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Abstract

Aims/Hypothesis

Failure in glucose response to insulin is a common pathology associated with obesity. In this

study, we analyzed the genome wide DNA methylation profile of visceral adipose tissue

(VAT) samples in a population of individuals with obesity and assessed whether differential

methylation profiles are associated with the presence of type 2 diabetes (T2D).

Methods

More than 485,000 CpG genome sites from VAT samples from women with obesity under-

going gastric bypass (n = 18), and classified as suffering from type 2 diabetes (T2D) or not

(no type 2 diabetes, NT2D), were analyzed using DNA methylation arrays.

Results

We found significant differential methylation between T2D and NT2D samples in 24 CpGs

that map with sixteen genes, one of which, HOOK2, demonstrated a significant correlation

between differentially hypermethylated regions on the gene body and the presence of type 2

diabetes. This was validated by pyrosequencing in a population of 91 samples from both

males and females with obesity. Furthermore, when these results were analyzed by gender,

female T2D samples were found hypermethylated at the cg04657146-region and the cg

11738485-region of HOOK2 gene, whilst, interestingly, male samples were found hypo-

methylated in this latter region.
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Conclusion

The differential methylation profile of the HOOK2 gene in individuals with T2D and obesity

might be related to the attendant T2D, but further studies are required to identify the poten-

tial role of HOOK2 gene in T2D disease. The finding of gender differences in T2D methyla-

tion of HOOK2 also warrants further investigation.

Introduction

Obesity is frequently associated with the resistance of peripheral tissues (muscle and adipose)

to the action of insulin. Because of a state of inflammation in adipose tissue infiltrated by

inflammatory cells, secretions from these cells and fat derived adipokines promote the devel-

opment of type 2 diabetes (T2D) [1–3]. Genome wide studies have led to the characterization

of gene variants that are associated with an increased risk of T2D development, but their effect

size is reduced when compared with traditional risk factors such as obesity, unhealthy diet or

family history of diabetes [4].

Previous works have demonstrated alterations in methylation profiles of genes involved in

the pathogenesis of obesity and T2D development [5]. For example, in subcutaneous adipose

tissue from a group of 31 healthy men following exposure to exercise training [6], changes in

methylation were found related to variations in mRNA expression in some of the T2D associ-

ated genes––HHEX (Hematopoietically-Expressed Homeobox Protein), IGF2BP2 (Insulin-like

Growth Factor 2 Binding Protein 2), JAZF1 (JAZF Zinc Finger 1) and TCF7L2 (Transcription

Factor 7-like 2). Ribel-Madsen et al conducted genome-wide methylation studies in insulin

responsive tissues (skeletal muscle and subcutaneous adipose tissue) in elderly monozygotic

(MZ) twin pairs discordant for T2D [7]. Methylation differences were found on the promoter

region of CDKN2A (Cyclin-Dependent Kinase Inhibitor 2A) and HNF4A (Hepatocyte Nuclear

Factor 4 Alpha) genes, although greater differences were found in genome wide repetitive DNA

sequences such as LINE-1. These results were complemented by Nilsson et al, who described

1410 differentially methylated CpG sites between MZ T2D discordant twins, including KCNQ1
(Potassium Channel Voltage Gated KQT-like Subfamily Q, Member 1), NOTCH2 (Neurogenic

Locus Notch Homolog Protein 2), TCF7L2 (Transcription Factor 7-like 2) and THADA (Thy-

roid Adenoma Associated) T2D related genes [8]. Recently, work by Chen et al has demon-

strated that promoter hypermethylation of NR4A1 (Nuclear Receptor Subfamily 4 Group A

Member 1) was elevated in T2D human samples as well as in T2D murine models and that this

hypermethylation was associated with a decrease in mRNA levels. They also found that lack of

NR4A1 (Nuclear Receptor Subfamily 4 Group A Member 1) protein is related to an increment

in DNMT1 expression and the blocking of insulin signaling in patients with T2D [9]. These

results were supported by the genome-wide DNA methylation analysis undertaken by Volkov

et al in subcutaneous adipose tissue samples [10], whose work demonstrated an association

between genetic and epigenetic mechanisms in terms of an observed relationship between single

nucleotide polymorphisms and methylation at CpG sites of genes involved in metabolic pat-

terns associated with diabetes development.

