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Abstract: Four novel paulomycin derivatives have been isolated from S. albus J1074 grown in
MFE culture medium. These compounds are structural analogs of antibiotics 273a2α and 273a2β

containing a thiazole moiety, probably originated through an intramolecular Michael addition.
The novel, thiazole, moiety-containing paulomycins show a lower antibiotic activity than paulomycins
A and B against Gram-positive bacteria. However, two of them show an improved activity
against Gram-negative bacteria. In addition, the four novel compounds are more stable in culture
than paulomycins A and B. Thus, the presence of an N-acetyl-L-cysteine moiety linked to the
carbon atom of the paulic acid isothiocyanate moiety, via a thioester bond, and the subsequent
intramolecular cyclization of the paulic acid to generate a thiazole heterocycle confer to paulomycins
a higher structural stability that otherwise will conduce to paulomycin degradation and into
inactive paulomenols.

Keywords: antibiotic 273a2; paulic acid; paulomenol; structural analogue; thiazole moiety

1. Introduction

Streptomyces albus J1074 is a derivative of S. albus G, defective in both the restriction and
modification enzymes of the SalI system [1] and widely used as a host for the expression of
Streptomyces secondary metabolite gene clusters [2,3]. Genome mining, genetic manipulation, and the
activation of secondary metabolite gene clusters studies applied to S. albus J1074 have revealed its
ability to produce, under different conditions and manipulation techniques, several carotenoids [4],
hybrid polyketide-non-ribosomal peptides antimycins and 6-epi-alteramides [5], type I polyketides
candicidins [5], non-ribosomal peptide indigoidine [5], and non ribosomal peptides surugamides [6].
In addition, S. albus J1074, as well as the parental strain S. albus G, produces glycosylated compounds
paulomycin A, B, and E [5,7], and their derivatives paulomenol A and B, generated by the spontaneous
loss of the paulic acid moiety [5]. The S. albus J1074 paulomycin biosynthesis gene cluster has been
characterized, establishing a biosynthesis pathway [8].

Paulomycins A and B, antibiotics containing an isothiocyanate group (paulic acid) and mainly
active against Gram-positive bacteria, were initially isolated from Streptomyces paulus strain 273 [9,10].
S. paulus produces paulomycins as a family of compounds that include paulomycin A, A2, B, C, D,
E, and F [11], O-demethylpaulomycins A and B, paulomenol A and B, hydrogen sulfide adducts
of paulomycin A and B [12], antibiotics 273a2α and 273a2β, and paldimycin A and B, derivatives of
paulomycin A and paulomycin B containing one or two N-acetyl-L-cysteine groups, respectively [13,14].
Antibiotic activity of paldimycins was assessed in vitro against Gram-positive bacteria and found
comparable to that of vancomycin [15]. On the other hand, paulomenols A and B lack antibacterial
activity, pointing to paulic acid as determinant of the antibiotic properties of paulomycins and
paldimycins [12].
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Different approaches have been used for the generation of derivatives of known compounds
through combinatorial biosynthesis [16,17]. Thus, paulomycin derivatives have been generated
carrying modifications in the L-paulomycose moiety [8]. Other methods involve the enhancement
of the expression of the gene cluster in order to identify novel natural products [6]. This can be
accomplished by several systems, such as the systematic alteration of the culture media composition or
cultivation parameters to elevate production titers of compounds and encourage the production of a
wider range of natural products from a microorganism. This method is known as OSMAC (One Stain
Many Compounds) [18]. In this work, we describe the identification and structural characterization of
several natural paulomycin derivatives produced by S. albus J1074 using the OSMAC approach.

2. Results

2.1. Identification of Compounds

In our laboratory, production of secondary metabolites by S. albus J1074, including paulomycins,
has been routinely monitored using R5A as production medium [5,8]. However, purification of different
paulomycin derivatives generated by combinatorial biosynthesis approaches was accomplished in
MFE medium where the production of some secondary metabolites by S. albus J1074 was higher than
in R5A [8]. Comparison of S. albus J1074 grown in MFE medium during 96 h with S. albus B29, mutant
strain blocked in early steps of paulomycins biosynthesis [5], led to the identification or four novel
compounds (1–4) probably derived from the paulomycin pathway (Figure 1). These compounds
show Ultra Performance Liquid Chromatography (UPLC) retention times of 4.29 (1), 4.32 (2), 4.53 (3),
and 4.56 (4) min, paulomenol-like absorption spectrum with maxima at 238 and 320 nm, and masses of
m/z 936, 936, 950, and 950 [M + H]+, respectively.
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Figure 1. UPLC chromatograms, monitored at 238 nm, of S. albus J1074 (wt) and S. albus B29 (B29).
Extracts were generated from cultures of the strains in MFE liquid medium during 96 h. Labeled peaks
correspond to novel paulomycin derivatives (1–4), paulomycin A (5), paulomycin B (6), paulomenol A
(7), and paulomenol B (8).

