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Translational Relevance 

Small cell lung cancer (SCLC) is the most aggressive form of lung cancer. Currently, 

there are very few markers to predict survival or to guide treatment selection for SCLC 

patients. TDP1 gene plays a role in repairing DNA topoisomerases-mediated DNA 

damage and is believed to be responsible for drug resistance to DNA topoisomerase 

inhibitors (one of the common chemotherapeutic agents used for treating SCLC). To our 

knowledge, this is the first study to investigate germ line variation of TDP1 in relation to 

survival among SCLC patients. We found rs942190 GG genotype to be associated with 

poor survival among 890 SCLC patients. If confirmed in a large study, TDP1 rs942190 

genotype may be used as a prognostic marker for patients with SCLC or a predictive 

marker for treatment response to DNA topoisomerase inhibitors. 
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Abstract 

Purpose: DNA topoisomerase inhibitors are commonly used for treating small cell lung 

cancer (SCLC). Tyrosyl-DNA phosphodiesterase (TDP1) repairs DNA damage caused 

by this class of drugs and may therefore influence treatment outcome. In this study, we 

investigated whether common TDP1 single nucleotide polymorphisms (SNPs) are 

associated with overall survival among SCLC patients.  

Experimental Design: Two TDP1 SNPs (rs942190 and rs2401863) were analyzed in 

890 patients from 10 studies in the International Lung Cancer Consortium (ILCCO). The 

Kaplan-Meier method and Cox regression analyses were used to evaluate genotype 

associations with overall mortality at 36 months post-diagnosis, adjusting for age, sex, 

race, and tumor stage. 

Results: Patients homozygous for the minor allele (GG) of rs942190 had poorer 

survival compared to those carrying AA alleles, with a hazard ratio (HR) of 1.36 (95% 

confidence interval (CI): 1.08-1.72, p-value=0.01), but no association with survival was 

observed for patients carrying the AG genotype (HR=1.04, 95% CI:0.84-1.29, p-

value=0.72). For rs2401863, patients homozygous for the minor allele (CC) tended to 

have better survival than patients carrying AA alleles (HR=0.79, 95% CI: 0.61-1.02, p-

value=0.07). Results from the Genotype Tissue Expression (GTEx) Project, the 

Encyclopedia of DNA Elements (ENCODE), and the ePOSSUM web application support 

the potential function of rs942190.  

Conclusions: We found the rs942190 GG genotype to be associated with relatively 

poor survival among SCLC patients. Further investigation is needed to confirm the 

result and to determine whether this genotype may be a predictive marker for treatment 

efficacy of DNA topoisomerase inhibitors.  
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Introduction 

Small cell lung cancer (SCLC) is the most aggressive form of lung cancer, with a 5-year 

survival of only 7% (1). Despite rapid advances in cancer therapy, treatment and overall 

survival of SCLC patients has changed little over the past few decades (2,3). Unlike 

non-small cell lung cancer (NSCLC), in which several prognostic and predictive 

biomarkers have been identified and targeted clinically (4), there are relatively few 

markers to predict survival or to guide treatment selection for SCLC patients (reviewed 

in (2,5)). 

A combination of platinum chemotherapy and a DNA topoisomerase inhibitor is the first-

line chemotherapy for treating SCLC patients (6). DNA topoisomerases (TOP1 and 

TOP2) are important players during DNA replication and transcription as they introduce 

transient DNA strand breaks (7). TOP1 inhibitors (e.g. Irinotecan, Topotecan) and TOP2 

inhibitors (e.g. Etoposide, Teniposide) bind to DNA topoisomerases and generate drug-

stabilized DNA cleavage complexes, which eventually result in tumor cell death (8,9). 

Tyrosyl-DNA phosphodiesterase (TDP1) plays a role in repairing both TOP1- and 

TOP2-mediated DNA damage (10,11) and it is believed to be responsible for drug 

resistance to DNA topoisomerase inhibitors (12,13). A study in SCLC cell lines suggests 

that the TDP1/TOP1 ratio may be an indicator for the response of SCLC to Topotecan 

(14); however, confirmation in SCLC tissue is lacking. Limited available tissue for such 

confirmation presents a challenge, since only a small portion of SCLC patients receive 

surgical resection.  

