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Abstract

Maximum likelihood is a standard approach to computing a probability distribution
that best fits a given dataset. However, when datasets are incomplete or contain
imprecise data, a major issue is to properly define the likelihood function to be max-
imized. This paper highlights the fact that there are several possible likelihood func-
tions to be considered, depending on the purpose to be addressed, namely whether
the behavior of the imperfect measurement process causing incompleteness should
be included or not in the model, and what are the assumptions we can make or the
knowledge we have about this measurement process. Various possible approaches,
that differ by the choice of the likelihood function and/or the attitude of the analyst
in front of imprecise information are comparatively discussed on examples, and some
light is shed on the nature of the corresponding solutions.
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1. Introduction

The key role of likelihood functions in statistical inference was first highlighted
by Fisher [17] with the maximum likelihood principle. In his seminal book, Edwards
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([16], p. 9) defines a likelihood function as being proportional to the probability of
obtaining results given a hypothesis, according to a probability model:

Let P (R|H) be the probability of obtaining results R given the hypothesis
H, according to the probability model . . . The likelihood of the hypothesis
H given data R, and a specific model, is proportional to P (R|H), the
constant of proportionality being arbitrary.

Edwards mentions that “this probability is defined for any member of the set
of possible results given any one hypothesis . . . As such its mathematical properties
are well-known. A fundamental axiom is that if R1 and R2 are two of the possible
results, mutually exclusive, then P (R1orR2|H) = P (R1|H) + P (R2|H)”.

In other words, a fundamental axiom is that the probability of obtaining at least
one among two results is the sum of the probabilities of obtaining each of these
results. In particular, a result in the sense of Edwards is not any kind of event,
it is an elementary event. Only elementary events can be observed. For instance,
when tossing a die, and seeing the outcome, you cannot observe the event “odd”, you
can only see 1, 3 or 5. So, a likelihood function is proportional to the conditional
probability of an elementary event (the observed sample), where the condition part
(the hypothesis) is a value of some model parameter. For instance, the conditional
probability of the sure event cannot be viewed as the likelihood of the hypothesis
given the sure event.

If this point of view is accepted, what becomes of the likelihood function under
incomplete or imprecise observations? To properly answer this question, one must
understand what is a result in this context. Namely, if we are interested in a certain
random phenomenon modelled by a random variable, observations we get in this
case may not directly inform us about this random variable. Due to the interference
with an imperfect measurement process, observations will be set-valued [4, 5]. So,
in order to properly exploit such incomplete information (called coarse data in the
literature [22]), we must first decide what to model:

1. the random phenomenon through its measurement process;
2. or the random phenomenon despite its measurement process.

In the first case, imprecise observations are considered as results, and we can con-
struct the likelihood function of a random set, whose realizations are sets. These
sets contain precise but ill-known realizations of the random variable of interest, to
which we have no direct access. We say that this unreachable random variable is
latent. Actually, most authors are interested in the other point of view. They con-
sider that outcomes are the precise, although ill-observed, realizations of the random
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phenomenon, and wish to reconstruct a distribution for the latent variable. However
in this case there are as many potential likelihood functions as precise datasets in
agreement with the imprecise observations. Authors have proposed several ways of
addressing this issue. The most traditional approach is based on the EM algorithm
[11, 31, 13], which is an iterative procedure for efficient maximization of the likelihood
of observed data. It constructs a distribution on the latent variable that minimizes
divergence from the parametric model in agreement with the available data. It can
also serve to reconstruct a sample of the latent variable.

In this paper, we propose a formal setting for the modelling of imprecisely ob-
served random experiments, and define the three likelihood functions that can be
built in this framework. Apart from the likelihood function based on available ob-
servations, there is the likelihood function based on outcomes of the latent random
variable that was imprecisely observed, and the likelihood function based on the
joint probability induced by pairs of outcomes and their measurement. The two
latter likelihood functions are imprecisely known and we compare several alterna-
tives to the maximization of the likelihood of imprecise observations, such as the
maximax approach, and the robust approach to incomplete data. It includes more
recent proposals by Hüllermeier [23], or Guillaume and Dubois [19], or Plass et al.
[37]. We also discuss the use of assumptions on the measurement process such as
the coarsening-at-random [22] and the superset assumptions, that help relating the
various likelihood functions. Note that in this paper we do not consider the issue
of imprecision due to too small a number of precise observations (see for instance,
Masson and Denœux [34], or Serrurier and Prade [46]). We assume that the cause of
imprecision lies in the incomplete description of the random experiment outcomes,
not in the scarcity of observations.

