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From fuzzy sets to interval-valued and Atanassov
intuitionistic fuzzy sets: a unified view of different
axiomatic measures

Inés Couso, and Humberto Bustince, Senior member, IEEE

Abstract—We examine a broad collection of axiomatic defini-
tions from various and diverse contexts, within the domain of
fuzzy sets. We evaluate their respective extensions to the case
of interval-valued fuzzy sets and intuitionistic fuzzy sets, from a
purely formal point of view. We conclude that a large number of
such extensions follow similar formal procedures This fact allows
us to formulate a general procedure which encompasses all the
reviewed extensions as particular cases of it. The new general
formulation allows us to identify three different procedures to
derive the corresponding extension to the field of interval-valued
fuzzy sets or to the field of intuitionistic fuzzy sets from a specific
real-valued measure in the context of fuzzy sets. These three
processes agglutinate a multitude of particular constructions
found in the literature.

Index Terms—Interval-valued fuzzy sets, Atanassov intuition-
istic fuzzy sets, extensions of fuzzy sets

I. INTRODUCTION

The notion of interval-valued fuzzy set (IVF set) was pro-
posed in 1975 independently by Zadeh [45], Grattan-Guiness
[20] and Sambuc [35], as a generalization of the notion of
fuzzy set. IVF sets are defined by means of interval-valued
membership functions. About 10 years later, Atanassov [1],
[2] introduced the notion of intuitionistic fuzzy set (IF set),
characterized by a pair of functions, the first one determining
the “degree of membership” and the second one reflecting the
“degree of non-membership”. The sum of both degrees should
be never greater than 1. Despite the semantic differences,
intuitionistic fuzzy sets where proved to be formally equivalent
to interval-valued fuzzy sets by several authors, including
Atanassov ( [3], [16]).

Since the introduction of both notions (see [9] for a detailed
historical account), many authors have adapted / generalized
different definitions that had been originally proposed for
fuzzy sets (FS) to these more general contexts. Many of
those original notions are characterized in terms of real-valued
functions defined on a family of tuples of fuzzy sets. This
is the case for instance, of the notion of the probability of
fuzzy events, or the degrees of inclusion, similarity, distance,
resemblance, or divergence between two fuzzy sets, among
many others. We can separate those generalizations into two
main groups, depending on whether the generalized mapping
is defined as a set-valued function or a real-valued mapping.
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We can distinguish in turn two different kinds of generaliza-
tions that we will respectively refer to as “constructive” and
“axiomatic”.

In the first case (constructive definitions), specific (families
of) formulas extending existing FS formulations to these more
general contexts are proposed. The different generalizations
lead either to interval-valued or numerical-valued measures.
The notion of “probability” of intuitionistic fuzzy events
initially proposed by Szmidt and Kacprzyk [38] and later on
considered by Grzegorzewski [21], the “degree of compati-
bility” between IVF sets of Gorzalczany [19], the “degree
of inclusion” studied by Bustince [6] and Grzegorzewski
[23], the notion of “cardinality” independently proposed by
several authors [34], [40], [42]) in order to extend the notion
of “sigma-count” or ‘“cardinality” of a fuzzy set [30] are
examples of constructive set-valued extensions. Those set-
valued constructions have been extensively analyzed in [11].
Alternatively, other authors have proposed some specific scalar
constructions for different notions. This is the case of many
definitions of similarity between IF sets (some examples can
be found in [15], [24], [26], [27], [44]) , distance (see [22],
[25], [39], [41] for instance) among many others.

In the second case, axiomatic definitions that somehow
extend or adapt the original definition from the fuzzy set
context to this more general context are given. There are
several set-valued extensions of this kind. To give some
examples, a collection of axioms regarding the notion of “set-
valued inclusion” and extending the initial axioms proposed
by Sinha-Dougherty [36] in the particular context of fuzzy
sets was proposed by Cornelis and Kerre in [10]. Similarly,
lists of axioms regarding the notion of set-valued similarity
have been independently proposed by Galar et al. in [18],
and Stachowiak-Dyczkowski in [37]. We can also find some
examples of axiomatic scalar extensions. This is the case of the
notion of similarity between two IF sets (two different variants
can be found in [15] and [48]), distance [48] or divergence
[32].

In our paper, we will analyze this second stream of the
literature from a formal perspective. We will show that many
different axiomatic extensions follow exactly the same formal
pattern even if they deal with completely different notions.
This will allow us to simplify the proofs of many results
studying implication relations between different variants of
the same extended notion, based on previous studies about the
corresponding original notions in the context of fuzzy sets. It
will also provide us with standarized methods of construction
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of extended measures, that will encompass as particular cases
many specific constructions from the recent literature. We will
divide our analysis into two parts: the first one will deal with
set-valued generalizations and the second-one will deal with
real-valued generalizations. Both types of generalizations will
be respectively studied in Sections III and IV.

II. PRELIMINARIES

Let U denote the universe of discourse and let p(U) be its
power set. Let F(U) denote the family of fuzzy subsets of
U. A fuzzy subset of U, A € F(U) is a mapping A : U —
[0,1]. For each element = € U, the value A(z) is called the
“membership degree” of x to the fuzzy set A. An Atanassov
intuitionistic fuzzy set is a mapping A : U — D([0,1]) =
{(z,y) € [0,1] : z+y < 1}. It is therefore represented by
means of a pair of mappings pa : U — [0,1] and vy : U —
[0, 1] respectively called the “degree of membership” and of
“non-membership” satisfying the restriction

palz)+rvalz) <1, Ve el.

The difference m4(x) = 1 — va(z) — pa(z) is seen as a
hesitation degree of the expert in order to assign a numerical
membership value to x. Therefore, intuitionistic fuzzy sets are
seen as generalizations of fuzzy sets, in the sense that the last
ones are IF sets with null hesitation degree. In fact, m4(z) =
0, Vz € U, if and only if pa(z) =1 —va(x), Yo € U, and
therefore any IF set will null hesitation degree is univocally
characterized by the membership function p4 : U — [0, 1].