Developing a blood-based marker to predict drug response would be useful to inform 

appropriate treatment for SCLC patients. Since TDP1 plays a role in resistance to DNA 

topoisomerase inhibitors, it is plausible that patients carrying a TDP1 variant may 

respond differently to treatment, thus having different survival outcomes. There are very 

few studies on TDP1 single nucleotide polymorphisms (SNP) (15-17) and, to the best of 

our knowledge, none have examined TDP1 SNPs in relation to SCLC survival. In this 

study, we investigated whether common TDP1 SNPs are associated with overall 

survival among SCLC patients in a multicenter study from the International Lung Cancer 

Consortium (ILCCO, http://ilcco.iarc.fr).   

Materials and methods 

Study population 

This study consists of 898 SCLC patients from 10 ILCCO studies that have data on 

patient survival time and vital status (Table 1). Further details on the study population 

and source of data for each study are provided in the Supplementary Text. All 

participants provided written informed consent, and each study was approved by its 

local institutional review board. For the current study, SCLC includes small cell 

carcinoma, combined small cell cancer, and neuroendocrine carcinoma (ICD-O 8013, 

8041, 8042, 8043, 8044, 8045, 8246).  
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SNP selection and genotyping  

Tag SNPs for the TDP1 gene region (± 2.5 kb of the coding sequence) were identified 

using the Genome Variation Server (http://gvs.gs.washington.edu). SNPs were 

classified into bins with a pairwise linkage disequilibrium (LD) threshold of r² ≥ 0.8 using 

the IdSelect algorithm (18). The list of TDP1 tag SNPs based on the HapMap Phase I 

and II Centre d’Etude du Polymorphism Humain (CEU) population is shown in the 

Supplementary Table S1. One SNP per bin of the tag SNPs with an average minor 

allele frequency (MAF) ≥ 5% (a total of six SNPs) was selected by prioritizing on the 

SNP function class and predicted genotyping success based on Illumina assay design 

score. Six TDP1 tag SNPs (rs9488, rs942190, rs1286927, rs2401863, rs4143999, and 

rs12880397) were genotyped on 1,586 healthy controls and 793 lung cancer cases 

(including 137 SCLC) from the β-Carotene and Retinol Efficacy Trial (CARET) as part of 

a study on germ line variation in DNA repair genes and lung cancer risk (19,20). Four of 

the six SNPs had low MAF among SCLC patients (0.03-0.07) and were excluded from 

further investigation since a very large sample size would be needed to determine the 

effect of these SNPs. Thus, only two SNPs (rs942190 and rs2401863) were chosen for 

the current pooled analysis. These two SNPs are partially correlated, especially among 

individuals of European ancestry with r2
 of 0.63 (r2

(East Asian) = 0.26).  

The majority of genotype data for our pooled analysis were obtained from the 
OncoArray, a custom array manufactured by Illumina which contains approximately 
500K SNPs that provide genome-wide coverage of most common genetic variants 
along with markers of interest for common cancers (21). Genotype data from the Mayo 
Clinic and part of the genetic data from the Lunenfeld-Tanenbaum Research Institute 
were from existing genome-wide association studies (GWAS). Samples from CARET 
participants were genotyped using a custom-designed 384-plex GoldenGate assay 
(Illumina). Samples from Japan were genotyped using a pre-design (for rs942190) and 
a custom-design (for rs2401863) TaqMan assay (Applied Biosystems). Race-specific 
genotype frequencies for both SNPs were in agreement with Hardy-Weinberg 
equilibrium (Chi-square p-values for rs942190 among Whites, rs942190 among Asians, 
rs2401863 among Whites, and rs2401863 among Asians were 0.41, 0.14, 0.54, and 
0.20, respectively).  