2.2. Structural Characterization of Novel Paulomycins

Peak 1 (Figure 1) was obtained as a brownish amorphous powder. The LC-DAD-HRMS
run revealed the presence of two main compounds with retention mobility of 3.55 and 3.90 min,
respectively (Figure S1). The main component, compound 1 (eluting at 3.55 min), was assigned a
molecular formula of C38H53N3O20S2 based on the molecular ion peak [M + H]+ observed at 936.2739
(calcd. for C38H54N3O20S2

+ = 936.2739) (Figure S2). On the other hand, the secondary component,
compound 1′ (eluting at 3.90 min), was assigned a molecular formula of C38H51N3O19S2 based on the
molecular ion peak [M + H]+ observed at 918.2636 (calcd. for C38H52N3O19S2

+ = 918.2631) (Figure S2).
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Both compounds are clearly related to each other, the latter being a dehydration product of the former.
A search in the Dictionary of Natural Products indicates that the molecular formula of compound 1
might correspond to antibiotic 273a2β, a compound related to paulomycins. The UV (DAD) (Figure S3)
shows strong resemblance to that reported for antibiotic 273a2 (both α and β) [12,13].

To establish the identity of the main compound 1 (Table 1; Figure 2) a 1H NMR spectrum
and a set of 2D NMR spectra (including COSY, TOCSY, NOESY, HSQC and HMBC) were acquired
(Figures S4–S7). The proton and HSQC confirmed the relationship with 273a2β, although there were
important differences which indicated that compound 1 was novel. Being related to paulomycin it was
not surprising that many of the observed signals showed strong resemblance to those displayed by
paulomycin F and other paulomycin derivatives previously described [8]. In depth interpretation of the
observed correlations allowed establishing the structure of compound 1. The connectivity of compound
1 is like that of antibiotic 273a2β, but the terminal N-acetylcysteine group is connected in this case via
a heterocyclic ring (thiazoline) rather than forming a dithiocarbamate. In fact, compound 1 could be
considered as an intramolecular Michael addition derivative of antibiotic 273a2β; the sulfur nucleophile
in the thioenol form of the dithiocarbamate moiety of antibiotic 273a2β is attacking the Cβ of the α,
β unsaturated amino acid moiety and rendering a dihydrothiazol (thiazoline) ring (Figure S8). The
chirality of the N-acetylcysteine moiety was arbitrarily assigned an S configuration assuming it directly
derived from standard proteinogenic L-cysteine. The syn relative configuration at positions 2′′ and 3′′ is
based on the strong key NOE observed between the protons at these positions. The observed coupling
constant for H-2′′ (7.5 Hz) also agrees with a syn configuration. On the other hand, the expected β

anomeric configuration found for the monosaccharide unit in antibiotics 273a2β [14] is observed for
compound 1 based on the coupling constant of the anomeric proton (br d, 3.5 Hz).

Table 1. NMR data (δ in ppm) for compound 1 (DMSO-d6, 500 MHz, 24 ◦C). Carbon chemical shifts
derived from HSQC and HMBC spectra.

Position δ(13C) δ(1H), (Mult, J in Hz) Position δ(13C) δ(1H), (Mult, J in Hz)

1 n.d. - 1′ 98.5 4.89 (br d, 3.5)
2 99.9 - 2′ 30.7 2.04 (m) 1.77 (td, 12.3, 3.6)
3 159.9 - 3′ 75.0 3.43 (m)
4 189.2 - 3′α 57.1 3.24 (s)
5 48.9 3.27 (m) 3.00 (d, 16.2) 4′ 73.9 -
6 78.2 - 5′ 67.5 4.41 (m)
7 198.7 - 6′ 16.4 1.10 (m)
8 77.7 3.64 (d, 10.0) 7′ 69.9 5.27 (quart., 6.8)
9 69.2 3.48 (m) 8′ 16.5 1.18 (d, 6.7)

