$$\gamma = \mathbf{B}^{-1} \mathbf{A} \ \widehat{T}. \tag{6}$$

Obsérvese que la matriz \mathbf{B} es diagonal, y sólo puede ser singular si alguno de los productos $\widehat{\boldsymbol{w}}_{j}^{\mathsf{T}} \cdot \widehat{\boldsymbol{T}}_{j,1}$ se hace cero, lo cual sólo sucede cuando la recta B_iC_i intersecta el eje del motor i. En tal situación, se dice que el robot se encuentra en una singularidad inversa, produciéndose una pérdida de destreza de la plataforma móvil [2–4]. Si bien esta situación podría darse en la práctica, en este trabajo evitaremos que ocurra limitando los ángulos γ_i entre el brazo del motor y la recta B_iC_i a un subrango del intervalo $(0, \pi/2)$.

Fijémonos ahora que la Eq. (6) se puede multiplicar por un incremento infinitesimal de tiempo δt , dando lugar a la ecuación

$$\delta \boldsymbol{\phi} = \mathbf{B}^{-1} \mathbf{A} \ \delta \widehat{\boldsymbol{D}}. \tag{7}$$

que proporciona los pequeños desplazamientos $\delta \phi$ que deben realizar los motores para generar un desplazamiento infinitesimal $\delta \widehat{\boldsymbol{D}}$ de la plataforma. Esta es, precisamente, la ecuación a implementar en nuestro lazo de control.

Por un lado, el vector $\delta \phi$ tiene la forma

$$\delta \boldsymbol{\phi} = [\delta \phi_1, \dots, \delta \phi_6], \tag{8}$$

siendo $\delta \phi_i$ el pequeño ángulo que debe girar el motor i. Por otro lado, en virtud del Teorema de

Chasles, el torsor $\delta \widehat{\boldsymbol{D}}$ se puede descomponer como una rotación de ángulo infinitesimal $\delta \alpha$ en torno al eje instantáneo de rotación y deslizamiento de la plataforma, más una traslación infinitesimal de valor δd a lo largo de este eje. Sean \boldsymbol{u} un vector director unitario de este eje instantáneo, y \boldsymbol{p} el vector de posición de un punto cualquiera del eje. Entonces, la descomposición mencionada se puede escribir así

$$\delta \widehat{\boldsymbol{D}} = \delta \alpha \cdot \delta \widehat{\boldsymbol{D}}_r + \delta d \cdot \delta \widehat{\boldsymbol{D}}_t, \tag{9}$$

donde

$$\delta \widehat{\boldsymbol{D}}_r = \begin{bmatrix} \boldsymbol{p} \times \boldsymbol{u} \\ \boldsymbol{u} \end{bmatrix}, \quad \delta \widehat{\boldsymbol{D}}_t = \begin{bmatrix} \boldsymbol{u} \\ \boldsymbol{0} \end{bmatrix}.$$
 (10)

En resumen, en cada iteración del lazo de control haremos lo siguiente:

- 1. A partir del error de posición de la bola, fijaremos el eje instantáneo alrededor del cual debe rotar la plataforma para corregir este error, y estableceremos los incrementos correctores $\delta\alpha$ y δd necesarios.
- 2. Obtendremos $\delta \hat{\boldsymbol{D}}$ usando la Eq. (9).
- 3. Determinaremos $\delta \phi = [\phi_1, \dots, \phi_6]^\mathsf{T}$ mediante la Eq. (7).
- 4. Consignaremos los incrementos $\delta \phi_i$ obtenidos en cada uno de los seis motores.

2.2. ANÁLISIS DE LA FUERZA

Sea $\hat{\boldsymbol{w}}$ el torsor de fuerza que aplica la bola sobre la plataforma móvil. Puesto que el contacto de la bola con la plataforma es puntual, podemos suponer que $\hat{\boldsymbol{w}}$ codifica una fuerza pura \boldsymbol{f} aplicada en el punto de contacto R, de momento \boldsymbol{m}_O con respecto a O (Fig. 2). Es decir, $\hat{\boldsymbol{w}} = [\boldsymbol{f}^\mathsf{T}, \boldsymbol{m}_O^\mathsf{T}]^\mathsf{T}$. Veamos ahora como podemos deducir $\hat{\boldsymbol{w}}$ a partir de los pares equilibrantes ejercidos por los motores, y como se puede obtener la posición de R sobre el plano π de la plataforma a partir de los vectores \boldsymbol{f} y \boldsymbol{m}_O .