An interval-valued fuzzy subset of U is an interval-valued
mapping A = [A, A] : U — 1([0,1]), where I([0, 1]) denotes
the family of closed intervals included in the unit interval
[0, 1]. It is therefore characterized by the mappings A : U —
[0,1] and A : U — [0,1], with A(z) < A(z), Vo € U,
respectively determining the lower and upper bounds of the
corresponding intervals. If A(x) = A(z), Vo € U, then A is
considered to be a fuzzy set.

We can define a bijection, ® : IVFS(U) — IFS(U),
between the collection of IVF sets and the collection of IF
sets, such that any interval-valued fuzzy set A = [A, A] is
mapped to the IF set A" = (ua,v4) where uy and v4 are
respectively defined as:

pa(x) = A(z), and va(z) =1 — A(x), Vo € U.

Therefore, any mapping defined over a class of k-tuples of IF
sets can be straightforwardly identified with a mapping defined
over k-tuples of IVF sets.

Along the paper, we will consider the following notion of
inclusion between IVF sets (or formally equivalently, between
the corresponding IF sets [2]): An interval-valued fuzzy set
A = [A A] € IVFS(U) is said to be included in B =
[B,B] € IVFS(U) if and only if A C B and A C B, where
C denotes the usual inclusion between fuzzy sets. We will
denote it as A C; B. We will also use the so-called lattice
ordering between closed intervals of the real line: an interval
[a, @] will be said to be less than or equal to another interval
[b,b] if and only if @ < b and @ < b. We will denote it as
[Q,E] <L [ba B]

We will consider the usual operations of intersection, unigl
and complement as follows: consider two IVF sets A = [A, A]
and B = [B, B].

o Their intersection is the IVF set ANB =[ANB,AN ]

with AN B(x) = (AN B)(x) = min{A(x), E( )}, a
AN B(z) = (AN B)(z) = min{A(z), B(x)}

o Their union is the IVF set AUB = [AUB,AU ]
with AU B(z) = (AU B)(r) = max{A(z), B(z)}, a
AUB(z) = (AU B)(x) = max{A(z), B()}.

o Consider the usual complement on F(U) defined as
X(z) =1-—X(x), Ve € U and all X € (U) The

complement of A is A¢ = [A°, A°| with A¢ = A°
Ac = A°
We will study different extensions of real-valued mappings

defined over sets of k-tuples of fuzzy sets i.e., extensions of
functions of the form f : F(U)x ¥} xF({U) — R. The
collection of k-tuples of fuzzy sets will be shortly denoted by
F*(U), while the collection of k-tuples of IVF sets will be
denoted by IV F¥(U). Given an element A = (Ay,..., Ax)
of IVF¥U), with A; € [4;,A;] € IVFS(U), i=1,...,k,
A ¢ F¥(U) and A € F*(U) will respectively denote the
tuples A = (Ai,...,Ax) and A = (A;,...,Ax). Given
X = (X1,...,Xx) € FFU), and 2 € U, X(u) will
denote the following k-tuple of membership values X (x) =
(X1(z), ..., Xp(2)).

III. SET-VALUED GENERALIZATIONS

In this section we will deal with set-valued extensions
of concepts originally defined within the context of fuzzy
sets. In [11], we have reviewed three different but related
construction methods of set-valued generalizations, the so-
called set-valued, max-min and max-min-varied extensions.
Each of those construction methods includes, as particular
cases, several particular definitions from the literature. Al-
though less common, we can also find some works in the
literature proposing lists of axioms that certain set-valued
measures should satisfy. This is the case of the notion of
set-valued inclusion measures of Cornelis-Kerre [10], and
the three variants of the notion of interval-valued similarity
measures respectively introduced by Bustince [6] Galar et al.
[18] and Stachowiak-Dyczkowski [37]. Let us recall Galar et
al. definition [18] as an illustration of the general definition to
be provided in this section (Definition 6):

Definition 1: [18] s : IVFS?(U) — 1([0,1]) is an IV fuzzy
similarity measure if:

e s(A,B) =s(B,A), V(A,B) € IVFS?(U) (Symmetry)

o s(A, A°) = {0} iff A is a crisp set. (Minimum value)

e s(A,B) ={1} iff A= B. (Maximum value)

e If A Cy B C; C then S(A,C) <r S(A,B) and

s(4,C) <1, s(B,C). (Monotonicity wrt inclusion)

o s5(A°,B%) =5s(A,B), V(A,B) € IVFS(U). (Comple-

ment)

The above definition shares some commonalities with a
previous notion of similarity introduced by Bustince [6] and
with the notion of set-valued inclusion measure introduced
by Cornelis and Kerre [10], even if this last one deals with
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a completely different concept. All of them can be seen as
instances of the general notion established in Definition 6.
We first need to provide some auxiliary definitions.
Definition 2: Let us consider an arbitrary subset of R”, C' C
R™. We define the rectangle projection of C' as the collection
T(C) of n-dimensional rectangles defined as follows:

T(C) = {[a1,b1] X ... X [an,by] : @= (a1,...,ay) and

b= (by,...,b,) €C}.

The next definition refers to two types of general properties.
Particular instances of them are involved in many axiomatic
definitions of similarities, dissimilarities, divergences, etc, in
the context of fuzzy sets.

Definition 3: Let us consider a universe U and some k € N.
Let us consider an arbitrary mapping f : F*(U) — R. Let
us consider two sets of tuples D, F C F*(U)x ™) x F*(U)
and C' C R".

o f is said to satisfy property P = P}(D, F,C) if, given

(Al,...,An) eD,
(A1,...,An) € F=(f(A1),..., f(A
P is said to be a property of type 1.
o fis said to satisfy property P’ = P?(D, F,C) if, given
(Al,...,An) eD
(Ay,...,Ap) e Fo (f(A1),...,f(A
P’ is said to be a property of type 2.

n)) € C.

n)) € C.