Statistical analyses 

Clinical and genotype data were harmonized across studies. Characteristics of all 898 

patients by study site are summarized in Supplementary Table S2. Race was imputed 

as White for the 96 patients of unknown race since their genotype distributions for both 

SNPs were similar to those of White patients (Supplementary Table S3). Tumor stage 

was classified as limited stage (LS or stage I-III) and extensive stage (ES or stage IV). 

Chemotherapy drug use was classified as “TOP1 inhibitor” (received any TOP1 inhibitor 

along the courses of chemotherapy), “TOP2 inhibitor” (received any TOP2 inhibitor 

along the courses of chemotherapy), and “Other/Unknown” (i.e., not known to have 

received any TOP1 or TOP2 inhibitor). The “TOP1 inhibitor” group and the “TOP2 

inhibitor” group also contained patients who received both TOP1 and TOP2 inhibitors, 
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either at the same time (n=3) or switching from one to the other during the course of 

chemotherapy (n=40). The primary outcome was overall mortality as of 36 months post-

diagnosis (when deaths are commonly attributed to lung cancer), measured from the 

date of lung cancer diagnosis until the date of death, last contact, or censoring at 36 

months follow-up, whichever occurred first.  Disease-specific survival was not 

examined, since cause of death was missing for 43% of the patients. 

Survival analyses were performed using Kaplan-Meier survival plots and Cox 

proportional hazard regression models with a robust estimator of variance adjusting for 

age, sex, race (White vs. Asian), and tumor stage. Analyses were conducted to 

evaluate genotype and haplotype associations with overall mortality at 36 months post-

diagnosis. Six patients with no follow-up data and two patients with no genotype data for 

both SNPs were excluded from survival analyses. Of the remaining 890 patients, six 

and two did not have genotype data for rs942190 and rs2401863, respectively. Since 

the SNP genotype frequencies were quite different between Whites and Asians, we also 

conducted a subgroup analysis by race for each SNP. Analyses were performed using 

STATA® 14 (StataCorp, College Station, Texas). Haplotype analysis was performed 

using the THESIAS (Testing Haplotype Effects In Association Studies) software version 

3.1 (22), which is based on the Stochastic expectation maximization algorithm (23). 

Hazard ratios (HR) and 95% confidence intervals (CI) adjusting for age, sex, and tumor 

stage were calculated using the most common haplotype as the reference. Haplotype 

analysis was performed on White patients only since the two SNPs were correlated 

among Whites and sample sizes for Asian and other races were limited. 

Results 

Selected characteristics of patients included in the survival analyses are presented in 
Table 2. The majority of patients were male, non-Hispanic White, and either current or 
former smokers. There was a slightly higher proportion of patients with limited stage 
than extensive stage SCLC. Treatment was unknown for approximately 25% of the 
patients. Almost 90% of patients with known treatment received chemotherapy, among 
whom most received a TOP2 inhibitor. Approximately 90% of patients had died by the 
time of last follow-up and 87.5% of deceased patients died within 36 months after 
diagnosis of SCLC. The median follow-up time for patients who were alive at last follow-
up was 73 months (ranged from 3 to 234 months). The allele frequencies of the two 
SNPs differed between persons of European and East Asian ancestry. The MAFs of 
rs942190 (G allele) for White and Asian patients in this study were 0.49 and 0.23, 
respectively, and for rs2401863 (C allele) were 0.38 and 0.52, respectively.  Mean age 
at diagnosis was similar for patients in each genotype group. There was a slightly lower 
proportion of female and tumors of limited stage among patients with the rs942190 AA 
genotype compared to patients with the other two rs942190 genotypes. The proportions 
of tumor stage were comparable by rs2401863 genotype.  
 
Kaplan-Meier (KM) analyses for all patients with known vital status and genotype 
demonstrated poorer survival for patients homozygous for the minor allele (GG) of 
rs942190 compared to those carrying the other two genotypes (Figure 1a). For 
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rs2401863, better survival was associated with carrying both minor alleles (CC); 
however, the association was not statistically significant (Figure 1b). 
 