2. The random phenomenon and its measurement process

Let a random variable X : Ω → X represent the outcome of a certain random
experiment. For the sake of simplicity, let us assume that its range X = {a1, . . . , am}
is finite. Suppose that observations of X are imprecise, namely let Γ : Ω→ ℘(X ) de-
note the (observable) multi-valued mapping representing our (imprecise) perception
of X. So, if ω occurs then all we know is that X(ω) ∈ Γ(ω) ⊆ X . In other words,
we assume that X is a selection of Γ, i.e. X(ω) ∈ Γ(ω), ∀ω ∈ Ω. This setting is
very close to the one of Dempster [10] who introduces a special case of upper and
lower probabilities, based on random sets, later interpreted by Shafer [47] as belief
and plausibility functions. The issue of set-valued data has been discussed in Ref.
[5] from the point of view of descriptive statistics. In this paper we start addressing
inferential statistics.
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Let Im(Γ) = {A1, . . . , Ar} ∈ ℘(X ) denote the image of Γ (the collection of
possible set-valued outcomes). We can equivalently suppose that the imperfect
measurement process is driven by another random variable Y , with finite range
Y = {b1, . . . , br}, that provides incomplete reports of observations of X. Namely,
Y (ω) = bj means that the measurement tool reports Γ(ω) = Aj. The cardinality of
the image of Im(Y ) = Y = {b1, . . . , br} thus coincides with that of Im(Γ) and let us
assume that there is a bijection between Γ and Y as follows:

Y (ω) = bj iff Γ(ω) = Aj, j = 1, . . . , r,

or yet we can assume that bj = Aj. Let P (X, Y ) be the joint probability describing
X and its measurement.

In some applications, the variable X is made of two components Xo and Xu

respectively corresponding to observed and unobserved variables with respective do-
mains Xo and Xu, and Γ is of the form {Xo} × Γu, i.e., Y = {{X0} × Γu}. The
observed variable Y can then be identified with the random vector Y = (Xo, Yu),
where Yu = Γu.

This framework highlights the difference between the outcome X = ak (its prob-
ability is P (X = ak)), the fact that event Aj occurs whenever the outcome X = ak
belongs to Aj (its probability is P (X ∈ Aj)), and observing the result Aj via the
measurement process (its probability is P (Y = Aj)). The latter is always a singleton,
even when it corresponds to an imprecise observation of X = ak.

In the paper we assume the results of experiments are available in the form of
relative frequencies p̂.j = n.j

n
, where n.j denotes the number of observations of bj = Aj

in the sample, and n is the sample size. The probability distribution (p̂.1, . . . , p̂.r)
on Y can also be viewed as a Dempster-Shafer mass assignment m on ℘(X ) [47],
letting m(Aj) = p̂.j for j = 1, . . . r inducing lower probabilities in the sense of [10]
in the form of a belief function Bel(A) = ∑

E⊆Am(A). This Dempster-Shafer mass
assignment defines a convex set {PX : PX(A) ≥ Bel(A), ∀A ⊆ X} of probabilities on
X , hence of joint probabilities on X × Y with known marginals p̂.j for j = 1, . . . , r
on Y .

An alternative way of modeling the generation of coarse data consists in using
so-called coarsening variables [21]. It supposes the existence of a random variable
C valued on a finite space C, and a function F : X × C → ℘(X) \ {∅} such that
Y = F (X,C).