10 74.5 4.08 (br t) 9′ 176.5 -
11 70.7 4.66 (dd, 10.2, 1.8) 10′ 34.3 2.55 (m)
12 71.8 4.01 (dt, 9.9, 3.4) 11′ 19.6 1.08 (m)
13 62.9 3.77 (m) 12′ 19.8 1.13 (d, 7.0)
14 171.0 - 1′′ 168.5 -
15 21.2 1.96 (s) 2′′ 80.3 5.04 (d, 7.5)

3′′ 49.8 4.36 (m)
4′′ 16.5 1.10 (m)
5′′ 167.8 -
1′′′ 172.3 -
2′′′ 52.6 4.45 (m)
3′′′ 34.2 3.62 (m) 3.26 (m)
4′′′ 170.3 -
5′′′ 23.2 1.85 (s)

NH2 - 8.30

The secondary component 1′ (Figure 2) is proposed to be the dehydration product obtained by a
water loss at positions 5 and 6, generating the corresponding quinone ring. Additionally, an HSQC
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signal observed at 6.91 ppm (1H) and 132.2 ppm (13C) (Figure S5) was a clear diagnostic of the new
double bound (between positions 5 and 6) in the secondary product. It was not possible to prepare an
NMR table for this secondary compound, although all the positions but those close to the new double
bond are expected to resonate at the same frequency as the main compound in this sample.
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Figure 2. Structure of compound 1 deduced from 1H- and 13C-NMR data and proposed structure of
secondary product compound 1′ after abstraction of one molecule of H2O.

Peak 2 (Figure 1) was obtained as a brownish amorphous powder. The LC-DAD-HRMS run
revealed the presence of two main compounds with retention mobility of 3.55 and 3.91 min, respectively
(Figure S9). Both components showed identical retention time, DAD, and HRMS spectra (Figures S10
and S11) as the compounds detected in peak 1. Thus, having the same molecular formula, it was very
likely that compounds 2 and 2′ might be isomers (probably stereoisomers) of compounds 1 and 1′,
or maybe the actual antibiotic 273a2β and its derivative after abstraction of one molecule of H2O.

To unequivocally establish the identity of the main compound 2 (Table 2; Figure 3), a 1H NMR
spectrum and a set of 2D NMR spectra (including COSY, TOCSY, NOESY, HSQC, and HMBC)
were acquired Figures S12 and S13). The proton and HSQC spectra immediately confirmed the
relationship with compounds 1 and 1′. Most signals were almost isochronous with those found in
peak 1, and the only significant chemical shift differences were localized in the signals of the thiazoline
heterocycle, suggesting that in this case the antibiotic 273a2β is the precursor and the proposed Michael
addition has rendered the anti diastereomer in this ring. The weakness of NOESY correlation between
protons at positions 2′′ and 3′′ and the observed coupling constant for H-2′′ (4.7 Hz) confirmed the
anti-relationship of these two protons. In compound 2, the key HMBC correlations that connect the
N-acetylcysteine moiety to the thiazoline heterocycle are the same as those already found for peak 1.

Similarly to peak 1, the secondary component 2′ is proposed to be the dehydration product
obtained by a water loss at positions 5 and 6, generating the corresponding quinone. A key HSQC
signal observed at 6.91 ppm (1H) and 132.2 ppm (13C) (Figure S13) provides a clear diagnostic of the
new double bound (between positions 5 and 6) in the secondary product.
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Table 2. NMR data (δ in ppm) for compound 2 (DMSO-d6, 500 MHz, 24 ◦C). Carbon chemical shifts
derived from HSQC and HMBC spectra.

Position δ(13C) δ(1H), (Mult, J in Hz) Position δ(13C) δ(1H), (Mult, J in Hz)

1 n.d. - 1′ 98.5 4.86 (br d, 3.7)
2 99.9 - 2′ 30.6 2.04 (m) 1.78 (m)
3 159.9 - 3′ 75.0 3.44 (m)
4 189.2 - 3′α 57.1 3.24 (s)
5 48.7 3.26 (m) 3.00 (d, 16.2) 4′ 73.9 -
6 78.2 - 5′ 67.3 4.41 (m)
7 198.7 - 6′ 16.3 1.10 (m)
8 77.6 3.62 (d, 9.8) 7′ 69.8 5.27 (quart., 6.8)
9 69.1 3.45 (m) 8′ 16.4 1.18 (d, 6.7)

