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Abstract. The paper deals with finite element approximations of elliptic
Dirichlet boundary control problems posed on two-dimensional polygonal do-

mains. Error estimates are derived for the approximation of the control and
the state variables. Special features of unconstrained and control constrained

problems as well as general quasi-uniform meshes and superconvergent meshes

are carefully elaborated. Compared to existing results, the convergence rates
for the control variable are not only improved but also fully explain the ob-

served orders of convergence in the literature. Moreover, for the first time,

results in nonconvex domains are provided.

1. Introduction. In this paper we will study the finite element approximation of
the control problem

(P)


min J(u) = 1

2∥Su− yΩ∥2L2(Ω) +
ν
2∥u∥

2
L2(Γ)

subject to (Su, u) ∈ H1/2(Ω)× L2(Γ),

u ∈ Uad = {u ∈ L2(Γ) : a ≤ u(x) ≤ b for a.a. x ∈ Γ},
where Su is the very weak solution y of the state equation

−∆y = 0 in Ω, y = u on Γ, (1)

2010 Mathematics Subject Classification. 65N30, 65N15, 49M05, 49M25.
Key words and phrases. Optimal control, boundary control, Dirichlet control, nonconvex do-

main, finite elements, error estimates, superconvergent meshes.
The project was supported by DFG through the International Research Training Group IGDK

1754 Optimization and Numerical Analysis for Partial Differential Equations with Nonsmooth
Structures.

The second author was partially supported by the Spanish Ministerio Español de Economı́a y
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the domain Ω ⊂ R2 is bounded and polygonal, Γ is its boundary, a < b and ν > 0
are real constants, and yΩ is a function whose precise regularity will be stated when
necessary. We assume that 0 ∈ [a, b] and comment on the opposite case in Remark
5.4. Abusing notation, we will allow the case a = −∞ and b = +∞ to denote the
absence of one or both of the control constraints.

First order optimality conditions read as (see [1, Lemma 3.1])

Lemma 1.1. Suppose yΩ ∈ L2(Ω). Then problem (P) has a unique solution ū ∈
L2(Γ) with related state ȳ ∈ H1/2(Ω) and adjoint state φ̄ ∈ H1

0 (Ω). The following
optimality system is satisfied:

(νū− ∂nφ̄, u− ū)L2(Γ) ≥ 0 ∀u ∈ Uad, (2a)

−∆ȳ = 0 in Ω, ȳ = ū on Γ, in the very weak sense, (2b)

−∆φ̄ = ȳ − yΩ in Ω, φ̄ = 0 on Γ, in the weak sense. (2c)

The variational inequality (2a) is equivalent to

ū(x) = Proj[a,b]

(
1

ν
∂nφ̄(x)

)
for a.e. x ∈ Γ, (3)

where Proj[a,b] denotes the pointwise projection on the interval [a, b].

The aim of this paper is to investigate a finite element solution of the system (2a)–
(2c), in particular to derive discretization error estimates. The precise description
of the regularity of the solution of the first order optimality system is an important
ingredient of such estimates. They were proven in our previous paper [1]; we recall
these results in Section 2. There were two interesting observations which we may
illustrate in the following example.

Example 1.2. Consider the L-shaped domain. The 270◦ angle leads in general
to a singularity of type r2/3 in the solution of the adjoint equation; the regularity
can be characterized by φ̄ ∈ Hs(Ω) with s < 2

3 . Hence, the control has a r−1/3-

singularity in the unconstrained case, ū ∈ Hs(Γ) for all s < 1
6 . In the constrained

case, however, the control is in general constant in the vicinity of the singular corner
since the normal derivative of the adjoint state has a pole there, we get ū ∈ Hs(Γ)
for all s < 3

2 . This regularity is determined by the largest convex angle and by the
kinks due to the constraints.

Unfortunately, this is not the whole truth. In exceptional cases, e. g. when the
data enjoy certain symmetry, the leading singularity of type r2/3 may not appear in
the adjoint state. Instead, the solution may have a r4/3-singularity whose normal
derivative has a r1/3-singularity which is not flattened by the projection Proj[a,b].

The control is less regular. In this case ū ∈ Hs(Γ) for all s < 5
6 ; see [1, Example

3.6].

Hence, dealing with these exceptional cases is not fun but necessary. If in the
unconstrained case a stress intensity factor vanishes , i.e., the leading singularity
does not occur, then the convergence result is still true, one may only see a better
convergence in numerical tests. See Figure 6, right hand side. However, in the
constrained case, the situation is the opposite. The exceptional case leads to the
worst-case estimate. To deal with the “worst-case” and the “generic-case” in an
unified way, we introduce in (7) some numbers related to the singular exponents.

We distinguish two cases for the investigation of the discretization errors. After
proving a general result in Section 3 we study the unconstrained case in Section 4
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Figure 1. Convergence rates depending on the maximal interior
angle in the unconstrained case

and the constrained case in Section 5. We focus on quasi-uniform meshes and distin-
guish general meshes and certain superconvergent meshes. In order not to overload
the present paper, we postpone the study of graded meshes to a forthcoming paper.
The numerical tests in Section 6 confirm the theoretical results.

The study of error estimates for Dirichlet control problems posed on polygonal
domains can be traced back to [8], where a control constrained problem governed
by a semilinear elliptic equation posed in a convex polygonal domain is studied.
An order of convergence of hs is proved for all s < min(1, π/(2ω1)), where ω1 is
the largest interior angle, in both the control and the state variable. Later, in [18],
it is proven that for unconstrained linear problems posed on convex domains, the
state variable exhibits a better convergence property. The corresponding proof is
based on a duality argument and estimates for the controls in weaker norms than
L2(Γ). However, to the best of our knowledge, the argumentation is restricted to
unconstrained problems. For the error of the controls in L2(Γ), the order shown in
[8] is not improved.

Nevertheless, the regularity of the control and the existing numerical experi-
ments, see [18, 17], suggested that for the control variable the order should be
greater: hs for all s < min(1, π/ω1−1/2) if one uses standard quasi-uniform meshes,
and for all s < min(3/2, π/ω1−1/2) if one uses certain quasi-uniform meshes which
allow for superconvergence effects, see Definition 4.5. Our main results, Theorems
4.1 and 5.3, fully explain the observed orders of convergence in the literature for
the control variable, improve existing results for the state variable in constrained
linear-quadratic problems posed in convex domains, and provide the first available
results in nonconvex domains.

Let us summarize our results in detail. To be brief we introduce the maximal
order O = 1 for general meshes and O = 3/2 for superconvergent meshes, λ = π/ω1

and Λ = min{λj : λj > 1}. Note that we neglect terms with arbitrary small
positive ε, and that Λ is defined slightly differently in (8). In the unconstrained
case we prove in Theorem 4.1 convergence order min{O, λ − 1

2}, see Figure 1 for
a plot of the convergence order against the maximal angle of the domain. In the
constrained case, we get the same result for convex domains, see Theorems 5.1 and
the left part of Figure 2. For nonconvex domains we can prove order 1

2 which is
sharp when the maximal convex angle of the domain is close to π, see Theorem
5.5. A better result is obtained under the structural assumption 5.2 on the discrete
control. In the worst case we get the order min{O, 2λ− 1

2 ,Λ− 1
2} and in the generic

case min{O, 2λ,Λ − 1
2}, see Theorem 5.3 where a more involved definition of Λ is
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Figure 2. Convergence rates depending on the maximal interior
angle in the constrained case

used. Figure 2 shows the order on the right hand side. To illustrate the dependence
of the order on the nonconvex angle, the figure assumes that convex angles are small
enough, such that these corners do not influence the convergence order.

2. Notation and regularity results. Let us denote by M the number of sides of
Γ and {xj}Mj=1 its vertexes, ordered counterclockwise. For convenience denote also
x0 = xM and xM+1 = x1. We will denote by Γj the side of Γ connecting xj and
xj+1, and by ωj ∈ (0, 2π) the angle interior to Ω at xj , i.e., the angle defined by Γj
and Γj−1, measured counterclockwise. Notice that Γ0 = ΓM . We will use (rj , θj)
as local polar coordinates at xj , with rj = |x− xj | and θj the angle defined by Γj
and the segment [xj , x]. In order to describe the regularity of the functions near
the corners, we will introduce for every j = 1, . . . ,M a positive number Rj and an
infinitely differentiable cut-off function ξj : R2 → [0, 1] such that the sets

Nj = {x ∈ R2 : 0 < rj < 2Rj , 0 < θj < ωj},
satisfy Nj ⊂ Ω for all j and Ni ∩ Nj = ∅ if i ̸= j and ξj ≡ 1 in the set {x ∈ R2 :
rj < Rj}, ξj ≡ 0 in the set {x ∈ R2 : rj > 2Rj}.

For every j = 1, . . . ,M we will call λj the in general leading singular expo-
nent associated with the operator corresponding to the corner xj . For the Laplace
operator it is well known that λj = π/ωj . Since in general the regularity of the
solution of a boundary value problem depends on the smallest singular exponent,
it is customary to denote

λ = min{λj : j = 1, . . . ,M} and pD =
2

1−min{1, λ}
. (4)

Our main estimates are for data yΩ ∈ W 1,p∗(Ω) for some p∗ > 2. To get these
estimates it is key to use the sharp regularity results of the optimal control, state
and adjoint state provided in [1]. For both the control and the state it is enough
to know the Hilbert Sobolev-Slobodetskĭı space they belong to, but for the adjoint
state we will need to know with some more detail the development in terms of
powers of the singular exponents. To write this development, we must proceed in
two steps in order to be able to define the effectively leading singularity in each
corner.