The results from multivariable Cox regression analyses (Table 3) were consistent with 
the results from Kaplan-Meier analyses. Patients carrying GG of rs942190 had poorer 
survival compared to those with the AA genotype, with a HR of 1.36 (95% CI: 1.08-1.72, 
p-value=0.01), but no association with survival was observed for patients with the 
heterozygous (AG) genotype (HR=1.04, 95% CI: 0.84-1.29, p-value=0.72). The HRs 
associated with the presence of the GG genotype were in the same direction for Whites 
and Asians. For rs2401863, patients carrying two minor alleles (CC genotype) tended to 
have better survival than patients carrying the AA genotype (HR=0.79, 95% CI: 0.61-
1.02, p-value=0.07); however, this inverse association with survival was observed only 
in White patients (HR=0.71, 95% CI: 0.54-0.94, p-value=0.02). The association was, if 
anything, in the opposite direction among Asian patients (HR=2.11, 95% CI: 0.90-4.95, 
p-value=0.09). The most common haplotype among White patients was the haplotype 
containing the G allele of rs942190 and the A allele of rs2401863 (the risk haplotype). 
The haplotype containing the rs942190 A allele and the rs2401863 C allele was 
associated with better survival, compared to the most common haplotype (HR=0.84; 
95% CI: 0.73-0.95, p-value=0.008). 
 
We also examined potential functional consequences of the two SNPs using a single 
tissue expression quantitative trait loci (eQTL) analysis from the Genotype-Tissue 
Expression (GTEx) Project (www.gtexportal.org). The GTEx Project, funded by The 
National Institutes of Health Common Fund, has collected and analyzed genomic 
variation from blood and gene expression in multiple tissues of the non-diseased donor 
in order to determine how genetic variation affects gene expression in human tissues 
(24). Based on the analysis available from the GTEx website, TDP1 gene expression 
was higher in lung tissues of people with the GG genotype of rs942190 than of people 
with AG or AA genotypes (p-value = 0.0008) (Figure 2). In contrast, there was minimal 
difference of TDP1 gene expression in lung tissue across rs2401863 genotypes (p-
value=0.12). 
 
Based on SNP functional prediction (http://snpinfo.niehs.nih.gov/snpinfo/snpfunc.html) 
(25), rs942190 may affect TDP1 expression by residing in a transcription factor binding 
site (TFBS). We further investigated which transcription factors (TF) bind to this region 
using data from the Encyclopedia of DNA Elements (ENCODE). The ENCODE project 
has performed a large number of ChIP-seq experiments on multiple cell lines to identify 
TFBSs across the human genome (26-28). Table 4 shows the list of 21 TFs identified by 
ENCODE that could bind to the TFBS in the location that rs942190 resides. In addition, 
we used a freely accessible web-based application called ePOSSUM 
(http://mutationtaster.charite.de/ePOSSUM/) by Hombach et al. (29) to assess the 
impact of the T(A) and C(G) alleles of rs942190 on TF binding. ePOSSUM allows user 
to enter either the genomic position of the SNP (based on human genome assembly 
GRCh37) or the wild-type and variant sequences. The output shows predicted TF 
binding scores of 81 TFs from three sources (JASPAR, HT-SELEX, and hPDI) as well 
as a summary of prediction whether the genetic alteration leads to the gain or loss of TF 
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binding. Of the 21 TFs identified by ENCODE, nine have data available on the 
ePOSSUM website. Using rs942190 location (Chr14:90422414T>C) as an input on the 
website, six of the nine TFs were predicted to have a different binding affinity to the T(A) 
and C(G) allele. These included CTCF, MAX, MYBL2, RBBP5, TFAP2A, and TFAP2C 
(Table 4).     
 
