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Abstract — In this paper a bi-objective multi-product model for the design of a 

production/distribution supply chain logistic network with four echelons is considered. 

The proposed optimization model minimizes the total cost of the network (including the 

fixed cost to open facilities and the transportation costs between them) and the total CO2 

emissions. Five factors (network size, product complexity, cost variability, CO2 

emissions generation and over-capacity) are considered for the experimental framework. 

The problem is solved using the ε-constraint method and the resulting Pareto frontiers 

are characterized using five new metrics specifically developed for analysing how those 

factors affect the resulting optimal configurations. The results show that over-capacity 

and product complexity are the two most influential factors regarding the characteristics 

of the Pareto frontier, and that their effects are in the same direction: more complexity 

and capacity mean a wider set of optima alternatives, some close to the ideal point, and 

in general with a smaller number of links used. 
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1. Introduction 

A supply chain logistic network can be described as a graph where the nodes 

represent suppliers, producers/manufacturers, distribution centres, warehouses, and 

customers; and the set of arcs represent the transportation links between these facilities. 

Although there are other nodes that can be considered when designing a supply chain 

logistic network (e.g. recycling centres, assemblers, recovery plants) those four echelons 

are those traditionally taken into account when analysing supply networks (Sabri and 

Beamon, 2000). 

During the last decades the study of logistic networks has grown notably with 

many works studying different kinds of problems related to supply chains. Note that 

most of these studies only consider a single objective function, usually cost 

(Mangiaracina et al., 2015). However, this may be insufficient today due to the increase 

in the complexity of the management of supply chains in recent decades, with an 

increase in competition, lead times reduction, operational risk, environmental 

constraints, etc. Hence, considering multiple objectives simultaneously when designing 

logistics structures is a field that represents a more realistic view of the current situation. 

This research effort in designing better multiobjective logistics networks is 

expanding this field and involves different approaches. They can be divided into 

different groups according to their research objectives, the corresponding decisions in 

the design process, and the corresponding solution methodologies.  

Regarding the first dimension, there are many different objectives that have been 

studied simultaneously in multiobjective optimization problems; revenue, sustainability, 

lead times, service level, financial criteria, and production-related objectives are the 

most popular. Profit-related objectives are included in almost every piece of research 

because minimization of costs (or maximization of profit) is generally considered as the 
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first key objective. The rest of the objectives can be found in combination with the cost 

minimization objective, depending on the particular interest of the company or 

researcher, with sustainability, lead time and service level (i.e. percentage demand 

fulfilled) as the most popular. Figure 1 gives a summary of the number of references 

dealing with multiobjective approaches to logistic network design. 

--------------------------------------------FIGURE 1----------------------------------- 

The second dimension, namely the decisions to be made in a logistic network 

design process, is another important aspect when dealing with a multiobjective problem. 

The most common decisions in a logistic network are the facilities’ locations and the 

transportation flows. There are some cases where this problem is extended to include 

capacity decisions both for the facilities and the transportation links, or routing (Lopes 

et al., 2013). Other decisions in multiobjective logistic networks that are frequently 

studied are the number of products manufactured, the inventory levels of the facilities 

and the uncertainty level (Mangiaracina et al., 2015). 

Finally, regarding the solution methodologies for multiobjective logistic network 

design problems, many different alternatives exist, including exact and metaheuristic 

methods, depending on the type of mathematical model and its complexity. A well 

known taxonomy for multiobjective optimization techniques can be found in Marler and 

Arora (2004), which presented a review dividing them into methods with no articulation 

of preferences, methods with a priori articulation of preferences, methods with a 

posteriori articulation of preferences (which include multiobjective evolutionary 

algorithms) and interactive multiobjective optimization methods. 

Regardless of whether a single objective or a multiobjective approach is used to 

design a supply chain network, it is clear that there are many factors, some of them 

uncontrollable (e.g. infrastructure, Customs clearance, etc., see Önsel Ekici et al., 2016) 
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that affect the optimal design. In their review of the topic, Mangiaracina et al. (2015) 

identified 42 factors affecting the performance of supply chain networks, which they 

grouped into five clusters; the most recurrent were related to demand as well as to 

service requirement. They note that issues, such as the number of plants and 

specialisation level of factories, have been considered in many researches (e.g. 

Ambrosino and Scutella, 2005). Also, supplier related variables, such as number of 

suppliers and items, are relevant from the point of view of the modeller (Creazza et al., 

2010). Many researchers have studied how some relevant factors, such as network size 

(e.g. Özceylan, 2016), or collection complexity in the case of reverse supply chains (e.g. 

Zikopoulos and Tagaras, 2015), affect the design of the supply chain, but these studies 

generally consider a single criterion, namely cost minimization. To the best of our 

knowledge there has not been any previous attempt to study how different factors affect 

the performance of a supply network gauged using multiple objective functions. 

In this paper, we consider a bi-objective multi-product model for a 

production/distribution supply chain logistic network with four echelons (suppliers, 

plants, warehouses and customers). The aim of the model is to minimize the total cost of 

the network (including the fixed cost of suppliers, plants and warehouses, and the cost 

of the components’ flows between consecutive echelons) as well as to minimize the 

total CO2 emissions (including the total CO2 emissions of the facilities and of transport). 

