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Abstract. We present a method for the study of localization properties of solutions of
nonlinear equations and systems. An example of application of the method is furnished by
results of analysis of a mathematical model for a class of non-Newtonian fluids.

1. Introduction
Numerous mathematical models of continuum mechanics involve combined systems of nonlinear
PDEs where different components of the solution, such as velocity, density, pressure,
temperature, satisfy equations of different type. These equations may degenerate or become
singular at certain values of the solutions or their derivatives which causes localization of
solutions in space or time. The typical localization effects are the finite speed of propagation of
disturbances from the initial and boundary data, the waiting time phenomenon, extinction or
blow-up of solutions in a finite time.

The standard approach to the study of localization properties consists in comparison with
suitable explicit solutions or sub/super solutions of the same equation, see, e.g., [1]. However,
this method ceases to be applicable if the explicit solutions are not available, or when the
maximum principle fails. An alternative approach is based on analysis of the local energy
functions which satisfy nonlinear ordinary differential inequalities stemming from the PDE or
the system of PDEs being studied. We refer to the monographs [2, 3] for an insight into the
method and to papers [4]-[12] for its applications to the study of localization properties of
solutions of the mathematical models of hydrodynamics, including the flows of Non-Newtonian
viscous fluids.

In this note, we make an emphasis on the possibility of application of the method to the
models which include the so-called PDEs with nonstandard growth, i.e., the PDEs with variable
nonlinearity. For such models, the method of local energies has turned out to be the most
effective in the study of the localization properties of solutions - see [3, 13]. The method is
illustrated by the proof of extinction in a finite time of solutions of the system describing the
flows of incompressible non-homogeneous non-Newtonian fluids.

2. Flows of non-homogeneous non-Newtonian fluids
Let Ω ⊂ RN be a bounded domain, N ≥ 2, and ∂Ω ∈ Lip. We consider the incompressible flow
governed by the laws of balance of mass and momentum, which lead to the following system of

http://creativecommons.org/licenses/by/3.0
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equations posed in the cylinder QT = Ω× (0, T ):

Dtρ ≡
∂ρ

∂t
+ v · ∇ρ = 0 (the transport equation, hyperbolic), (2.1)

div v = 0 (the incompressibility equation, elliptic), (2.2)

ρDtv = −∇p+ div S + ρf (the balance of momentum, parabolic). (2.3)

System (2.1)–(2.3) is completed by the initial and boundary conditions

ρ(x, 0)v(x, 0) = ρ0(x)v0(x), ρ(x, 0) = ρ0(x) as x ∈ Ω, (2.4)

v(x, t) = 0 for (x, t) ∈ ΓT = ∂Ω× (0, T ). (2.5)

Here v(x, t), ρ(x, t) and p(x, t) stand for velocity, density and pressure in the fluid, S is the
deviatoric part of the Cauchy stress tensor, D is the strain rate tensor and f(x, t) is the prescribed
mass force. The tensor S is a (nonlinear) tensor function of the strain rate tensor D and the
thermodynamic characteristics of the flow, for example, temperature θ, density ρ, or entropy.
The tensor S is usually defined by the constitutive relation

S = F(D, ρ, θ) ≡ ν(|D|, ρ, θ)D, (2.6)

see [14, 15] for further details and justifications. A few examples of fluids with different
constitutive laws (2.6):

• viscoplastic fluids (Eu. Bingham, 1922)

ν(|D|) :=

{
∞⇒ D = 0, |S| ≤ |S0|, S0 is a yield stress
ν0 + |S0||D|−1, |S| > |S0|, ν0 = const. > 0;

• generalized Newtonian fluids (A. de Waele, 1923; W. Ostwald, 1925)

ν(|D|) = ν0|D|q−2 , ν0 = Const. > 0,

which include viscoplastic fluids (q = 1), pseudoplastic or shear-thinning fluids (1 < q < 2),
Newtonian fluids (q = 2), dilatant or shear-thickening fluids (q > 2);

• a mixture of a Newtonian fluid with thickening agents (A. W. Sisko, 1958)

ν(|D|) = ν∞ + ν0|D|q−2, ν∞, ν0 = Const. > 0.