Supongamos que en un cierto instante la bola está aplicando el torsor $\widehat{\boldsymbol{w}}$ sobre la plataforma, la cual, a su vez, se mueve bajo una cierta velocidad $\widehat{\boldsymbol{T}}$. En ese instante, cada motor i del robot aplicará un par equilibrante τ_i para equilibrar $\widehat{\boldsymbol{w}}$. Si asumimos que las patas y la plataforma tienen masa despreciable en comparación con la de la bola, es fácil aplicar el teorema de las potencias virtuales para deducir los Jacobianos de fuerza. A tenor del teorema, la potencia generada por $\widehat{\boldsymbol{w}}$ bajo la velocidad $\widehat{\boldsymbol{T}}$ debe ser igual a la potencia generada por los pares τ_i bajo las velocidades ω_i (se supone que las restricciones de enlace son ideales y no generan, en conjunto, potencia virtual neta). Es decir,

$$\widehat{\boldsymbol{w}}^{\mathsf{T}} \cdot \widehat{\boldsymbol{T}} = \boldsymbol{\tau}^{\mathsf{T}} \cdot \boldsymbol{\gamma},\tag{11}$$

donde $\tau = [\tau_1, \dots, \tau_6]$. Pasando el segundo miembro al lado izquierdo, esta ecuación se puede escribir de la siguiente manera

$$[\widehat{\boldsymbol{w}}^{\mathsf{T}}, -\boldsymbol{\tau}^{\mathsf{T}}] \cdot \begin{bmatrix} \widehat{\boldsymbol{T}} \\ \gamma \end{bmatrix} = \mathbf{0}$$
 (12)

La Eq. (6) también se puede escribir de manera parecida

$$[\mathbf{A}, -\mathbf{B}] \cdot \begin{bmatrix} \widehat{T} \\ \gamma \end{bmatrix} = \mathbf{0} \tag{13}$$

y comparando estas dos últimas ecuaciones nos damos cuenta de que el vector $[\widehat{\boldsymbol{w}}^\mathsf{T}, -\boldsymbol{\tau}^\mathsf{T}]$ debe ser, necesariamente, una combinación lineal de las filas de $[\mathbf{A}, -\mathbf{B}]$. En otras palabras, $\widehat{\boldsymbol{w}}$ y $\boldsymbol{\tau}$ serán compatibles si y sólo si existe un vector $\boldsymbol{\beta} \in \mathbb{R}^6$ tal que

$$\begin{bmatrix} \widehat{\boldsymbol{w}} \\ -\boldsymbol{\tau} \end{bmatrix} = \begin{bmatrix} \mathbf{A}^\mathsf{T} \\ -\mathbf{B}^\mathsf{T} \end{bmatrix} \boldsymbol{\beta}, \tag{14}$$

o, equivalentemente, si y sólo si

$$\widehat{\boldsymbol{w}} = \mathbf{A}^{\mathsf{T}} \boldsymbol{\beta},\tag{15}$$

$$\boldsymbol{\tau} = \mathbf{B}^{\mathsf{T}} \boldsymbol{\beta}. \tag{16}$$

Dado que en nuestro caso det $\mathbf{B} \neq 0$, podemos aislar el vector $\boldsymbol{\beta}$ de la Eq. (16) y substituirlo en la Eq. (15), llegando a

$$\widehat{\boldsymbol{w}} = \mathbf{A}^{\mathsf{T}} \mathbf{B}^{-1} \boldsymbol{\tau},\tag{17}$$

que proporciona la relación buscada para \hat{w} .