Regarding the solution methodology, the ε-constraint method (Ehrgott and Ruzika, 

2008) is used to find the set of Pareto-optimal solutions for the problem. The research 

objective is to use this modelto better understand how the quality of the potential 

solutions (in terms of cost and CO2 emissions targets) change, depending on certain 

characteristics of the network (size, complexity, capacity, cost variability, etc.). Note 

that this means analysing the characteristics of different Pareto-optimal solutions sets, 

each one corresponding to a different instance, trying to come to some conclusions 
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about the nature of the solutions, depending on some factors characterizing the 

instances. As far as we are aware, nothing similar has been done before. There are many 

papers (see for example Berezkin and Lotov, 2014) that compare different 

approximations of the Pareto frontier (PF) (obtained using different methods) but for a 

specific instance. However, in this paper we compute, using the -constraint method, the 

PF corresponding to different instances, proposing different metrics to analyse and 

compare the characteristics of these solutions sets. 

The structure of the paper is as follows. In section 2 a brief literature review of 

multiobjective production/distribution networks is presented. In section 3 the bi-

objective model and the proposed solution methodology are presented. Section 4 reports 

the results of the experimental design carried out. Finally, in section 5, the summary and 

conclusions of this study are presented. 

2. Literature review 

Although supply production/distribution networks have been studied for years it 

has not been until recently that researchers began to consider multiobjective supply 

chains’ designs. The different objectives considered in the literature can be classified 

into four main groups: economic, sustainability, service level and time-related. Since 

historically supply chain network design has been strongly linked to the profit/cost 

criterion, most of the multiobjective papers have at least one of their objectives related 

to economic aspects such as cost minimization, profit maximization or network present 

value (NPV) maximization. 

Several authors have considered, along with the economic objective, the 

minimization of the environmental impact or sustainability-related objectives. Thus, 

Luo et al. (2001) considered the maximization of productivity and the minimization of 

cycle time in addition to costs and environmental impact. Meanwhile, Dotoli et al. 
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(2006) considered, as additional objectives, the minimization of both energy 

consumption and total lead time. For measuring the environmental impact Life Cycle 

Assessment (LCA) is the most common methodology. Thus, for example, Amin and 

Zhang (2013) modified their three-echelon closed-loop supply chain network cost 

minimization model, introducing environmental issues and defining new parameters for 

the use of environmentally friendly materials and clean technology. You et al. (2012) 

also used LCA in the design of sustainable cellulosic biofuel supply chains. Other 

researchers have used well-known Life Cycle Impact Assessment (LCIA) 

methodologies, such as Eco-Indicator 99 (e.g. Hugo and Pistikopoulos, 2005; Pishvaee 

and Razmi, 2012) or Ecoinvent (e.g. Ruiz-Femenia et al., 2013). But perhaps the most 

common multiobjective approach is to minimize cost and CO2 emissions (e.g. Nurjanni 

et al., 2017), sometimes also minimizing other pollutants (e.g. Kadziński et al., 2017). 

Another type of objective that is often studied, combined with cost 

minimization, is related to the time dimension, such as minimizing tardiness, lead time 

or transport time. Thus, for example, Farahani and Elahipanah (2008) designed a three-

echelon supply chain to determine the transportation flows between facilities by 

considering two objective functions: the minimization of transportation, holding and 

purchasing costs, and minimization of the earliness and tardiness of deliveries. 

Similarly, cost and tardiness minimization can be found in Du and Evans (2008) and 

Pishvaee and Torabi (2010). These two objectives plus a third one (maximization of the 

coverage of customer zones) can be found in Li et al. (2012); they study the location of 

the collection points and repairing centres as well the transportation flows among 

facilities in a reverse logistics network. Minimizing costs and delays are also considered 

in Javanshir et al. (2012); these determine the production plan, flows and number of 

distribution centres that must be opened to satisfy customers’ demand. Other 

researchers (e.g. Cardona-Valdés et al., 2011; Olivares-Benitez et al., 2012) have 
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studied the Capacitated Fixed Cost Facility Location Problem with Transportation 

Choices determining the location of distribution centres and the flows between the 

facilities, in order to minimize the costs and transportation time of the product from the 

plant to the customer. 

Another objective, usually related to time, is maximization of the customer 

service level (a.k.a. fill or service rate). That is because improvements in transportation 

times, tardiness or delivery times, lead to improvements in customer service levels. 

Pishvaee et al. (2010) studied an integrated forward/reverse network determining the 

location, number and capacity of facilities and the transportation flows between them. 

They considered as objectives the minimization of the total cost of the system and the 

maximization of the responsiveness as the ratio of the quantity of products shipped from 

distribution centres to customers and the total amount of products demanded by 

customers. Latha Shankar et al. (2013) measured the customer service level by the 

product fill rate and the cycle service level (i.e. fraction of replenishment cycles that 

result in all the customer demands being met). Razmi et al. (2013) also considered the 

service level by maximizing the coverage percentage of customer demand delivered 

within the preferred delivery lead time, by considering multiple scenarios with a given 

probability of occurrence. 