The majority of T2D cases occur in the context of a metabolic syndrome leading to a

chronic excess of energetic substrates and ectopic fat storage, insulin resistance, elevated levels

of inflammatory cytokines and, ultimately, a decrease in insulin secretion and the apoptosis of

pancreatic β cells. The studies referred to earlier, have demonstrated the DNA methylation of

T2D susceptible genes in different tissues (blood, skeletal muscle and fat) which are frequently
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associated with T2D development. Most of these works were carried out on subcutaneous fat,

although VAT, along with skeletal muscle and liver, is in fact the most suitable candidate for

determining the involvement of gene methylation in T2D development. Visceral fat not only

acts as an energy storage tissue, but also as an endocrine organ, which releases hormones and

adipokines, that contribute to expand macrophage population in VAT, which also liberate

inflammatory cytokines. As the fat depot increases, levels of these molecules also rise and since

they modulate the action of insulin in muscle and liver insulin insensitivity may result. VAT

tissue has high levels of lipogenesis and lipolysis activity. This can result in hyperlipidemia and

glucose intolerance [11]. Moreover, excess free fatty acids lead to ectopic lipid accumulation

and lipotoxicity in muscle, where they inhibit glucose uptake, causing insulin resistance in

these tissues [12, 13]

Prior research has described genome-wide DNA methylation patterns and site-specific dif-

ferences in CpG methylation of candidate genes associated with T2D in VAT [14–18]. The

aim of the present study is to contribute to the description of the VAT methylome in humans,

and to explore the impact of epigenetics in diabetes development.

Materials and methods

Ethics statement

The study protocol (n˚ 68/10) was approved by the Ethical Committee at the Hospital Univer-

sitario Central de Asturias (Asturias, Spain) and all participants provided written and oral

informed consent. The study was conducted in accordance with the principles of the Helsinki

Declaration for human research.

Human tissue samples

Discovery cohort: a cohort of 18 (8 T2D and 10 NT2D) visceral adipose tissue (VAT) samples

was obtained from patients (all female) from the Surgery and Endocrinology Departments at

the Hospital Universitario Central de Asturias who underwent gastric bypass. Criteria for bar-

iatric bypass surgery were BMI�35 and at least one obesity-related comorbidity (diabetes

(n = 8), cardiovascular disease, CVD, (n = 9), non-alcoholic fatty liver disease (n = 4) or hyper-

tension (n = 12)). The anthropometric and clinical characteristics of the samples are presented

in Table 1.

Biological validation cohort: a cohort of 91 (55 NT2D and 36 T2D) VAT samples was

obtained from patients (male and female) from the Surgery and Endocrinology Departments

at the Hospital Universitario Central de Asturias (Asturias, Spain) who underwent gastric

Table 1. The anthropometric and clinical characteristics of the discovery cohort and the validation cohort.

Discovery Cohort Biological Validation Cohort

Characteristics NT2D T2D p-value NT2D T2D p-value

N(male/female) 10 (0/10) 8(0/8) 55 (14/41) 36 (16/20)

Age (years) 48.2 ± 9.16 50.3 ± 7.68 0.4562 41.5 ± 10.1 46.47 ± 11.54 0.0358

BMI(kg/m2) 50.48 ± 7.82 44.91 ± 3.8 0.0661 47.06 ± 8.92 49.06 ± 5.84 0.4482

Fasting Plasma Glucose (mg/dl) 118.20 ± 37.95 213 ± 85.44 0.0144 118.17 ± 38.43 166.5 ± 66.03 0.0002

Total-Cholesterol (mg/dl) 171.8 ± 30.8 216.33 ± 33.15 0.1682 192.73 ± 31.89 181.5 ± 39.65 0.3594