Our first result concerns the regularity of the adjoint state and is a consequence of
[1, Theorem 3.2 and Theorem 5.1]; see also [14]. For m ∈ Z, t ∈ R and 1 < p ≤ +∞
we define

Jmt,p =
{
j ∈ {1, . . . ,M} such that 0 < mλj < 2 + t− 2

p
and mλj /∈ Z

}
. (5)
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Lemma 2.1. Suppose yΩ ∈ L∞(Ω). Let φ̄ ∈ H1
0 (Ω) be the optimal adjoint state,

solution of (2c). Then, there exist a unique function φ̄r ∈ W 2,p(Ω) and unique
real numbers (cj,m)j∈Jm0,p , for all p < +∞ for constrained problems and p < pD for

unconstrained problems, such that

φ̄ = φ̄r +

3∑
m=1

∑
j∈Jm0,p

cj,mξjr
mλj

j sin(mλjθj). (6)

Note that pD = +∞ in convex domains such that we obtain for constrained as
well as for unconstrained problems the same regularity of the optimal adjoint state.
However, in nonconvex domains, the control and hence the state, as part of the
right hand side of the adjoint equation, may be unbounded in the unconstrained
case, which leads to the restriction p < pD for the regularity of φ̄r. Moreover, it
may happen that the effectively leading singularity corresponding to a corner xj is
not the first one. This means that the associated coefficient cj,1 in the asymptotic
representation (6) is equal to zero. However, this will be of interest only for con-
strained problems in case of nonconvex corners xj , i.e., λj < 1. To be able to cover
this, we define the numbers

Λj =

{
λj if λj > 1 or cj,1 ̸= 0
2λj if λj < 1 and cj,1 = 0

(7)

for each corner. In addition, we introduce

Λ = min{Λj : Λj > 1, j = 1, . . . ,M}. (8)

In convex domains, λ = Λ will determine the regularity of both the optimal con-
trol and state. This holds for unconstrained as well as for constrained problems.
However, in nonconvex domains, different cases may appear. If we have no con-
trol constraints then the regularity of the optimal control and state will again be
determined by λ. If the problem is constrained then in the vicinity of any cor-
ner xj , where the coefficient of the corresponding first singularity cj,1 is unequal
to zero, the optimal control is flattened there due to the projection formula and
consequently smooth. This is the usual case. If cj,1 = 0 then the optimal control in
the neighborhood of such a corner is at least as regular as the normal derivative of
the corresponding second singular function. In the control constrained case, Λ will
determine the regularity of the optimal control, at least in a worst case sense. The
regularity of the optimal state may depend on λ as well since singular terms may
occur within its asymptotic representation independent of the adjoint state.

For unconstrained problems the following regularity result holds, see [1, Corollary
5.3, Corollary 4.2, Theorem 3.4].

Lemma 2.2 (unconstrained case). Suppose −a = b = ∞ and yΩ ∈ Ht(Ω)∩L2(Ω)
for all t < min{1, λ− 1}. Then

ū ∈ Hs(Γ), ȳ ∈ Hs+
1
2 (Ω) ∀s < min{ 3

2 , λ− 1
2}. (9)

Remark 2.3. In general Lipschitz domains, there is not a satisfactory definition
of Hs(Γ) for s > 1. But for polygonal domains and s < 3/2, there is no problem in
naming Hs(Γ) = trΓH

s+1/2(Ω), the space of traces of Hs+1/2(Ω).
Notice that for 1/2 < s < 3/2, trΓH

s+1/2(Ω) = {u ∈ Πmi=1H
s(Γi) : u ∈ C(Γ)};

cf. [14, Th. 1.5.2.8].
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For constrained problems, we can improve this result, see [1, Corollary 4.2, The-
orem 3.4].

Lemma 2.4 (control constrained case). Suppose −∞ < a < b < ∞, yΩ ∈
Ht(Ω)∩L2(Ω) for all t < min{1, λ− 1}. Assume that the optimal control has a
finite number of kink points. Then

ū ∈ Hs(Γ) ∀s < min{ 3
2 ,Λ− 1

2}, (10)

ȳ ∈ Hs+
1
2 (Ω) ∀s < min{ 3

2 ,Λ− 1
2 , λ+ 1

2}. (11)

We also have the following result from [1, Proof of Theorem 3.4].

Lemma 2.5. Suppose −∞ < a < b < ∞ and yΩ ∈ L2(Ω). If λj < 1 and cj,1 ̸= 0,
then one of the control constraints is active near the corner xj, i.e., there exists
ρj > 0 such that for x ∈ Γ with |x− xj | < ρj either ū ≡ a or ū ≡ b.

Finally, we can write the representation of the adjoint state for regular enough
data. For m ∈ Z, t ∈ R and 1 < p ≤ +∞ we will also need

Lmt,p =
{
j ∈ {1, . . . ,M} such that 0 < mλj < 2 + t− 2

p
and mλj ∈ Z

}
. (12)

The following result is a consequence of [1, Corollary 4.4]; see also [14].

Lemma 2.6. Suppose that Ω is convex or −∞ < a < b < +∞, and that yΩ ∈
W 1,p∗(Ω) with p∗ > 2. Then, for p > 2 such that

3p− 2

λjp
̸∈ Z for all j ∈ {1, . . . ,M}

and

p ≤ p∗, p < pD, p <
2

2−min{λ, 2}
there exist a unique function φ̄r ∈ W 3,p(Ω) and unique real numbers (cj,m)Jm1,p and

(dj,m)Lm
1,p

, such that

φ̄ = φ̄r +

5∑
m=1

∑
j∈Jm1,p

cj,mξjr
mλj

j sin(mλjθj)

+
∑
m=1,3

∑
j∈Lm

1,p

dj,mξjr
2
j (log(rj) sin(2θj) + θj cos(2θj)) .

Notice that the coefficients cj,m that appear in both expansions in Lemmata
2.1 and 2.6 coincide, due to the uniqueness of the expansion. In the expansion of
Lemma 2.6 new terms appear that belong to W 2,p(Ω) for all p < +∞ but not to
W 3,p(Ω) for p > 2 satisfying the conditions in Lemma 2.6.

3. A general discretization error estimate. In this section we will present a
general discretization error estimate in Theorem 3.2. The terms in this general
estimate have to be estimated in particular cases. This work will be done in later
sections.

For the discretization, consider a family of regular triangulations {Th} depending
on a mesh parameter h in the sense of Ciarlet [10]. Notice, that a triangulation Eh
of the boundary is naturally induced by Th. We assume that the space Yh is the
space of conforming piecewise linear finite elements. The space Uh is the space of



DIRICHLET CONTROL IN POLYGONAL DOMAINS 7

piecewise linear functions generated by the trace of elements of Yh on the boundary
Γ. We denote the subspace of Yh with vanishing boundary values by Y0,h. In the
following, we assume that the mesh parameter h fulfills h < h0 with some h0 < 1
small enough and we denote c a generic constant that may depend on the data of
the problem but is independent of h.

We also introduce the discrete solution operator Sh : L2(Γ) → Yh. For u ∈ L2(Γ)
the function Shu ∈ Yh is defined as the unique solution of

(∇Shu,∇zh)L2(Ω) = 0 ∀zh ∈ Y0,h and (Shu− u, vh)L2(Γ) = 0 ∀vh ∈ Uh. (13)

We emphasize that on the boundary Shu coincides with the L2-projection of u
on Uh. Thus we get Shuh = uh on Γ for uh ∈ Uh. Notice as well that (13) is
not a conforming discretization of the very weak formulation of the state equation.
However, according to [2, 7], its applicability is guaranteed.

In our discretized optimal control problem we aim to minimize the objective
function

(Ph)

{
min Jh(uh) =

1

2
∥Shuh − yΩ∥2L2(Ω) +

ν

2
∥uh∥2L2(Γ)

subject to uh ∈ Uhad := {uh ∈ Uh : a ≤ uh(x) ≤ b for all x ∈ Γ}.

The first order optimality conditions of this problem were derived in [8] and are
stated in the next lemma.

Lemma 3.1. Problem (Ph) has a unique solution ūh ∈ Uhad, with related discrete
state ȳh = Shūh ∈ Yh and adjoint state φ̄h ∈ Y0,h. The following discrete optimality
system is satisfied

(νūh − ∂hnφ̄h, uh − ūh)L2(Γ) ≥ 0 for all uh ∈ Uhad, (14a)

(∇ȳh,∇zh)L2(Ω) = 0 for all zh ∈ Y0,h and ȳh|Γ = ūh, (14b)

(∇φ̄h,∇zh)L2(Ω) = (ȳh − yΩ, zh)L2(Ω) for all zh ∈ Y0,h, (14c)

where the discrete normal derivative ∂hnφ̄h ∈ Uh is defined as the unique solution of

(∂hnφ̄h, zh)L2(Γ) = −(ȳh − yΩ, zh)L2(Ω) + (∇φ̄h,∇zh)L2(Ω) for all zh ∈ Yh. (15)

An important tool in the numerical analysis is the construction of a discrete
control u∗h ∈ Uhad which interpolates ū in a certain sense, see Lemma 4.2 and Lemma
5.6, and satisfies

(νū− ∂nφ̄, u
∗
h − ū)L2(Γ) = 0. (16)

If the optimal control ū ∈ Hs(Γ) with s < 1 then we use a quasi-interpolant
introduced by Casas and Raymond in [8]: Denote the boundary nodes of the mesh

by xjΓ, 1 ≤ j ≤ N(h), and let ej , 1 ≤ j ≤ N(h), be the nodal basis of Uh. We set

d̄(x) = νū(x)− ∂nφ̄(x),

Ij =

∫ xj+1
Γ

xj−1
Γ

d̄(x)ej(x) dx,
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and define a control u∗h =
∑N(h)
j=1 u∗h,jej by its coefficients

u∗h,j =



1

Ij

∫ xj+1
Γ

xj−1
Γ

d̄(x)ū(x)ej(x) dσ(x) if Ij ̸= 0,

1

hj−1 + hj

∫ xj+1
Γ

xj−1
Γ

ū(x) dσ(x) if Ij = 0.

(17)

According to [8, Lemma 7.5] the function u∗h belongs to Uhad. Moreover, it is con-
structed such that u∗h = ū on the active set, and it fulfills (16).

If ū ∈ Hs(Γ) with s ≥ 1, we use a modification of the standard Lagrange inter-
polant Ihū of ū, again denoted by u∗h ∈ Uhad, which is defined by its coefficients as
follows

u∗h,j =


a if min[xj−1

Γ ,xj+1
Γ ] ū(x) = a,

b if max[xj−1
Γ ,xj+1

Γ ] ū(x) = b,

ū(xjΓ) otherwise,

(18)

cf. [9, Section 2]. Of course, if we consider control problems without control con-
straints, that is −a = b = ∞, the interpolant u∗h is just the Lagrange interpolant.
In case of control bounds a, b ∈ R, in order to get a unique definition of u∗h, we need
to assume that on each element only one control bound is active. However, due to
the Hölder continuity of ū, which we have for ū ∈ Hs(Γ) with s ≥ 1, there exists
a mesh size h0 > 0 such that for all h < h0 the above definition of the interpolant
is unique. Obviously, this interpolant belongs to Uhad. Moreover, it satisfies (16) by
construction. Indeed, whenever νū(x)− ∂nφ̄(x) ̸= 0, we have u∗h(x)− ū(x) = 0.

As already announced, we conclude this section by stating a general error esti-
mate for the control and state errors which will serve as a basis for the subsequent
error analysis.