10 74.5 4.02(br t) 9′ 176.2 -
11 70.4 4.58 (dd, 10.1, 2.0) 10′ 34.3 2.55 (m)
12 72.0 3.97 (m) 11′ 19.5 1.08 (m)
13 62.8 3.75 (m) 12′ 19.6 1.12 (m)
14 170.9 - 1′′ 169.3 -
15 21.1 1.97 (s) 2′′ 83.1 4.90 (d, 4.7)

3′′ 51.0 4.25 (m)
4′′ 22.5 1.38 (m)
5′′ 167.9 -
1′′′ 172.2 -
2′′′ 52.2 4.51 (m)
3′′′ 34.3 3.62 (m) 3.23 (m)
4′′′ 170.2 -
5′′′ 23.1 1.85 (s)
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Figure 3. Structure of compound 2 deduced from 1H- and 13C-NMR data and proposed structure of
secondary product compound 2′ after elimination of one molecule of H2O.

Peak 3 (Figure 1) was obtained as a brownish amorphous powder. The LC-DAD-HRMS run
revealed the presence of two main compounds with retention mobility of 3.77 and 4.06 min, respectively
(Figure S14). The main component 3 (3.77 min) was assigned a molecular formula of C39H56N3O20S2
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based on the molecular ion peak [M + H]+ observed at 950.2893 (calcd. for C39H56N3O20S2
+ = 950.2893).

On the other hand, the secondary component 3′ (4.07 min) was assigned a molecular formula
of C39H54N3O19S2 based on the molecular ion peak [M + H]+ observed at 938.2782 (calcd. for
C39H54N3O19S2

+ = 932.2787) (Figure S15). As already mentioned for peaks 1 and 2, both compounds
are clearly related to each other, the latter being a dehydration product of the former. A search in
the dictionary of natural products indicate that the molecular formula of compound 3 corresponds
to antibiotic 273a2α and the UV (DAD) (Figure S16) was identical to that observed for peaks 1 and 2,
confirming their structural relationship.

To establish the identity of the main compound 3 (Table 3, Figure 4), a 1H NMR spectrum and a set
of 2D NMR spectra (including COSY, TOCSY, NOESY, HSQC and HMBC) were acquired (Figures S17
and S18). The proton and HSQC showed immediately the compound did not correspond to 273a2α

but to a compound identical to 1, but carrying an extra methylene group which, after analysis of
the TOCSY and HMBC spectra, was found to be in the fatty acid. Thus, the structural difference
between compounds 3 and 1 is the same as the difference between the antibiotics 273a2α and 273a2β.
The chemical shifts observed for compound 3 were almost identical to compound 1 except for the
fatty acid. The syn relative configuration at positions 2′′ and 3′′ was corroborated by the strong key
NOE observed between the protons at these positions and the coupling constant of 7.5 Hz observed
for H-2′′).

Table 3. NMR data (δ in ppm) for compound 3 (DMSO-d6, 500 MHz, 24 ◦C). Carbon chemical shifts
derived from HSQC and HMBC spectra.

Position δ(13C) δ(1H), (Mult, J in Hz) Position δ(13C) δ(1H), (Mult, J in Hz)

1 n.d. - 1′ 98.4 4.89 (br d, 3.5)
2 n.d. - 2′ 30.7 2.04 (m) 1.79 (td, 12.3, 3.6)
3 159.9 - 3′ 75.0 3.43 (m)
4 189.2 - 3′α 57.1 3.24 (s)
5 48.9 3.29 (m) 2.98 (d, 16.2) 4′ 73.9 -
6 78.2 - 5′ 67.5 4.41 (m)
7 198.7 - 6′ 16.5 1.10 (m)
8 77.7 3.64 (d, 10.1) 7′ 69.8 5.27 (quart., 6.8)
9 69.2 3.48 (m) 8′ 16.4 1.18 (d, 6.7)

10 74.5 4.08 (br t) 9′ 175.9 -
11 70.7 4.66 (dd, 10.2, 1.8) 10′ 41.5 2.38 (m)
12 71.9 4.00 (dt, 9.9, 3.4) 11′ 26.9 1.60 (m) 1.45 (m)
13 62.9 3.77 (m) 12′ 12.2 0.88 (t, 7.0)
14 170.8 - 13′ 17.5 1.09
15 21.2 1.96 (s) 1′′ 168.5 -

2′′ 80.2 5.04 (d, 7.5)
3′′ 49.8 4.36 (m)
4′′ 16.5 1.10 (m)
5′′ 167.8 -
1′′′ 172.2 -
2′′′ 52.6 4.46 (m)
3′′′ 34.2 3.62 (m) 3.26 (m)
4′′′ 170.3 -
5′′′ 23.2 1.85 (s)
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secondary product compound 3′ after abstraction of one molecule of H2O.