Remark 1: When D represents the whole family of tu-
ples F*(U)x ) xFk(U), then we will use the simpler
notation P = PY(F,C) and P’ = P?(F,C) instead of
P = P/(D, F,C) and P’ = P%(D, F, C).

Definition 4: Consider a sequence P, ..., P;, where P; is

either a property of type 1 or type 2, = 1,...,[. A mapping
f: FE(U) — R is said to satisfy the notion
N=N(Py,...,.P) (1)

if it satisfies all the above [ properties.

Example 1: Let us consider the following definition of
“similarity” between fuzzy sets [15]. s : F2(U) — R is a
similarity between fuzzy sets if it satisfies:

« Sim 1) 0 < s(A4,B) <1, V(A, B) € F2(U).

e Sim?2)s(A,B)=1< A=B.

e Sim 3) s(A4,B) = s(B, A), V(A4,B) € F2(U).

e Sim4)If AC B CC then s(A,C) < s(A, B).

e Sim5)If AC B C C then s(A,C) < s(B,C).

Properties Sim 1, Sim 3, Sim 4 and Sim 5 can be regarded
as type 1 properties (characterized by one side implications),
while Property Sim 2 is a type 2 property (based on an
equivalence relation). In fact, we can alternatively formulate
the five of them as follows:

e Sim 1) s satisfies P'(F;,Cy) with F; = F2(U) and

Cy =10,1].

o Sim 2) s satisfies P%(F2, C2) with Fo = {(X,X) : X €
F(U)} and Cy = {1}.

o Sim 3) s satisfies PY(F3,C3), where F3 =
{(X,Y),(Z,T) € ]:2(U) X ]:2(U) X =TY =7}

and C5 = {(z,z) : z € [0,1]}.

with  Fy =
:X:Z,YQZ}

o Sim 4) s satisfies PY(Fy,Cy)
{(X,Y),(Z,T) € F2(U) x F2(U)

and Cy = {(z,y) € R? : = > y}.

e Sim 5) s satisfies PY(F5,Cy) with F5 =
((X,Y),(2,T) € F2(U) x FU) x FAU) : X C
2,Y = 7).

Definition 5: Let us consider two sets of tuples D, F C
FEU)x ™ xF¥(U) and C € R™ for some n € N. Let us
also consider two mappings G, G? : IVFSk(U) — F*(U).

We say that f = [f, f] : IVFS*(U) — IR satisfies the
(G', G?)—interval-extension of P = PY(D, F, C), I c2(P)
if:

(G*(A,),...,G*(A,)) € F and

(G*(Ay),...,G*(A,)) € F =
(F(A1),-., f(An) € C and (F(A),..., F(An) €
Analogously, we say that f = [f, 1l

: IVFS""‘(U) -
IR satisfies the (G',G?)—interval-extension of P’/ =
PQ(D,J:, C), I(GI,G2)(P/) lf, given (Al,...7An) €
IVFSH(U)x (M) IVESH(U) with (GY(Ay),...,G'(A,)) €
D and (G?*(A;),...,G*(A,)) € D, the following equiva-
lence holds:

(G*(Ay),...,G'(An)) € F, and
(G*(A1),...,G*(An) e F
if and only if
(f(A1),...,f(A,)) € C and (f(A1),...,f(Ay)) € C.
Remark 2: When, in particular G'(A) = A and G*(A) =

A, we just say that f = | f, f] is the (canonical) interval-
extension of f.

Definition 6: Consider a sequence P, ..., P, where P; is

either a property of type 1 or type 2, ¢ = 1,...,[. Consider
the notion N = N(Py,..., P)

We say that [ IVFS*(U) — IR satisfies the
(G1,G3), ..., (G}, G?))—interval-extension of N,
Iict,e2,...cra)(IN) if it satisfies the (G}, G7)—interval
extension of P; for every i = 1,...,1.

Example 2: Let us check that the notion of interval-valued
similarity measure considered in Definition 1 is a particular
instance of Definition 6. In fact, its characterizing proper-
ties can be alternatively expressed as follows. A mapping
s: IVFS?(U) — IR is an interval-valued similarity measure
if it satisfies:

o The (canonical) interval-extension of P*(Fy,Cy),

I(PY(F1,Ch)), where Fi = {((X,Y),(Z.T)) e
FAU) x FXU) X = T.,Y = Z) and
Cy = {(z,z) : x € R}. (Symmetry)

o The (GY,G?)— interval extension
Igt 3 (P*(D, F»,C2)) where Gi(A,B) = (A B)
GQ(A B) = (4,B), D = {(A,B) € F*(U) :

B}, F» = {(A,B) € F?(U) : A,B € p(U )} and

Cy = {0}. (Minimum value)

o The interval-extension I(P?(F3,C3)), where F3 =
{(A,B) € F(U) : A= B}, and C5 = {1}. (Maximum
value)
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o The interval-extension I(P(Fy, Cy)), where Fy =
{((A,B),(C,D)) € F2(U)x F2(U) : A=C,B C D}
and Cy = {(z,y) € R? : z > y}. (Monotonicity wrt
inclusion (a))

o The interval-extension of I(P(Fs,Cy)), where F5 =

B=D,AD

{((A,B),(C,D)) € F>(U) x F*(U) :
C'}. (Monotonicity wrt inclusion (b))
e s satisfies IG;G%(Pl(]:G,CD), where  Fg =

{(A,B),(C,D)) € FA(U) x F2(U) : A =C%B =
D¢}, (Complement)