Theorem 3.2. For the solution of the continuous and the discrete optimal control
problem we have

∥ū− ūh∥L2(Γ) + ∥ȳ − ȳh∥L2(Ω)

≤ c

(
∥ū− u∗h∥L2(Γ) + ∥ȳ − Shū∥L2(Ω) + sup

ψh∈Uh

∣∣(∇φ̄,∇Shψh)L2(Ω)

∣∣
∥ψh∥L2(Γ)

)
. (19)

Proof. First, let us define the intermediate error eh := u∗h − ūh. Then, we obtain

∥ū− ūh∥L2(Γ) + ∥ȳ − ȳh∥L2(Ω) ≤ ∥ū− u∗h∥L2(Γ) + ∥eh∥L2(Γ)

+ ∥ȳ − Shu
∗
h∥L2(Ω) + ∥Sheh∥L2(Ω). (20)

To deal with the third term, we take into account the continuity of Sh:

∥ȳ − Shu
∗
h∥L2(Ω) ≤ ∥ȳ − Shū∥L2(Ω) + ∥Sh(ū− u∗h)∥L2(Ω)

≤ ∥ȳ − Shū∥L2(Ω) + c∥ū− u∗h∥L2(Γ), (21)

cf. [2, Lemma 2.3 and Corollary 3.3]. Accordingly, we only need estimates for the
second and fourth term in (20). We begin with estimating the second one, but as
we will see this also yields an estimate for the fourth term. There holds

ν∥eh∥2L2(Γ) = ν(u∗h − ū, eh)L2(Γ) + ν(ū− ūh, eh)L2(Γ). (22)
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Next, we consider the second term of (22) in detail. By adding the continuous and
discrete variational inequalities (2a) and (14a) with u = ūh ∈ Uad and uh = u∗h ∈
Uhad, respectively, we deduce

(ν(ūh − ū) + ∂nφ̄− ∂hnφ̄h, eh)L2(Γ) + (νū− ∂nφ̄, u
∗
h − ū)L2(Γ) ≥ 0.

Rearranging terms and using (16) leads to

ν(ū− ūh, eh)L2(Γ) ≤ (∂nφ̄− ∂hnφ̄h, eh)L2(Γ).

Integration by parts (cf. [11, Lemma 3.4]) using eh = Sheh on Γ, (15), (2c) and (13)
yield

ν(ū− ūh, eh)L2(Γ) ≤ (∆φ̄+ (ȳh − yΩ), Sheh)L2(Ω) + (∇(φ̄− φ̄h),∇Sheh)L2(Ω)

= (ȳh − ȳ, Sheh)L2(Ω) + (∇φ̄,∇Sheh)L2(Ω)

= (Shu
∗
h − ȳ, Sheh)L2(Ω) − ∥Sheh∥2L2(Ω) + (∇φ̄,∇Sheh)L2(Ω).

(23)

By collecting the estimates (22) and (23) we obtain

ν∥eh∥2L2(Γ) + ∥Sheh∥2L2(Ω)

≤ ν(u∗h − ū, eh)L2(Γ) + (Shu
∗
h − ȳ, Sheh)L2(Ω) + (∇φ̄,∇Sheh)L2(Ω)

≤ ν∥u∗h − ū∥L2(Γ)∥eh∥L2(Γ) + ∥Shu∗h − ȳ∥L2(Ω)∥Sheh∥L2(Ω)

+ sup
ψh∈Uh

∣∣(∇φ̄,∇Shψh)L2(Ω)

∣∣
∥ψh∥L2(Γ)

∥eh∥L2(Γ). (24)

From the Young inequality we can deduce

∥eh∥L2(Γ) + ∥Sheh∥L2(Ω)

≤ c

(
∥u∗h − ū∥L2(Γ) + ∥Shu∗h − ȳ∥L2(Ω) + sup

ψh∈Uh

∣∣(∇φ̄,∇Shψh)L2(Ω)

∣∣
∥ψh∥L2(Γ)

)
. (25)

Finally, the assertion is a consequence from (20), (21) and (25).

4. Problems without control constraints. In the rest of the paper, we will
always assume that {Th} is a quasi-uniform family of meshes. However, if the
underlying mesh has a certain structure then it is possible to improve the error
estimates. These special quasi-uniform meshes are called superconvergent meshes
or O(h2)-irregular meshes; for the precise definition we refer to Definition 4.5. The
main result of this section is the following one.

Theorem 4.1. Suppose that either λ < 1 and yΩ ∈ L2(Ω), or yΩ ∈ W 1,p∗(Ω) for
some p∗ > 2. Then it holds

∥ū− ūh∥L2(Γ) + ∥ȳ − ȳh∥L2(Ω) ≤ chs| log h|r

∀s ∈ R such that s < λ− 1
2 and s ≤ 1, (26)

where r is equal to one for λ − 1
2 ∈ (1, 32 ] and equal to zero otherwise. If, further,

{Th} is O(h2)-irregular according to Definition 4.5, then

∥ū− ūh∥L2(Γ) + ∥ȳ − ȳh∥L2(Ω) ≤ chs ∀s < min{ 3
2 , λ− 1

2}. (27)
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For the proof, we are going to estimate the three terms that appear in the general
estimate of Theorem 3.2. Whereas the first two terms in (19) can be estimated by
standard techniques, the third one needs special care. Analogously to the derivation
of (23), this term can formally be rewritten as

sup
ψh∈Uh

∣∣(∇φ̄,∇Shψh)L2(Ω)

∣∣
∥ψh∥L2(Γ)

= sup
ψh∈Uh

∣∣(∇(φ̄−Rhφ̄),∇Shψh)L2(Ω)

∣∣
∥ψh∥L2(Γ)

= sup
ψh∈Uh

∣∣(∂nφ̄− ∂hnRhφ̄, ψh)L2(Γ)

∣∣
∥ψh∥L2(Γ)

,

where ∂hnRhφ̄ is defined as in (15) just by replacing ȳh with ȳ and φ̄h with the
Ritz-projection Rhφ̄ of φ̄ on Y0,h. Thus, we are interested in the error between
the normal derivative of the adjoint state and the corresponding discrete normal
derivative of its Ritz-projection. In order to estimate the above term, we will
pursue two different strategies. The first one relies on local and global W 1,∞-
discretization error estimates. In case of general quasi-uniform meshes, this will
result in a convergence order of O(hs| log h|r) for all s ∈ R such that s < λ− 1

2 and

s ≤ 1, where r is equal to one for λ − 1
2 ∈ (1, 32 ] and equal to zero otherwise. The

second strategy will rely on special superconvergent meshes as introduced in [5].
The idea to use such meshes in the context of Dirichlet boundary control problems
originally stems from [12]. In contrast to the setting in that reference, we are not
concerned with smoothly bounded domains but with polygonal domains. For that
reason we need to extend the corresponding estimates to that case, that is, we have
to deal with less regular functions due to the appearance of corner singularities. This
will yield an approximation rate of O(hs) with s < min{ 3

2 , λ − 1
2}, which results

in an improvement in comparison with meshes not satisfying the superconvergence
property, for domains with interior angles less than 2π/3.

Lemma 4.2. Suppose yΩ ∈ Ht(Ω)∩L2(Ω) for all t < min{1, λ− 1}. Then we have

∥ū− u∗h∥L2(Γ) + ∥ȳ − Shū∥L2(Ω) ≤ chs ∀s < min{ 3
2 , λ− 1

2}.

Proof. We know from Lemma 2.2 that the control satisfies ū ∈ Hs(Γ) for all s <
min{ 3

2 , λ − 1
2}. If s < 1, we choose u∗h as defined in (17), and the estimate for the

control follows from [8, Eq. (7.10)] by setting s = 1− 1
p with p ∈ (1,∞). If 1 ≤ s < 3

2 ,

we have ū ∈ Hs(Γ) ↪→ C0,s− 1
2 (Γ) due to the Sobolev embedding theorem. Thus, the

modified Lagrange interpolant u∗h from (18) is well-defined. Actually, in the present
case, u∗h is just the Lagrange interpolant. As a consequence, the error estimate for
the control is given by a standard estimate for the Lagrange interpolant.

Again from Lemma 2.2, the optimal state satisfies ȳ ∈ Hs+
1
2 (Ω), for all s <

min{ 3
2 , λ− 1

2}. Thus, ∥ȳ − Shū∥H1(Ω) ≤ chs−
1
2 for all s < min{ 3

2 , λ− 1
2} if λ ≥ 1.

By the Aubin–Nitsche method we obtain

∥ȳ − Shū∥L2(Ω) ≤ chs−
1
2+min{1,s+1

2} ∀s < min{ 3
2 , λ− 1

2}, (28)

cf. for instance [6]. Since s+ 1
2 can be chosen greater than 1

2 , we have the desired

result in case that λ ≥ 1. For λ < 1 we do not have ȳ ∈ H1(Ω) such that standard
techniques for estimating finite element errors fail. However, in this case we can
directly refer to Remark 5.4 of [2].
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Lemma 4.3. Suppose that either λ < 1 and yΩ ∈ L2(Ω), or yΩ ∈ W 1,p∗(Ω) for
some p∗ > 2. Then there is the estimate

sup
ψh∈Uh

∣∣(∇φ̄,∇Shψh)L2(Ω)

∣∣
∥ψh∥L2(Γ)

≤ chs| log h|r ∀s ∈ R such that s < λ− 1
2 and s ≤ 1,

where r is equal to one for λ− 1
2 ∈ (1, 32 ] and equal to zero otherwise.

Proof. As above, we denote by Rh the operator that maps a function of H1
0 (Ω)

to its Ritz-projection in Y0,h. In addition, we introduce the extension operator S̃h
which extends a function belonging to Uh to one in Yh by zero. Using the norm
equivalence in finite dimensional spaces on a reference domain we easily infer for
any ψh ∈ Uh and q ∈ [1,∞]

∥S̃hψh∥Lq(Ω) + h∥∇S̃hψh∥Lq(Ω) ≤ ch1/q∥ψh∥Lq(Γ). (29)

Since Shψh is discrete harmonic, we obtain together with the orthogonality prop-
erties of the Ritz-projection the identity

(∇φ̄,∇Shψh)L2(Ω) = (∇(φ̄−Rhφ̄),∇Shψh)L2(Ω) = (∇(φ̄−Rhφ̄),∇S̃hψh)L2(Ω),
(30)

where we employed that (Sh − S̃h)ψh belongs to Y0,h.
Now, we distinguish the three cases ωi < π/2, ωi < π and ωi < 2π for i =

1, . . . ,M .
In the first one, we know from Lemma 2.6 that the optimal adjoint state belongs

to W 3,q(Ω) (for some q > 2), which is continuously embedded in W 2,∞(Ω). Con-
sequently, a global W 1,∞-discretization error estimate from, e.g., [23, 13], and (29)
yield

(∇(φ̄−Rhφ̄),∇S̃hψh)L2(Ω) ≤ ∥∇(φ̄−Rhφ̄)∥L∞(Ω)∥∇S̃hψh∥L1(Ω) ≤ ch∥ψh∥L1(Γ),
(31)

which represents, together with (30) and the embedding L2(Γ) ↪→ L1(Γ), the desired
result for ωi < π/2, i = 1, . . . ,M .