The secondary component 3′ (Figure 4) is proposed to be the dehydration product obtained by a
water loss at positions 5 and 6, generating the corresponding quinone ring, as previously mentioned
for 1′ and 2′.

Peak 4 (Figure 1) was obtained as a brownish amorphous powder. The LC-DAD-HRMS
run revealed the presence of two main components with retention mobility of 3.81 and 4.09 min,
respectively (Figure S19). Both components showed identical DAD and HRMS (Figures S20 and S21)
spectra as the components detected in peak 1. Thus, having the same molecular formula, it is likely
that in this peak there are two stereoisomers of the compounds present in peak 3, in a similar manner
as it occurred for the compounds found in peaks 1 and 2.

To establish the identity of the main compound 4 (Table 4, Figure 5), a 1H NMR spectrum and a set
of 2D NMR spectra (including COSY, TOCSY, NOESY, HSQC and HMBC) were acquired (Figures S22
and S23). The chemical shifts observed for peak 4 were almost identical to those of peak 1, except for
the fatty acid. This provided direct evidence that the connectivity and configuration of compound 4
is identical to that of compound 3, except for positions 2′′ and 3′′ which display an anti relationship
(the same situation already found for compounds 1 and 2) further confirmed by the coupling constant
measured for H-2′′ (4.7 Hz).

The secondary component 4′ (Figure 5) is proposed to be the dehydration product obtained by a
water loss at positions 5 and 6, thus generating the corresponding quinone ring for as in compounds
1′, 2′, and 3′.
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Table 4. NMR data (δ in ppm) for compound 4 (DMSO-d6, 500 MHz, 24 ◦C). Carbon chemical shifts
derived from HSQC and HMBC spectra.

Position δ(13C) δ(1H), (Mult, J in Hz) Position δ(13C) δ(1H), (Mult, J in Hz)

1 n.d. - 1′ 98.4 4.89 (m)
2 100.0 - 2′ 30.7 2.05 (m) 1.79 (m)
3 160.0 - 3′ 75.0 3.44 (m)
4 189.2 - 3′α 57.1 3.24 (s)
5 48.9 3.27 (m) 2.99 (m) 4′ 73.9 -
6 78.3 - 5′ 67.4 4.41 (m)
7 198.7 - 6′ 16.4 1.10 (m)
8 77.6 3.62 (d, 9.8) 7′ 69.8 5.27 (quart., 6.8)
9 69.2 3.46 (m) 8′ 16.4 1.18 (d, 6.7)

10 74.6 4.01(br t) 9′ 175.9 -
11 70.5 4.58 (dd, 10.1, 2.0) 10′ 41.5 2.37 (m)
12 72.0 3.97 (m) 11′ 26.9 1.60 (m) 1.44 (m)
13 63.0 3.76 (m) 12′ 12.2 0.88 (t, 7.0)
14 171.0 - 13′ 17.6 1.10 (d, 6.8)
15 21.2 1.97 (s) 1′′ 169.4 -

2′′ 83.2 4.90 (d, 4.7)
3′′ 51.1 4.25 (m)
4′′ 22.5 1.37 (m)
5′′ 168.0 -
1′′′ 172.3 -
2′′′ 52.2 4.51 (m)
3′′′ 34.3 3.62 (m) 3.29 (m)
4′′′ 170.3 -
5′′′ 23.1 1.85 (s)
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Repeated attempts to obtain pure samples of compounds 1, 2, 3, and 4 resulted in a new mixture
containing the compounds 1′, 2′, 3′, and 4′ that appeared during the analysis process due to elimination
of one molecule of H2O in each case. These results are in concordance with previous reports on the
spontaneous dehydration of paulomycin A in solution that is slowly converted into its quinone form,
paulomycinone A [19,20]. Dehydration of paulomycins occurs even when leaving the compounds
in solution in aqueous media at neutral pH, being therefore difficult to avoid [20]. The dehydration
of antibiotics 273a2α and 273a2β and paldimycin A and B to the corresponding quinones has been
also reported previously [14], as well as the same modification of paulomycin G obtained from
Micromonospora matsumotoense M-412 [21]. The quinone derivatives of members of the paulomycin
family of antibiotics have been reported to lack antibiotic activity [14].