Una vez hemos obtenido $\hat{\boldsymbol{w}}$, es fácil recuperar las coordenadas del punto R de contacto de la bola con la plataforma. Fijémonos que este punto se encuentra en la intersección de la recta de acción del torsor $\hat{\boldsymbol{w}}$ con el plano Π de la plataforma. Al ser $\hat{\boldsymbol{w}}$ un torsor de fuerza pura, sus componentes $[\boldsymbol{f}^\mathsf{T}, \boldsymbol{m}_O^\mathsf{T}]^\mathsf{T}$ dan directamente las coordenadas de Plücker de la recta soporte. Si suponemos que la ecuación de Π viene dada por $v_0 + \boldsymbol{v} \cdot \boldsymbol{x} = 0$, donde $\boldsymbol{v} \in \mathbb{R}^3$ es un vector unitario normal al plano, y $v_0 \in \mathbb{R}$ es la distancia mínima de O a Π , el vector de posición de R viene dado por

$$r_R = \frac{\boldsymbol{v} \times \boldsymbol{m}_O - v_0 \cdot \boldsymbol{f}}{\boldsymbol{v} \cdot \boldsymbol{f}},\tag{18}$$

que es una expresión bien conocida en el ámbito de la geometría computacional de rectas [14, pág. 138]:

3. SISTEMA DE CONTROL

Una vez halladas las ecuaciones que nos permiten conocer la posición de la bola y la relación entre los incrementos de posición en la plataforma y los ángulos de los motores, el siguiente paso es proponer un sistema de control que nos permita estabilizar la bola en el baricentro de la plataforma móvil.

El sistema de control propuesto se esquematiza en la Fig. 3 y tiene dos partes bien diferenciadas: el sistema de sensado del error, que permite obtener el error de posición de la bola, y el sistema de corrección de la posición, que genera las señales de control necesarias para reducir este error. Veamos cada uno de estos dos sistemas.

3.1. SENSADO DEL ERROR

Para medir el error de posición de la bola, definimos un sistema de referencia $\mathcal{P} = \{O'X'Y'Z'\}$ anclado a la plataforma móvil, con origen O' en su baricentro, y ejes O'X' y O'Y' paralelos al plano Π (Fig. 2). Utilizando este sistema, nuestro problema de control se reduce a estabilizar la bola en el origen O' de \mathcal{P} . El error de posición, por tanto, vendrá dado por el vector de posición de R en \mathcal{P} , $r_R^{\mathcal{P}}$. Es fácil ver que

$$\boldsymbol{r}_{R}^{\mathcal{P}} = \mathbf{R}^{\mathsf{T}} \cdot (\boldsymbol{r}_{R} - \boldsymbol{r}_{O'}),$$
 (19)

donde $\mathbf{r}_{O'}$ es la posición absoluta de O', y \mathbf{R} es la matriz de rotación que proporciona la orientación absoluta de \mathcal{P} .

Sean e_x y e_y las componentes X' y Y' de $\boldsymbol{r}_R^{\mathcal{P}}$. Aunque podríamos tomar la cantidad $\sqrt{e_x^2 + e_y^2}$

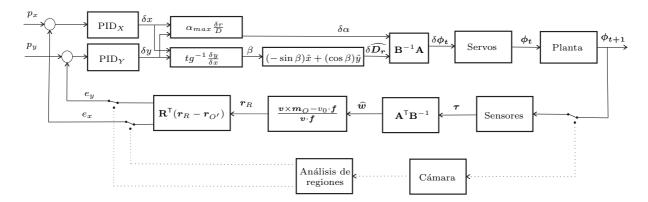
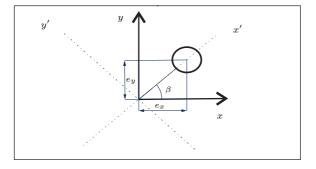


Figura 3: Sistema de control

como medida global del error, preferimos utilizar dos controladores PID independientes que reduzcan, respectivamente, los errores e_x y e_y . Es decir controlamos las dos cordenadas de la posición de la bola en el plano del mismo modo que se hace, por ejemplo, en [13].

La rama intermedia de la Fig. 3 esquematiza, de derecha a izquierda, el cálculo de e_x y e_y , que consta de los pasos siguientes:

- 1. Los sensores de los motores proporcionan los pares $\tau = [\tau_1, \dots, \tau_6]$.
- 2. A partir de τ , se utiliza la Eq. (17) para determinar el torsor $\widehat{\boldsymbol{w}} = (\boldsymbol{f}^\mathsf{T}, \boldsymbol{m}_O^\mathsf{T})^\mathsf{T}$ que la bola efectúa sobre la plataforma.
- Se aplica la Eq. (18) para obtener el vector de posición absoluto de R, r_R.
- 4. Finalmente, se utiliza la Eq. (19) para obtener $r_R^{\mathcal{P}}$ y por tanto sus componentes e_x y e_y .


