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We examine knotted solutions, the most simple of which is the “Hopfion”, from the point of view 
of relations between electromagnetism and ideal fluid dynamics. A map between fluid dynamics and 
electromagnetism works for initial conditions or for linear perturbations, allowing us to find new 
knotted fluid solutions. Knotted solutions are also found to be solutions of nonlinear generalizations 
of electromagnetism, and of quantum-corrected actions for electromagnetism coupled to other modes. 
For null configurations, electromagnetism can be described as a null pressureless fluid, for which we can 
find solutions from the knotted solutions of electromagnetism. We also map them to solutions of Euler’s 
equations, obtained from a type of nonrelativistic reduction of the relativistic fluid equations.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
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1. Introduction

Solutions with knotted topological structures play an important 
role in various areas of physics, but in this paper we will concern 
ourselves with two, electromagnetism and fluid dynamics. Despite 
the simplicity of the theory, the basic knotted solution of free 
Maxwell electromagnetism was only found in [1,2], following an 
earlier work in [3]. There are null solutions, �E2 − �B2 = 0, as well 
as generically non-null solutions in Rañada’s construction, both of 
which are explicitly time dependent. In [4], it was shown that we 
can construct more general null solutions obtaining (m, n) knot-
ted structures, and in [5], new knotted solutions were found using 
conformal S O (4, 2) transformations with complex parameters on 
known ones. For a review of this subject, and more complete ref-
erences, see [6].

On the other hand, the theory of knots was actually developed 
in the 19th century based on knotted fluid lines, whose topolog-
ical robustness was already discovered by Lord Kelvin, following 
the work of Helmholtz in 1858. The abstract study of knots and 
their evolution [7] is a fertile subject, for reviews see [8–10] and 
the book [11]. Remarkably, however, explicit theoretical solutions 
of fluid equations were very scarce, whereas experimental creation 
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of knots waited until a few years ago [12] (see also [13] for some 
numerical construction). Moffat [14] finally defined a “helicity” Hv

for the fluid flow similar, as we will see, to a magnetic helic-
ity for electromagnetism, and wrote some explicit solutions with 
Hv �= 0. The properties of these were studied in [15,16]. More so-
lutions were found in [17–19]. A map of magnetohydrodynamics 
to just fluid dynamics was used extensively (for instance, [20–22]), 
and one also was able to show that in magnetohydrodynamics 
a defined “velocity of lines of force” �v p = (�E × �H)/H2 [23] can 
be measured, and in some cases (“frozen field condition”) coin-
cides with the velocity of the fluid transporting it (see for instance 
[22,24], the last also considering transporting the electromagnetic 
Hopfion).

In this letter, we will use connections between electromag-
netism and ideal fluid dynamics to find both new knotted solutions 
in electromagnetism, as well as new (time dependent) knotted so-
lutions in fluid dynamics, that we believe have not been written 
explicitly before.

2. Knots in electromagnetism

In this section we review electromagnetic knotted solutions and 
some of their properties. Using the Riemann–Sielberstein (RS) vec-
tor �F = �E + i �B (c = 1), the source-free Maxwell’s equations are

�∇ × �F = i
∂ �F ; �∇ · �F = 0 . (1)

∂t
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Electromagnetic duality is manifest as a rotation �F → eiφ �F . We 
will define electric and magnetic potentials as �F = �Be + i �Bm =
�∇ × (�Ae + i �Am). To characterize the non-trivial topology of elec-
tromagnetic fields, a common set of observables are the helicities, 
that give a measure of the mean value of the linking number of 
the electromagnetic field lines. The helicities Hab , a, b = e, m are 
defined as

Hab =
∫

d3x�Aa · �Bb . (2)

Calculating their time derivatives, we find that Hee and Hmm are 
conserved if �E · �B = 0 and Hem and Hme are conserved if �E2 −
�B2 = 0. One can find solutions that have conserved helicities and 
contain “knotted” structures for the electric and magnetic fields, 
characterized by Hopf or winding number invariants of the field 
structures.