2.3. Biological Activity of Novel Paulomycins

The antibacterial activity of freshly purified thiazole derivatives of antibiotics 273a2α and 273a2β

compounds 1–4, lacking apparently any traces of the dehydrated secondary compounds 1′–4′, was
evaluated against Gram-positives Staphylococcus aureus and S. epidermidis; Gram-negatives Escherichia
coli and Klebsiella pneumoniae; and yeast Candida albicans, showing the minimal inhibitory concentrations
(MIC) depicted in Table 5. All compounds were found active against Gram-positives, in particular 3
and 4 derived from paulomycin A. However, in all cases the levels of activity were lower than parental
compounds paulomycin A (5) and B (6). Surprisingly, the four novel thiazole moiety-containing
paulomycins, in particular compound 3, showed slight activity against Gram-negatives E. coli and
K. pneumonia, and inhibitory activity totally absent in paulomycin A (5) or B (6) [11,14]. None of the
compounds tested showed inhibitory activity against C. albicans.

Table 5. Antibiotic activity of compounds 1–6 represented as minimal inhibitory concentration (MIC)
in µg/mL. Paulomycin A (5) and B (6) were included as controls.

MIC (µg/mL)

Microorganism 1 2 3 4 5 6

S. aureus 75 75 37.5 25 <2.34 <2.34
S. epidermidis 50 50 18.75 12.5 <2.34 <2.34

E. coli 150 150 75 100 >200 >200
K. pneumoniae 150 150 100 100 >200 >200

C. albicans 200 >200 200 >200 >200 >200

All the new compounds present in each peak were tested for their cytotoxic activity against
human tumor cell lines HT29, A549, MDA-MB-231, AGS, HL-60, CAPAN, and A2780, as well as a
mouse nonmalignant cell line NIH/3T3. These compounds showed no cytotoxic activity against any
of the cell lines under the selected cutoff level of 10 µM.

2.4. Stability of Novel Paulomycins in Culture

In a previous work we reported that paulomenols A and B, contrary to what had been
speculated before [12], were not intermediates in the biosynthesis of paulomycins A and B but
instead degradation products by loss of the paulic acid moiety [5]. Since paulomenols lack antibacterial
activity while N-acetyl-L-cysteine containing antibiotics 273a2α and 273a2β, paldimycin A and B [12]
and thiazole derivatives of antibiotics 273a2α and 273a2β (compounds 1–4) retain the antibacterial
activity, in particular compounds 3 and 4 derived from paulomycin A, we wonder if the incorporation
of the N-acetyl-L-cysteine moiety could represent a strategy to stabilize the structure-activity of
paulomycins. This question was addressed by a feeding experiment using compound 3 and the
non-producing deletion mutant S. albus B29 [5] as biotransformation host. We fed compound 3
(apparently lacking any trace containing compound 3′) to this strain after 48 h of growth in R5A. In this
medium paulomycins and paulomenols are produced by S. albus J1074 but peaks 1–4 are not produced
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or produced in such low amounts that they cannot be spotted. After further 48 h, we could not observe
conversion of compound 3 into the corresponding paulomycin B or paulomenol B (Figure 6). On the
other hand, no significant conversion of compound 3 into 3′ was observed. The same results were
obtained using compounds 1 (Figure S24), 2 (Figure S25), and 4 (Figure S26). These experiments
demonstrate that compounds 1–4 are more stable in culture than the corresponding paulomycins.
Furthermore, new feeding experiments with S. albus B29 using paulomycin B (6) and paulomycin A (5)
as substrates confirmed the degradation of them into inactive paulomenol B (8) and A (7), as previously
reported [5], but also their partial bioconversion into active compound 2 (Figure S27) and compound 3
(Figure S28), respectively.
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Figure 6. UPLC chromatograms, monitored at 238 nm, of mutant S. albus B29 grown in R5A liquid
medium and fed with 50 µg mL−1 of compound 3.