3.2. CORRECCIÓN DE LA POSICIÓN

La rama superior de la Fig. 3 describe, de izquierda a derecha, el flujo de cálculos involucrados en la corrección del error. Los errores e_x y e_y se introducen en dos controladores PID de tiempo discreto, dando como resultado dos incrementos de posición δx y δy en ambos ejes. El controlador que corrige e_x implementa la siguiente ley de control

$$\delta x = k_p \ e_n + k_d(e_n - e_{n-1}) + k_i \sum_{i = -\infty}^{i = n} e_i, \quad (20)$$

donde e_n es el valor de e_x en el n-ésimo instante de tiempo, y k_p , k_i , y k_d son las constantes proporcional, integral, y derivativa, respectivamente. El controlador para e_y implementa una ley análoga.

A partir de estos incrementos, se asignará a la plataforma un eje y un ángulo de giro. El primer paso es obtener el eje de rotación.

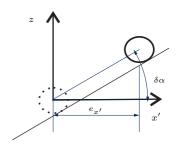


Figura 4: Eje y ángulo de rotación

$$\beta = tg^{-1} \frac{\delta y}{\delta x} \tag{21}$$

$$\mathbf{u} = (-\sin\beta)\hat{x} + (\cos\beta)\hat{y} \tag{22}$$

Donde \boldsymbol{u} es un vector director del eje de rotación. Es necesario también asignar un ángulo de rotación, que se hará en base a la norma del vector definido por los errores en ambos ejes. Para ello, se utilizará una función lineal con un valor de saturación que asigne un ángulo máximo para un valor de la norma mayor a una distancia D. Teniendo en cuenta que la norma del error viene dada por $\delta r = \sqrt{\delta x^2 + \delta y^2}$,

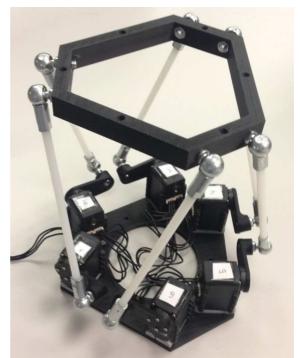
$$\delta\alpha = \begin{cases} \alpha_{max} \frac{\delta r}{D} & \delta r \leq D \\ \alpha_{max} & \delta r > D \end{cases}$$
 (23)

Con la dirección del eje instantáneo de rotación y

el incremento de giro, ya es posible definir el torsor $\delta \hat{D}$. Teniendo en cuenta que a la plataforma se le infringe una rotación pura alrededor de su eje, $\delta \hat{D}_t$ será nulo en todo momento.

$$\delta \hat{\boldsymbol{D}} = \delta \alpha \begin{bmatrix} \boldsymbol{OO'} \times \boldsymbol{u} \\ \boldsymbol{u} \end{bmatrix}$$
 (24)

Siendo el vector OO' la relación entre el sistema de referencia de la base fija con el sistema de referencia utilizado para medir el error. $\delta \widehat{D}$ será la entrada a la matriz jacobiana descrita en la ecuación (7), dando como resultado el incremento de los ángulos en los seis servos necesario para corregir la posición.


4. IMPLEMENTACIÓN

Para implementar los actuadores del robot se han utilizado seis servomotores Dynamixel AX-12. Para los enlaces que conectan las articulaciones esféricas se han utilizado barras de nylon de 62 mm de diámetro. Estas barras sólo transmiten fuerzas a lo largo de sus ejes por estar ancladas por sus extremos a través de rótulas esféricas. Sin embargo, cuando se realizan pruebas de funcionamiento con robots paralelos, no es raro que por error se alcancen los límites articulares de sus juntas esféricas, transmitiendo pares de fueza a través de las barras que puedan dañar el propio robot. La utilización de barras flexibles se ha revelado de gran utilidad ya que permiten que las rótulas esféricas alcancen sus limites articulares sin que por ello el robot sufra daños.

La base y la plataforma del robot, ambas de forma hexagonal, se han materializado mediante una impresora 3D. En la base, los servomotores están colocados sobre los vértices del hexágono, de manera paralela a cada uno de los lados mayores. Las articulaciones se unen a cada uno de los actuadores a través de unos brazos que, en la posición de referencia, apuntan hacia el centro de cada lado mayor de la base hexagonal. Estos brazos también se han materializado con una impresora 3D. Las juntas esféricas son elementos estándar de bajo coste.