Other criteria that can be found in combination with cost minimization include 

total cost variance and financial risk (Azaron et al., 2008) and delivery reliability 

(Pokharel, 2008). It is also common, in the case of closed-loop supply chains, to 

minimize costs and risk due to uncertainty in demand, recovery and disposal rates (e.g. 

Dai and Dai, 2016). 

There are also studies that maximize profit instead of minimizing cost. Thus, for 

example, Chen et al. (2003) consider as objectives the maximization of profit and the 

maximization of the average inventory level. Chen and Lee (2004) added to those 
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objectives the maximization of the average customer service level and the maximization 

of the network robustness. Franca et al. (2010) considered as objectives the 

maximization of profit and the minimization of the suppliers’ defects. Pinto-Varela et 

al. (2011) combined the maximization of profit with minimization of the environmental 

impact. Amin and Zhang (2012) maximize profit, minimize defect rates and maximize 

the importance of external suppliers. Ramezani et al. (2013) maximize total profit and 

customer service level and minimize total defective raw material. 

3. Methodology 

Let us consider a standard supply chain logistic network (e.g. Sabri and Beamon, 

2000; Pokharel, 2008) with four echelons (suppliers, plants, warehouses and customers; 

see Figure 2) in a multiproduct environment where the customer demand for each 

product is known. The aim of the problem is to satisfy the demand of each customer 

from the different plants using the appropriate warehouses and suppliers’ configuration. 

--------------------------------------------FIGURE 2----------------------------------- 

We will consider a bi-objective optimization approach, taking into account on 

the one hand the minimization of the total cost, and on the other hand the minimization 

of the total CO2 emissions. Two different costs are considered: fixed cost (i.e., the 

operating cost of the facilities) associated with each node of the graph (excluding 

customers), and the costs of the transportation links between nodes (i.e. the 

transportation costs between facilities, and between facilities and customers). Regarding 

the emissions, each node (again excluding customers) and transportation link has an 

associated index, which represents the amount of emissions generated expressed as a 

percentage of the flow in that node or link. 
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The operation of the supply chain represented in our model is as follows: 

suppliers provide components and raw materials to plants for manufacturing the 

products. The number of components and the composition of products (i.e. the quantity 

of each component needed to be manufactured) are known as well as the typs of 

components that can be provided by each supplier. With the components/raw materials 

received from suppliers, plants manufacture the products and send them to warehouses. 

Finally, products are distributed from warehouses to each customer satisfying their 

demand. We consider a capacitated model, i.e. every facility and transportation link has 

an associated limit on the amount of each product or component processed or 

transported. 

The notation used in our model is as follows (see Figure 2): 

K: Set of products to manufacture. 

B: Set of components/raw materials needed for the manufacture. 

B(k): Set of components/raw materials needed to manufacture product k. 

S(b): Set of suppliers that provide component/raw material b. 

P(k): Set of plants that manufacture product k. 

𝐷𝑐
𝑘: Demand of customer c for product k. 

𝑔𝑏
𝑘 : Quantity of component/raw material b needed to manufacture a unit of 

product k. 

𝑈𝑠
𝑏: Capacity of suppliers as regards component/raw material b. 

𝑈𝑝
𝑘 ,𝑈𝑤

𝑘 : Capacity of plant p and warehouse w, respectively, as regards product k. 

𝑈𝑠𝑝
𝑏 , 𝑈𝑝𝑤

𝑘 , 𝑈𝑤𝑐
𝑘 : Transport capacities between two consecutive echelons. 
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𝑐𝑠𝑝
𝑏 , 𝑐𝑝𝑤

𝑘 , 𝑐𝑤𝑐
𝑘 : Transport unit cost between two consecutive echelons. 

𝐹𝑠, 𝐹𝑝 ,𝐹𝑤: Fixed operating cost for suppliers, plants and warehouses. 

𝑟𝑠𝑝
𝑏 , 𝑟𝑝𝑤

𝑘 , 𝑟𝑤𝑐
𝑘 : Emission rate between two consecutive echelons. 

𝑟𝑠
𝑏 , 𝑟𝑝

𝑘 , 𝑟𝑤
𝑘 : Emission rate of suppliers, plants and warehouses. 

𝑧𝑠, 𝑧𝑝 , 𝑧𝑤: Binary variables for the opening of suppliers, plants and warehouses. 

𝑥𝑠𝑝
𝑏 , 𝑥𝑝𝑤

𝑘 ,𝑥𝑤𝑐
𝑘 : Quantity of material sent between two consecutive echelons. 