Next, we consider the case ωi < π for i = 1, . . . ,M . For simplicity, we assume
that the domain has only one corner with an interior angle greater or equal to π/2.
However, the proof extends to the general case in a natural way. In the following,
that corner is located at the origin. Furthermore, we denote its interior angle
by ω1, the distance to that corner by r1, and the corresponding leading singular
exponent by λ1 = π/ω1. According to Lemma 2.6, the optimal adjoint state admits
the splitting

φ̄ = φ̄r + φ̄s, (32)

where φ̄r belongs to W
3,q(Ω) with some q > 2. Combining (30) and (32) yields the

identity

(∇(φ̄−Rhφ̄),∇S̃hψh)L2(Ω) = (∇(φ̄s −Rhφ̄s),∇S̃hψh)L2(Ω)

+ (∇(φ̄r −Rhφ̄r),∇S̃hψh)L2(Ω). (33)

For the latter term, we can argue as in (31) to show first order convergence, i.e.,

(∇(φ̄r −Rhφ̄r),∇S̃hψh)L2(Ω) ≤ ch∥ψh∥L1(Γ) ≤ ch∥ψh∥L2(Γ). (34)

In order to estimate the singular term, we decompose the neighborhood of the
critical corner in subdomains ΩJ which are defined by

ΩI := {x : |x| ≤ dI} and ΩJ := {x : dJ+1 ≤ |x| ≤ dJ} for J = I − 1, . . . , 1.
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We set the radii dJ equal to 2−J and choose the index I in such a way that dI =
2−I = cIh with a constant cI . Below, this constant is chosen large enough such
that on the one hand local W 1,∞-finite element error estimates from [13, Corollary
1] are applicable on the strips ΩJ , see (37), and on the other hand the validity of
the weighted error estimate (40) is guaranteed. Moreover, we set

Ω0 := Ω\ΩR with ΩR :=

I⋃
J=1

ΩJ

and

Ω′
J := ΩJ−1 ∪ ΩJ ∪ ΩJ+1

with the obvious modifications for J = 0 and J = I. Using this kind of covering,
we obtain

(∇(φ̄s −Rhφ̄s),∇S̃hψh)L2(Ω) =

I∑
J=0

(∇(φ̄s −Rhφ̄s),∇S̃hψh)L2(ΩJ )

≤
I∑

J=0

∥∇(φ̄s −Rhφ̄s)∥L∞(ΩJ )∥∇S̃hψh∥L1(ΩJ ). (35)

Arguing as in (29), we get

∥∇S̃hψh∥L1(ΩJ ) ≤ c∥ψh∥L1(∂Ω′
J∩Γ). (36)

Having chosen the constant cI large enough, local W 1,∞-error estimates from [13,
Corollary 1] yield

∥∇(φ̄s −Rhφ̄s)∥L∞(ΩJ )

≤ c
(
∥∇(φ̄s − Ihφ̄s)∥L∞(Ω′

J )
+ d−2

J ∥φ̄s −Rhφ̄s∥L2(Ω′
J )

)
, (37)

where Ihφ̄ denotes the Lagrange interpolant of φ̄. Notice, according to [13, Remark
2], this inequality is only valid for any J = 0, . . . , I−2 if the domain Ω is nonconvex,
i.e., ω1 > π. Now, let σ := r1+dI , which possesses the properties σ ∼ dJ for x ∈ Ω̄′

J

and minx∈Ω σ ∼ h. By combining (35)–(37), we infer

(∇(φ̄s −Rhφ̄s),∇S̃hψh)L2(Ω)

≤ c

I∑
J=0

(
∥∇(φ̄s − Ihφ̄s)∥L∞(Ω′

J )
+ d−2

J ∥φ̄s −Rhφ̄s∥L2(Ω′
J )

)
∥ψh∥L1(∂Ω′

J∩Γ)

≤ c
(
∥σ1/2∇(φ̄s−Ihφ̄s)∥L∞(Ω)+h

−1∥σ−1/2(φ̄s−Rhφ̄s)∥L2(Ω)

)
∥σ−1/2ψh∥L1(Γ).

(38)

The second derivatives of the singular part φ̄s behave like rλ−2 for λ ̸= 2 and like
log r if λ = 2, cf. Lemma 2.6. Thus, by using standard interpolation error estimates
(on the strips ΩJ), we get for λ1 > 1, hence for ω1 < π,

∥σ1/2∇(φ̄s − Ihφ̄s)∥L∞(Ω) ≤ chmin{1,λ−1/2}. (39)

From [22, Corollary 3.62] (setting τ = 1
2 and γ = 2− λ there) we know that for cI

large enough there holds

∥σ−1/2(φ̄s −Rhφ̄s)∥L2(Ω) ≤ chmin{2,λ+1/2}| log h|1/2. (40)
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Notice that in that reference problems with Neumann boundary conditions are
considered. However, the proof for the present problem is just a word by word
repetition. Next, the Cauchy-Schwarz inequality and basic integration yield

∥σ−1/2ψh∥L1(Γ) ≤ ∥σ−1/2∥L2(Γ)∥ψh∥L2(Γ) ≤ c| log h|1/2∥ψh∥L2(Γ). (41)

By collecting the results from (38)–(41), we obtain

(∇(φ̄s −Rhφ̄s),∇S̃hψh)L2(Ω) ≤ chmin{1,λ−1/2}| log h| ∥ψh∥L2(Γ), (42)

which yields together with (34), (33) and (30) the assertion in the second case.
Finally, we consider the case ωi < 2π for i = 1, . . . ,M . Similar to the foregoing

considerations, we assume that only the angle ω1 is greater or equal to π and hence
1/2 < λ1 ≤ 1. According to (30), the Cauchy-Schwarz inequality, (29), and a
standard finite element error estimate, we obtain

(∇φ̄,∇Shψh)L2(Ω) = (∇(φ̄−Rhφ̄),∇S̃hψh)L2(Ω)

≤ ∥∇(φ̄−Rhφ̄)∥L2(Ω)∥∇S̃hψh∥L2(Ω)

≤ chs∥ψh∥L2(Γ)

for all s < λ1 − 1/2. This ends the proof.

Remark 4.4. Related results to those of Lemma 4.3, which are established by
using similar techniques, can be found in [3, 15, 19, 22].

According to the previous lemma, the critical term in the general estimate (19)
converges with an order close to one provided that the interior angles are less 2π/3.
However, it is possible to improve the convergence rate if we assume a certain
structure of the underlying mesh. The following definition for superconvergent
meshes can be found in [5]. Those have been used in [12] in the context of Dirichlet
boundary control problems in the case of smoothly bounded domains.

Definition 4.5. The triangulation Th is called to be O(h2σ)-irregular if the follow-
ing conditions hold:

1. The set of interior edges E of the triangulation Th is decomposed into two
disjoint sets E1 and E2 which fulfill the following properties:
• For each e ∈ E1, let T and T ′ denote the two elements of the triangulation
Th that share this edge e. Then the lengths of any two opposite edges of
the quadrilateral T ∪ T ′ differ only by O(h2).

•
∑
e∈E2

(|T |+ |T ′|) = O(h2σ).
2. The set of the boundary vertexes P is decomposed into two disjoint sets P1

and P2 which satisfy the following properties:
• For each vertex x ∈ P1, let e and e′ be the two boundary edges sharing
this vertex as an endpoint. Denote by T and T ′ the elements having e
and e′, respectively, as edges and let t and t′ be the corresponding unit
tangents. Furthermore, take e and e′ as one pair of corresponding edges,
and make a clockwise traversal of ∂T and ∂T ′ to define two additional
corresponding edge pairs. Then |t− t′| = O(h) and the lengths of any two
corresponding edges only differ by O(h2).

• |P2| = c with a constant c independent of h.

Next, let us recall a result from [12, Lemma 5.2], which leads us to Lemma 4.7.
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Lemma 4.6. Let Ωh be any polygonal domain with boundary Γh. Suppose that the
triangulation Th of Ωh is O(h2σ) irregular and let f ∈ W 3,q(Ωh) for some q > 2.
Then for any ϕh ∈ Yh there holds∣∣∣∣∫

Ωh

∇(f − Ihf) · ∇ϕh
∣∣∣∣ ≤ c∥f∥W 3,q(Ωh)

(
h1+min{1,σ}∥ϕh∥H1(Ωh) + h3/2∥ϕh∥L2(Γh)

)
,

where Ihf ∈ Yh denotes the piecewise linear Lagrange interpolant.

Lemma 4.7. Suppose that either λ < 1 and yΩ ∈ L2(Ω), or yΩ ∈ W 1,p∗(Ω) for
some p∗ > 2. Suppose further that {Th} is a family of O(h2)-irregular meshes.
Then it holds

sup
ψh∈Uh

∣∣(∇φ̄,∇Shψh)L2(Ω)

∣∣
∥ψh∥L2(Γ)

≤ chs ∀s ∈ R such that s < λ− 1

2
and s ≤ 3

2
.

Proof. First we observe that∣∣(∇φ̄,∇Shψh)L2(Ω)

∣∣ = ∣∣(∇(φ̄− Ihφ̄),∇Shψh)L2(Ω)

∣∣
since Sh represents the discrete harmonic extension operator and φ̄ has zero bound-
ary conditions. If at least one interior angle ωi is greater or equal to 2π/3, we have
λ ≤ 3/2 and therefore λ − 1/2 ≤ 1. Consequently, there is no advantage in taking
a superconvergent mesh and we can apply the result for quasi-uniform meshes. If
ωi < π/2 for i = 1, . . . ,M , and hence λ > 2, we can directly apply the results of
Lemma 4.6 since φ̄ ∈ W 3,q(Ω) for some q > 2 according to Lemma 2.6. For these
reasons, we focus in the following only on the case 3/2 < λ ≤ 2. We are in this case
if the largest interior angle, denoted by ω1 in the following, fulfills π/2 ≤ ω1 < 2π/3.
For simplicity, we assume as in the proof of Lemma 4.3 that the remaining angles
are less than π/2. However, the proof again extends to the general case in a natural
way. According to Lemma 2.6 we have that

φ̄ = φ̄s + φ̄r,

where φ̄r belongs to W 3,q(Ω) with some q > 2. For the regular part we can again
employ Lemma 4.6 to obtain the order 3/2. The singular part behaves at worst like
rλ1 or like r21| log r1|, respectively, if λ = 2. As before, we would like to use Lemma
4.6 to get the corresponding estimate. For that purpose, we decompose the domain
into two disjoint subsets Ωh,1 and Ωh,2. The set Ωh,1 consists of the elements of the
triangulation which have contact to the corner x1, while Ωh,2 := Ω\Ωh,1. Since the
triangulation of Ω is O(h2) irregular, the triangulation of Ωh,2 is O(h2) irregular
too. Applying Lemma 4.6 yields for any q > 2∣∣∣∣∣

∫
Ωh,2

∇(φ̄s − Ihφ̄s) · ∇Shψh

∣∣∣∣∣ ≤ c∥φ̄s∥W 3,q(Ωh,2)

(
h2∥Shψh∥H1(Ωh,2)

+h3/2
(
∥Shψh∥L2(∂Ωh,2∩Ω) + ∥ψh∥L2(∂Ωh,2∩Γ)

))
. (43)

Since the number of elements in Ωh,1 is bounded independently of h and ∂Ωh,1∩Ω =
∂Ωh,2∩Ω, we have that |∂Ωh,2 ∩ Ω| ∼ h. Using this fact, the Hölder inequality, and
a discrete Sobolev inequality, we obtain

∥Shψh∥L2(∂Ωh,2∩Ω) ≤ ch1/2∥Shψh∥L∞(Ω) ≤ ch1/2 |log h|1/2 ∥Shψh∥H1(Ω). (44)

Define S̃h as the zero extension operator as in the proof of Lemma 4.3. Since Shψh
denotes the discrete harmonic extension of ψh, we infer

∥∇(Sh − S̃h)ψh∥L2(Ω) ≤ ∥∇S̃hψh∥L2(Ω).
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Using this in combination with the Poincaré inequality yields

∥Shψh∥H1(Ω) ≤ ∥(Sh − S̃h)ψh∥H1(Ω) + ∥S̃hψh∥L2(Ω) + ∥∇S̃hψh∥L2(Ω)

≤ c∥∇(Sh − S̃h)ψh∥L2(Ω) + ∥S̃hψh∥L2(Ω) + ∥∇S̃hψh∥L2(Ω)

≤ ∥S̃hψh∥L2(Ω) + c∥∇S̃hψh∥L2(Ω)

≤ ch−1/2∥ψh∥L2(Γ), (45)

where we used (29) in the last step.