TAG (mg/dl) 87.8 ± 27.55 182 ± 46.7 0.0861 129.68 ± 58.81 158 ± 63.34 0.1250

NT2D: No Type 2 Diabetes; T2D: Type 2 Diabetes; TAG: Triacylglycerides; BMI: Body Mass Index. Groups were compared using a t test. Bold data

indicate statistical significance (p<0.05)

https://doi.org/10.1371/journal.pone.0189153.t001
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bypass. Criteria for bariatric bypass surgery were the same as the discovery cohort (data for

obesity-related comorbidities: diabetes, n = 36; CVD, n = 4; non-alcoholic fatty liver disease,

n = 49; and hypertension, n = 49). The anthropometric and clinical characteristics of the sam-

ples are presented in Table 1.

DNA extraction and bisulfite pyrosequencing methylation analysis

Genomic DNA was isolated from VAT samples using a phenol/chloroform protocol. DNA

quality control and storage was carried out as indicated in Supplementary Methods.

Bisulfite modification and bisulfite pyrosequencing were performed as indicated in Supple-

mentary Methods Specific pyrosequencing primers were designed using Pyromark Assay

Design 2.0. Software and are described in Table 2.

Illumina 450K data methylation analysis

Methylation profiling of samples was carried out using Illumina Infinium HumanMethyla-

tion450 BeadChip Kit (Illumina Inc., USA) [19]. Data methylation analyses were performed as

indicated in S1 Supplementary Methods, S1 Fig.

Genomic region analysis

The probes in the microarray were assigned to a genomic region according to their position

relative to the transcript information extracted from the R/Bioconductor package TxDb.Hsa-

piens.UCSC.hg19.knownGene [20]. Genomic region analyses were conducted as indicated in

Supplementary Methods.

CGI status analysis and Gene Ontology analysis

CpG island status was evaluated with respect to R. Irizarry’s set of CpG island regions,

included in the R/Bioconductor FDb.InfiniumMethylation.hg19 package [21, 22] and as indi-

cated in Supplementary Methods.

To annotate the differentially methylated CpGs (dmCpGs) we used the HOMER annota-

tion tool (http://homer.ucsd.edu/homer/ngs/annotation.html). All analyses were performed

with a background reference comprising the whole set of genes present in the Illumina 450k

Table 2. Set of primers used to validate by pyrosequencing.

GENE SEQUENCE GenBank

NUMBER

POSITION CG

ANALYZED

HOOK2-V46

BTN-FW 5´- AGGTGGTGGGTGATATTTATATT-3´ NC_000019.10 (12765633–12766634) 12766135

RW 5´-CCCTAACCCTACTCTCTCCT-3

SEQ 5´- CCACCTAAAAAATACCA-3´

HOOK2-V78

BTN -FW 5´-TGGGAGGTGGTGGGTGGGTGAT-3´ NC_000019.10 (12765532–12766533) 12766034

RW 5´-AAAAAACCAAAAATAAACACAAA-3´

SEQ 5´-CCAAAAATAAACACAAACACTA-3´

HOOK2-V85

FW 5´-GGGAGGTGGTGGGTGATA-3´ NC_000019.10 (12765686–12766687) 12766188

BTN-RW 5´-CCTAACCCTACTCTCTCCT-3´

SEQ 5´-GTTGGTATTTTTTAGGTGG-3´

https://doi.org/10.1371/journal.pone.0189153.t002
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platform. Results from HOMER (Hypergeometric Optimization of Motif EnRichment) were

adjusted for multiple hypotheses using the Benjamini-Hochberg method for controlling the

False Discovery Rate, FDR (threshold 0.05).

Statistical analysis

In order to identify the dmCpGs, a robust moderated t-test (R/Bioconductor package limma,

version 3.24.15) was used on every probe in the array. Resulting p-values were adjusted for

multiple comparisons by controlling the FDR (False Discovery Rate) using the Benjamini-

Hochberg method. The difference between group means was used as a measure of effect size.