With all this information, the proposed model used for deciding the optimal 

configuration is [1]-[12]: 

𝑀𝑖𝑛 ∑ ∑ ∑ 𝑐𝑤𝑐
𝑘 ∙ 𝑥𝑤𝑐

𝑘

𝑐𝑤𝑘

+ ∑ ∑ ∑ 𝑐𝑝𝑤
𝑘 ∙ 𝑥𝑝𝑤

𝑘 +

𝑤𝑝∈𝑃(𝑘)𝑘

 

         +∑ ∑ ∑ ∑ 𝑐𝑠𝑝
𝑏 ∙ 𝑥𝑠𝑝

𝑏

𝑠∈𝑆(𝑏)𝑏∈𝐵(𝑘)𝑝∈𝑃(𝑘)𝑘

+ ∑ 𝐹𝑤 ∙ 𝑧𝑤 + ∑ 𝐹𝑝 ∙ 𝑧𝑝

𝑝

+ ∑ 𝐹𝑠 ∙ 𝑧𝑠

𝑠𝑤

 

 

[1] 

𝑀𝑖𝑛 ∑ ∑ ∑(𝑟𝑤𝑐
𝑘 + 𝑟𝑤

𝑘)𝑥𝑤𝑐
𝑘

𝑐𝑤𝑘

+ ∑ ∑ ∑(𝑟𝑝𝑤
𝑘 + 𝑟𝑝

𝑤)𝑥𝑝𝑤
𝑘

𝑤𝑝∈𝑃(𝑘)𝑘

+ 

         +∑ ∑ ∑ ∑ (𝑟𝑠𝑝
𝑏 + 𝑟𝑠

𝑏)𝑥𝑠𝑝
𝑏

𝑠∈𝑆(𝑏)𝑏∈𝐵(𝑘)𝑝∈𝑃(𝑘)𝑘

 

 

[2] 

s.t.  

∑ 𝑥𝑤𝑐
𝑘

𝑤

= 𝐷𝑐
𝑘      ∀𝑐 ∀𝑘 [3] 

∑ 𝑥𝑝𝑤
𝑘

𝑝∈𝑃(𝑘)

= ∑ 𝑥𝑤𝑐
𝑘

𝑐

     ∀𝑤 ∀𝑘 [4] 

∑ 𝑥𝑠𝑝
𝑏

𝑠∈𝑆(𝑏)

= ∑ 𝑔𝑏
𝑘

𝑘

∑ 𝑥𝑝𝑤
𝑘

𝑤

     ∀𝑝 ∀𝑏 [5] 
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𝑥𝑤𝑐
𝑘 ≤ 𝑈𝑤𝑐

𝑘      ∀𝑤 ∀𝑐 ∀𝑘 [6] 

𝑥𝑝𝑤
𝑘 ≤ 𝑈𝑝𝑤

𝑘      ∀𝑤 ∀𝑘 ∀𝑝 ∈ 𝑃(𝑘) [7] 

𝑥𝑠𝑝
𝑏 ≤ 𝑈𝑠𝑝

𝑏      ∀𝑝 ∈ 𝑃(𝑘)∀𝑏 ∈ 𝐵(𝑘) ∀𝑠 ∈ 𝑆(𝑏) [8] 

∑ 𝑥𝑤𝑐
𝑘

𝑐

≤ 𝑈𝑤
𝑘 ∙ 𝑧𝑤     ∀𝑤 ∀𝑘 [9] 

∑ 𝑥𝑝𝑤
𝑘

𝑤

≤ 𝑈𝑝
𝑘 ∙ 𝑧𝑝      ∀𝑘 ∀𝑝 ∈ 𝑃(𝑘) [10] 

∑ 𝑣𝑠𝑝
𝑏

𝑝

≤ 𝑈𝑠
𝑏 ∙ 𝑧𝑠     ∀𝑘 ∀𝑏 ∈ 𝐵(𝑘) ∀𝑠 ∈ 𝑆(𝑏) [11] 

𝑥𝑤𝑐
𝑘 ,𝑥𝑝𝑤

𝑘 , 𝑣𝑠𝑝
𝑏 ≥ 0     ∀𝑐 ∀𝑤 ∀𝑘 ∀𝑝 ∈ 𝑃(𝑘) ∀𝑏 ∈ 𝐵(𝑘) ∀𝑠 ∈ 𝑆(𝑏) [12] 

𝑧𝑤 , 𝑧𝑝 , 𝑧𝑠 ∈ {0,1}     ∀𝑤 ∀𝑝 ∀𝑠 [13] 

The first objective function represents the total cost, including the fixed cost of 

open suppliers, plants and warehouses, the cost of component/raw material flows 

between suppliers and plants, the cost of product flows between plants and warehouses, 

and the cost of product flows from warehouses to customers. The second objective 

function minimizes the total CO2 emissions, including the total CO2 emissions at the 

facilities and the total CO2 emissions due to transport. 

Regarding the constraints, [3] ensures that the demand of all customers must be 

satisfied; [4] ensures that the quantity of product k transported from the different plants 

to warehouse w is exactly the same as the total amount of product k transported from 

warehouse w to customers; [5] ensures that the quantity of component/raw material b 

transported from suppliers to plant p is equal (using the corresponding gozinto factors) 

to the quantity of products generated in plant p and hence transported from plant p to 
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warehouses; [6]-[7] ensure that the transportation flows of product k from plants to 

warehouses and from warehouses to customers do not exceed the corresponding 

capacities on those links; [8] ensures that the transportation flows of component/raw 

material b from suppliers to plants do not exceed the corresponding capacities on those 

links. Analogously, [9]-[11] ensure that the capacities of facilities are not exceeded. 