2.1. Knotted solutions in Bateman’s construction

One way to obtain knotted solutions is in Bateman’s construc-
tion, imposing an ansatz

�F = �∇α × �∇β , (3)

with α, β ∈ C. One Maxwell equation, �∇ · �F = 0, is automati-
cally satisfied, and the other imposes the constraint �F 2 = 0 ⇒
�E2 − �B2 = 0 and �E · �B = 0, so these are null solutions. Using this 
construction one can show that there is a “Hopfion” solution

α = r2 − t2 − 1 + 2iz

r2 − t2 + 1 + 2it
; β = 2(x − iy)

r2 − t2 + 1 + 2it
. (4)

Where (t, x, y, z) are the spacetime coordinates and r2 = x2 +
y2 + z2. The Hopfion has Hem = Hme = 0 and nonzero helici-
ties Hmm = Hee , but their value depends on the amplitude of the 
electromagnetic field |�E|. An invariant that only depends on the 
topology can be constructed by introducing a map to unit quater-
nions q = (α + β j)/

√|α|2 + |β|2 ∈ H [5]. Using R3 ∪ {∞} ∼= S3 and 
H|q|2=1

∼= SU (2) ∼= S3, at any fixed time the “Hopfion” solution 
maps S3 → S3 with unit winding number w = 1. By replacing α
with αm and β with βn in (3), we find a (m, n) knot solution with 
winding number w = mn.

2.2. Knotted solutions in Rañada’s construction

There are more general, non-null (�E2 − �B2 �= 0), knotted solu-
tions. Consider the ansatz for Fμν and ∗Fμν of the type

Fμν =
√

a

2π i

1

(1 + φ̄φ)2
(∂μφ̄∂νφ − ∂νφ̄∂μφ) ,

∗Fμν =
√

a

2π i

1

(1 + θ̄ θ)2
(∂μθ̄∂νθ − ∂ν θ̄∂μθ). (5)

The condition ∗Fμν = 1
2 εμνρσ F ρσ , determines the equations for 

φ, θ . The solutions then solve Maxwell’s equations, and by con-
struction Fμν ∗ F μν ∝ �E · �B = 0. Moreover, the 2-form F decom-
poses as F = dq ∧ dp (Clebsch representation), where p, q are real
functions, and in particular

�B = �∇p × �∇q . (6)

The relation between p, q and φ is

p = 1
2
; q = arg(φ)

, (7)

1 + |φ| 2π
and there is a similar one for ∗F = du ∧ dv , with u, v in terms 
of θ . If p and q are single-valued and well-defined in the whole of 
space, then the magnetic helicity Hmm is zero. If not, we have

�A = p �∇q + �∇χ , (8)

where χ is such that �A is well defined. The magnetic helicity is

Hmm =
∫

d3x �∇χ · ( �∇p × �∇q). (9)

Defining the function

φH (x, y, z) = 2(x + iz)

2z + i(r2 − 1)
, (10)

the “Hopfion” solution in Rañada’s construction is such that, at 
t = 0,

φ(x, y, z) = φH (z,−y, x), θ(x, y, z) = φH (x, z,−y). (11)

The solution has Hee =Hmm �= 0 and Hem =Hme = 0. A more gen-
eral set of solutions with non-zero helicities [25] are, at t = 0,

φ = (x + iy)(n)

(z + i(r2 − 1)/2)(m)
θ = (y + iz)(l)

(z + i(r2 − 1)/2)(s)
, (12)

where the (m) index means we leave the modulus intact, but we 
raise the phase to the m-th power.

2.3. Hopf index

Using R3 ∪{∞} ∼= S3 and C ∪{∞} ∼= S2, at any fixed time φ can 
be seen as a map S3 → S2, and the magnetic helicity is its Hopf 
index H(φ). Indeed, we can define an area 2-form on S2,

ω = 1

2π i

dφ∗ ∧ dφ

(1 + |φ|2)2
, (13)

whose pullback onto S3 is a 2-form F whose components are the 
spatial components in (5) (taking a = 1/4) Fi j = Fij . The Hopf in-
dex then equals the magnetic helicity

H(φ) =
∫
S3

A∧F =
∫

d3x �A · �B = Hmm . (14)

A Hopf index H(φH ) = 1 is found for instance for (10).