In addition, the Genomic Region and CpG island status analyses were performed using a stan-

dard x2-test, and effect size was assessed by the Odds Ratio (OR). The significance threshold

was fixed at 0.05 for all analyses. All work was carried out using R/Bioconductor version 3.1. A

more detailed description of each of the individual types of analysis is included in Supplemen-

tary Methods.

Results

Genome wide DNA adipocyte methylation profiling and differentially

methylated genes in individuals with T2D and obesity

The DNA methylation status of 485,000 methylation positions was analyzed in VAT from 8

T2D, 10 NT2D (all female) samples using Illumina Infinium Methylation Arrays. Data from

probes were used to calculate a β-value between 0 and 1 (equivalent to 0%-100% methylation,

respectively) (Fig 1A).

We then compared the methylation (β value) of individual CpG sites in these two groups of

samples. Using the robust and moderated Empirical Bayes methodology described in the

Methods section, we obtained a set of 24 differentially methylated probes (adjusted p<0.05)

(Data Accession number: https://doi.org/10.5281/zenodo.841654). Of these, 10 (related to

seven genes) had a higher mean methylation value in T2D samples when compared to NT2D,

Table 3. When we examined the CpG sites which were differentially methylated between T2D

and NT2D samples, we found three positions (Illumina probes cg 11738485, cg 04657146 and

cg 06417478) located in the intragenic region of chromosome 19, all of which overlay the same

gene, HOOK2 (Hook Microtubule Tethering Protein 2) (Δβ� 0.195) (Fig 1B). In addition, 14

CpG sites (9 genes) were hypomethylated in T2D compared with NT2D samples, Table 3.

Genomic distribution of differentially methylated CpGs in VAT samples

We compared the genomic distribution of the differentially methylated CpG sites with all the

sites analyzed by the Infinium array based on the genomic location with respect to CpG

islands. We did not find any significant differences, but there was an overrepresentation of

CpG islands in the hypermethylated CpG sites in T2D samples with respect to NT2D samples

(Pearson´s chi-squared test, adjusted p = 0.48; OR = 1.97). The same result was obtained with

the hypomethylated CpGs in T2D, which are mainly located in CGI regions (CpG island, CpG

shore (2 kb flanking the island), CpG shelf (2 kb flanking the shore)) (Pearson´s chi-squared

test, adjusted p = 0.69; OR = 1.31) (Fig 1C).

The overall distribution of hypermethylated CpGs in relation to the nearest gene (5´UTR,

1st exon, gene body, 3´UTR) or intergenic regions in our analysis was suggestive of enrich-

ment for the gene body (exon) in T2D compared to NT2D samples (Pearson´s chi-squared

test, adjusted p = 0.08; OR = 4.69). In addition, hypomethylated CpG sites were over-
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represented in intergenic regions for T2D, although this difference did not reach significance

(Pearson´s chi-squared test, adjusted p = 0.72; OR = 3.12) (Fig 1C).

Biological significance of the differentially methylated genes in T2D

samples

To identify the biological relevance of the differentially methylated genes between T2D and

NT2D samples we performed Gene Ontology analysis. We did not find any molecular func-

tions or biological processes that were significantly associated with the differentially methyl-

ated genes (Data not shown), although a significant enrichment in specific regions on

chromosome 10 was observed, S1 Table.

Fig 1. A. Hierarchical clustering heatmap. Showing differentially methylated CpGs of autosomal probes from women with obesity and discordant for type 2

diabetes (8 T2D and 10 NT2D). The heat map scale shows the range of methylation values, from 0 (blue) to 1 (yellow). Whether the CpG site analyzed is

associated with a CpG island (CGI) or not can clearly be distinguished. Red asterisks mark the differentially methylated probes validated by pyrosequencing

on HOOK2 gene. B. Strip charts showing β values of three differentially methylated CpGs (dmCpGs) located on HOOK2 gene in individual samples of the

discovery cohort. The bold dotted line with the rhombus indicates the median value of each group of samples. C. Distribution of differentially methylated

CpGs (dmCpGs) relative to CGIs, and relative distribution of dmCpGs across different genomic regions. Abbreviations: T2D (Type 2 Diabetes); NT2D (No

Type 2 Diabetes).

https://doi.org/10.1371/journal.pone.0189153.g001
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Methylation status of HOOK2 gene in the biological validation cohort of

obese samples

To confirm the results obtained from the DNA methylation array, we developed independent

DNA methylation assays using bisulfite pyrosequencing. Among the genes with differential

DNA methylation levels in VAT tissue from T2D individuals compared with NT2D samples

we found differences in three CpGs located within the HOOK2 gene (Δβ = 0.296; Δβ = 0.195;

Δβ = 0.253).