Finally, constraint sets [12] and [13] ensure that all flows are non-negative and that the 

facilities opening decision variables are binary, respectively. 

4. Experimental results 

In order to solve the above model, the ε-constraint method is used. This 

methodology, introduced by Haimes et al. (1971), consists of the minimization of the 

main objective function considering all the other objectives as additional constraints on 

the model, using the appropriate bounds (in our case, bounding the emissions while 

minimizing cost). By imposing successively decreasing bounds εi on the secondary 

objective function a sample of Pareto optimal solutions can be found. As seen in Figure 

3, when minimizing just the cost we obtain the point C of the PF with a total emissions 

of Em; if we minimize cost imposing an emission upper bound of 1=Em-, a new point 

in the PF is obtained, the same is done with 2=Em-2*=1- and so on until reaching 

the minimum value of emissions E*, which corresponds to a cost Cm. The value of , 

i.e. the separation between two successive upper bounds, depends on the number of 

Pareto optimal points that we want to compute. In our case, =(Em-E*)/21. 

As regards the ε-constraint method in general, an incorrect selection of bounds 

could lead to a formulation without a feasible solution. There are also multiple studies 

on the methods for the selection of the bounds reflecting preferences (e.g. Goicoechea et 

al., 1976; Cohon, 1978; Carmichael 1980). In our case, the emissions bounds go from 
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Em to E*, so finding a solution is guaranteed. In general, the solutions obtained using 

the ε-constraint method are weak Pareto-optimal and every weak Pareto-optimal point 

can be obtained if the feasible region is convex and all the objective functions are 

explicitly quasi-convex (Ruíz-Canales and Rufian-Lizana, 1995). If the solution is 

unique, then it is Pareto optimal. Anyway, even though any Pareto optimal solution can 

be found with some effort, there may be difficulties in specifying the corresponding 

upper bounds (Miettinen, 1999). 

--------------------------------------------FIGURE 3----------------------------------- 

4.1. Comparing Pareto frontiers 

For the analysis of the solutions of the proposed approach, we will generate 22 

points in each of the PFs for each instance solved: two corresponding to the extreme 

points in the PF (C and D in Figure 3) plus 20 intermediate points corresponding to 

bounding emission by  i = Em – i i=1..20, with =(Em-E*)/21. Although the number 

of non-dominated points computed in most papers dealing with PF estimation is much 

larger (which allows a much more precise determination of the PF), in our case the 

objective of the research is not to solve a specific instance. Instead, in our case, the 

objective of the research is to compare the behaviour of the PFs for problems with 

different characteristics, and for doing so, what we need is to identify the same number 

of points on the PF for each problem. In this case, we found that 22 points give enough 

information for that comparison. 

Having obtained the PF corresponding to the different instances, it is not 

straightforward how to compare those sets of solutions. For this purpose, we have 

developed five different measures for the evaluation of the PF that can be used to 

identify the main characteristics of each PF. The first three metrics are defined 

analysing the decision space (the optimum values of the decision variables such as open 
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facilities or links used), and the last two metrics are defined on the objective space (i.e., 

on the values of the two objective functions associated to each solution in the PF): 

1. Average difference in open facilities (ADOF).We note that each point of the 

PF corresponds to a specific design of the logistic network (i.e. a configuration), 

including open facilities and flows (Figure 3). Thus, apart from the associated 

network flows {𝑥𝑠𝑝
𝑏 , 𝑥𝑝𝑤

𝑘 ,𝑥𝑤𝑐
𝑘 }, that PF point has an associated vector Z={0,1}n 

indicating which facilities (i.e. nodes) are open. Looking at that information, we 

can compare the two solutions corresponding to two PF points A and B by using 

the Hamming distance d (𝐴, 𝐵) = ∑ |𝑍𝑖
𝐴 − 𝑍𝑖

𝐵|𝑖 . The ADOF is defined for each 

instance by calculating this distance between each pair of PF points (i.e. 

22x21/2=231 distances) and taking the average of all of them. Small values of 

ADOF mean that most points in the PF open the same facilities (independently 

of the product flows among them). 

2. Number of different “open facilities” solutions (NDOFS) in the PF. A variant 

of the previous idea is to count the times that the exact same facilities are open 

in the solutions of the PF. A small value means that there are only a few optimal 

alternatives regarding the facilities opened (although the flows among them 

could imply different costs and emissions). 