We overview below two different ways to represent the information about the joint
distribution of the random vector (X, Y ). Subsection 2.1 will refer to the outcome
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of the experiment X and the “coarsening” or “imprecisiation” process2 that leads
us to just get imprecise observations of X, described by Y . Subsection 2.2 will
represent the joint distribution of (X, Y ) the other way around, by means of the
marginal probability of the observations (Y ) and the conditional probability of X
given Y . The “imprecisiation” or “disambiguation” views respectively correspond to
what Little [29] calls selection models and pattern mixture models, albeit expressed
in the framework of missing data using coarsening variables.

2.1. Generation and imprecisiation processes
Let us consider the following matrix: (M |p) : p.1|1. . . . p.r|1. p1.

. . . . . . . . . . . .
p.1|m. . . . p.r|m. pm.


where

• p.j|k. = P (Y = Aj|X = ak) denotes the (conditional) probability of observing
bj = Aj if the true outcome is ak and

• pk. = P (X = ak) denotes the probability that the true outcome is ak.

Such a matrix determines the joint probability distribution P (X, Y ) modeling the
underlying generating process plus the connection between true outcomes and in-
complete observations. (More specifically, the vector (p1., . . . , pm.)T characterizes the
underlying generating random process while the matrix M = (p.j|k.)k=1,...,m;j=1,...,r is
the so-called mixing matrix ([48]) that represents the imprecisiation process. In the
setting of Dempster’s upper and lower probabilities [10], nothing is assumed about
the matrix M and (p1., . . . , pm.)T is unknown. This is not the case in more recent
works whose aim is to retrieve information about X from information about Y , using

2The term “coarsening” is commonly used in the literature of statistics with incomplete data.
Notwithstanding, the idea of coarsening has been also linked to the idea of partition and indiscerni-
bility. For instance, in Rough Set Theory [36] it means “change of granularity”. Also, in Shafer’s
Theory of Evidence [47], it is linked to the idea of defining a partition of indiscernible elements.
Indeed in some cases, within the literature of coarse statistics the notion of coarsening variable
comes down to choose a partition, one element of which is the imprecise observation. So the term
“coarsening process” seems to often underly this partition-based modeling of imprecise observation
generation. However in this paper this is modeled by a mere multi-mapping in the style of Demp-
ster [10]. In the rest of the paper, we will use the term “imprecisiation”, that does not presuppose
coarse data to be generated through partitioning.
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a model of the measurement process, by means of some assumption on the mixing
matrix M .

Some particular settings and their characteristic matrices:
• Partition. Suppose that {A1, . . . , Ar} forms a partition of X . Therefore,

we can easily observe that the probabilities P (Y = Aj|X = ak) = 1 if ak ∈
Aj, and 0 otherwise, ∀ j, k. Then, we can divide the m elements of X into
r categories of respectively k1, . . . , kr elements each. We can denote X =
{a11, . . . , a1k1 , . . . , ar1, . . . , arkr} and particularize the above matrix as follows:



1 . . . 0 p11.
. . . . . . . . . . . .
1 . . . 0 p1k1.

. . . . . . . . . . . .

. . . . . . . . . . . .
0 . . . 1 pr1.
. . . . . . . . . . . .
0 . . . 1 prkr.


where pil. = P (X = ail) denotes the (marginal) probability that X takes the
value ail. Y is then a function of X, Y = f(X). In this case, the joint
distribution of (X, Y ) is determined by the marginal distribution of X. This
procedure determines an equivalence relation over X :

aiRaj ⇔ f(ai) = f(aj),

and therefore, a collection of equivalence classes, Π = {A1, . . . , Ar}, determin-
ing a partition of X . It is clear that in this case P (X, Y ) is generated by a
coarsening variable reduced to a constant (f(X) = F (X, c)). This setting is
the one proposed by Dempster et al. [11] in their famous paper on the EM al-
gorithm, presented as an approach to obtaining a maximum likelihood estimate
(MLE) under incomplete information.3

• Miss-or-observe setting. In this case, we assume that either the value of X
is observed precisely or that it is not observed at all. Then, r = m + 1 and
{A1, . . . , Ar} = {X , {a1}, . . . , {am}}.