Sobre la plataforma móvil se ha fijado una plancha rectangular de 160×120 mm sobre la que rodará una bola de de 20 mm de radio y 30 gramos de peso.

Para probar el sistema, y poder aislar el origen de los posibles problemas que puedan aparecer, la posición de la bola se obtiene también con una cámara USB PSP Eye, con una resolución de 640×480 píxeles, colocada en posición cenital a 50 cm del plano sobre el que rueda la bola, tal como se muestra en la Fig. 5. Utilizando el paquete OpenCV,

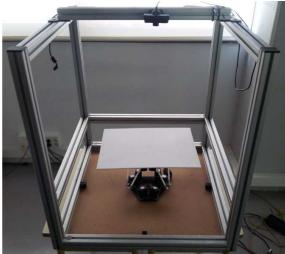


Figura 5: Robot paralelo construido, y su situación en el sistema experimental.

se obtiene la posición del centro de gravedad de la bola. Dado que esta posición se obtiene en coordenadas del plano de la imagen, es necesario una transformación que nos devuelva las cordenadas de la bola en el sistema de referencia del mundo utilizando la cinemática del robot descrita en la Sección 2.

Todo el software desarrollado para llevar a cabo este experimento ha sido escrito en lenguaje C++, debido principalmente a su eficiencia y portabilidad. Cabe también mencionar que, debido a que los servomotores Dynamixel AX-12 poseen su propio protocolo de comunicación, se ha tenido que crear una librería de comunicaciones.

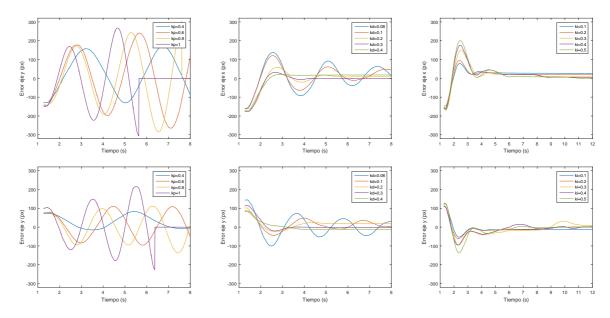


Figura 6: Influencia de k_p , k_d y k_i sobre la salida del sistema

En el momento en que fue redactado este trabajo, se encontraba operativo el bucle de control utilizando una cámara. Queda, por tanto, pendiente cerrar el bucle de control utilizando la información de fuerza y comparar los resultados obtenidos con los resultantes de utilizar el sistema de visión. A continuación, veremos, por tanto, cómo los parámetros del sistema de control influyen sobre las salidas del sistema utilizando únicamente el sistema de visión.

A medida que se aumenta el valor de k_p , llega un punto en que el sistema se hace inestable. Esta inestabilidad queda patente en la Fig. 6, donde para $k_p=1$ y aproximadamente en t=5,6s la bola sale del campo de visión y la plataforma vuelve a la posición de reposo. A continuación, con la introducción de una ganancia diferencial, se tratará de corregir esta inestabilidad.

Eligiendo un valor de $k_p=0.8$ e introduciendo una ganancia diferencial, se comprueba como el tiempo de estabilización se reduce, a medida que k_d aumenta. Sin embargo, a partir de cierto valor, pequeñas variaciones del error se traducen en picos en la salida del sistema, haciendo que la plataforma oscile con altas frecuencias alrededor de su punto de equilibrio. Un valor de $k_d=0.3$ nos sitúa en un comportamiento adecuado.

Debido al rozamiento seco entre la bola y la superficie obtenemos un error en régimen permanente que no puede ser compensado con un mero ajuste de la constante k_i , debido a la naturaleza no lineal del fenómeno. Por consiguiente, en la implementación actual se ha fijado $k_i = 0$, ya que cualquier otro valor no aporta una mejora sustancial.

En una planta didáctica, una posible manera de limitar el error en régimen permanente sería elegir otros materiales que redujeran el rozamiento seco entre la plataforma y la bola, en cuyo caso tendría sentido buscar un valor óptimo de k_i .