3. Discussion

The presence of N-acetyl-L-cysteine moieties as structural elements of secondary metabolite
compounds produced by actinomycetes has been reported not only in the case of paulomycin
A and B derivatives antibiotics 273a2α and 273a2β, and paldimycin A and B [13,14], but also in
other compounds with different biosynthetic origins such as lactacystin [22], phenazine antibiotic
SB 212305 [23], seongomycin [24], naphthomycins I and J [25], cinnabaramides F and G [26],
piceamycin N-acetyl-L-cysteine adduct [27], coelimycin P1 [28], homoseongomcin [29], cyslabdan [30],
and argimycins PI and PII [31]. In some of these examples, such as SB 212305 and piceamycin,
the presence of the N-acetyl-L-cysteine moiety has been associated with a loss of biological activity,
antibiotics (in the case of SB 212305 [23]), and antibiotics and cytotoxic (in the case of piceamycin
N-acetyl-L-cysteine adduct [27]). However, the presence of the N-acetyl-L-cysteine moiety has
no effect on the cytotoxic activity of lactacystin [22] and cinnabaramides F and G [26], or on
potentiates imipenem activity against methicillin-resistant Staphylococcus aureus (MRSA) in the case
of cyslabdan [32]. The incorporation of the N-acetyl-L-cysteine moiety during the biosynthesis of
cyslabdan has been shown to occur by the excretion of a labdane-type epoxide intermediate using a
mycothiol MSH-mediated xenobiotic detoxification [30]. A similar mechanism has been proposed for
the biosynthesis of seongomycin, naphthomycin J, lactacystin, and homoseongomycin [29,30].
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In the case of paulomycin A and B derivatives: antibiotics 273a2α and 273a2β, paldimycin A and
B, and thiazole derivatives of antibiotics 273a2α and 273a2β (compounds 1–4), the incorporation of
N-acetyl-L-cysteine moieties via a thioester bond, and the subsequent intramolecular cyclization of the
paulic acid to generate a thiazole heterocycle in compounds 1–4, appears as a stabilization mechanism
(probably by MSH-mediated detoxification) conducing to more stable structures in culture that retain
antibiotic activity (improved against Gram-negatives), in opposition to the instability of paulomycins
that degrade into inactive paulomenols [5] (Figure 7).
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4. Materials and Methods

4.1. Microorganisms and Culture Media

Bacterial strains used in this work were S. albus J1074 [1] and S. albus B29 [5]. Growth medium for
S. albus was tryptone soy broth (TSB), MA medium was used for sporulation, and MFE medium [8]
as regular production medium of compounds 1–4. R5A medium [33] was used for bioconversion
experiments. TSB or YDP [34] were used to determine the minimal inhibitory concentration (MIC) of
compounds 1–4 against bacteria or fungi, respectively.
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4.2. Isolation and Structural Characterization of Compounds

Whole cultures of S. albus J1074 grown in MFE medium during 120 h at 30 ◦C were extracted with
ethyl acetate containing formic acid (1%) and analyzed by UPLC and LC-MS for the production of
paulomycins, following previously described methods [5,34]. Reversed phase chromatography was
performed in an Acquity UPLC instrument fitted with a BEH C18 column (1.7 µm, 2.1 × 100 mm,
Waters, Cardanyola del Vallés, Spain). Samples were eluted with 10% acetonitrile for 1 min, followed
by a linear gradient from 10 to 100% acetonitrile over 9 min, at a flow rate of 0.5 mL/min and a
column temperature of 35 ◦C. For HPLC-MS analysis, an Alliance chromatographic system coupled
to a ZQ4000 mass spectrometer and a SunFire C18 column (3.5 µm, 2.1 × 150 mm, Waters) was
used. Solvents were the same as above and elution was performed with an initial isocratic hold
with 10% acetonitrile during 4 min followed by a linear gradient from 10 to 88% acetonitrile over
26 min, at 0.25 mL/min. MS analysis were done by electrospray ionization in the positive mode,
with a capillary voltage of 3 kV and a cone voltage of 20 V. Detection and spectral characterization of
peaks was performed in both cases by photodiode array detection in the range from 200 to 500 nm
using Empower software (Waters) to extract bidimensional chromatograms at different wavelengths,
depending on the spectral characteristics of the desired compound.

Isolation of peaks 1–4 was performed following the procedure previously described for isolation
of paulomycins [35]. S. albus J1074 was grown in MFE medium at 30 ◦C for 120 h in five Erlenmeyer
flasks (2 L), each containing 400 mL of medium; each flask was inoculated with spores and incubated
in an orbital shaker at 250 rpm. Purification of the four peaks was performed by preparative HPLC
using as solvent 57% methanol and 0.1% TFA in water in isocratic conditions optimized for each
peak at 5 mL/min. After every purification step, the collected peaks were diluted with methanol and
concentrated by solid-phase extraction (Sep-Pak C18, Waters) to remove acid traces that could affect
the stability of the purified molecules. Finally, the compounds were dissolved in a 50% mixture of
tert-butanol and H2O-milliQ and lyophilized. Yield and productivity of each compound was as follows:
1, 1.2 mg (0.6 µg/mL); 2, 1.2 mg (0.6 µg/mL); 3, 0.5 mg (0.25 µg/mL); and 4, 0.5 mg (0.25 µg/mL).