3. Percentage of links used (PLU) in the solutions. Considering now the flows in 

the solutions, an interesting characteristic of a specific solution is the total 

number of links used (number of links with non-zero flows 𝑥𝑠𝑝
𝑏 , 𝑥𝑝𝑤

𝑘 , 𝑥𝑤𝑐
𝑘 ), as a 

percentage of the total number of potential links of the network, and calculate 

the average for the different points of the PF. High values of PLU mean that the 

network density and complexity increases as more connections (i.e. 

transportation links) are used. 
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4. Percentage of area of the rectangle covered (PARC). Another characteristic 

of interest is how far the PF is from the ideal point I (see Figure 3). To measure 

this issue, we use the ratio PARC between the area of the points dominated by 

the PF (shaded in Figure 3), and the area of the rectangle C-I’-D-I. Therefore, a 

value close to 1 means that there exist solutions in the PF close to both minimum 

cost and minimum emissions, and therefore to the Ideal Point I, so that solutions 

with a good compromise between both objective functions could be found. This 

measure is analogous to the biobjective case of the hypervolume of Zitzler et al. 

(2003). 

5. Distance between extreme solutions C and D (DES). The last measure we 

consider is the length of the segment CD, i.e. the Euclidean distance between the 

best cost solution and the best emissions solution. High values of DES mean that 

the Pareto optimal solutions can be very different (some with low cost and high 

emissions, and others with low emissions and high cost). 

4.2. Experimental framework 

The above five measures are used to analyse the shape of the PFs obtained in an 

experimental framework involving five different factors (each with two levels) that 

were considered relevant for this problem: 

F1. Network size. This factor takes into account the number of nodes on each 

echelon of the network. At the low level we consider N=5 nodes for suppliers, 

plants and warehouses and M=250 nodes for customers; the high level considers 

N=10 nodes for suppliers, plants and warehouses and M=500 nodes for 

customers. 
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F2. Product Complexity. This factor takes into account the complexity in the 

manufacturing of the products (the number of products manufactured and the 

number of facilities that can supply each component or manufacture each 

product). We consider two complexity levels for F2 with instances randomly 

generated using the values shown in Table 1, depending on the values of F1. 

---------------------------------------- TABLE 1 ------------------------------------------- 

F3. Cost Variability. The influence of the difference of the cost coefficients 

inside the echelons is considered here. For each echelon, the fixed costs of the 

facilities and unit transportation costs of the links are randomly generated from 

uniform distributions according to the two levels considered (see Table 2). 

------------------------------------------ TABLE 2--------------------------------------- 

F4. Emissions generation. This factor determines the intensity of the emissions 

generation in the facilities and links. The values are randomly generated from 

uniform distributions according to the two levels considered: U(0.008,0.12) for 

the low level; U(0.05,0.15) for the high level, in all the cases. 

F5. Over-capacity. The last factor considered is the over-capacity of the 

facilities and links with respect to the demand to be satisfied. In this case, the 

two levels are low and high over-capacity. For the low over-capacity level we 

consider that the ratio between the demand and the overall sum of capacities is 

around 0.5, while for the case of high over-capacity we consider that the ratio 

between the demand and the overall sum of capacities is around 0.25 (i.e. the 

demand is not so critical, when considering the available capacity). 
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Therefore, the experimental framework has a total of 25=32 factor level combinations 

(treatments). Five instances for each factor level have been generated and each one has 

been solved using the -constraint method. Thus, in total we have 160 instances and a 

22-point PF for each instance. R statistical software (https://www.r-project.org/) was 

used for all the statistical analysis. 

4.3. Results and discussion 

Depending on the factors used for defining the instances, the shape of the 

corresponding PFs are expected to be different (see Figure 4) and can thus be analysed 

using the five metrics proposed. Starting with the ADOF metric, the boxplot charts 

(Figure 5) suggest that factors F2 (product complexity) and F5 (over-capacity) results 

are especially significant regarding the average difference in open facilities of the 

resulting PFs. The corresponding ANOVA (Table 3) confirms that both factors are the 

most significant affecting this metric. Therefore, a smaller number of similar 

configurations regarding the opening of facilities are obtained when the product 

complexity is low or when the capacity is becoming a problem. Also, ANOVA shows 

that factor F1 (network size) has a somewhat significant influence as well. 

------------------------------------- FIGURES 4 & 5--------------------------------------- 

---------------------------------------- TABLE 3 ------------------------------------------ 

For the second metric (NDOFS) the boxplot chart (Figure 6) indicates again that 

factors F1, F2 and F5 seem to significantly affect the number of different optimal 

solutions that can be found for each instance –something that again ANOVA confirms. 

This means that when the size of the problem is smaller, the product structure is simpler 

or the over-capacity is low (no over-capacity), in general there are just a few optimal 

options as regards the different facilities to open. 
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---------------------------------------- FIGURE 6 ------------------------------------------ 

Regarding the PLU, it can be clearly seen in Figure 7 that factor F5 (over-

capacity) and also F2 (product complexity) have a big influence in this metric. Since in 

this case normality is not granted, we used a nonparametric Mann-Whitney U Test to 

confirm (p0.0) the influence of both factors. Therefore, a smaller number of links are 

used when the product structure is more complex or when the capacity is enough for the 

requested demand (not requiring alternatives for transportation). 