At the beginning of this section, we referred to three
different constructive methods of set-valued generalizations
introduced in [11], respectively called the set-valued, the max-
min and the max-min-varied extension. For an arbitrary mea-
sure f : F¥(U) — R, each of the three extensions is based on
a concrete transformation of k-tuples of interval-valued fuzzy
sets into collections of k-tuples of fuzzy sets. Let us consider
a particular transformation G : IVEFS*(U) — o(F*(U)).
The extreme points (infimum and supremum) of the G-interval
valued extension of f are calculated as follows:

[F1(4) = p f(X). 2

su
Xeg(A)

it () and [7](4) =
The three constructive methods considered in [11] (en-
compassing many set-valued constructions from the litera-
ture) correspond to the three following transformations G; :
IVFSH(U) — o(FFU)):

e Gi1(A) = {X € F¥U)

extension).

e Go(A)={X € F¥{U) : X = Aor X = A} (max-min

extension).

o G3(A) ={X € FFU) : X(z) € {A(z), A(z)},Vz €

U} (max-min-varied extension).

Now consider a measure f satisfying an arbitrary notion
IN. We can provide sufficient conditions in order to guarantee
that the G-extension of f satisfies the interval extension of IV.
The proof of the following proposition is immediate.

Proposition 1: Consider a specific transformation G
IVFS*(U) — o(F*(U)) Suppose the infimum and supre-
mum of Eq. 2 are attainable (i.e they respectively coincide
with the minimum and the maximum), and and furthermore
the following conditions hold:

: A C X C A} (set-valued

(G*(Ay),...,G*(A,)) € D and
(G*(Ay),...,G*(A,) €D <

(A1)e, ..., (An)y) € D and (A1)*,...,(A)") €D, (3)

(GY(Ay),...,G'(A,)) € F and
(G*(Ay),...,G*(A,)) € F =
((A1)s, ..., (Ap)s) € Fand (A1), ..., (A)") €F, &)

where A, and A" respectively denote A, =
argminyeg(a) f(X) and A* = argmaxxeg(a) f(X),
for all A € IVFS*(U). Then, if f satisfies the property of
type 1, P = PY(D, F,C), then the G-set valued extension of
f satisfies the interval extension of P, S(P).

Analogously, if the implication in Equation 4 is replaced by
an equivalence, and f satisfies a property of type 2 P’, then
the G-interval-valued extension of f satisfies the set-valued
extension of P’.

We can see a result proved by Galar et al. in [18] as an
illustration of Proposition 1. In fact, they prove that the max-
min-valued extension of a similarity measure between fuzzy
sets satisfies Definition 1, i.e., satisfies the interval extension
of the original notion. More concretely, suppose that s is a
similarity measure and define [s, 5| as follows:

s(A) = o s(X), 5(A) = e s(X),

where S(A) = {X € FKU) X(z) €
{A(z),A(z)}, Vx € U}. They prove that [s,5]
IVFS?*(U) — 1([0,1]) satisfies the interval extension of the
original notion. In fact, their proof is basically devoted to
show that Equations 3 and 4 are satisfied for every property of
similarity measures (symmetry, min. value, max. value, mono-
tonicity wrt inclusion and complement), where a particular
instance of G, G2, D and F is considered.

IV. SCALAR EXTENSIONS

A general axiomatic definition has been proposed in the
last section. It has been shown to encompass some existing
axiomatic definitions generalizing some FS notions to the case
of IVF and IF sets and leading to set-valued measurements.
Let us nevertheless notice that the literature about set-valued
generalizations of FS measures is not very vast. Furthermore,
most of those generalizations deal with constructive definitions
(see [11] for a review and a formal analysis of them) instead of
axiomatic definitions like the ones considered in the previous
section.

Now we will review another much broader category of
extensions from the literature, where the images of the cor-
responding extension are numbers instead of intervals. We
can again distinguish between the so-called constructive and
the axiomatic definitions. Instances of the first group of
definitions are the different variants of the notion of measure
of “similarity” introduced in [15], [24], [26], [27], [31], [44]),
and of the notion of “distance” measure (see [22], [25], [39],
[41]), the “average cardinality” introduced by Wu and Mendel
in [42], or the “correlation” between two IF sets given in [17],
among many others. In all the above cases, the authors propose
an extension of an existing formula and prove some properties
of the new function.

But there are other papers in the literature where the authors
propose axiomatic definitions of the new extended concepts.
We have reviewed several examples of this kind of “axiomatic
extension” in different contexts, and we have observed some
formal common features that allow us to conduct a general-
ized analysis. Let us start by providing several examples of
axiomatic extensions, as an introduction to this encompassing
approach. This is the case of the axiomatic definitions of
similarity between IF sets by Denfeng-Chuntiang [15] and
Zhang [48], the notion distance between IF sets by Zhang
[48] or the notion of divergence by I. Montes et al. [32].
We will recall the three of them. The following definition
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given by Denfeng and Chuntiang [15] deals with the notion
of “similarity” between two intuitionistic fuzzy sets. (We will
state a formally equivalent definition in the context of interval-
valued fuzzy sets).

Definition 7: s : IVFS?*(U) — R is a similarity measure
if it satisfies the following properties:

e S(Sim 1).-0<s(A,B)<1, VA, BeIVFS(U).

e S(Sim 2).- A=B & s(A,B) =1.

e S(Sim 3).- s(A,B) = s(B,A), VA,Be€ IVFS(U).

e S(Sim 4).- If A Cp B Cp, C then S(A,C) < S(A,B),

where C; denotes the lattice inclusion.

e S(Sim 5).- If A C;, B Cy, C then s(A,C) < s(B,(C).

The following notion of “distance” between two interval-
valued fuzzy sets has been introduced by Zhang et al. in [48]
and generalizes a previous definition given by Liu [29] in the
context of fuzzy sets. It is dual to another variant of the notion
of “similarity” also provided by Zhang et al. in [48].