Discussion   

To our knowledge, the current study is the first to investigate germline variation of TDP1 
in relation to survival among SCLC patients. Leveraging data from ten ILCCO studies, 
we analyzed a fairly large cohort of SCLC patients with near complete follow-up at 36 
months.  Of the two SNPs examined, we found the rs942190 GG genotype to be 
associated with poorer overall survival compared to AA genotype.  
 
Several lines of evidence support the potential function of rs942190 including the results 
from GTEx, ENCODE, and ePOSSUM (25). It has been shown that overexpression of 
TDP1 in cell lines could counteract the effect of DNA topoisomerase inhibitors (30); 
therefore, one would expect that patients with higher TDP1 in lung tissue may have 
more resistance to treatment with DNA topoisomerase inhibitors. The observed higher 
TDP1 expression in lung tissue of individuals with the rs942190 GG genotype from the 
GTEx analysis is in line with our finding that patients with the GG genotype had poorer 
survival than patients with the other two genotypes. However, this observation is based 
on healthy tissue; the effect of rs942190 GG genotype may be different in tumor tissue. 
No known studies have compared TDP1 expression in tumor versus adjacent non-
tumor tissue from SCLC patients, although increased TDP1 expression has been found 
in tumor tissue relative to adjacent non-tumor tissue from NSCLC patients (31,32). 
Conversely, we did not find a clear association between rs2401863 genotype and 
survival, which is consistent with the lack of association between the rs2401863 
genotype and TDP1 expression in lung tissue. Our observed association of the 
rs2401863 genotype with survival among White patients only may be due to the linkage 
with rs942190 SNP.  
 
The difference in TDP1 expression by rs942190 genotypes may be the result of 
differences in TF binding affinity. This SNP is located in the TFBS where several TFs 
bind (confirmed by cell line experiments from the ENCODE project). At least six TF 
were predicted (based on in silico analysis) to have different binding affinity between 
T(A) and C(G) alleles of rs942190. Although these six TFs are mostly well known, the 
effect of these TFs specifically on TDP1 gene expression has not been reported. CTCF 
could function as an enhancer or repressor (33); thus, the attenuation of binding may 
result in either increasing or decreasing transcription. MAX could also be either an 
enhancer (forming heterodimers with MYC, MYC-MAX) or a repressor (forming 
heterodimers with MAD, MAD-MAX or homodimers, MAX-MAX) (34-36). 
Overexpression of MYBL2 has been found in several cancer types and associated with 
poor patient outcomes (reviewed in (37)). Moreover, studies in cell lines suggest that 
overexpression of MYBL2 is associated with resistance to chemotherapeutic agents 
(including etoposide) and radiation (38-40). It is plausible that one mechanism of 
resistance to topoisomerase inhibitor or radiation is through activation of TDP1 
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expression by MYBL2. Patients with the rs942190 GG genotype could have higher 
MYBL2 binding affinity, thus having higher TDP1 expression that causes their tumors to 
be relatively more resistant to the treatment. Further study is needed to investigate this 
possibility. The protein encoded by TFAP2A and TFAP2C (AP-2α and AP-2γ) could 
activate or repress transcription of their target genes (41,42). One study has found that 
decreasing AP-2α and AP-2γ function in breast cancer cell lines leads to an increase in 
sensitivity to a topoisomerase inhibitor and radiation (43). However, further study is 
needed to determine if there is a link between AP-2α and AP-2γ and TDP1 expression. 
 