A special class of fluids is constituted by electrorheological fluids, which consist of solid
particles dispersed in an insulating liquid. Their characteristic feature is the possibility of
variation of the rheological properties under the influence of an exterior electric field. The
mathematical models of motion of such fluids involve the constitutive equation (2.6) with variable
exponents of nonlinearity, which depend on the electric field: ν ∼ ν0 + ν1|D|q(E) with constant
ν0, ν1 - see [16]. The flow is described by a modified system of Navier-Stokes equations and
the system of Maxwell equations for E. Similar constitutive relations with q ≡ q(θ) are used in
modelling of thermorheological fluids whose rheology changes together with the variation of the
temperature θ(x, t) - see [17, 18] for an analysis of the pertinent mathematical models.

The study of well-posedness of the mathematical model and the analysis of the qualitative
properties of solutions are often disconnected. For this reason in what follows we assume that
the arguments of the function ν in (2.6) (the thermodynamic characteristics ρ, θ of the flow
or the electric field E) are known functions of (x, t). We will also assume that F = F(D, x, t)
satisfies the coercivity condition: for every symmetric tensor D ∈ RN×N
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∀(x, t) ∈ QT δ|D|q(x,t) ≤ F(D) : D = F ijDij , where |D|2 = DijDij ,

1 < q ≤ q−(t) ≤ q(x, t) ≤ q+(t) ≤ q̄ <∞, 0 < δ ≡ δ(ρ) <∞,
(2.7)

with given functions q(x, t), q±(t), δ(ρ) and constants q, q.
System (2.1)-(2.6) is a system of combined type. Indeed: if we assume that in (2.1) the

velocity v(x, t) is given, then (2.1) can be regarded as a hyperbolic equation for the density
ρ(x, t), and if in (2.3) the density ρ(x, t) is known, then system (2.2)-(2.3) becomes a pseudo-
parabolic system of equations for the velocity v and pressure p. The specific type of system
(2.1)-(2.3) is unimportant for the applicability of the method.

3. Energy solutions
It is assumed that the initial data satisfy the conditions

E(0) =
1

2

∫
Ω
ρ(x, 0)|v(x, 0)|2dx <∞, 1

M
≤ ρ0 ≤M ≡ const. (3.1)

The solution {v, ρ} of problem (2.1)-(2.5) is understood in the weak sense, i.e., as functions
satisfying the integral identities which appear after multiplying equations (2.1), (2.3) by a smooth
solenoidal test-function and integrating by parts. In the result, the pressure p is excluded from
the weak formulation.

There exists an abundant literature devoted to the issues of existence and uniqueness of
solutions of problem (2.1)-(2.4). In the incompressible homogeneous fluid ρ is constant and
equation (2.1) fulfills automatically. For this class of fluids, solvability of the classical Navier-
Stokes system with constant ρ and relation (2.7) with the parameters δ = const and q = 2 was
studied in [19]-[21]. The flows of incompressible homogeneous trembling electrorheological fluids
were considered in [10]. The authors of [10] studied solvability of the problem and the asymptotic
behavior of solutions as t → ∞. Global in time existence of weak solutions to problem (2.1)-
(2.5) for nonhomogeneous fluids with ρ(x, t) 6≡ const was proved in [14, 15],[22]-[30] for various
constitutive relations (2.7). In particular, for the fluids with the constitutive relation S = 2µD,
µ = const, the existence of weak solutions was proved in [14] in the class of functions

{v, ρ} ∈Wq =

 v ∈ L∞(0, T ;L2(Ω)) ∩ Lq
(

0, T ;W 1,q
0 (Ω)

)
D(v) ∈ Lq(QT ), div v = 0,

1

M
≤ ρ ≤M

 , q = const > 1.

Let us introduce the energy function

E(t) =
1

2
(ρv,v)Ω =

1

2

∫
Ω
ρ(x, t)|v(x, t)|2 dx

and consider the energy solutions which satisfy the relations

E′(t) + (F : S, 1)Ω = (ρf ,v)Ω, E′(t) =
dE

dt
(t). (3.2)

Equality (3.2) can be derived from the integral identity for equation (2.3) with the test-function
v, equations (2.1)-(2.2) and the formulas of integration by parts (see, e.g., [10]):

(
ρ
dv

dt
,v

)
Ω

=
1

2

d

dt
(ρv,v)Ω ≡

dE

dt
(t),

(−∇p+ div S,v)Ω = (p,div v)Ω − (F : S, 1)Ω = −(F : S, 1)Ω.
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4. Variable Lebesgue and Sobolev spaces
The analysis of the problem with variable nonlinearity in (2.6) is performed in the context
of Lebesgue and Sobolev spaces with variable exponents [31]. Given a measurable function
p : Ω 7→ (1,∞), we denote by Lp(·)(Ω) the set of measurable functions f(x) on Ω such that