Definition 8: d : IVFS?(U) — R is a distance measure if
it satisfies the following properties:

e S(DP1).- d(A,B) =d(B,A), VA,B € IVFS(U).

e S(DP2).- d(A,B) =1 B = A¢, A€ p(U).

e S(DP3).- A=B < d(A,B) =0.

e S(IDP4).- If A C;, B Cy, C then d(A, C) > d(A7 B)

e S(DP3).-If ACy, B Cy, C then d(A,C) > d(B,(C).

The following definition generalizes the notion of diver-
gence between fuzzy sets initially introduced by Montes et
al. in [32]. It has been stated in [32] within the context
of intuitionistic fuzzy sets and we will provide a formally
equivalent definition for interval-valued fuzzy sets.
Definition 9: Dy : IVFS?*(U) — R is an IVFS-divergence
if it satisfies the following properties:
e S(Divl).- D;p(A,B) = Drr(B,A),
IVFS(U).

e S(Div2).- A=B= D[F(A,B) =0.

e S(Div3).- D[F(AQC, BﬁC) < D]F(A, B)7 VA B,C e
IVFS(U).

e S(Div4).- D;r(AUC, BNC) < D;p(A,B), VA, B,C €
IVFS(U).

We can detect common features in the above definitions.
All of them link the properties of the original definition
(the particular formulation for pairs of fuzzy sets) to the
properties of the extended one, for pairs of interval-valued
fuzzy sets or intuitionistic fuzzy sets. In fact, they take each
property in the original definition and extend it according to
the general procedure that we will describe in Definition 11.
We previously need to provide an auxiliary definition:

Definition 10: Let us consider two collections of tuples of
fuzzy sets D, F C F*(U)x ™) xF¥(U) and a set C C R".
Let us consider the properties P = PY(D, F,C) and P’ =
P?(D, F,C). Let us consider a pair of mappings G',G? :
IVFSk(U) — F&(U).

o We say that f : IVFS*(U) — R satisfies the (G, G?)-

scalar-extension of P, S =(P) if :

VA,B €

(GY(Ay),...,GY(AR)), (G*(A4),...,G*(Ag)) € F
= (f(Aq),...

[(An)) €C. (5)

e We say that f : IVEFS*(U) — R satisfies the (G*, G?)-
scalar-extension of P', Sg1 g2 (P') if:

(GY(A1),...,GY(Ap)), (G2(A1),...,G*(AR)) € F

Based on the above definitions, we can describe the general
procedure that encompasses Definitions 7, 8 and 9, among
many others:

Definition 11: Let us consider the notion N =
N(P,,...,P) where P, is either a property of type 1 or of
type 2, for all s = 1,... 1. We say that S : [VFS*({U) — R
satisfies the scalar-extension of N, S(IN), if it satisfies the
scalar-extended properties S(Py),...,S(P)).

The following example shows how the notion of similarity
measure recalled in Definition 7 can be seen as a particular
case of Definition 11.

Example 3: Let us consider again the notion of similarity
measure recalled in Example 1. There we showed that the five
characterizing properties Sim 1 to Sim 5 of similarity measures
can be alternatively formulated as follows:

e Sim 1) s satisfies P1(F;,Cy) with F; = F*(U) and

Cy =10,1].

o Sim 2) s satisfies P%(F, C2) with Fo = {(X,X) : X €
F(U)} and Cy = {1}.

o Sim 3) s satisfies P!(F3,C3), where F3 =
{(X,Y),(Z,T) e FA(U) x F*(U) : X =T,Y = Z}
and C5 = {(z,z) : z €[0,1]}.

e Sim 4) s satisfies P (Fy,Cy) with Fy =
{(X,Y),(Z,T) e FA(U)x F*(U) : X =Z,Y C Z}
and Cy = {(z,y) € R? : = > y}.

e Sim 5) s satisfies PY(F5,Cy) with F5 =
{(X,Y),(Z,T)e F2(U)x F2(U) : X C Z,Y = Z}.

According to this alternative, but equivalent formulation, we
can easily see that each of the properties denoted as “S(Sim
4)” in Definition 7 is in fact the scalar-extension of “Sim
1”, for every ¢ = 1,...,5 in accordance with Definition 10.
Therefore Definition 7 is an extension of the original definition
of similarity measure between fuzzy sets in accordance to the
general procedure described in Definition 11.

We can analogously prove that Definitions 8 and 9 also
follow the general procedure described in Definition 11. These
three definitions are just three options among all the variants
of the notions of “similarity”, “similitude”, “resemblance”,
“dissimilarity”, “distance”, etc reviewed in [12]. All the
notions reviewed there could be easily generalized to the
case of interval-valued fuzzy sets or intuitionistic fuzzy sets
according to the general procedure proposed in Definition
11. Furthermore, we may ask ourselves whether the formal
relations connecting those different notions studied in [12]
are also satisfied in this more general context of interval-
valued and intuitionistic fuzzy sets. The answer is based on
the following formal result, whose proof is straightforward:

Proposition 2: Let us consider a collection of
properties Pii(Dy, F1,Ch), ..., P (D, Fi, C)). Let
S(P(Dy, F1,Ch)), ..., S(PU((Dy, Fi,C;)) denote their

respective scalar extensions. If:

. min{il, .. ';il—l} 2 il.
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. ﬁ;;%fz C F.
e NZIC; D C.