An initial validation was made on the discovery cohort. For all CpGs analyzed, significant

correlations were found between the two methods used to determine the percentage of methyl-

ation in the three probes meeting our criteria to be considered differentially methylated

between T2D and NT2D (cg 04657146 probe, adjusted p = 1.75 x 10−5,R2 = 0.69); cg 06417478

probe, adjusted p = 1.95 x 10−5,R2 = 0.59; cg 11738485 probe, adjusted p = 3.31 x 10−6,R2 =

075), S2 Fig.

To further explore the involvement of HOOK2 gene methylation in T2D development,

bisulfite sequencing analyses were conducted in a biological validation cohort of obese samples

Table 3. Differentially methylated CpG sites in T2D compared with NT2D samples.

Ilumina probe

ID

CHR probeStart probeEnd CpG

Location

GENE SYMBOL (1) βT2D SD βNT2D SD Δβ (2) Adjusted pValue

(3)

cg13978347 chr9 120140243 120140292 Non-CGI ASTN2 0.8316 0.2690 0.7134 0.2072 0.1181 6.8418e-08

cg11738485 chr19 12877000 12877049 CGI HOOK2 0.4639 0.2155 0.1676 0.2714 0.2963 1.1924e-07

cg04657146 chr19 12876947 12876996 CGI HOOK2 0.3638 0.1407 0.1681 0.1967 0.1956 4.5798e-06

cg06417478 chr19 12876798 12876847 CGI-Shore HOOK2 0.4211 0.1885 0.1674 0.2297 0.2537 2.6928e-06

cg01528832 chr10 65225240 65225289 CGI JMJD1C;

JMJD1C-AS1

0.1582 0.0411 0.0807 0.0436 0.0775 7.8258e-07

cg14456004 chr13 21872349 21872398 CGI MIPEPP3 0.3598 0.0705 0.1405 0.0984 0.2192 4.0028e-06

cg07234876 chr8 600039 600088 CGI NA 0.9501 0.0658 0.8173 0.1312 0.1327 1.0884e-05

cg20991723 chr1 152506874 152506923 Non-CGI NA 0.9133 0.0729 0.8294 0.0399 0.0838 1.9410e-06

cg01475110 chr12 90332935 90332984 Non-CGI NA 0.9408 0.0369 0.9071 0.0182 0.0337 4.2191e-05

cg23231268 chr3 46792462 46792511 CGI PRSS50;PRSS45 0.9744 0.0247 0.9442 0.0478 0.0302 9.4175e-06

cg00777636 chr1 6446216 6446265 Non-CGI ACOT7 0.8602 0.0631 0.9418 0.0242 -0.0815 1.2085e-07

cg04850148 chr17 34539744 34539793 Non-CGI CCL4L1 0.3942 0.2744 0.6513 0.1171 -0.2570 3.4374e-05

cg01353608 chr4 15656863 15656912 CGI FBXL5 0.0343 0.0456 0.0783 0.1052 -0.0439 1.3711e-06

cg03635532 chr19 40376835 40376884 CGI-Shore FCGBP 0.4121 0.4372 0.6730 0.3553 -0.2609 3.6600e-06

cg05073382 chr8 2045798 2045847 CGI-Shore MYOM2 0.5436 0.3105 0.8185 0.0330 -0.2748 3.6176e-06

cg11066601 chr1 185373438 185373487 Non-CGI NA 0.4611 0.1220 0.6896 0.1635 -0.2285 3.6065e-08

cg06675417 chr18 77292443 77292492 CGI NA 0.3087 0.2560 0.6583 0.1063 -0.3495 1.3992e-06