3Curiously, the connection between this approach and the more general setting for incomplete
information of [10] is not made by Dempster et al. [11]. It may be surprising as Dempster is also
famous for his work on the foundations of evidence theory.
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Let P (Γ = X|X = ak) = αk, P (Γ = {ak}|X = ak) = 1−αk, k = 1, . . . ,m. The
mixing matrix M is therefore of the form:


out.\obs. X {a1} . . . {am}

a1 α1 1− α1 . . . 0
ai αi . . . 1− αi
am αm . . . . . . 1− αm


This is the situation of missing data [41]. In this case, there is a coarsening
variable C with range {0, 1}, such that F (X,C) is a singleton in X if C = 0 and
is X otherwise. We can see that P (C = 0|X = ai) = 1− αi = P (Y = X|X =
ai). An important particular case is when the probabilities αi’s are constant,
that is, the probability of missing data does not depend on the outcome of the
latent variable. It is also a particular case of the missing-completely-at random
(MCAR) assumption known in the literature [30]. If the latent variable X is
made of two components Xo and Xu respectively corresponding to observed and
unobserved variables, the MCAR assumption then reads P (Γu = Xu|Xo, Xu) =
P (Γu = Xu) = α. Another usual assumption is the missing-at-random one
(MAR), that reads P (Γu = X|Xo, Xu) = P (Γu = Xu|Xo).

• Coarsening at random assumption (CAR). This notion was introduced
by Heitjan and Rubin (see [22]). According to this assumption, the underlying
data do not affect the observations, i.e., an observation Y = Aj is not influ-
enced by the specific value taken by the random variable X inside the set Aj.
Mathematically, this condition is expressed as follows:

P (Y = Aj|X = ak) = P (Y = Aj|X = ak′), ∀ k, k′, with ak, ak′ ∈ Aj, ∀ j,

or equivalently,

P (Y = Aj|X = ak) = P (Y = Aj|X ∈ Aj), j = 1, . . . , r.

A generalization of this notion has been recently considered in a machine learn-
ing context by J. Plass et al. in References [37, 38], where X involves observed
and unobserved variables, respectively Xo and Xu. Under the assumption
CAR, which generalizes MCAR, set-valued observations Γu are assumed to be
independent from the true value of Xu. Let us notice that this generalized as-
sumption collapses into the original CAR definition whenever Xo is a constant.
The authors of [37, 38] also introduced a kind of “orthogonal” assumption in
this machine learning context called “subgroup independence (SI)”. Under this
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assumption, the set-valued observations Γu are assumed not to be influenced
by the value of Xo. Testability of this assumption is studied by the authors, a
problem that falls out of the scope of our manuscript.

• Coarsening Completely at Random Assumption (CCAR) ([41]). The
natural definition would be that of imprecise observations Y independent of
actual outcomes for X, i.e., P (X, Y ) = P (X)P (Y ). However Jaeger [26]
points out that this definition is problematic because it allows for joint out-
comes (x,A) such that x 6∈ A. Enforcing the consistency between set-valued
observations (x(ω) ∈ Γ(ω)), the CCAR assumption must refer to a coarsen-
ing variable. Jaeger [26] proposes that P (X, Y ) is CCAR with respect to a
coarsening variable C if P (C = c|X = ak) = P (C = c|X = ak′) for every
pair ak, ak′ ∈ X of elements with positive probability, i.e., included in the set
{x ∈ X : P (X = x) > 0}.