3. Solutions to nonlinear theories

We now show that the knotted solutions in Bateman’s construc-
tion are also solutions of any nonlinear electromagnetism theory 
that reduces to the Maxwell case for small fields. This is true in 
general for any null configurations (for recent discussions see e.g. 
[26,27]). Since �F 2 = 0, both the two possible Lorentz invariants 
constructed out of �E and �B vanish on the solutions. Let us define

L ≡ Fμν F μν

2b2
= 1

b2
(�B2 − �E2);

P ≡ 1

8b2
εμνρσ Fμν Fρσ = 1

b2
�E · �B , (15)

where b is a dimension 2 constant. We assume that fields vary on 
distances much larger than b−1/2, so that we can ignore possible 
derivatives on Fμν . Then, nonlinear generalizations of electromag-
netism are described by actions of the form

L = b2

⎡
⎣− L

2
+

∑
n≥2

∑
m≥0

cn,m Ln Pm

⎤
⎦ , (16)
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i.e., which reduces to Maxwell at small fields, and has nonlinear 
corrections written solely in terms of L and P . This includes ac-
tions like the Born–Infeld Lagrangian, L = −b2[√1 + L − P 2 − 1]
[28], introduced to get rid of diverging electric fields in elec-
tromagnetism, as well as actions obtained by integrating out 
other fields, like in the case of the one-loop Euler–Heisenberg La-
grangian for QED, where the fermions have been integrated out, 
L = b2

[− L
2 + βb2[L2 + 7P 2]], where b = m2 and β = 2α2/45 (m

is the fermion mass and α the fine structure constant). This form 
also applies for any higher loop integration of the coupling to any 
field (see [29] for a review). Therefore knotted solutions are valid 
in the full quantum theory after integrating out the other fields. 
Moreover, this is not only true for usual quantum fields, but also 
string modes in string theory can be integrated out to give the 
same result. Indeed, for electromagnetism confined to a D-brane 
in string theory, the integrating out of higher modes (in α′ = l2s , 
the string scale) results in the BI action with b = 1/α′ . Note that 
in this case, the action is α′ exact at leading order in gs , and there 
are no ∂μ Fνρ terms.

In terms of quantities analogous to the ones of electromag-
netism in a medium (see [30]),

�H ≡ −∂L
∂ �B , �D ≡ +∂L

∂ �E , (17)

the equations of motion look formally the same as Maxwell’s in a 
medium,

�∇ × �E + ∂t �B = 0, �∇ · �B = 0

�∇ × �H − ∂t �D = 0, �∇ · �D = 0 . (18)

For solutions such that L = P = 0, �H reduces to �B and �D to �E , 
so we have Maxwell’s equations in vacuum and thus knotted so-
lutions found using Bateman’s construction in Maxwell theory are 
solutions of the nonlinear theory as well.

4. Mapping electromagnetic to fluid knots

An ideal fluid, for an adiabatic flow with potential per unit mass 
π is governed by the Euler’s and continuity equations,

∂t �v + (�v · �∇)�v = − 1

ρ
�∇p − �∇π, (19)

∂tρ + �∇ · (ρ�v) = 0.

The right hand side of the Euler’s equations (19) equals −�∇h (δh =
δp
ρ + δπ ), where h is the enthalpy per unit mass. The continuity 

equation can also be rewritten as

∂th + �v · �∇h + c2
s
�∇ · �v = 0 , (20)

where cs = √
∂ p/∂ρ is the sound speed.

For incompressible fluids �∇ · �v = 0 and compressible barotropic 
fluids p = p(ρ), there is also a conserved helicity. From the Euler’s 
equations (19), one finds

∂t(�v · �ω) − �∇ ·
[

�ω
( �v2

2
−

∫
dp

ρ
− π

)
− �v(�v · �ω)

]
= 0 , (21)

where �ω = �∇ × �v is the vorticity, which means that we have the 
conserved fluid helicity, the integral of the velocity Chern–Simons 
term,

Hv =
∫

d3x �v · �ω =
∫

d3x �v · ( �∇ × �v) . (22)