The majority of the data used in this analysis came from etiologic studies of lung cancer, 
and so the data on treatments received by patients often were limited. The treatment 
method and the name of chemotherapeutic agents used were unknown for 
approximately 30% of patients in this study. The majority of patients with unavailable 
treatment data were from the Harvard cohort. However, the chemotherapy regimen 
most commonly used in initial treatment of SCLC at Harvard is etoposide (TOP2 
inhibitor) plus cisplatin or carboplatin, a regimen similar to that of other institutions. 
Thus, we would expect that the majority of patients with unknown treatment would have 
received similar treatment to the rest of patients. Based on the available data, we 
explored whether the association of rs942190 with survival differed between patients 
who received TOP1 and TOP2 inhibitors. We found a stronger association among 
patients who received TOP1 inhibitor (HR comparing GG vs. AA adjusting for age, sex, 
race, and tumor stage = 1.58; 95% CI: 0.87-2.87) compared to those receiving TOP2 
inhibitor (aHR=0.99; 95% CI: 0.73-1.34). When we excluded patients who received both 
TOP1 and TOP2 inhibitors, the magnitude of association was stronger among patients 
receiving a TOP1 inhibitor (n=47, aHR = 1.92; 95% CI: 0.73-5.06). The adjusted HR for 
those receiving a TOP2 inhibitor without a TOP1 inhibitor (n=354) was 0.96 (95% CI: 
0.69-1.33). However, since the sample size for patients who received a TOP1 inhibitor 
is quite small, and important data such as chemotherapy completion and response to 
treatment were unavailable, we are not able to conclude that the association of 
rs942190 with survival differs among patients receiving different type of topoisomerase 
inhibitors.  
 
In addition to repairing DNA damage produced by TOP1 and TOP2 inhibitors, an effect 
of TDP1 on DNA repair caused by radiation has been reported (11,44). Thus, we further 
explored the association of rs942190 genotype with overall survival among patients 
known to have received radiation (n=290), and found that patients with the GG 
genotype tended to have poorer survival compared to patients with the AA genotype 
(aHR=1.36; 95% CI: 0.95-1.97). The association was stronger among patients who 
received both a TOP1 inhibitor and radiation therapy (n=36, aHR=4.31; 95% CI: 1.1-
16.80) but not for those who received a TOP2 inhibitor and radiation (n=221, aHR=1.18; 
95%CI: 0.78-1.81). We did not observe an association with survival among those who 
did not receive radiation therapy (n=287, aHR comparing rs942190 GG to AA genotype 
= 1.09; 95% CI: 0.76-1.55).   
 
In conclusion, our study suggests an association between rs942190 genotype and 
overall survival at 36 months after SCLC diagnosis. The association may be different 
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among patients who received different treatment regimens, with respect to both 
chemotherapy and radiation. Further assessment of the genotype-survival association 
in a larger study with more detailed and complete treatment data is needed to confirm 
our findings.    
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Table 1. Studies included in the pooled analysis 

Study Name Principal Investigator Country n 

CAncer de PUlmon en Asturias (CAPUA) Adonina Tardón  Spain 137 

Environment and Genetics in Lung Cancer Etiology (EAGLE) Maria Teresa Landi  Italy 189 

Epidemiology & Genetics of Lung cancer study (EGLC), Mayo Clinic Ping Yang  USA 74 

FHCRC Molecular Epidemiology of Lung Cancer (Ancillary study to CARET) Chu Chen USA 137 

Harvard Lung Cancer Study (LCS)   David C. Christiani  USA 176 

Japan lung cancer study  Kouya Shiraishi  Japan 87 

Kentucky Lung Cancer Research Initiative (LCRI) Susanne M. Arnold USA 8 

Liverpool Lung Project (LLP) John K. Field  UK 55 

Toronto lung cancer study* Rayjean J. Hung, Geoffrey Liu  Canada 25 

Total Lung Cancer: Molecular Epidemiology of Lung Cancer Survival (TLC) Matthew B. Schabath USA 10 

* from Mount Sinai Hospital and Princess Margaret Cancer Centre (MSH-PMH) study and Great Toronto Area Study 
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Table 2. Selected characteristics of SCLC patients by genotype 

 
Total  rs942190 (n=884) rs2401863 (n=888) 

  (n=890)  AA (n=259) AG (n=423) GG (n=202) AA (n=336) AC (n=408) CC (n=144) 

Age at diagnosis, 
years  

       
     Range 24 - 87 24 - 87 39 - 85 39 - 86 34 - 86 39 - 85 24 - 87 

     Mean (SD) 65.7 (8.8) 65.4 (9.0) 65.8 (8.3) 65.9 (9.5) 66.2 (9.0) 65.2 (8.4) 65.7 (9.4) 