Next, we observe that the third derivatives of φ̄s behave like rλ−3
1 such that we

can conclude for some arbitrary ε > 0 (depending on q)

∥φ̄s∥W 3,q(Ωh,2) ≤ c∥rλ−3
1 ∥Lq(Ωh,2) ≤ chλ−2−ε (46)

since minx∈Ωh,2
r1(x) ∼ h. Collecting (43)–(46) yields∣∣∣∣∣
∫
Ωh,2

∇(φ̄s − Ihφ̄s) · ∇Shψh

∣∣∣∣∣ ≤ chλ−1/2−ϵ∥ψh∥L2(Γ),

which represents the desired result for the subdomain Ωh,2. Finally, for the sub-
domain Ωh,1, we conclude by inserting a standard interpolation error estimate and
the a priori estimate for the operator Sh as before that∣∣∣∣∣

∫
Ωh,1

∇(φ̄s − Ihφ̄s) · ∇Shψh

∣∣∣∣∣ ≤ c∥∇(φ̄s − Ihφ̄s)∥L2(Ωh,1)∥∇Shψh∥L2(Ωh,1)

≤ ch1/2|φ̄s|H2(Ωh,1)∥ψh∥L2(Γ).

After observing that the second derivatives of φ̄s behave like rλ−2
1 or log r1, respec-

tively, if λ = 2, and that maxx∈Ωh,1
r1(x) ∼ h, we get the desired result for the

subdomain Ωh,1.

Proof of Theorem 4.1. The result is obtained from the general error estimate in
Theorem 3.2 using the estimates in Lemmata 4.2, 4.3 and 4.7.

Remark 4.8. It is also possible to achieve estimate (27) without the assumption
of having a O(h2)-irregular mesh using elements of higher order, e.g. Lagrange
quadratic elements. In this case, the third term of the general error estimate can
be treated as in the proof of Lemma 4.3, where one sees that the order comes from
Ritz projections which are of higher order in case of quadratic elements.

5. The control constrained case. This section is devoted to the numerical analy-
sis of control constrained Dirichlet control problems. As we will see, the convergence
rates in convex domains coincide with those for the unconstrained problems. More
precisely, we will prove the following theorem.

Theorem 5.1. Suppose that either λ < 1 and yΩ ∈ L2(Ω), or yΩ ∈ W 1,p∗(Ω) for
some p∗ > 2. Moreover, assume that the optimal control has a finite number of kink
points. Then it holds

∥ū− ūh∥L2(Γ) + ∥ȳ − ȳh∥L2(Ω) ≤ chs| log h|r

∀s ∈ R such that s < λ− 1
2 and s ≤ 1,
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where r is equal to one for λ − 1
2 ∈ (1, 32 ] and equal to zero otherwise. If, further,

{Th} is O(h2)-irregular according to Definition 4.5, then

∥ū− ūh∥L2(Γ) + ∥ȳ − ȳh∥L2(Ω) ≤ chs ∀s < min{ 3
2 , λ− 1

2}.

The proof of this theorem is postponed to Section 5.1. As already observed, this
is exactly the result which we have proven in the unconstrained case. However, if the
underlying domain is nonconvex, the approximation rates in the control constrained
case can be improved. In this regard, one of our results relies on a structural
assumption on the discrete optimal control which we formulate next. Through this
section we will shortly write

H = {j : λj < 1 and cj,1 ̸= 0}.

Assumption 5.2. There exists some h0 > 0 such that for every j ∈ H, there exists
ρ̃j > 0 independent of h such that ūh(x) = ū(x) for all h < h0 if |x− xj | < ρ̃j.

Let us comment on Assumption 5.2. In Lemma 2.5 it was established that in the
neighbourhood of a nonconvex corner, the optimal control will normally be constant
and either equal to the lower or the upper bound. Assumption 5.2 says that this
property is inherited by the discrete optimal control.

One of our main results in the constrained case is now given as follows.

Theorem 5.3. Suppose yΩ ∈ W 1,p∗(Ω) for some p∗ > 2. Moreover, let either
λ > 1 or Assumption 5.2 be satisfied, and assume that the optimal control has a
finite number of kink points. Then there is the estimate

∥ū− ūh∥L2(Γ) + ∥ȳ − ȳh∥L2(Ω) ≤ chs| log h|r

∀s ∈ R such that s < Λ− 1
2 and s ≤ 1, (47)

where r is equal to one for Λ − 1
2 ∈ (1, 32 ] and equal to zero otherwise. If further

{Th} is O(h2) irregular, then

∥ū− ūh∥L2(Γ) + ∥ȳ− ȳh∥L2(Ω) ≤ chs ∀s ∈ R such that s < min{ 3
2 ,Λ− 1

2 , 2λ}. (48)

Remark 5.4. We only consider the case a < 0 < b. This is because it is known that
for those corners such that Λj > 1 we have that ∂nφ̄(xj) = 0. In the case a < 0 < b,
the projection formula (3) implies that in a neighbourhood of xj , the optimal control
will satisfy ū(x) = −∂nφ̄(x), and hence its regularity will be determined by that
of the adjoint state. If 0 ̸∈ [a, b], then the same projection formula implies that
in a neighborhood of xj , ū(x) will be equal to some of the control bounds. If we
suppose, as in Assumption 5.2 that this property is inherited by the solutions of the
discrete approximations, we have that the conclusions of Theorem 5.3 remain valid.

The proof of Theorem 5.3 is postponed to Section 5.1. Since Λ > 1 and λ > 1/2,
we always have a convergence rate greater than 1/2. This is a real improvement
compared the unconstrained case since in the latter it may happen that the con-
vergence rates tend to zero as the largest interior angle tend to 2π. However, one
may ask for a justification of Assumption 5.2. In Lemma 5.10 we will see that there
exist constants ρ̃1,j and ρ̃1,2 greater than zero for all j ∈ H, and a constant h0 > 0
such that

ūh(xh,i) = ū(xh,i) for all nodes xh,i with |xh,i − xj | ∈ [ρ̃1,jh| log h|1/2, ρ̃2,j ]. (49)
Thus, we could relax Assumption 5.2 to an h-dependent neighborhood of those
corners xj with j ∈ H. Moreover, due to (49), it is even possible to show the
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following improved result in nonconvex domains without any structural assumption
on the discrete optimal control, i.e., we can always expect a convergence rate close
to 1/2 in nonconvex domains.

Theorem 5.5. Suppose yΩ ∈ W 1,p∗(Ω) for some p∗ > 2, and assume that the
optimal control has a finite number of kink points. Then it holds

∥ū− ūh∥L2(Γ) + ∥ȳ − ȳh∥L2(Ω) ≤ ch1/2| log h|1/4. (50)

The proof of Theorem 5.5 is given in Section 5.2.

5.1. Proof of Theorems 5.1 and 5.3. The results of Theorem 5.1, and Theorem
5.3 for λ > 1 directly follow from the general error estimate given in Theorem 3.2,
the estimates for the adjoint state provided in Section 4 in Lemmata 4.3 and 4.7
and the error estimates for the control and the state established below in Lemma
5.6.

Lemma 5.6. Suppose yΩ ∈ Ht(Ω)∩L2(Ω) for all t < min{1, λ − 1} and assume
that the optimal control has a finite number of kink points. Then

∥ū− u∗h∥L2(Γ) ≤ chs ∀s < min{ 3
2 ,Λ− 1

2},
∥ȳ − Shū∥L2(Ω) ≤ chs ∀s < min{ 3

2 ,Λ− 1
2 , 2λ}.

Proof. The proof starts exactly following the lines of the proof of Lemma 4.2, using
the regularity stated in Lemma 2.4. In this way, if s < 1 we again obtain the
desired estimate for u∗h, as defined in (17), from [8, Eq. (7.10)]. If s ∈ [1, 32 ), u

∗
h

is given by (18). Since control constraints are now present, we have to derive error
estimates for the modified Lagrange interpolant. To this end, let us consider two
adjacent boundary elements Ej−1 and Ej belonging to Eh which are determined

by the line segments (xj−1
Γ , xjΓ) and (xjΓ, x

j+1
Γ ), respectively. Since we assume a

finite number of kink points of ū due to the projection formula (3), we have to
deal with the following situations (at least for h small enough): First, no kink is
contained in Ej−1 ∪ Ej , second, there is exactly one kink of ū in Ej−1 ∪ Ej due
to the projection formula. In the first case, we have that u∗h coincides with the
Lagrange interpolant on Ej−1∪Ej such that the desired estimate on these elements
is obtained by standard discretization error estimates for the Lagrange interpolant
employing the regularity results from Lemma 2.4, i.e.,

∥ū− u∗h∥L2(Ej−1∪Ej) ≤ chs|ū|Hs(Ej−1∪Ej) (51)

with s < min{3/2,Λ − 1/2}. In the second case, we can assume without loss of

generality that u∗h,j−1 = b = ū(xj−1
Γ ), u∗h,j = b ̸= ū(xjΓ) and u∗h,j+1 = ū(xj+1

Γ ) ∈
(a, b). Thus, u∗h is equal to b = ū(xj−1

Γ ) on Ej−1. Using the regularity of the optimal

control ū ∈ Hs(Γ) ↪→ C0,s−1/2(Γ) with s < min{3/2,Λ− 1/2} from Lemma 2.4, we
now estimate the interpolation error on each of the elements Ej−1 and Ej . For the
error on Ej−1 we obtain by means of the Hölder continuity of ū

∥ū−u∗h∥L2(Ej−1) = ∥ū−ū(xj−1
Γ )∥L2(Ej−1) ≤ c|xj−1

Γ −xjΓ|
s−1/2|Ej−1|1/2 ∼ chs. (52)

Next, recall that the nodal basis function associated with xjΓ is denoted by ej . Then
we deduce for the error on Ej

∥ū− u∗h∥L2(Ej) = ∥(ej + ej+1)ū− ū(xj−1
Γ )ej − ū(xj+1

Γ )ej+1∥L2(Ej)

= ∥(ū− ū(xj−1
Γ ))ej + (ū− ū(xj+1

Γ ))ej+1∥L2(Ej)
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≤ ∥ū− ū(xj−1
Γ )∥L2(Ej) + ∥ū− ū(xj+1

Γ )∥L2(Ej)

≤ c
(
|xj−1

Γ − xj+1
Γ |s−1/2|Ej |1/2 + |xjΓ − xj+1

Γ |s−1/2|Ej |1/2
)

∼ chs, (53)

where we again used the Hölder continuity of ū. Since we assume a finite number
of kink points, the desired interpolation error estimate for u∗h on Γ in case that
s ∈ [1, 32 ) is just a combination of (51)–(53).