cg03070989 chr19 34311434 34311483 CGI NA 0.1958 0.0963 0.3195 0.1256 -0.1237 8.1823e-06

cg14168080 chr7 157504135 157504184 CGI PTPRN2 0.3583 0.4012 0.6672 0.2257 -0.3088 4.2091e-06

cg11757124 chr7 157526947 157526996 CGI-Shore PTPRN2 0.6782 0.2053 0.8522 0.0637 -0.1740 2.8778e-06

cg17729891 chr19 51107510 51107559 CGI SNAR-F 0.1715 0.1862 0.2931 0.1452 -0.1216 9.5658e-08

cg19825302 chr19 51107512 51107561 CGI SNAR-F 0.1780 0.2096 0.2911 0.1554 -0.1130 2.0739e-08

cg23284931 chr11 13983273 13983322 CGI-Shore SPON1 0.7280 0.0664 0.8348 0.0394 -0.1067 1.3765e-08

cg12587985 chr7 64295583 64295632 CGI ZNF138 0.7722 0.0613 0.8887 0.0220 -0.1165 2.6298e-07

T2D: Type 2 Diabetes; NT2D: No Type 2 Diabetes; SD: Standard Deviation.

(1) Gene symbol “NA” represents an intergenic region to which no known genes map.

(2) A positive value for Δbeta indicates hypermethylation in T2D in comparison to NT2D samples, and a negative value indicates hypomethylation.

(3) Resulting p-values were adjusted for multiple comparisons by controlling the FDR using the Benjamini-Hochberg method.

https://doi.org/10.1371/journal.pone.0189153.t003
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(n = 91, 36 T2D and 55 NT2D). The degree of DNA methylation of HOOK2 in the three

regions analyzed that was observed in this way included all the differentially methylated CpGs

described in the discovery cohort.

The median and the interquartile range of each CpG analyzed by pyrosequencing are shown

in (Fig 2). The results demonstrate the differential methylation status of the HOOK2 gene regions

between T2D and NT2D samples. The median for the cg 04657146-region (with 7 CpG nucleo-

tides) was significantly higher in the T2D group than the NT2D with respect to the discovery

cohort (adjusted p = 0.022), as well as in the biological validation cohort (adjusted p = 0.021).

Interestingly, when the validation cohort was separated by gender, the median for this region in

females was significantly higher in T2D samples than the NT2D (adjusted p = 0.0001334), while

there was no significant difference for males. In the cg 11738485-region (formed by 5 CpG nucle-

otides), the pattern of higher methylation in the T2D group was repeated, but only in the discov-

ery cohort (adjusted p = 0.020), not in the validation cohort. However, significant differences did

become apparent when the validation cohort was separated by gender, with the median in female

Fig 2. Box plots illustrate the methylation values of differentially methylated CpG regions between T2D and NT2D samples validated by

pyrosequencing in HOOK2 gene. Schematic representation of the target regions studied and the methylation values from T2D and NT2D samples in the

discovery cohort and the validation cohort are shown. Vertical lines represent the location of each CpG site. The analyzed region (blue line) and the CpG

sites in the array (red box) are highlighted. The p-values for the comparison of the groups are also indicated (**adjusted p-value <0.05; ***adjusted p-value

<0.0001). Abbreviations: T2D (Type 2 Diabetes); NT2D (No Type 2 Diabetes).

https://doi.org/10.1371/journal.pone.0189153.g002
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samples being significantly higher in T2D samples than the NT2D (adjusted p = 0.05), while the

male T2D samples were interestingly found to be significantly hypomethylated (adjusted

p = 6.25 x 10−5) compared to male NT2D samples (Fig 2). In contrast, no significant results for

the cg 06417478-region (formed by 2 CpG nucleotides) were obtained for either of the cohorts

analyzed, even when separated by gender.