5. CONCLUSIONES

En este artículo nos hemos centrado en el diseño, análisis e implementación de un robot paralelo 6-RSS para la estabilización de la posición de una bola sobre un plano. Aunque el sistema es de bajo coste, proporciona una gran versatilidad en la actuación, y resuelve a la vez el problema del sensado de posición de la bola siguiendo las ideas presentadas en [8].

Se ha mostrado cómo la utilización de la teoría de torsores para formular el problema de la actuación y del sensado conduce a una formulación simple y unificada de ambos problemas.

La utilización del sistema propuesto tiene dos ventajas fundamentales. Por un lado, al disponer de una actuación que permite ejecutar torsores de rotación instantánea arbitrarios, abre la posibilidad a la utilización de estrategias de control mucho más sofisticadas a las que se han venido utilizando hasta el momento. Por otro lado, el disponer de la posición de la bola de forma prácticamente directa, sin la necesidad de procesar importante volúmenes de información como sucede cuando se utilizan imágenes, se eliminan retardos que degradan el comportamiento de cualquier estrategia de control que no los tenga en cuenta.

Referencias

- S. Awtar, C. Bernard, N. Boklund, A. Master, D. Ueda, and K. Craig. Mechatronic design of a ball-on-plate balancing system. *Mechatronics*, 12(2):217–228, 2002.
- [2] O. Bohigas, M. Manubens, and L. Ros. Singularities of non-redundant manipulators: A short account and a method for their computation in the planar case. *Mechanism and Machine Theory*, 68:1–17, 2013.
- [3] O. Bohigas, M. Manubens, and L. Ros. Singularities of robot mechanisms: numerical computation and avoidance path planning, volume 41 of Mechanisms and Machine Science. Springer, 2016.
- [4] O. Bohigas, D. Zlatanov, L. Ros, M. Manubens, and J. M. Porta. A general method for the numerical computation of manipulator singularity sets. *IEEE Transactions on Robotics*, 30(2):340–351, 2014.
- [5] J. K. Davidson and K. J. Hunt. Robots and screw theory: applications of kinematics and statics to robotics. Oxford University Press, 2004.
- [6] J. Duffy. Statics and kinematics with applications to robotics. Cambridge University Press, 1996.
- [7] X. Fan, N. Zhang, and S. Teng. Trajectory planning and tracking of ball and plate system using hierarchical fuzzy control scheme. Fuzzy Sets and Systems, 144(2):297–312, 2004.
- [8] R. Frigola, L. Ros, F. Roure, and F. Thomas. A wrench-sensitive touch pad based on a parallel structure. In 2008 IEEE International Conference on Robotics and Automation, pages 3449–3454, May 2008.
- [9] C. Ham and M. Taufiq. Development of a ball and plate system. In ASEE Annual Conference and Exposition Proceedings. ASEE Conferences, 2015.
- [10] J. Hauser, S. Sastry, and P. Kokotovic. Nonlinear control via approximate input-output linearization: the ball and beam example. *IEEE Transactions on Automatic Control*, 37(3):392–398, 1992.
- [11] A. Kassem, H. Haddad, and C. Albitar. Comparison between different methods of control of ball and plate system with 6-DOF Stewart platform. *IFAC-PapersOnLine*, 48(11):47–52, 2015.

- [12] H. Liu and Y. Liang. Trajectory tracking sliding mode control of ball and plate system. In 2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010), volume 3, pages 142–145. IEEE, 2010.
- [13] M. Moarref, M. Saadat, and G. Vossoughi. Mechatronic design and position control of a novel ball and plate system. In 2008 16th Mediterranean Conference on Control and Automation, pages 1071–1076, 2008.
- [14] H. Pottmann and J. Wallner. Computational Line Geometry. Springer Berlin Heidelberg, 2010.
- [15] E. F. Sinaga, E. B. Manurung, V. A. Chee, and A. Djajadi. Building and controlling a ball and plate system. In V. V. Das, J. Stephen, and Y. Chaba, editors, Computer Networks and Information Technologies: 2nd International Conference on Advances in Communication, Network, and Computing (CNC 2011), pages 600–608. Springer Berlin Heidelberg, 2011.
- [16] Y. Wang, M. Sun, Z. Wang, Z. Liu, and Z. Chen. A novel disturbance-observer based friction compensation scheme for ball and plate system. *ISA Transactions*, 53(2):671– 678, 2014.