Then:

. Pil(fl,cl)/\.../\Pilil(}—lfl,clfl) :>P“(]-'l,Cl).
. S(P“(]—'l,Cl)) VAN S(Pll*l(ﬂ_l,cl_l)) =
S(P”(‘Flacl))'

The above result may help to prove some implication
relations between different variants of related notions, such
as those mentioned above (similarity, similitude, resemblance,
etc). Most of those notions involve properties of type 1 and
type 2, and the proofs about relations of implication between
different notions are based on the study about some inclusion
relations between the sets F; and C; that characterize the
involved properties. In all those cases, and taking into account
the above result, those proofs regarding the corresponding
inclusion relations can be directly used in order to extend those
existing implication results to the more general context of
intuitionistic fuzzy sets / interval-valued fuzzy sets. Of course,
the above result is not restricted to the study of different
variants of the notions of “degree of equality” and “degree
of inequality” between IVF or IF sets. Thus, a detailed study
about the implication relations between those notions falls out
of the scope of this paper. An exhaustive study about those
implication relations in the context of fuzzy sets can be found
in [12], [14]. On the other hand, some specific proofs about
the relation between the notion of divergence measures and
other notions in the general context of IF sets can be found in
[32].

The above references [12], [14], [32] also contain coun-
terexamples showing that some implications do not hold. In
[12], [14], an exhaustive list of examples in order to provide
an overall picture, within the context of fuzzy sets, about what
notions are stronger than others is provided. On the other hand,
one specific example showing that one of those implications
does not either hold in the general context of IF sets is given in
[32]. Up to this point, we may ask ourselves what happens in
general: If a notion N does not imply another one N’ within
the context of fuzzy sets, is it possible that S(IN) (the scalar
extension of IN) implies S(IN')? The answer is no, as we prove
below:

Proposition 3: Suppose that there exists a mapping f :
F*(U) — R satisfying notion N but not satisfying notion
N'. Then there exists a mapping S(f) : IVFS*¥({U) — R
satisfying the scalar extension of N, S(N), but not satisfying
S(N").

Proof: Consider S(f) : IVFS*(U) — R defined as
S(f)(A) = f(A). It satisfies S(IV) but does not satisfy S(N’).

According to Proposition 3, any counterexample showing
the lack of implication between two different notions can be
used as an evidence about the lack of implication between
their respective scalar extensions, and explicit examples in this
general framework would be unnecessary. As an example of
an application of the above result, we observe that all the
counterexamples considered in [12] and [14] can be easily
adapted to the contexts of IVF and IF sets.

A. Construction methods of scalar extensions

As we have already mentioned, many works in the recent
literature (see [15], [22], [24]-[27], [39], [41], [44] for in-
stance) provide concrete formulas in order to construct specific
(parametric families of) measures for IFS / IVFS. When the
properties of the corresponding measures can be expressed
either as properties of type 1 or of type 2, we can systematize
this kind of constructions. Propositions 4, 6 and 7 provide
three different generalized methods of construction.

1) First Method: functions of the max-min set-valued ex-
tension: Proposition 4 provides the first general method. The
proof is straightforward.

Proposition 4: Let wus suppose that M
FRU) — R satisfies the notion N =
N(PY(Dy, F1,C4),..., P (D, Fon, i),

PQ(D/D {7 Ci)v ce 7P2(D;n”‘rl/’ C;n’))

Let us construct the function Sy, (M) : IVFS*({U) — R

defined as

Su(M)(A) = h(M(A), M(A)). ()

Then Sy, (M) satisfies the extended notion S(IN) if and only
if h : R? — R satisfies the following conditions:

(@1,...,2n) € Cs, (Y1, -+, Yn) € Ci =

(h(z1,y1)s - h(@pyyn)) € Ciyi=1,...,k
and (z1,...,2,) € Cj, (y1,.--,yn) € C) & (8)

(h(@1,91)s -, W@, yn)) € Cf g = 1,... K.

From now on, we will refer to Sy, (M) as the extreme-based
scalar extension of M.

Example 4: Let us suppose that M : F¥(U) — R satisfies
the following condition, for a certain 7 C F*(U) x F*(U):

[(A1,A2) eF= M(Al) > M(AQ)]

The above condition is a property of type 1, since it can be
alternatively expressed as follows:

(A1, A2) € F = (M(Ay), M(Az)) € O,

where C' = {(z,y) € R? : 2 > y}]. Let us call it P. Then the
mapping Sy, (M) : IVFS*(U) — R defined as S, (M)(A) =
h(M(A), M (A)) satisfies the extended property S(P) if and
only if h : R? — R is increasing in both components.

The proof of this result is a consequence of the last
proposition and the fact that, if C = {(z,y) € R? : z > y}
then Equation 9 (below) holds if and only if % is an increasing
function.

[(z1,22) € C, (y1,92) € C = (h(w1,91), ”h(22,12)) € C]
(©))
Example 5: Let us now suppose that M : F*(U) — R
satisfies the following condition for a certain F C F*(U) and
a certain ¢ € R:

AeF= f(A)=c
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The above condition can be seen as a property of type 1
(the property P = PY(F,{c})). Then, according to the above
result, for any h : R? — R such that h(c,c) = ¢, the mapping
Sp(M) = h(M(A), M(A)) satisfies the extended property
S(P).

As we have recalled at the beginning of this subsection,
many authors in the literature provide concrete formulas of
measures in the context of IFS, and they prove that those
measures satisfy certain properties (in accordance with some
specific axiomatic definition). Many of those particular formu-
lations match the general procedure described in Proposition 4.
Some examples of those are the normalized Hamming distance
proposed by Burillo and Bustince in [5], and also mentioned
by Atanassov [4] and Grzegorzewski [22], or the notion of
similarity introduced by Mitchell in [31].

The following example uses the particularizations of Propo-
sition 4 given in Examples 4 and 5 in order to construct
measures of similarity and measures of divergence between
IFS based on their respective analogous for the particular
context of fuzzy sets.