Discussion

The prevalence of T2D is increasing worldwide and while the mechanisms responsible for

increased T2D risk are still poorly understood, epigenetics is thought to be key to the process

[23]. This work revealed significant changes in DNA methylation throughout the entire

human genome of VAT in individuals with obesity and discordant for T2D. Significant differ-

ential methylation (BH adjusted p<0.05, absolute change in methylation 20%) of 10 CpG sites

was observed between the two phenotypes.

In line with previously published studies [8, 24], our results for hypermethylated CpGs

associated with T2D were suggestive of methylation enrichment in the gene body, though the

difference did not reach significance, possibly due to the small size of the cohorts. Gene bodies

are CpG-poor regions that contain multiple repetitive and transposable elements. Methylation

in these regions, may function to silence repetitive DNA elements found within the gene body

[24], or be responsible for changes at intron–exon boundaries, suggesting an association with

the splicing that may create chimeric transcripts with dominant–negative or neomorphic

effects, or through transcriptional interference and potential RNA interference (RNAi) effects

if arising from antisense transcript originating at transposon promoters [25]. Recently, the

work developed by Pheiffer et al [26] has postulated that the differential methylation observed

in the intergenic regions of peripheral blood samples in T2D individuals is involved in micro-

RNA regulation and in the pathogenesis of T2D development.

The list of differentially methylated genes in VAT of individuals with obesity and T2D com-

pared with NT2D individuals in this study comprises six genes whose Δβ is greater than 0.20.

These are MIPEPP3 (Mitochondrial Intermediate Peptidase Pseudogene 3), CCL4L1 (C-C

Motif Chemokine Ligand 4 Like 1), FCGBP (Fc Fragment of IgG Binding Protein), MYOM2
(Myomesin 2), PTPRN2 (Protein Tyrosine Phosphatase, Receptor Type N2) and HOOK2.

Among them, only CCL4L1 could have been found to be related with insulin resistance. This

gene, a CC chemokine located at chromosome 17, belongs to the same family as CCL4, which

has been associated with T2D. The two proteins differ at only three amino acids and have

redundant function [27]. CCL4 and its receptor CCR5 play diverse roles in the inflammatory

response underlying T2D, due to their chemoattractivity towards macrophages, natural killer

cells, monocytes, and immature dendritic cells, all of which have widely been described as play-

ing a role in T2D [28]. Increased serum levels of CCL4 produced by islet cells have also been

reported in type 1 diabetes and pre-diabetic condition, as well as in patients with T2D, suggest-

ing the involvement of CCL4 in various stages of this disease [29,30]. The role of CCL4L1 in

T2D has not been described, but the hypomethylation observed in VAT of individuals with

T2D, is thought to perhaps contribute to the inflammatory response associated with insulin

resistance in adipose tissue. PTPRN2 has been identified as an autoantigen in type 1 diabetes

[31]. As a transmembrane protein, PTPRN2 shuttles between secretory vesicles and the plasma

membrane, and has been implicated in insulin exocytosis [32]. However, its precise role in the

secretory pathway is unknown. Differential PTPRN2 methylation has been described in placen-

tal samples of newborns with intrauterine growth restricted (IUGR) conditions [33], a condi-

tion that has been linked to the development of T2D later in life [34].
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Extending the list of genes linked to T2D, this work provides evidence to support the inclu-

sion of the gene HOOK2. We have found aberrant intragenic DNA methylation of this gene in

a population with obesity and T2D when compared with a group of people with obesity but

without T2D. Differential methylation status was found in all the HOOK2 gene regions vali-

dated by pyrosequencing, and, while low sample number is a potential limitation, these differ-

ences were significant with respect to two of the three regions. However, to separate the effects

of HOOK2 methylation and the numerous confounding factors, we will need much larger

numbers of samples and more detailed clinical information. Only through meta-analyses com-

bining genome-wide data sets generated in different laboratories with different cohorts will we

be able to reveal a more complete picture. Another potential limitation of this work is the low

methylation difference we have found (close to 20%). Although previous reports indicate that

methylation differences over 10% in Illumina assays reach biological significance and have a

low probability of being technical artifacts [35, 36], this remains theoretical, and the work

here, unfortunately, does not demonstrate the functional significance of HOOK2 methylation

in patients with T2D. Another issue is the lack of quantification in our study of other C modifi-

cations, such as 5hmC (5-hydroxymethylcytosine), that have been reported to be associated

with demethylation processes [37], regulation of gene expression [38], and changes in the

chromatin structure [39] which may also show differences between the populations analyzed

and provide another piece of the puzzle of our knowledge of T2D.