The structural elucidation of compounds 1–4 was carried out at Fundación Medina (Granada,
Spain) by a combination of LC-DAD-HRMS analysis carried out on an Agilent 1200 Rapid Resolution
HPLC system coupled to a Bruker maXis mass spectrometer (Rivas-Vaciamadrid, Spain). For the
NMR analyses, compounds 1–4 were dissolved in deuterated DMSO (DMSO-d6) and transferred
to a 1.7 mm tube. Acquisitions were carried out on a Bruker AVANCE III 500 MHz spectrometer
(Rivas-Vaciamadrid, Spain) equipped with a 1.7 mm TCI Microcryoprobe. All spectra were registered
at 24 ◦C.

Peak 1: brownish amorphous powder; compound 1: for 1H and 13C NMR data see Table 1;
HRESIMS m/z 936.2739 [M + H]+ (calcd. for C38H54N3O20S2

+ = 936.2739); compound 1′ (product 1
after abstraction of one molecule of H2O): HRESIMS m/z 918.2636 [M + H]+ (calcd. for C38H52N3O19S2

+

= 918.2631).
Peak 2: brownish amorphous powder; compound 2: for 1H and 13C NMR data see Table 2;

HRESIMS m/z 936.2737 [M + H]+ (calcd. for C38H54N3O20S2
+ = 936.2739); compound 2′ (product 2

after abstraction of one molecule of H2O): HRESIMS m/z 918.2630 [M + H]+ (calcd. for C38H52N3O19S2
+

= 918.2631).
Peak 3: brownish amorphous powder; compound 3: for 1H and 13C NMR data see Table 3;

HRESIMS m/z 950.2893 [M + H]+ (calcd. for C39H56N3O20S2
+ = 936.2893); compound 3′ (product 3

after abstraction of one molecule of H2O): HRESIMS m/z 932.2782 [M + H]+ (calcd. for C39H54N3O19S2
+

= 932.2787).
Peak 4: brownish amorphous powder; compound 4: for 1H and 13C NMR data see Table 4;

HRESIMS m/z 950.2899 [M + H]+ (calcd. for C39H56N3O20S2
+ = 936.2893); compound 4′ (product 4

after abstraction of one molecule of H2O): HRESIMS m/z 932.2782 [M + H]+ (calcd. for C39H54N3O19S2
+

= 932.2787).
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4.3. Biological Activity

The antibacterial activity of paulomycin derivatives, compounds 1–4, was analyzed via
determination of the minimal inhibitory concentration (MIC) against Escherichia coli, Klebsiella
pneumoniae, Staphylococcus aureus, and Staphylococcus epidermidis. The antifungal activity of paulomycin
derivatives was tested against Candida albicans. MIC was evaluated using two serial dilutions of each
compound, from 200 µg/mL to 3.12 µg/mL and from 150 µg/mL to 2.34 µg/mL, and bacterial cultures
with an initial OD600 of 0.3. Growth on the microtiter plates was determined during 24 h of incubation
at 37 ◦C.

The cytotoxic activity of compounds 1–4 was tested against the following human tumor cell
lines: colon adenocarcinoma (HT29), non-small cell lung cancer (A549), breast adenocarcinoma
(MDA-MB-231), gastric carcinoma (AGS), promyelocytic leukemia (HL-60), pancreatic adenocarcinoma
(CAPAN), and ovarian carcinoma (A2780). Mouse embryonic fibroblast cell line NIH/3T3 was used
as control to evaluate cytotoxicity against non-malignant cells. Cells were previously grown for a
week on DMEM-10% FBS medium, then aliquoted to 5000 cells per well in 96-well plates using the
Cell counting kit-8-(96992) (Sigma-Aldrich, Tres Cantos, Spain) and grown for an extra 24 h. Compounds
were dissolved in DMSO, keeping in mind that final concentration of DMSO in the assays should be
kept at 0.1%. After the incubation, 10 µL of compound (in diverse concentrations) were added to each
well and incubated for another 48 h. Lastly, 10 µL of CCK-8 reagent (Sigma-Aldrich) were added, left
to develop for 2 h in the incubator, and measured at 450 nm using an Elisa Bio-tek ELx 800 (BioTek,
Winooski, VT, USA).

Supplementary Materials: 1H-, 13C-NMR, HMBC, HSQC, and NOESY spectra of compounds 1–4 are available
as Supplementary Materials.
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