Example 6: The first part of this example shows how
to construct measures of similarity between IVF sets in
accordance with Definition 7. The second part shows how
to construct measures of divergence between IVS sets (or
formally equivalently, between intuitionistic fuzzy sets).

o Let us suppose that s : F2(U) — R satisfies axioms
Sim 1-Sim 5 enumerated in Example 1. Let us suppose

that b : [0,1] x [0,1] — [0,1] satisfies the following
conditions:

~ 1(0,0) =0

- h(1,1)=1

— h is increasing in both components (but not neces-
sarily strictly increasing).
Then, the mapping S(s) : IVFS?(U) defined as

S(s)(A, B) = h(s(4, B),5(A, B))

satisfies the extended notion recalled in Definition 7. We
can find in [31] several examples of extended similarity
measures that follow this formulation.
e Letd: F?(U) — R be a divergence measure according to
[33]. If A : R x R — R satisfies the following properties:
- h(0,0)=0
— h is increasing in both components (but not neces-
sarily strictly increasing).

Then S(d) : IVFS?(U) — R defined as

satisfies the extended notion recalled in Definition 9. This
result has been proved by I. Montes et al. in [32]. If
we take the original properties of divergence measures
between fuzzy sets into account, the proof is a direct
consequence of Proposition 4.

The general construction method considered in this sub-
section generalizes many proposals from the recent litera-
ture, as we have recalled in Example 6. In many of those
cases the mapping h is symmetric. Under this constraint,

h(z,y) coincides with hL min{z, y}, max{x, y}) and therefore
Sp(M) = h(M(A), M(A)) can be alternatively expressed as

Sn(M) = h(min{M (A), M (A)}, max{M(A), M(A)}).

Thus, under this constraint, the extreme-based scalar ex-
tension is calculated as a function of the extreme points,
min{M(A), M(A)} and max{M(A), M(A)}, of the max-
min extension considered in [11]. Some authors have ar-
gued that scalar extensions are less informative than set-
valued extensions of different measures. In fact, for the
kind of construction considered here, the process of se-
lection of a real number as a function of the pair
(min{M(A), M (A)}, max{M(A), M(A)), incurs in a loss
of information in favor of a precisiation of the value of M (A).

The following method provides an alternative construction
that can be seen as a function of the max-min extension.
It coincides with the extremes-based construction when £ is
symmetric. But in the general case, it does not require M (A)
and M (A) to be treated symmetrically.

Proposition 5: Let us suppose that M
FrU) — R satisfies the notion N =
N(PY(Fi,Ch),. .., PY(Fi, Cy), P2(F{,CY), ..., P2(F,C))),

for some specific collections of tuples of fuzzy sets

Fiyoooy, By, Fi, ..., F/ and some specific collections of
vectors C1,...,Cy, C1, ..., C].
Let us construct the function S, (M) : IVFS*(U) — R
defined as
Sp(M)(A) = h(min{M(A), M (A)}, max{M(4), M(A)}).
(10)
Then S}, (M) satisfies the extended notion S(IN) if and only

if the mapping h : {(z,y) € R?
following conditions:

: ¢ <y} — R satisfies the

(z1,...,2n) € Ci, (Y1, -, yn) € C; =

h(zi Ay, 21V Y1)y B(@n AYn, zn V yn) € Ci,
i=1,...k

and

(1, 20) €C) (Y1, -+, yn) € Cf &

h(zi Ay, 21V Y1)y B(@n AYn, 2 Vyn) € Ci,
i=1,... K,

(where A and V respectively denote the minimum and the
maximum). From now on, we will refer to S} (M) as the max-
min-based scalar extension of M.

If the mapping h satisfies the following inequalities:

min{a, b} < h(a,b) < max{a,b},V (a,b), (11)
then the max-min-based scalar construction can be regarded
as a procedure that selects a somehow representative point
inside the interval determined by the max-min extension.
The next subsection presents a parallel construction where
a representative point of the max-min-varied extension is
selected.
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2) Second method: extension of T-internal measures: The
method proposed in this section needs the original measure
M to satisfy a certain property of “additivity” introduced in
Definition 13. Let us first give an auxiliary definition.

Definition 12: Let us consider a universe U and an arbi-
trary element x* € U. Given a function M : F(U)* —
R let M, denote the mapping M,-(A' ... AF) =
M((AY) e, .., (A*),x) where

M~ is called the x*-restriction of M.
Definition 13: Consider an aggregation operator 7. A notion
N is said to be T' -internal if the following implications hold:

if z = z*

otherwise.

o If M satisfies N then its x-restriction also satisfies N for
every x € U.

o If My,..., M, satisfy the notion N then T'(My, ...
also satisfies N, for every n € N.

i Mn)

The following result describes a second construction
method. This result guarantees that, if M satisfies a certain
T-internal notion N, then the mapping S” (M) fulfills the
extended notion S(N).

Proposition 6: Consider the finite universe U =
{z1,...,z,}. Suppose that M satisfies the T'- internal notion
N. Let S,”(M) be defined as follows:

Sy (M)(A) =
,h(Ms, (A), M, (A))

T(h(Mz, (A), My, (A)), ... A), M, (12)

Then S, (M) satisfies the scalar extension S(N) if and only
if h satisfies the conditions established in Equation 8.

From now on, S, (M) will be called the T-scalar extension
of M.

Some distance measures, based on the so-called “normalized
Hamming distance” ( [4], [5], [22]), or other distances based
on the Hausdorff metric [22], as well as the concepts of
implication operations and strong equality indices in interval-
valued fuzzy sets ( [46]) can be seen as some examples of this
general construction.

This scalar extension is quite related to the (set-valued) max-
min-varied extension. In fact, many constructions of measures
within the fuzzy sets literature, such as [7], [8], lead to
measures that are generated on the basis of some aggregation
operator, in the sense that they can be written as follows:

M(A) = T(M,, (A),..., M, (A)), VA e IVFS(U),

for some aggregation operator 7. If furthermore h satis-
fies Equation 11, then due to the monotonicity of T, the
value S) (M)(A) belongs to the max-min-varied interval
[inf xegy(a) M(X), supyeg,a)y M(X)].