• Superset assumption ([24]). Again we consider observed and unobserved
variables with respective domains Xo and Xu. We assume that when X = x
is fixed, the conditional P (Y = B|Xu = x) does not depend on B, whenever
x ∈ B and is 0 otherwise. For every x ∈ Xu the number of subsets of X that
contain it is the same. Therefore P (Y = B|Xu = x) = 1/2#Xu−1.
This assumption is dual to the missing-at-random assumption in the sense
that in the latter, Y = B is fixed and P (Y = B|Xu = x) does not depend
on the choice of x inside B, while in the superset assumption, the set-valued
observation induced by X = x can be any superset of x with equal proba-
bility. This assumption is often presented as capturing the idea of “lack of
information” about the measurement process. In fact, the uniform distribution
is used to reflect a balance among outcomes when no information is available.
This modeling of ignorance has been questioned in the context of non additive
representations of belief (e.g., Shafer belief functions [47], or Walley’s impre-
cise probability theory [52], where a complete lack of information is usually
represented by means of a vacuous possibility distribution).
The superset assumption can be particularised to the case where Xo is a con-
stant. It is then to the original general superset assumption what the original
CAR assumption is to the generalized version considered by J. Plass et al.
[37, 38] The next example illustrates both assumptions.

Example 1. A coin is tossed. The random variable X : Ω → X , where X =
{h, t}, represents the result of the toss. We do not directly observe the outcome,
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that is reported by Peter, who sometimes decides not to tell us the result. The
rest of the time, the information he provides about the outcome is faithful. Let
Y denote the information provided by this person about the result. It takes the
“values” {h}, {t} and {h, t}.
This example corresponds to the following matrix (M |p) where akj = p.j|k., k =
1, 2; j = 1, 2, 3: (

1− α 0 α p
0 1− β β 1− p

)

The marginal distribution of X (outcome of the experiment) is given as

– p1. = P (X = h) = p,

– p2. = P (X = t) = 1− p.

The joint probability distribution of (X, Y ) is therefore determined by: X\Y {h} {t} {h, t}
h (1− α)p 0 αp
t 0 (1− β)(1− p) β(1− p)


The marginal distribution of Y (information provided by Peter) is thus:

– p.1 = P (Y = {h}) = P (Y = {h}, X = h) + P (Y = {h}, X = t) =
(1− α) · p+ 0 = (1− α) · p,

– p.2 = P (Y = {t}) = P (Y = {t}, X = h) + P (Y = {t}, X = t) =
0 + (1− β) · (1− p) = (1− β) · (1− p),

– p.3 = P (Y = {h, t}) = P (Y = {h, t}, X = h) + P (Y = {h, t}, X = t) =
α · p+ β · (1− p).

Under the CAR assumption, we have that α = β, i.e.,

P (Y = {h, t}|X = h) = P (Y = {h, t}|X = t).

Let us now consider the (binary) random variable C that takes the value C = 0
when Y = {h, t} and C = 1 otherwise. Let F be defined as F (x, 0) = {h, t}
and F (x, 1) = {x}. The CCAR assumption wrt the coarsening variable C is
equivalent to the above mentioned CAR condition.
The superset assumption is more restrictive and assumes that
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– α = P (Y = {h, t}|X = h) = P (Y = {h}|X = h) = 0.5 and
– β = P (Y = {h, t}|X = t) = P (Y = {t}|X = t) = 0.5

and therefore P (Y = {h, t}) = 0.5. In words, no matter what the true outcome
is (heads or tails) Peter does not give any information about it 50% of the time.
The only remaining parameter is p.

This example demonstrates that the superset assumption represents significant knowl-
edge on the classification process. This is the price paid if we need to provide
a stochastic model of the measurement process, as the uniform distribution over
all supersets of {x} is the least prejudiced probabilistic assumption we can make.
The superset assumption is in fact stronger than the CAR assumption: since un-
der the former assumption, P (Y = B|Xu = x) only depends on the number of
subsets of X that contain x, and this number is the same for all x, it follows that
P (Y = B|Xu = x) = P (Y = B|Xu = x′) for x, x′ ∈ B, which is CAR.

2.2. Imprecise observations and their disambiguations
We can alternatively characterize the joint probability distribution of (X, Y ) by

means of the marginal distribution of Y (observations) and the conditional probabil-
ity of each result X = ak, knowing that the observation was Y = bj (or equivalently
Γ = Aj), for every j = 1, . . . , r.