Since the optimal control ū belongs at least to H1/2(Γ), the optimal state ȳ is
a weak solution such that we can rely on standard techniques for the derivation of
the second estimate of the assertion. More precisely, by employing the regularity
of ȳ ∈ Ht+1(Ω) with t < min{1,Λ − 1, λ} and ū ∈ Hr(Γ) with r < min{ 3

2 ,Λ − 1
2}

from Lemma 2.4, an application of a duality argument, cf. for instance [6], yields

∥ȳ − Shū∥L2(Ω) ≤ cht+min{1,r+1
2 ,λ} ≤ cht+min{1,λ} ≤ chs,

where s < min{ 3
2 ,Λ − 1

2 , 2λ}. For the last two steps notice that Λ > 1 and λ >
1/2.

Since Λ ≥ λ, a straightforward application of Theorem 3.2, and Lemmata 5.6,
4.3 and 4.7 leads to an order of convergence identical to the one we have for un-
constrained problems. Notice that Lemmata 4.3 and 4.7 can be used since bounds
on the control do not play any role there. Thus, Theorem 5.1 and Theorem 5.3 for
λ > 1 are proved.

For the results of Theorem 5.3, in case that λ < 1 and Assumption 5.2 is valid,
we use the above error estimates for the control and the state, and we show in
Lemmata 5.8 and 5.9 below how to improve the result for the adjoint state. Then
an adaptation of the general error estimate, see Theorem 5.7, which we are going
to prove next, can finally be used to combine these results. Let us define

Γ̃ := {x ∈ Γ : |x− xj | < ρ̃j if j ∈ H}.
Moreover, let

Vh := {uh ∈ Uh : uh ≡ 0 on Γ̃}.
Under the structural Assumption 5.2 it is clear that eh = u∗h − ūh ∈ Vh, so we have
the following modification of the general error estimate (19).

Theorem 5.7. Suppose Assumption 5.2 holds. Then

∥ū− ūh∥L2(Γ) + ∥ȳ − ȳh∥L2(Ω)

≤ c

(
∥ū− u∗h∥L2(Γ) + ∥ȳ − Shū∥L2(Ω) + sup

ψh∈Vh

∣∣(∇φ̄,∇Shψh)L2(Ω)

∣∣
∥ψh∥L2(Γ)

)
.

Proof. Since eh = u∗h − ūh ∈ Vh due to Assumption 5.2, the result can be obtained
in the same way as in the proof of Theorem 3.2 just by replacing

(∇φ̄,∇Sheh)L2(Ω) ≤ sup
ψh∈Uh

∣∣(∇φ̄,∇Shψh)L2(Ω)

∣∣
∥ψh∥L2(Γ)

∥eh∥L2(Γ)

in (24) by

(∇φ̄,∇Sheh)L2(Ω) ≤ sup
ψh∈Vh

∣∣(∇φ̄,∇Shψh)L2(Ω)

∣∣
∥ψh∥L2(Γ)

∥eh∥L2(Γ).
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Next, we are concerned with discretization error estimates for the critical term
in the general estimate of Theorem 5.7. First, we deal with estimates for general
quasi-uniform meshes. Afterwards we show improved estimates if we assume O(h2)-
irregular meshes.

Lemma 5.8. Let yΩ ∈W 1,p∗(Ω) for some p∗ > 2. Then there is the estimate

sup
ψh∈Vh

∣∣(∇φ̄,∇Shψh)L2(Ω)

∣∣
∥ψh∥L2(Γ)

≤ chs| log h|r ∀s ∈ R such that s < Λ− 1

2
and s ≤ 1,

where r is equal to one for Λ− 1/2 ∈ (1, 3/2] and equal to zero otherwise.

Proof. To be able to localize the effects in the neighborhood of all corners xj with j ∈
H, we introduce a cut-off function η1 which is equal to one in a fixed neighborhood
of these corners and decays smoothly. In addition, we set η0 = 1 − η1. Then we
infer for the quantity of interest

sup
ψh∈Vh

∣∣(∇φ̄,∇Shψh)L2(Ω)

∣∣
∥ψh∥L2(Γ)

≤ sup
ψh∈Vh

∣∣(∇(η0φ̄),∇Shψh)L2(Ω)

∣∣
∥ψh∥L2(Γ)

+ sup
ψh∈Vh

∣∣(∇(η1φ̄),∇Shψh)L2(Ω)

∣∣
∥ψh∥L2(Γ)

. (54)

For the first term on the right hand side of this inequality, we directly apply Lemma
4.3 to conclude

sup
ψh∈Vh

∣∣(∇(η0φ̄),∇Shψh)L2(Ω)

∣∣
∥ψh∥L2(Γ)

≤ chs| log h|r (55)

∀s ∈ R such that s < Λ− 1
2 and s ≤ 1, (56)

where r is equal to one for Λ− 1/2 ∈ (1, 3/2] and equal to zero otherwise, having in
mind the regularity results of Lemma 2.6 for the adjoint state and noting that the
singular terms coming from the corners xj with j ∈ H do not have any influence due

to the cut-off function η0. To deal with the second term in (54), let S̃h denote the
extension operator which extends a piecewise linear function ψh on the boundary
by zero to a function in Yh. Thus, S̃hψh is equal to zero in Ω̃ := {x ∈ Ω : |x−xj | <
ρ̃j/2 if j ∈ H} for any ψh ∈ Vh. Moreover, let Rh be the operator that maps a
function in H1

0 (Ω) to its Ritz-projection in Y0,h. Due the properties of the discrete
harmonic extension Sh and the Ritz-projection Rh, we obtain

(∇(η1φ̄),∇Shψh)L2(Ω) = (∇(η1φ̄−Rh(η1φ̄)),∇Shψh)L2(Ω)

= (∇(η1φ̄−Rh(η1φ̄)),∇S̃hψh)L2(Ω)

= (∇(η1φ̄−Rh(η1φ̄)),∇S̃hψh)L2(Ω\Ω̃). (57)

By applying the Hölder inequality, localW 1,∞-discretization error estimates for the
Ritz-projection from [13, Corollary 1], and (29), we obtain

(∇(η1φ̄−Rh(η1φ̄)),∇S̃hψh)L2(Ω\Ω̃) (58)

≤ ∥∇(η1φ̄−Rh(η1φ̄))∥L∞(Ω\Ω̃)∥∇S̃hψh∥L1(Ω\Ω̃)

≤ c
(
∥∇(η1φ̄− Ih(η1φ̄))∥L∞(Ω\Ω̃′) + ∥η1φ̄−Rh(η1φ̄)∥L2(Ω)

)
∥ψh∥L1(Γ),

(59)
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where Ω̃′ := {x ∈ Ω : |x − xj | < ρ̃j/4 if j ∈ H}. Regarding the regularity results
for the optimal adjoint state from Lemma 2.6 and by using standard interpolation
error estimates and a standard finite element error estimate, we deduce

∥∇(η1φ̄− Ih(η1φ̄))∥L∞(Ω\Ω̃′) + ∥η1φ̄−Rh(η1φ̄)∥L2(Ω) ≤ c (h+ hs) (60)

which is valid for all s ∈ R such that s < 2λ and s ≤ 2. Combining (54)–(60) ends
the proof.

Lemma 5.9. Let yΩ ∈W 1,p∗(Ω) for some p∗ > 2 and suppose further that {Th} is
a family of O(h2)-irregular meshes. Then it holds

sup
ψh∈Vh

∣∣(∇φ̄,∇Shψh)L2(Ω)

∣∣
∥ψh∥L2(Γ)

≤ chs

for all s ∈ R such that s < min{Λ− 1
2 , 2λ} and s ≤ 3

2 .

Proof. As before, we introduce the circular sectors

Ω̃ := {x ∈ Ω : |x− xj | < ρ̃j/2 if j ∈ H},

Ω̃′ := {x ∈ Ω : |x− xj | < ρ̃j/4 if j ∈ H}.
For technical reasons we also need the circular sector

Ω̃′′ := {x ∈ Ω : |x− xj | < ρ̃j/8 if j ∈ H}.

Let the operators S̃h and Rh be defined as in the proof of Lemma 5.8. Moreover,
let η1 be a smooth cut-off function which is equal to one in Ω̃′′ with supp η1 ⊂ Ω̃′.
In addition, we choose η1 such that supp Ihη1 ⊂ Ω̃′ which is possible without any
restriction for h small enough. We set η0 := 1 − η1. Analogously to the foregoing
proof, we infer

(∇φ̄,∇Shψh)L2(Ω) = (∇(η1φ̄),∇Shψh)L2(Ω) + (∇(η0φ̄),∇Shψh)L2(Ω)

= (∇(η1φ̄−Rh(η1φ̄)),∇S̃hψh)L2(Ω\Ω̃) + (∇(η0φ̄− Ih(η0φ̄)),∇Shψh)L2(Ω).