Knotted fluid solutions are solutions for which there is a linking of 
�v(t, �x) at fixed time t , i.e. nonzero fluid helicity.
We see the analogy with electromagnetism [31,32]: �v is the 
analog of �A, so �B is the analog of the vorticity �ω, and Hv is the 
analog of Hmm . One can define Clebsch variables λ and μ for the 
fluid, as in [33], giving the velocity field

�v = λ �∇μ + �∇� , (23)

where � is the fluid potential, just like the decomposition for �A in 
(8) in the Rañada construction. Note that this is not the much-used 
map from magneto-hydrodynamics (fluid coupled to electromag-
netism) to hydrodynamics, where �v is mapped to �v , but �ω is 
mapped to �B , and one restricts the configurations to the ones with 
�B = �ω = �∇ × �v . Instead, we can define a full map, from fluid to 
electromagnetism, by

�B = �ω = �∇ × �v, �E = −∂t �v − �∇h , (24)

which means that really �A = �v; At = h, though we have no gauge 
invariance now, since �v is physical (observable). Two of Maxwell’s 
equations �∇ · �B = �∇ × �E + ∂t �B = 0 are automatically satisfied, but 
from the Euler’s equations (19) we find the condition

�E = (�v · �∇)�v = �ω × �v + �∇
( �v2

2

)
= �B × �A + �∇

( �A2

2

)
, (25)

which does not hold for knotted solutions of Maxwell’s equations. 
At the linearized level however, it implies �E = 0, i.e., pure mag-
netism, and the continuity equation, in electromagnetic variables

∂t At + (�A · �∇)At + c2
s
�∇ · �A = 0 , (26)

becomes the Lorenz gauge condition, identifying cs with the speed 
of light.

Rather than mapping the full solution, we will use the map 
between electromagnetism and fluid variables at a fixed time

�v(t = 0, �x) = �A(t = 0, �x), h(t = 0, �x) = h0. (27)

Where h0 is an arbitrary constant. In this case the knotted solu-
tions supply initial conditions for Euler’s and continuity equations. 
The time-dependent solutions have non-zero helicity and corre-
spond to a fluid configurations of non-trivial topology.

In [33], knotted solutions for an incompressible fluid were (im-
plicitly) found by giving an initial condition of the form (23), 
where λ = cosϑ(�x), μ = ϕ(�x), with (ϑ, ϕ) the polar and azimuthal 
angles of a S2. � would be determined by the incompressibility 
condition, but finding an explicit solution is the main obstacle to 
obtaining an analytic expression for the velocity. We will avoid this 
issue by considering more general cases of compressible barotropic 
fluids, so the only constraint on � is that the velocity should be 
a smooth function of the spatial coordinates. Knotted solutions in 
Rañada’s construction can be mapped for instance using the Cleb-
sch decompositions (8) and (23), making λ = p, μ = q and � = χ , 
where p, q are given by (7) and φ can be taken to be (11) or (12). 
In terms of φ, the velocity is

�v = 1

4π i(1 + |φ|2)

( �∇φ

φ
− �∇φ∗

φ∗

)
+ �∇� . (28)

In addition, we present here an additional set of initial conditions 
for knotted solutions. Consider the stereographic projection of S3

on R3:

Xi = 2xi

1 + r2
, X4 = 1 − r2

1 + r2
. (29)

We define the complex coordinates Z1 = X1 + i X2, Z2 = X3 + i X4, 
that then we use them to define a φ
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φ = Zn
1

Zm
2

, n,m ≥ 1, n,m ∈ Z . (30)

A non-singular velocity is obtained for

� = − n

2π
arctan

( y

x

)
. (31)

The helicity of these configurations is Hv = −nm.

5. Electromagnetism as a fluid and its knotted solutions

Any gapless quantum system is expected to have an effective 
fluid description at low energies. For a relativistic system this 
means that the energy–momentum tensor can be put in the form

Tμν = ρuμuν + p(ημν + uμuν) + πμν , (32)

where uμ is the 4-velocity of the fluid, ρ is the energy density and 
p the pressure. πμν depends on derivatives of uμ , ρ and p. From 
∂μT μν = 0 we obtain the relativistic fluid equations. This program 
can be applied to any quantum system as in [34–37]. For a perfect 
fluid πμν = 0 we obtain in the non-relativistic limit uμ � (1, �v), 
|�v|2 � 1, p � ρ the continuity and Euler’s equations. However, in 
electromagnetism we can also find another, more unusual, fluid, a 
“null pressureless fluid”, or “null dust”, with p = 0 and uμuμ = 0.