Ap(·)(f) =

∫
Ω

|f(x)|p(x) dx <∞, p(x) ∈ [p−, p+] ⊂ (1,∞) (4.1)

with some constants p±. The set Lp(x)(Ω) endowed with the Luxemburg norm,

‖f‖p(·),Ω ≡ ‖f‖Lp(·)(Ω) = inf

{
λ > 0 : Ap(·)

(
f

λ

)
≤ 1

}
, (4.2)

becomes a Banach space. For every f ∈ Lp(·)(Ω) the relations between the norm and the modular
Ap(f) is given by the inequalities

min

{
A

1
p−

p(·)(f), A
1
p+

p(·)(f)

}
≤ ‖f‖p(·),Ω ≤ max

{
A

1
p−

p(·)(f), A
1
p+

p(·)(f)

}
(4.3)

with constants p± from condition (4.1). We assume that for all (x, y) ∈ Ω and every t ∈ [0, T ]

1 < q ≤ q−(t) ≤ q(x, t) ≤ q+(t) ≤ q <∞, |q(x, t)− q(y, t)| ≤ ω(|x− y|), (4.4)

where the modulus of continuity ω satisfies the condition limτ→0+ω(τ) ln 1
τ = Cω < ∞. Let

W
1,p(·)
0 (Ω) =

{
u ∈ Lp(·)(Ω) ∩W 1,1

0 (Ω), |∇u|p(x) ∈ L1(Ω)
}

and

Wq(·)(QT ) =

v : QT 7→ Rn
∣∣∣∣∣∣

v ∈
(
L∞(0, T ;L2(Ω) ∩ L1(0, T ;W 1

0 (Ω))
)n

;

div v = 0,

∫ T

0

∫
Ω
|D(v)|q(x,t) dxdt <∞

 .

The key technical tool used in the analysis is Korn’s inequality for v(x, t) ∈ Wq(·)(QT ).

Lemma 4.1. If q(x, t) satisfies (4.4), v = (v1, . . . , vn) with vi(·, t) ∈ W
1,q(·,t)
0 (Ω) for a.e.

t ∈ [0, T ], then

1

C
‖∇v(·, t)‖q(·,t),Ω ≤ ‖D(v(·, t))‖q(·,t),Ω, K‖v(·, t)‖r(·,t),Ω ≤ ‖D(v(·, t))‖q(·,t),Ω (4.5)

where q < N , r ≤ qN

N − q
<∞, K = K

(
Cω, q, q,N,Ω

)
, C = C

(
Cω, q, q,N,Ω

)
.

We refer to [31, Th.14.3.21] for the proof of (4.5) with v, q depending only on x and q
satisfying the log-continuity condition (4.4) in Ω. For q = const the proof of Korn’s inequality
can be found in [32]. Using (4.5) with r = 2, applying the embedding W 1,2(Ω) ⊂ L2(Ω) and
inequalities (4.3) we derive the following chain of inequalities: for q ≥ 2N

N+2

1

K
‖v(·, t)‖2,Ω ≤ ‖D(v(·, t))‖q(·),Ω ≤ max

{
A

1
q−(t)

q(·,t) (D(v(·, t))), A
1

q+(t)

q(·,t) (D(v(·, t))))
}
. (4.6)
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5. Pseudoplastic fluids. Localization in time via analysis of the energy function
Let us consider the energy solutions of system (2.1)-(2.3) which satisfy identity (3.2). Assume
that

sup
t∈(0,T )

E(t) ≤ E <∞,
∫ T

0

∫
Ω
|D|q(x,t) dxdt <∞, 1

M
≤ ρ(x, t) ≤M <∞ (5.1)

with some constants E and M > 0. The last two inequalities are byproducts of the maximum
principle for the solutions of equation (2.1) and restriction (3.1) on ρ(x, 0). Without loss of
generality we may assume that E ≤ 1. It follows from (4.6), (5.1) that

C0E
q
2 (t) ≤ C0E

q+(t)
2 (t) ≤ δ

∫
Ω
|D(v(x, t))|q(x,t) dx ≤ (F : S, 1)Ω , C0 = C0(K,M,E). (5.2)

Theorem 5.1. Let {v, ρ, p}, v ∈ Wq(·)(QT ), be a weak solution of problem (2.1)–(2.5). Assume
that condition (3.1) is fulfilled and, additionally,

(2.7) holds with δ = δ0 = const and q(x, t) ∈
(

2N

N + 2
, 2

)
. (5.3)

(1) If f ≡ 0, then

E(t) =
1

2

∫
Ω
ρ(x, t)|v(x, t)|2dx = 0 for t ≥ t∗ =

2E(2−q)/2(0)

C0(2− q)
.