(61)

Observe that η0φ̄ is equal to zero in a fixed neighborhood of all corners xj with
j ∈ H. Consequently, Lemma 4.6, applied as in the proof of Lemma 4.7, yields for
the latter term in (61)

(∇(η0φ̄− Ih(η0φ̄)),∇Shψh)L2(Ω) ≤ chs∥ψh∥L2(Γ)

with s ∈ R such that s < Λ− 1
2 and s ≤ 3

2 . By applying the Hölder inequality, local

W 1,∞-discretization error estimates for the Ritz-projection from [13, Corollary 1],
and (29), we obtain for the first term in (61)

(∇(η1φ̄−Rh(η1φ̄)),∇S̃hψh)L2(Ω\Ω̃)

≤ ∥∇(η1φ̄−Rh(η1φ̄))∥L∞(Ω\Ω̃)∥∇S̃hψh∥L1(Ω\Ω̃)

≤ c
(
∥∇(η1φ̄− Ih(η1φ̄))∥L∞(Ω\Ω̃′) + ∥η1φ̄−Rh(η1φ̄)∥L2(Ω\Ω̃′)

)
∥ψh∥L1(Γ)

≤ c∥η1φ̄−Rh(η1φ̄)∥L2(Ω\Ω̃′)∥ψh∥L1(Γ),

where we used that η1φ̄ and Ih (η1φ̄) are equal to zero in Ω\Ω̃′. Usual error estimates
for the Ritz-projection and a standard embedding yield

(∇(η1φ̄−Rh(η1φ̄)),∇S̃hψh)L2(Ω\Ω̃) ≤ hs∥ψh∥L2(Γ),

which is valid for all s ∈ R such that s < 2λ and s ≤ 2. This ends the proof.
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Finally, an application of Theorem 5.7, and Lemmata 5.6, 5.8 and 5.9, yield the
results of Theorem 5.3 where λ < 1 and Assumption 5.2 is satisfied.

5.2. Proof of Theorem 5.5. In this subsection we show the results of Theorem
5.5. That is, we show a convergence rate close to 1/2 for the optimal controls and
states in the constrained case if the domain is nonconvex and even if the structural
Assumption 5.2 does not hold. For that purpose, let us recall that {xj} denotes the
corners of Γ, {xiΓ} is the set of boundary nodes of the mesh and {ei} is the basis of
Uh such that ei(x

k
Γ) = δik. Thus, every function uh ∈ Uh can be written as

uh =

N(h)∑
i=1

uh,iei with uh,i = uh(x
i
Γ).

By testing the discrete variational inequality appropriately, we deduce

ūh,i =


a if

∫
Γ

(νūh − ∂hnφ̄h)ei > 0,

b if

∫
Γ

(νūh − ∂hnφ̄h)ei < 0.

Lemma 5.10. For each interior angle ωj > π, where cj,1 from (6) is unequal to
zero, there are two constants ρ̃1,j and ρ̃2,j greater than zero such that

ūh(x
i
Γ) =

{
a if cj,1 > 0

b if cj,1 < 0

for all nodes xiΓ with |xiΓ − xj | ∈ [ρ̃1,jh| log h|1/2, ρ̃2,j ].

Proof. In the following we focus only on one nonconvex corner xj . Without loss of
generality let cj,1 be greater than zero. Hence the normal derivative of φ̄ is negative,
and the lower bound of the control is active, and νū − ∂nφ̄ > 0 in the vicinity of
this corner. We need to show that there are two constants ρ̃1,j and ρ̃2,j such that∫

Γ

(νūh − ∂hnφ̄h)eh,i > 0

for all nodes xh,i with |xh,i−xj | ∈ [ρ̃1,jh| log h|1/2, ρ̃2,j ]. According to [20, Theorem
3.4], we know that

cj,1 = (ȳ − yd, ζj,1)L2(Ω)

where the function ζj,1is of the form

ζj,1 = π−1/2ξjr
−λj

j sin(λjθj) + zj,1,

where ξj denotes the cut-off function introduced at the beginning of Section 2 and
the function zj,1 denotes a function which solves

−∆zj,1 = [∆, ξj ]π
−1/2r

−λj

j sin(λjθj) in Ω, zj,1 = 0 on Γ,

and [a, b] = ab− ba denotes the commutator. According to Theorem 5.1, we deduce
the existence of a constant h0 > 0 such that for all h < h0 there holds

c̃j,1 := (ȳh − yd, ζj,1)L2(Ω) = (ȳ − yd, ζj,1)L2(Ω) + (ȳh − ȳ, ζj,1)L2(Ω)

≥ (ȳ − yd, ζj,1)L2(Ω) − c∥ȳh − ȳ∥L2(Ω) > 0 (62)
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due to the assumption cj,1 = (ȳ− yd, ζj,1)L2(Ω) > 0. Using this result, we will show
that the singular part of the function φ̃ which solves

−∆φ̃ = ȳh − yd in Ω, φ̃ = 0 on Γ,

behaves like the singular part of φ̄. Indeed, φ̃ admits the splitting

φ̃ = φ̃r + φ̃s (63)

according to Lemma 2.1. The regular part φ̃r belongs to W
2,q(Ω), at least for some

q > 2, since ȳh− yd belongs to Lq(Ω) due to the convergence result of Theorem 5.1.
The singular part φ̃s can be written as

φ̃s = c̃j,1ξjr
λj

j sin(λjθj),

where the constant c̃j,1 is greater than zero according to (62). Assuming that
|xiΓ − xj | is already small enough such that ξj ≡ 1 on supp ei, we get by basic
calculations∫

Γ

(νūh − ∂hnφ̄h)ei =

∫
Γ

νūhei +

∫
Γ

(∂nφ̃− ∂hnφ̄h)ei

−
∫
Γ

∂nφ̃rei −
∫
Γ

∂nφ̃sei

≥ −
∫
Γ

cei +

∫
Γ

(∂nφ̃− ∂hnφ̄h)ei +

∫
Γ

cj,1r
λj−1
j ei (64)

where we used that ∥ūh∥L∞(Γ) ≤ max{|a|, |b|} and that ∂nφ̃r is uniformly bounded

in L∞(Γ) due to the embedding W 2,q(Ω) ↪→ W 1,∞(Ω) for q > 2. As before, let us

denote by S̃h the operator which extends any function of Uh to one in Yh by zero.
Also observe that φ̄h is the Ritz-projection Rhφ̃ of φ̃. Then integration by parts,
the definition of ∂hnφ̄h in (15) and (63) yield∫

Γ

(∂nφ̃− ∂hnφ̄h)ei =

∫
Ω

∇(φ̃−Rhφ̃) · ∇S̃hei

=

∫
Ω

∇(φ̃r −Rhφ̃r) · ∇S̃hei +
∫
Ω

∇(φ̃s −Rhφ̃s) · ∇S̃hei

≤ ∥∇(φ̃r −Rhφ̃r)∥L2(Ω)∥∇S̃hei∥L2(Ω) +

∫
Ω

∇(φ̃s −Rhφ̃s) · ∇S̃hei

≤
∫
Γ

cei +

∫
Ω

∇(φ̃s −Rhφ̃s) · ∇S̃hei, (65)

where we employed a standard discretization error estimate for the Ritz-projection,
(29) and an inverse inequality in the last step. Now we proceed as in the proof of
Lemma 4.3 between (38) and (42). Let σ and the subdomains ΩJ be defined as in

that proof and let the index J be chosen such that supp S̃hei ⊂ ΩJ . Assume that
|xiΓ−xj | ≥ cIh with a constant cI large enough such that localW 1,∞-error estimates
for the Ritz-projection are applicable. Then those estimates of [13, Corollary 1] and
(29) yield∫

Ω

∇(φ̃s −Rhφ̃s) · ∇S̃hei ≤ ∥∇(φ̃s −Rhφ̃s)∥L∞(Ω)∥∇S̃hei∥L1(Ω)

≤ c
(
∥∇(φ̃s − Ihφ̃s)∥L∞(Ω′

J )
+ d−2

J ∥φ̃s −Rhφ̃s∥L2(Ω′
J )

)
∥ei∥L1(Γ)
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≤ cd
λj−2
J

(
d
2−λj

J ∥∇(φ̃s − Ihφ̃s)∥L∞(Ω′
J )

+∥σ−λj (φ̃s −Rhφ̃s)∥L2(Ω′
J )

)∫
Γ

ei. (66)

The second derivatives of the singular part behave like r
λj−2
j . Thus, by means of

standard interpolation error estimates and the results of [22, Corollary 3.62], we
infer

d
2−λj

J ∥∇(φ̃s − Ihφ̃s)∥L∞(Ω′
J )

+ ∥σ−λj (φ̃s −Rhφ̃s)∥L2(Ω′
J )

≤ c
(
h+ h| log h|1/2

)
≤ ch| log h|1/2. (67)

Combining (64)–(67), we obtain∫
Γ

(νūh − ∂hnφ̄h)ei ≥
∫
Γ

(cj,1r
λj−1
j − c− ch| log h|1/2dλj−2

J )ei

≥ (cj,1d
λj−1
J − c− ch| log h|1/2dλj−2

J )

∫
Γ

ei.

Finally, we observe that |xh,i−xj | ∼ dJ . Thus, we are able to choose constants ρ̃1,j
and ρ̃2,j such that

cj,1
2
dJ

λj−1 − c > 0

if |xiΓ − xj | ≤ ρ̃2,j and

cj,1
2
dJ

λj−1 − ch| log h|1/2dλj−2
J > 0

if |xiΓ − xj | ≥ ρ̃1,jh| log h|1/2. This proves the assertion.

Remark 5.11. By using the Cauchy-Schwarz inequality, estimates for the Ritz-
projection from [4, Theorem 5.1], (29) and an inverse inequality, we infer∫

Ω

∇(φ̃s −Rhφ̃s) · ∇S̃hei ≤ ∥∇(φ̃s −Rhφ̃s)∥L2(Ω)∥∇S̃hei∥L2(Ω) ≤ chλj .

However, this is not enough to show that the discrete optimal control admits one
of the control bounds in the direct vicinity of the corner xj , since then∫

Γ

cj,1r
λj−1
j ei ≥ chλj .

Now, we redefine the sets Γ̃ and Ω̃ by

Γ̃ := {x ∈ Γ : |x− xj | < ρ̃2,j if j ∈ H}

and

Ω̃ := {x ∈ Ω : |x− xj | < ρ̃2,j if j ∈ H},

and we set again

Vh := {uh ∈ Uh : uh ≡ 0 on Γ̃}.

Moreover, let Γc := Γ\Γ̃. We have the following modification for the general error
estimate
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Theorem 5.12. For the solution of the continuous and the discrete optimal control
problem we have

∥ū− ūh∥L2(Γc)+∥ȳ − ȳh∥L2(Ω) ≤ c

(
∥ū− ūh∥L2(Γ̃) + ∥ū− u∗h∥L2(Γc)

+∥ȳ − Shū∥L2(Ω) + sup
ψh∈Vh

∣∣(∇φ̄,∇Shψh)L2(Ω)

∣∣
∥ψh∥L2(Γ)

)
. (68)

Note that the first term on the left hand side of (68) is a norm with respect to
Γc.

Proof. We proceed as in the proof of Theorem 3.2. In contrast, we will test the
optimality conditions with different functions. For that purpose, let us introduce
ũ ∈ Uad and ũh ∈ Uhad by

ũ =

{
ū a.e. in Γ̃

ūh a.e. in Γc
and ũh =

{
ūh a.e. in Γ̃

u∗h a.e. in Γc
.