The new matrix (M ′|p′) can be written as follows: p1.|.1 . . . pm.|.1 p.1
. . . . . . . . . . . .
p1.|.r . . . pm.|.r p.r


where

• pk.|.j = P (X = ak|Y = Aj) denotes the (conditional) probability that the true
value of X is ak if we have been reported that it belongs to Aj;

• p.j = P (Y = bj) = P (Y = Aj) denotes the probability that the generation plus
the imprecisiation processes lead us to observe Aj.

Such a matrix also determines the joint probability distribution modeling the under-
lying generating process plus the connection between true outcomes and incomplete
observations. (More specifically, the vector (p.1, . . . , p.r)T characterizes the observa-
tion process while the matrix M ′ = (pk.|.j)k=1,...,m;j=1,...,r represents the conditional
probability of X (true outcome) given Y (observation).
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Some recent studies on “partial identification” (see [32], for instance) can be
somehow related with this framework. They consider situations where parameters
of interest are partially identified (see [33]). For instance, when the parameter is
real-valued, the so-called “identification region” is a subset of the real line. Imbens
and Manski [25] propose the construction of confidence intervals that cover every
element in the region with a specific confidence level whose bounds can be computed
from sample data.

In this regard, the marginal distribution on X (p1., . . . , pm.) is sometimes partially
identified, on the basis of our knowledge of the marginal distribution on Y . In fact,
let us notice that, according to the total probability theorem, we can write:

pk. =
∑
j

p.j · pk.|.j, ∀ k = 1, . . . ,m.

Furthermore, partial information about the matrix M ′ is sometimes available. As
consequence, confidence regions for any parameter inducing the marginal distribu-
tion (p1., . . . , pm.) on X can be derived from the above information, on the basis of
observable frequencies, that may allow us to provide confidence estimations for the
marginal distribution on Y .

Consider for instance a miss-or-observe problem, where Y takes r = m+ 1 values
of the form bj = {aj}, j = 1, . . . ,m and bm+1 = {X}. The equality P (X = ak|Y =
{ak}) = 1 holds, for every k = 1, . . . ,m. Furthermore, P (X = ak|Y = X ) is
known to be included in the unit interval. Based on the above information and on
observable marginal frequencies, we can compute set-valued confidence estimations
for every (p1., . . . , pm.) or alternatively, for a parameter determining it.

One example of assumption in this setting is the Uniform Conditional Distribution
Assumption. In this case we assume that if Aj is observed, all the possible outcomes
ak ∈ Aj are equally probable, due to a symmetry argument such as the insufficient
reason principle. The conditional distribution is then given by:

pk.|.j =


1

#Aj
, if ak ∈ Aj

0 otherwise.

Knowing the distribution on Y (which can be estimated from y), the marginal dis-
tribution on X can be estimated as well since:

pk. =
r∑
j=1

pk.|.j · p.j =
∑

j:Aj3ak

1
#Aj

p.j.

Note that this assumption is similar to the superset assumption, exchanging the
roles of subsets and elements of X . In the coin-tossing example, it comes down to
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assuming
P (X = h|Y = {h, t}) = P (X = t|Y = {h, t}) = 0.5

instead of P (Y = {h, t}|X = h)) = P (Y = {h, t})|X = t) = 0.5.
Viewing a probability distribution on Y as a Dempster-Shafer mass assignment

m on ℘(X ) as mentioned at the beginning of this section, PX , as defined above, is the
pignistic transform of the belief function induced by the following mass assignment:

m(Aj) = p.j, ∀ j = 1, . . . , r.

[49], or yet its Shapley value. More generally, fixing a mixing matrix M ′ comes
down to picking a probability distribution on X from the convex credal set {PX :
PX(A) ≥ Bel(A),∀A ⊆ X}.

3. Maximum likelihood strategies under incomplete information

Each matrix (M |p) or (M ′|p′) is enough to univocally characterize the joint
distribution of (X, Y ). For each pair (k, j) ∈ {1, . . . ,m} × {1, . . . , r}, let pkj denote
the joint probability pkj = P (X = ak, Y = Aj). According to the nomenclature used
in the preceding subsections, the respective marginals on X and Y are denoted as
follows:

• p.j = ∑m
k=1 pkj will denote the mass of Y = Aj, for each j = 1, . . . , r, and

• pk. = P (X = ak) = ∑r
j=1 pkj will denote the mass of X = ak, for every k.