3) Third method: The third construction is somehow dif-
ferent from the previous construction proposed in Subsections
IV-A1 and IV-A2. In the first case, we picked a value out of the
interval determined by the max-min extension. In the second
case, we repeated the same strategy for every « € U and then
we “averaged” the measurement all over the elements of U.

Thus, in those cases, we disambiguated “at the end”, i.e., after
calculating the interval of measurements. Here, we start by
picking a set X in the class {X : AC X C Z} and then we
calculate the value M (X). Instead of “disambiguating at the
end” as we do with the max-min scalar extension, (where we
pick a value that is calculated as a function of the extremes of
the interval determined max-min extension), we “disambiguate
at the beginning".
Proposition  7:
FU)x ™ xFU)

Let us suppose that M

— R satisfies the notion N =
N(PYFi,Ch),...,PY(Fi, Cr), P2(F},CY),. .., P2(F,C))),
for some specific collections of tuples of fuzzy sets
Fi,.oo, Fy, Fi,...,F/ and some specific collections of
vectors C1,...,Cy,C1, ..., C].

Let us construct the function Sy (M) : IVFS*(U) — R
defined as »

S (M)(A) = M(£(A,A)). (13)

Then S;LN (M) satisfies the extended notion S(IN) if and only

if f: IVFS*(U) — F*(U) satisfies the following conditions:

(é; 7777,)6]:7;7(‘417""‘4771)6;7;:
(f(é,Ail),...,f(ﬁ,An)) e Fi,i=1,...,k
and

(Ay,. n) €Fi, (Ay,...,A,) € Fl & (14)

(f(A1, Av), ..

,f(An, An)) € F.

From now on, we will refer to S, (M) as the disambiguation-
based scalar extension of M.
Examples of this construction are the measures based on
the fuzzy set membership function constructed as
A+ A

=Ty

and proposed by Deng [15] and Liang and Shi [28]. The
normalized Hamming distance can be also seen as an example
of this kind of construction.

V. CONCLUDING REMARKS

We have reviewed different axiomatic recent definitions in
the context of IVF sets and IF sets. Many of them extend
axiomatic definitions originally proposed in the context of
fuzzy sets. Looking at them from a purely formal perspective,
and forgetting about every concrete notion, we have observed
that both, the original definitions (the ones formulated in the
context of fuzzy sets) and the process of extension (from fuzzy
sets to IVF sets) share certain commonalities. In fact, many of
those original definitions consist of a list of requirements that
a mapping f : F¥(U) — R must satisfy. Those requirements
can be either formulated as properties of type 1:

V(Ay,...,A,) €D,
(A1,...,Ay) € F=(f(Ar),.... f(An)) € C
or as properties of type 2:

Y(Ai,...,Ap) €D,
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(A1, ..., Ap) € F & (f(A1),...,f(An)) € C.

(For a certain triple D € F*(U) x...x F*(U), F € F*(U) x
X FRU), C e R).

On the other hand, if we focus on the extension procedure
that converts the original fuzzy sets’ definition into a gener-
alized one, we can observe that the process of transformation
of the above properties often follows a similar pattern. We
have separately studied set-valued extensions from real-valued
extensions, and we have proposed two general definitions,
each of them corresponding to each of those cases. Thus,
we have observed that many axiomatic set-valued extensions
from the literature follow the general procedure described in
Definitions 5 and 6, while many scalar generalized definitions
follow the procedure described in Definitions 10 and 11. Such
an abstraction allows to notably organize and simplify the
process of construction of new extended measures, and to note
that many definitions from the literature are nothing else but
particular instances of Definitions 6 or 11.

We have analyzed the three general procedures of construc-
tion of set-valued measures considered in [11] under the light
of this general scheme. We have additionally proposed three
different but related general procedures of constructions of
scalar measures in the context of IVF sets. The six construc-
tions encompass many different particular constructions from
the literature as particular cases. Such a general framework
allows us to simplify many proofs: we can find in the literature
plenty of works where some particular constructive definition
in the context of fuzzy sets is extended to the general context
of IVF sets. The original constructive definition is known to
satisfy a list of properties that can be often formulated either
as properties of type 1 or type 2. The authors prove that
the extended construction satisfies a certain list of properties.
Those properties very often coincide with the extended version
of the original ones via Definition 5 (interval extension) or
Definition 10 (scalar extension), and furthermore the extended
construction proposed by the authors follows some of our six
procedures. According to the results included in this paper, the
(sometimes long) proofs provided in some papers in order to
check that a particular construction satisfies the list of extended
properties could be substantially simplified.

Notwithstanding, with respect to the second case (real-
valued extensions of the FS concept) we should notice that
some well known definitions from the literature escape from
the general formulation provided in Definition 11. To give
an example, the notion of entropy of IF sets introduced by
Szmidt and Kacprzyk in [40] and adapted to IVF sets by Zeng
and Li [47], extends the well-known notion of entropy of a
fuzzy set originally introduced by De Luca and Termini [30]
cannot be formulated in terms of Definition 11. The authors
base the interpretation of their extension on a geometric
representation of IF sets. According to their interpretation,
the entropy measures the whole missing information which
may be necessary to classify the points as elements either
with full membership or full non-membership degree. It is
not only related to the degrees of fuzziness of both extremes

A and A but also to the hesitation degree of the IVF set.

In fact, if A is less fuzzy than B and A is less fuzzy than

B (in accordance to De Luca and Termini’s partial ordering)
and furthermore, H(A)(z) = A(z) — A(x) is greater than or
equal to H(B)(x), for every z € U, then A is less fuzzy than
B, in accordance to Szmidt-Kacprzyk axiomatic definition.
This axiomatic definition is not an isolate example. Other
parametric families of extended measures in the literature also
take into account the hesitation degree. In the near future,
we plan to analyze where there are or not formal connections
between these alternative extended measures, that would allow
us to study them from a common formal perspective.
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