In particular, v (x, t) ≡ 0 in QT ∩ {t ≥ t∗}.
(2) Let us denote u+ = max{u, 0}. Assume that f 6≡ 0, q < 2 and

‖f(·, t)‖2,Ω ≤ ε (1− t/tf )q/(2−q)+ (5.4)

with ε = const > 0, tf > t∗. If the data satisfy the condition

qE(0)

(2− q)tf
+ C0E

q
2 (0) = ε

√
2M, (5.5)

then there exists a constant C such that E(t) ≤ C [1− t/tf ]
−
q/(2−−

q )
+ , that is, E(t) = 0 for

t ≥ tf and v(x, t) ≡ 0 in Q ∩ {t ≥ tf}.

The mechanical meaning of Theorem 5.1 is that if the flow of a nonhomogeneous non–
Newtonian pseudoplastic fluid is driven by the initial data, then the fluid becomes immobile
in a finite time. If the flow is stirred by the source term f 6= 0 that vanishes at the instant tf ,
then the fluid is at rest for all t ≥ tf , provided that the intensity of the source is appropriately
small.

Sketch of the proof. Applying (2.7), (3.2) and (5.2) we derive the nonlinear integral and
differential inequalities

E(t) + C0

∫ t

0
E

q
2 (τ)dτ ≤ E(t) + C0

∫ t

0
E

q+(τ)
2 (τ)dτ

≤ E(t) +

∫ t

0
(F : S, 1)Ωdτ = E(0) +

∫ t

0
(ρf ,v)Ωdτ,
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E′(t) + C0E
q
2 (t) ≤ E′(t) + C0E

q+(τ)
2 (t) ≤ E′(t) +

∫ t

0
(F : S, 1)Ωdτ = (ρf ,v)Ω. (5.6)

If f ≡ 0, we obtain the ordinary differential inequality E′(t) + C0E
q
2 (t) ≤ 0 and after a

straightforward integration arrive at the estimate E(t) ≤
[
E

2−q
2 (0)− tC0

2−q
2

]
. Since E(t) ≥ 0

by definition, it is necessary that E(t) ≡ 0 for all t ≥ t∗. Under the assumptions of item (2),
from (5.4), (5.6) we derive the following inequality:

E′(t) + C0E
−
q
2 (t) ≤

√
2M(1− t/tf )

−
q/(2−−

q )
+ , (

−
E ≤ 1).

Let W (t) be a solution of the problem

W ′(t) + C0W
q
2 (t) =

√
2M(1− t/tf )q/(2−q)+ , W (0) = E(0).

Under condition (5.5) the problem for W has a unique solution W (t) = E(0) [1− t/tf ]
−
q/(2−−

q )
+ ,

which is a majorant for E(t), whence E(t) ≤W (t).

The borderline case q+(t)↗ 2 as t→∞ was considered in [10]. The analysis of behavior of
the fluid as t→∞ reduces to the study of the ordinary differential inequality with the variable

exponent E′(t)+C0E
q+(t)

2 (t) ≤ (ρf ,v)Ω. Properties of the functions satisfying the inequalities of
this type were studied in [3, Ch.6]. Analogous localization results were proved for pseudoplastic
fluid with vanishing or unbounded initial density ρ(x, 0) = ρ0(x) under the assumptions

‖1/ρ0(x)‖Lm(Ω) ≤ C1, ‖ρ0(x)‖LM (Ω) ≤ C2, min {m,M} > 1, (5.7)

√
ρ0v0 ∈ L2 (Ω) , E(0) =

1

2

∫
Ω
ρ0 |v0|2 dx <∞; δ |D(r)|q ≤ F(r) : D(r) ∀ r ∈ RN

with δ = const > 0, q ∈
(

2MN
N(M−1)+2M , 2

)
, M > N

2 . Condition (5.7) allows the initial density ρ0

to vanish or become infinite on any set of zero measure.
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