---------------------------------------- FIGURE 7 ------------------------------------------ 

As regards the PARC metric, according to the boxplots shown in Figure 8, the 

factors with more influence in this measure seem to be F1, F3 and F5, which is 

confirmed by the corresponding ANOVA. In general, points closer to the ideal point can 

be found for smaller networks (F1 low level) than for larger ones. When cost variability 

in each echelon is low, points closer to the ideal point can also be computed. Finally, the 

same result is obtained when there is large over-capacity. 

---------------------------------------- FIGURE 8 ------------------------------------------ 

Finally, as regards the DES, the boxplots in Figure 9 suggest that factors F2 and 

F5 are those with the largest influence. As this DES response variable does not fulfil the 

conditions required for an ANOVA study, the nonparametric Mann-Whitney U Test is 

used again to confirm the assumption that F2 and F5 are significant (p0.0). Therefore, 

when the product structure is less complex or when the over-capacity is low (tight 

capacity available), the difference between the points corresponding to the minimum 

cost and the minimum emission solutions is smaller. 

---------------------------------------- FIGURE 9 ------------------------------------------ 
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The influence of each of the five factors on each metric is summarized in Table 

4. The most influential factor is the amount of over-capacity (F5): when the over-

capacity is high (i.e., there are enough resources to cover the demand), more optimal 

solutions with different open facilities appear in the PF, a smaller percentage of links 

are used, the distance between the minimum cost and minimum emissions points is 

larger and the PF in general contains points close to the ideal solution. Similar effects 

can be observed for the next influential factor, product complexity (F2).  

Network size (F1) also has some influence on the number of different open 

facilities in the solutions (higher when the network size is large) as well as on the 

possibility of finding points close to the ideal (less likely when the network size is 

large). Cost variability (F3) also has an influence as regards the possibility of finding 

points close to the ideal (it is more likely to find points close to the ideal point when 

costs of the different facilities in an echelon are more similar). Finally, the emissions 

generation factor (F4) does not seem to have much influence on the type of solutions 

that form the PF. 

---------------------------------------- TABLE 4 ----------------------------------------- 

Given the relationship between the two factors capturing complexity (namely, 

F1 complexity of the network, F2 complexity of the product design), it may be expected 

some type of interaction between both factors. As Figure 10 shows, there is indeed an 

interaction although only for the metric PARCS. A high value of this measure means 

that the PF contains points that are close to the minimum values in both cost and 

emissions dimension. Hence, the interaction detected means that when the product 

complexity is low, the PARC measure is similar whether the network is complex or not 

but when the product is complex, PARC is much higher in the case of a simpler network 

than when the network is more complex. 
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--------------------------------------- FIGURE 10 ----------------------------------------- 

The approach followed above is based on the usual practice of considering cost 

minimization as the main goal (as most real companies do) and imposing emissions 

bounds. However, when identifying a small number of points in the PF, the solutions 

found can be different depending on the objective function chosen as primary. As it can 

be seen in Figure 11, when the main objective function is cost minimization the 

computed Pareto optimal points tend to concentrate on the left side of the Pareto front, 

where the slope of the curve increases and larger emissions increases occur per unit cost 

reduction. The opposite occurs when it is CO2 emissions that is the main objective 

function. In that case, the computed Pareto optimal points tend to concentrate on the 

right side of the Pareto front, where the marginal cost increases per unit emissions 

reductions are larger. Hence, some of the characteristics of the computed PF can be 

different depending on the objective function chosen as primary. Thus, no significant 

difference should be expected for the metrics corresponding to the objective space (of 

course no difference at all for DES, and with a sampling of 15%, i.e., 24 instances, a 

difference of only a 0.04% was found for PARC). Regarding the metrics on the decision 

space, again a small difference was found in our sampling for the PLU metric (only a 

1.5%). Slightly bigger differences are found when looking at the two metrics dealing 

with the number of facilities open (3.81 vs. 3.64 for ADOF, and 14.7 vs. 11 for 

NDOFS), since depending on the extreme of the PF, the facilities used for delivering the 

products are different. 

--------------------------------------- FIGURE 11 ----------------------------------------- 

5. Conclusions 

This paper defines a bi-objective multi-product model for a 

production/distribution logistic network with four echelons considering not only the 
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cost of the operating facilities and the costs of transport between suppliers, warehouses 

and customers, but also the emissions generation in each facility and in the transport 

operations. 

Five factors are considered in order to study different scenarios, our goal being 

to study the characteristics of the PF solutions obtained, depending on the network type. 

To do so, five new measures were defined to characterize the different PFs obtained: the 

average difference in the facilities open, the number of different open facilities 

solutions, the closeness to the ideal point, the percentage of arcs used in the solutions, 

and the distance between the extreme points in the FP. 