Note that ū and u∗h are constant, even coincide, on Γ̃ and that ūh is equal to ū at

least for all xh,i with |xh,i−xj |∈[ρ̃1,jh| log h|1/2, ρ̃2,j ] for j ∈ H according to Lemma
5.10. Next, we define the intermediate error eh := ũh − ūh, which is equal to zero
in Γ̃. Then, we obtain

∥ū− ūh∥L2(Γc) + ∥ȳ − ȳh∥L2(Ω) ≤ ∥ū− u∗h∥L2(Γc) + ∥eh∥L2(Γ)

+ ∥ȳ − Shũh∥L2(Ω) + ∥Sheh∥L2(Ω). (69)

To deal with the third term, we take into account the continuity of Sh:

∥ȳ − Shũh∥L2(Ω) ≤ ∥ȳ − Shū∥L2(Ω) + ∥Sh(ū− ũh)∥L2(Ω)

≤ ∥ȳ − Shū∥L2(Ω) + c∥ū− ũh∥L2(Γ)

≤ ∥ȳ − Shū∥L2(Ω) + c(∥ū− ūh∥L2(Γ̃) + ∥ū− u∗h∥L2(Γc)). (70)

Accordingly, we only need estimates for the second and fourth terms in (20). We
begin estimating the second one, but as we will see this also yields an estimate for
the fourth term. There holds

ν∥eh∥2L2(Γ) = ν(u∗h − ū, eh)L2(Γc) + ν(ū− ūh, eh)L2(Γ). (71)

Next, we consider the second term of (71) in detail. By adding the continuous and
discrete variational inequality with u = ũ and uh = ũh, respectively, we deduce

(ν(ūh − ū) + ∂nφ̄− ∂hnφ̄h, eh)L2(Γ) + (νū− ∂nφ̄, u
∗
h − ū)L2(Γ) ≥ 0.

Rearranging terms and using (16) leads to

ν(ū− ūh, eh)L2(Γ) ≤ (∂nφ̄− ∂hnφ̄h, eh)L2(Γ).

Integration by parts (cf. [21, Theorem 3.1.1]), (15), (2c) and (13) yield

ν(ū− ūh, eh)L2(Γ) ≤ (∆φ̄+ (ȳh − yΩ), Sheh)L2(Ω) + (∇(φ̄− φ̄h),∇Sheh)L2(Ω)

= (ȳh − ȳ, Sheh)L2(Ω) + (∇φ̄,∇Sheh)L2(Ω)

= (Shũh − ȳ, Sheh)L2(Ω) − ∥Sheh∥2L2(Ω) + (∇φ̄,∇Sheh)L2(Ω).

(72)
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By collecting the estimates (71) and (72) we obtain

ν∥eh∥2L2(Γ) + ∥Sheh∥2L2(Ω)

≤ν(u∗h − ū, eh)L2(Γc) + (Shũh − ȳ, Sheh)L2(Ω) + (∇φ̄,∇Sheh)L2(Ω)

≤ν∥u∗h − ū∥L2(Γc)∥eh∥L2(Γ) + ∥Shũh − ȳ∥L2(Ω)∥Sheh∥L2(Ω)

+ sup
ψh∈Vh

∣∣(∇φ̄,∇Shψh)L2(Ω)

∣∣
∥ψh∥L2(Γ)

∥eh∥L2(Γ).

From the Young inequality we can deduce

∥eh∥L2(Γ) + ∥Sheh∥L2(Ω)

≤ c

(
∥u∗h − ū∥L2(Γc) + ∥Shũh − ȳ∥L2(Ω) + sup

ψh∈Vh

∣∣(∇φ̄,∇Shψh)L2(Ω)

∣∣
∥ψh∥L2(Γ)

)
.

(73)

Finally, the assertion is a consequence from (69), (70) and (73).

Finally, by observing that

∥ū− ūh∥L2(Γ̃) ≤ ch1/2| log h|1/4

according to Lemma 5.10 and the uniform boundedness of ū in L∞(Γ), we deduce
the desired result of Theorem 5.5 by combining Theorem 5.12 and Lemmata 5.6
and 5.8.

6. Numerical experiments. The experiments have been performed with Mat-
lab R2015a on an Intel(R) Core(TM) i7 CPU 870 @2.93 GHz with 16GB RAM on
Windows 7 64 bits. All the scripts and functions have been programmed by us.

To build an example with exactly known solution ū, we just define φ̄ ∈ H1
0 (Ω)

and compute ū = Proj[a,b]
(
1
ν ∂nφ̄

)
, ȳ ∈ H1(Ω) such that −∆ȳ = 0 in Ω, ȳ = ū on Γ

and yΩ = ȳ+∆φ̄. In general, it is not possible to compute ȳ exactly, so we will use
its finite element approximation on the current mesh to compute an approximation
of yΩ.

Since the aim of the experiment is to measure the order of convergence of the
L2(Γ) error in the control variable, we have solved the problems in two quasi-uniform
families of J nested meshes obtained by diadic refinement from a rough initial mesh.
One of them is built such that it does not have the superconvergence property (see
Figure 3), while the other is obtained using regular refinement, which results in
a O(h2)-irregular family which has the superconvergence property (see Figure 4).
The finest mesh has between 1 million and 3.15 million nodes, depending on the
geometry of the domain. Notice that these fine meshes induce boundary meshes that
only have between 4 thousand and 7 thousand nodes only. To solve the optimization
problem, we have used a semismooth Newton method; see [16] for the details.

In the examples where the optimal control is continuous, we measure the error
at the mesh at level j = 1, . . . , J as

ej = ∥ūhj − Ihj ū∥L2(Γ)

where ūhj
is the solution of (Phj

) and Ihj
: C(Γ) → Uhj

is the nodal Lagrange
interpolation operator. If the exact solution is singular at the point x0 = (0, 0), we
use standard quasi-interpolation.
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Figure 3. Family of quasi-uniform meshes which is not O(h2)-irregular
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Figure 4. Family of quasi-uniform O(h2)-irregular meshes

Since we are using a dyadic refinement strategy, we have that hj+1 = hj/2 and
we can measure the Experimental Order of Convergence at level j = 2, . . . , J as

EOCj = log2 ej−1 − log2 ej .

It is to be expected that EOCj converges to the Theoretical Order of Convergence
(TOC) as j → ∞, so for every problem we report on EOC := EOCJ and compare
with the corresponding TOC.

Let (ρ, θ) denote the usual polar coordinates in R2 and define Ω as the interior of
the convex hull of the set of points {(0, 0), (1, 0), (cos(ω1), sin(ω1)} if π/3 ≤ ω1 ≤ π/2
and Ω = {(x1, x2) ∈ (−1, 1) × (−1, 1) : 0 < θ < ω1} for π/2 < ω1 < 2π. We will
consider the following cases

1. φ̄ = rλ sin(λθ)(sin(ω1)(x1 − 1) + (1− cos(ω1))x2) if ω1 ≤ π/2,
2. φ̄ = rλ sin(λθ)(1− x1)(1− x2) if π/2 < ω1 ≤ 3π/4,
3. φ̄ = rλ sin(λθ)(1− x21)(1− x2) if 3π/4 < ω1 ≤ 5π/4,
4. φ̄ = rλ sin(λθ)(1− x21)(1− x22) if 5π/4 < ω1 < 2π,

where we have tested the value λ = λ1 for π/3 ≤ ω1 < 2π, and the worst-case
λ = 2λ1 for π < ω1 < 2π. Straightforward calculations show that ∆φ̄ ∈ Ht(Ω) ∩
W 1,p∗(Ω) for all t < λ− 1 and some p∗ > 2. Also ∂νφ̄ ∈ Hs(Γ) for all s < λ− 1/2.
Hence, for an unconstrained problem ū ∈ Hs(Γ) for all s < λ− 1/2, which implies
that ȳ ∈ Ht(Ω) for all t < λ1 and therefore yΩ = ȳ+∆φ̄ ∈ Ht(Ω) for all t < λ1− 1.
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If the problem is constrained, then ū ∈ L∞(Γ) and therefore ȳ ∈ W 1,p∗(Ω) for all
2 < p∗ < pD and yΩ ∈W 1,p∗(Ω) for some p∗ > 2.

Notice that for the case 5π/4 < ω1 < 3π/2 we have that ω6 = 2π−ω1 ∈ (π/2, π)
and for the case 7π/4 < ω1 < 2π we have ω7 = 5π/2 − ω1 ∈ (π/2, π), so when
we choose λ = λ1 in the definition of φ̄ and solve a constrained problem, the
leading singular exponent to be taken into account should be, respectively, λ6 or
λ7. Nevertheless, the exact adjoint state has been chosen in such a way that in the
first case c6,m = 0 and in the second case c7,m = 0 form = 1, 2, 3, so for this example
we need not take this into account. For instance, for ω = 11π/8, ω6 = 5π/8 > π/2,
and hence Λ = 1.6. So the observed order the convergence for a superconvergent
mesh predicted by Theorem 5.3 is (almost) 1.1. Nevertheless, the observed order of
convergence is 1.5. There is not an unexplained superconvergence phenomenon. It
is simply that in this very example, c1,6 = 0, so a careful rewriting of the proofs for
this precise case, would show order almost 3/2.

We fix ν = 1. For constrained problems, we will consider a = −1/λ1 and
b = 1. We choose a such that the asymptotic behavior of the error shows up
for the mesh sizes used. If |a| were too big, the problem would behave like an
unconstrained one for our meshes; on the other hand, were |a| too small, we would
be approximating an optimal control very similar to a constant and the experimental
orders of convergence would be too high for our meshes.

Graphs with the experimental results can be found in figures 5 and 6. In all
the graphs, the horizontal axis represents the biggest angle of the domain, while
the vertical axis shows the order of convergence. Theoretical results have been
plotted with lines (green solid for superconvergent meshes and blue dashed for non-
superconvergent meshes). Experimental results have been plotted with dots (green
circles for superconvergent meshes and blue asterisks for non-superconvergence).
As at the end of Section 1, we will denote O = 1 in general and O = 3/2 for
superconvergent meshes, and neglect the arbitrary small ε.

In Figure 5 we have the results for general unconstrained problems. The theo-
retical order of convergence is min{O, λ− 1/2}, cf. Theorem 4.1.

In Figure 6 we have the results for constrained problems The order of convergence
will be min{O,Λ− 1/2, 2λ} cf. Theorem 5.3. For convex domains, we have Λ = λ,
so the results are like the ones for unconstrained problems. In the left picture,
we have the data of the experiment in the generic case, where, for the nonconvex
domains studied, Λ = min{λj : λj > 1} = 2. In the right picture, we have the
data for the worst-case experiment with a skew-symmetric solution. In this case,
Λ = 2λ.

It is remarkable that experimental results are quite in agreement with theoretical
estimates.
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