The significant hypermethylation observed on the cg04657146-region in T2D female sam-

ples indicates it may be a key region of the HOOK2 gene for DNA modification potentially

involved in attendant T2D in individuals with obesity, especially females. However, additional

studies are required to identify the role of DNA methylation in the cg04657146-region with

respect to transcription factor recognition, chromatin remodeling and HOOK2 gene expres-

sion. In addition, and strikingly, the cg 11738485-region was found hypermethylated in T2D

female samples, but hypomethylated in T2D male samples. Similar differences were observed

in the work developed by Hall et al [40] who, in a genome wide DNA methylation analysis

conducted on human pancreatic islets, found sex-specific differences in the DNA methylation

levels of several genes located in autosomal chromosomes. The fact that these sex-biased genes

involved in the functioning of pancreatic islets and insulin pathways showed differential

expression could be related to the phenotypic differences observed between males and females

in relation to insulin response [41, 42].

Adipose tissue function and distribution can be regulated by sexually dimorphic genes,

some of which are present in VAT and controlled by sex hormones [43, 44]. From childhood

on, fat distribution is different in males and females, and the difference becomes more marked

during adolescence and remains this way until the menopause, when the reduction in estro-

gens levels means that fat distribution in women acquires an android distribution. Possibly,

exposure to female sex hormones within the context of a fat and glucose rich diet, which leads

to an abnormal accumulation of VAT (central adiposity), could go some way to explaining the

differences observed in the methylation the HOOK2 gene in men and women with T2D. How-

ever, larger study groups, preferably with longitudinal sample collection of HOOK2 gene

methylation would be needed to confirm the sexual differences observed in the methylation of

this gene and its contribution to the different strategies for glycemic maintenance adopted by

males and females.

The role of HOOK2 in primary cilia assembly has been described [45]. Primary cilia project

out from the cellular membrane in most vertebrate cells and exert a sensor function in relation

to stimuli (light, chemical and mechanical), triggering signaling pathways that maintain cell

homeostasis [46]. Defects in this structure lead to a group of disorders called ciliopathies, two of

which, the Bardet-Biedl and Alström syndromes, count T2D among their clinical manifestations
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[47]. Given that T2D and obesity are common features in ciliopathies and that HOOK2 is

involved in primary cilia structure; the HOOK2 hypermethylation observed in the T2D samples

in this work, would suggest that the possible role indicated here for this protein in T2D develop-

ment may be mediated through alterations to primary cilia.

Another possibility is that HOOK2 protein could be involved in GLUT4 (glucose trans-

porter type 4) traffic. The HOOK family is a group of cytoplasmic linker proteins associated

with microtubules that participate in microtubule-vesicle transport and organelle support.

Microtubules play a central role in GLUT4 translocation and glucose uptake [48–51]. The role

of this microtubule-associated protein in insulin secretion or GLUT-4 traffic is still unclear,

but HOOK2 methylation observed in T2D samples in the current work could perhaps be alter-

ing its function within the adipocyte. Benton et al [52], analyzing genome wide DNA methyla-

tion before and after bariatric surgery, suggested a similar role for the MYO1C (Myosin IC)

gene, which codifies for an actin-related protein involved in GLUT4 translocation.

In conclusion, the differential methylation profiling we have described in individuals with

T2D and obesity, and, more specifically, the methylation differences observed on the HOOK2
gene, points to the possible contribution of epigenetic factors, along with others previously

described, to T2D predisposition. However, supplementary studies are required to identify the

exact role of HOOK2 protein in the development of this pathology, as well as in terms of its

potential role as a biomarker of increased risk, or in the design of gender-specific antidiabetic

treatments.
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