Sex 
       

     Female 294 (33.0%) 77 (29.7%) 149 (35.2%) 67 (33.2%) 110 (32.7%) 140 (34.3%) 44 (30.6%) 

     Male 596 (67.0%) 182 (70.3%) 274 (64.8%) 135 (66.8%) 226 (67.3%) 268 (65.7%) 100 (69.4%) 

Race 
       

     White* 798 (89.7%) 206 (79.5%) 395 (93.4%) 195 (96.5%) 312 (92.9%) 367 (90.0%) 118 (81.9%) 

     Asian 87 (9.8%) 51 (19.7%) 25 (5.9%) 7 (3.5%) 23 (6.9%) 37 (9.1%) 26 (18.1%) 

     Others 5 (0.6%) 2 (0.8%) 3 (0.7%) 0 1 (0.3%) 4 (1.0%) 0 

Ethnicity 
       

     Hispanic 2 (0.6%) 0 1 (0.7%) 1 (1.3%) 2 (1.5%) 0 0 

     Not Hispanic 354 (99.4%) 128 (100%) 146(99.3%) 76 (98.7%) 128 (98.5%) 159 (100%) 66 (100%) 

     Unknown 534 131 276 125 206 249 78 

Smoking Status 
       

     Never 43 (4.9%) 15 (5.8%) 13 (3.1%) 14 (7.0%) 24 (7.1%) 10 (2.5%) 9 (6.3%) 

     Former 306 (34.7%) 84 (32.4%) 158 (37.9%) 62 (30.8%) 110 (32.7%) 145 (36.1%) 51 (35.4%) 

     Current 534 (60.5%) 160 (61.8%) 246 (59.0%) 125 (62.2%) 201 (59.8%) 247 (61.4%) 84 (58.3%) 

     Unknown 7 0 6 1 1 6 0 

Tumor Stage 
       

     Limited Stage 418 (57.3%) 117 (54.9%) 203 (59.2%) 97 (57.7%) 162 (57.9%) 186 (56.7%) 69 (58.0%) 

     Extensive Stage 311 (42.7%) 96 (45.1%) 140 (40.8%) 71 (42.3%) 118 (42.1%) 142 (43.3%) 50 (42.0%) 

     Unknown 161 46 80 34 56 80 25 

Chemotherapy        

     Yes 598 (88.7%) 186 (88.2%) 265 (89.5%) 142 (87.7%) 228 (87.0%) 269 (90.6%) 99 (87.6%) 

     No 76 (11.3%) 25 (11.8%) 31 (10.5%) 20 (12.3%) 34 (13.0%) 28 (9.4%) 14 (12.4%) 

     Unknown 216  48 127 40 74 111 31 

Chemotherapy Drug**        

     TOP1 inhibitor 94 (15.7%) 35 (18.8%) 39 (14.7%) 17 (12.0%) 29 (12.7%) 44 (16.4%) 20 (20.2%) 

     TOP2 inhibitor 434 (72.6%) 130 (69.9%) 189 (71.3%) 113 (79.6%) 176 (77.2%) 190 (70.6%) 67 (67.7%) 

     Other/Unknown 113 (18.9%) 31 (16.7%) 58 (21.9%) 24 (16.9%) 40 (17.5%) 55 (20.4%) 18 (18.2%) 

Radiation        

     Yes 316 (47.7%) 90 (43.1%) 144 (50.3%) 80 (49.7%) 128 (49.0%) 141 (49.1%) 46 (41.1%) 

     No 346 (52.3%) 119 (56.9%) 142 (49.7%) 81 (52.1%) 133 (51.0%) 146 (50.9%) 66 (58.9%) 

     Unknown 228 50 137 41 75 121 32 

Vital Status at 3 years 
       

     Alive 191 (21.5%) 64 (24.7%) 98 (23.2%) 27 (13.4%) 61 (18.2%) 89 (21.8%) 41 (28.5%) 