The results obtained were analysed with R software in order to study the 

influence of the different factors on each measure. It was found that the level of over-

capacity and the product complexity have the largest influence in the Pareto optimal 

solutions of the supply chain design problem, having a significant impact on all five 

measures defined. Large over-capacity implies more alternative solutions with different 

facilities open, more extreme optimal costs/emissions solutions, fewer arcs used and 

less difficulty to obtain PF points close to the ideal. High product complexity has almost 

the same effects (except in the difficulty to compute PF points close to the ideal). A 

smaller influence has the network size, with larger networks leading to more alternative 

Pareto-optimal solutions and solutions less close to the ideal. Finally, higher cost 

variance seems to affect the possibility of finding solutions close to the ideal. 

We can therefore conclude that the consideration of more than one objective 

function allows trade-offs between them and that the shape and extension of the 

corresponding PF depend on a number of factors, especially on the over-capacity level 

and the product complexity. Thus, the higher both factors are, the smaller is the number 

of arcs used and the higher the diversity of Pareto optimal solutions that can be 
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computed. From a managerial point of view, we observe that designing networks with a 

large capacity in their elements, represents not only advantages in terms of risk 

minimization, but also making available many more alternative good solutions to 

choose from, in order to define good configurations, considering both cost and 

emissions minimization.  

With respect to further research, an important issue to consider is to analyse the 

case when not only emissions are generated but there can also be different levels of 

spoilage depending on the facilities and the transportation links used. 
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Figure 1. Number of references (period 2000-2015) dealing with multiobjective supply 

chain network design (all of them include in addition cost/profit optimization; for 
instance, dealing with sustainability, time and cost/profit, 3 papers were found; dealing 

with time and cost/profit, 12 papers were found). 
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Figure 2. Four-echelon supply chain, and involved parameters and decision variables 

 

 
  

suppliers plants warehouses customers

s1

s2

.

.

.

ss

.

.

.

p1

p2

.

.

.

pp

.

.

.

w1

w2

.

.

.

ww

.

.

.

c1

c2

.

.

.

cc

.

.

.

Fixed & variable costs

Fp Fw

Decision variables
zp zw

Fs

zs

rpwrsp rwcrprs rw

cpwcsp cwc



 30 

 

 
 

Figure 3. Pareto Frontier for cost and emissions. Each point includes information about 

the facilities to open, and the flows among them. 
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Figure 4. Points in the PF for two different instances (corresponding to treatment H-H-

H-H-H above, and H-H-L-L-H below), showing different shapes 
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Figure 5. ADOF boxplotfor each factor 
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Figure 6. NDOFS boxplot for each factor 
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Figure 7. PLU boxplot for each factor 
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Figure 8. PARC boxplot for each factor 
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Figure 9. DES boxplot for each factor 
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Figure 10. Interaction plots between F1 and F2 for the five metrics 
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Figure 11. Comparison of PFs computed minimizing cost subject to bounds on emissions (cross) and minimizing emissions subject to bounds on cost 

(circle), for an instance corresponding to treatment L-H-H-L-H. Grid is defined by the bounds  i affecting emissions and costs. 
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Table 1. Values for the two levels corresponding to F2 (product complexity), depending 

on the value of F1. 

F1 

Number 

Suppliers, Plants,  

Warehouses 

Number 

Customers 
F2 Products 

Components/ 

Product 
Components 

Plants/ 

Product 

Components/ 

Supplier 

Low 5 250 Low 4 2 8 3 3 

Low 5 250 High 7 4 8 5 5 

High 10 500 Low 4 2 8 3 3 

High 10 500 High 7 4 8 10 5 

 

 
 

 
 
 

 
 

Table 2. Levels corresponding to F3 (cost variability) 

Cost  

Variability 

Fixed costs Variable costs 

Suppliers Plants Warehouses Mean 
Coef.  
Variat. 

Low U(580,000;820,000) U(1,000,000;1,400,000) U(290,000;410,000) U(5;15) 0.1 

High U(350,000;1,050,000) U(600,000;1,800,000) U(175,000;525,000) U(5;15) 0.3 
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Table 3. ANOVA for ADOF 

 

Analysis of Variance Table           
Response: ADOF           

  Df Sum Sq Mean Sq F value Pr(<F) 

F1 1 8.76 8.76 10.074 0.001816** 

F2 1 397.3 397.3 457.0132 < 2.2e-16*** 
F3 1 5.66 5.66 6.5135 0.011679* 

F4 1 0.14 0.14 0.1651 0.685061 
F5 1 182.18 182.18 209.567 < 2.2e-16*** 

Residuals 154 133.88 0.87     

Significance levels: 0***    0.001**    0.01* 0.05.' 

 
 

 
 
 

 
 

 
 

Table 4. Summary of the factors with clear influence in the different metrics, and their 

influence (  means that as the factor goes from a low to high level, the corresponding 

metric decreases, while   means that the metric increases its value) 

 
F1 

Network size 

F2 

Product Compl. 

F3 

Cost variability 

F4 
Emissions 

gen. 

F5 
Over-

capacity 

ADOF 
(Avg. difference 

in open facilities) 
   

  

NDOFS 
(No. of different 

 open facilities) 
   

  

PLU 
(Percentage of 

links used) 
   

  

PARC 
(Percentage area 

rectangle covered) 
   

  

DES 
(Distance bet. 

extreme PF points) 
   

  

 