As has been observed in [38], this is the case for null config-
urations with �E2 − �B2 = 0 and �E · �B = 0. In this case the electro-
magnetic energy–momentum tensor takes the form Tμν = ρuμuν , 
with uμ = (1, �v) (�v2 = 1) and

ρ = 1

2
(�E2 + �B2); �v = 1

ρ
�E × �B . (33)

The Hopfion solution determined by (3) and (4) is null, so we 
can map it to fluid dynamics. We find an energy density

ρ = 16
(
(t − z)2 + x2 + y2 + 1

)2

((
r2 − t2 + 1

)2 + 4t2
)3

. (34)

The velocity field is

vx = 2(y + x(t − z))

1 + x2 + y2 + (t − z)2
, v y = −2(x − y(t − z))

1 + x2 + y2 + (t − z)2
, (35)

and v2
z = 1 − v2

x − v2
y . The topological structure can be seen 

in Fig. 1. Although the fluid helicity Hv diverges due to non-
vanishing contributions at spatial infinity, these can be subtracted 
to produce a finite nonzero result. The velocity of the null fluid 
can be rewritten in terms of the RS vector �F and its complex con-
jugate �F ∗ , as

�v = 2i �F × �F ∗/�F · �F ∗. (36)

This implies that (m, n) knots, and more general null solutions 
found by the replacement in (3) α → f (α), β → g(β), have the 
same velocity as the Hopfion. On the other hand, the energy den-
sity ρ is different for each configuration.

5.1. Maps to non-relativistic fluids

Switching to lightcone coordinates, x± = t ± z, the velocity 
of the Hopfion solution (35), is independent of x+ , in such a 
way that it can be mapped to a solution of a non-relativistic 
2 + 1-dimensional system, with τ = x− playing the role of time 
coordinate. Defining βa by βa = va

1−vz , a = x, y, for any configura-
tion satisfying ∂+va = 0, the relativistic fluid equations become the 
Fig. 1. Orthogonal sections of the velocity field for the Hopfion solution, on the 
(x, y) plane (top) and (y, z) plane (bottom). Using rotational symmetry in the (x, y)

directions the linked torus structure is apparent.

2 + 1-dimensional Euler’s equations of a compressible fluid with 
velocity βa and constant pressure1:

∂τ βa + βb∂bβ
a = 0. (37)

In this description, the Hopfion solution is a spherical bouncing 
shock

βa = εab∂bψ̃ + τ∂aψ̃, ψ̃ = log(x2 + y2 − 1 − τ 2). (38)

If ∂+va = 0, it is also possible to establish a map to an incom-
pressible fluid. The relativistic fluid equations are

(1 − vz)∂τ va + vb∂b va = 0. (39)

At any fixed τ we can make an identification of the first term with 
the pressure in Euler’s equations

∂a p ≡ (1 − vz)∂τ va . (40)

Then va , p map to steady state (time-independent) solutions of Eu-
ler’s equations, with τ seen as a parameter. The Hopfion solution 
can be written as

va = εab∂bψ + τ∂aψ, ψ = log(1 + x2 + y2 + τ 2) . (41)

At τ = 0 the velocity satisfies the incompressibility condition 
∂a va = 0. In this case, an explicit solution to (40) can be found

1 This map should not be confused with other non-relativistic limits of electro-
magnetism where the speed of light is taken to infinity [39].
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p = p∞ − 2

1 + x2 + y2
. (42)

This solution is a smooth vortex, it can be obtained by the stere-
ographic projection of a constant vorticity configuration on the 
sphere (see e.g. [18]). This map can also be used to give initial 
conditions, at τ = 0, for the null fluid, given a steady state (va

S , pS ) 
solution in 2 + 1 dimensions, by

va(τ = 0) = va
S , ∂τ va(τ = 0) = ∂a pS

1 − v2
S

. (43)
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