     Death 699 (78.5%) 195 (75.3%) 325 (76.8%) 175 (86.6%) 275 (81.8%) 319 (78.2%) 103 (71.5%) 

* included White and unknown race (imputed as White) 
** The denominator for the percentage of this variable is the total number of patients who received chemotherapy. The counts 
presented are not mutually exclusive, since some patients received both TOP1 and TOP2 inhibitors. 
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Table 3. Results of multivariable Cox proportional regression analyses 

SNP Genotype Adjusted HR* [95% CI] p-value 

rs942190 (all) AA 1.00 
 

 
AG 1.04 [0.84, 1.29] 0.719 

 
GG 1.36 [1.08, 1.72] 0.010 

     White** only AA 1.00 
 

 
AG 1.09 [0.87, 1.36] 0.458 

 
GG 1.39 [1.09, 1.77] 0.008 

     Asian only AA 1.00 
 

 
AG 0.50 [0.21, 1.19] 0.116 

  GG 1.38 [0.63, 2.98] 0.420 

rs2401863 (all) AA 1.00 
 

 
AC 0.91 [0.76, 1.10] 0.332 

 
CC 0.79 [0.61, 1.02] 0.071 

     White** only AA 1.00 
 

 
AC 0.91 [0.76, 1.11] 0.354 

 
CC 0.71 [0.54, 0.94] 0.016 

     Asian only AA 1.00 
 

 
AC 0.94 [0.40, 2.20] 0.885 

  CC 2.11 [0.90, 4.95] 0.085 

 Haplotype   

rs942190/rs2401863  GA 1.00  

(White** only) AC 0.84 [0.73-0.95] 0.008 

 
AA 0.88 [0.73-1.06] 0.165 

 
GC 0.85 [0.51-1.42] 0.541 

* adjusted for age, sex, race, and tumor stage for all patients and adjusted 
for age, sex, and tumor stage for subgroup analyses 
**  including White and unknown race (imputed as White) 
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Table 4. Transcription factors (TFs) identified by ENCODE that could bind to the transcription 

factor binding site at the location that rs942190 resides and the prediction of TF binding 

comparing between T and C allele of rs942190 based on ePOSSUM. 

Transcription Factor Summary prediction based on ePOSSUM 

AP-2gamma not included in ePOSSUM database 

ATF2 not included in ePOSSUM database 

CCNT2 not included in ePOSSUM database 

CHD1 not included in ePOSSUM database 

CTCF attenuation of TF binding for C allele compared to T allele 

E2F1 no definite result 

E2F6 no definite result 

ELF1_(SC-631) not included in ePOSSUM database 

HA-E2F1 not included in ePOSSUM database 

HDAC1 not included in ePOSSUM database 

MAX attenuation of TF binding for C allele compared to T allele 

MYBL2 enhancement of TF binding for C allele compared to T allele 

MYC not included in ePOSSUM database 

PHF8 not included in ePOSSUM database 

Pol2 not included in ePOSSUM database 

Pol2-4H8 not included in ePOSSUM database 

POLR2A not included in ePOSSUM database 

RBBP5 enhancement of TF binding for C allele compared to T allele 

TCF3 no definite result 

TFAP2A enhancement of TF binding for C allele compared to T allele 

TFAP2C enhancement of TF binding for C allele compared to T allele 
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Figure Legends 

 

Figure 1.  

Kaplan-Meier survival curves among 890 patients with SCLC. A, Stratified by rs942190 

genotype. B, Stratified by rs2401863 genotype. 

 

Figure 2.  

Box plot from the Genotype-Tissue Expression (GTEx) Project demonstrated higher TDP1 gene 

expression in lung tissues of individuals with rs942190 GG genotype compared to other 

genotypes. HomoRef, Het, and Homo Alt refer to individuals with AA, AG, and GG genotype, 

respectively. 
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