Now, let us assume that the above joint distribution is characterized by means of
a (vector of) parameter(s) θ ∈ Θ (in the sense that entries in M and M ′ can be
written as functions of θ). We naturally assume that the number of components
of θ is less than or equal to the dimension of both matrices, i.e., it is less than or
equal to min{m× (r+ 1), r(m+ 1)}. In other words, the approach uses a parametric
model such that a value of θ determines a joint distribution on X × Y . When the
joint probability measure is the parametric distribution associated to the (vector of)
value(s) θ of the parameter, we will respectively use the nomenclature

• pθkj = P (X = ak, Y = Aj; θ),

• pθk. = ∑r
j=1 p

θ
kj = P (X = ak; θ) and

• pθ.j = ∑m
k=1 p

θ
kj = P (Y = Aj; θ).
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Let us consider a sequence Z = ((X1, Y1), . . . , (XN , YN)) of N iid random variables
that are “copies” of Z = (X, Y ). We will use the nomenclature z = ((x1, y1), . . . , (xN , yN)) ∈
(X ×Y)N to represent a specific sample of the vector (X, Y ). Thus, y = (y1, . . . , yN)
will denote the observed sample (an observation of the vector Y = (Y1, . . . , YN)),
and x = (x1, . . . , xN) will denote an arbitrary artificial sample from X for the un-
observable (latent) variable X, that we shall vary in XN . Let (G1, . . . , GN) be the
sequence of subsets of X that corresponds to the observed sample y (namely if Yj = yj
it corresponds to Xj ∈ Gj).

We can describe any sample z in frequentist terms assuming exchangeability:

• nkj = ∑N
i=1 1{(ak,bj)}(xi, yi) is the number of repetitions of (ak, bj) in sample z;

• ∑m
k=1 nkj = n.j be the number of observations of bj = Aj in y;

• ∑r
j=1 nkj = nk. be the number of appearances of aj in x.

Clearly, ∑m
k=1 nk. = ∑r

j=1 n.j = N . Let the reader notice that, once a specific sample
y = (y1, . . . , yN) ∈ YN has been observed, the number of nkj repetitions of each pair
(ak, bj) ∈ X × Y in the sample, can be expressed as a function of x = (x1, . . . , xN).
Moreover, in the following X y denote the collection of feasible marginal samples
(x1, . . . , xN) of X, in accordance with the observation y:

X y = {x ∈ XN : xi ∈ Gi, i = 1, . . . , N}

and likewise Zz denote the collection of feasible (joint) samples (z1, . . . , zN) of Z, in
accordance with the observation y:

Zy = {z ∈ (X × Y)N : zi = (xi, yi) and xi ∈ Gi, i = 1, . . . , N}.

3.1. Which likelihood function?
We may consider three different likelihood functions (and their respective loga-

rithms), depending on whether we refer to the observed sample y = (y1, . . . , yN), the
sample of (ill-observed) outcomes x = (x1, . . . , xN), or the complete sample z, and a
fourth expression that interprets imprecise observations as events. We will use the
following nomenclature to distinguish them from each other:

Visible likelihood function. p(y; θ) = ∏N
i=1 p(yi; θ) denotes the probability of ob-

serving y ∈ YN , assuming that the value of the parameter is θ. It can be alternatively
expressed as p(y; θ) = ∏r

j=1(pθ.j)n.j , where n.j denotes the number of repetitions of
bj = Aj in the sample of size N (the number of times that the reporter says that the

13



outcome of the experiment belongs to Aj.) The logarithm of this likelihood function
will be denoted by

Ly(θ) = log p(y; θ) =
N∑
i=1

log p(yi; θ) =
r∑
j=1

n.j log pθ.j.

We call p(y; θ) the visible likelihood function, because we can compute it based on
the available data only, that is the observed sample y. It is also sometimes called
the marginal likelihood of the observed data in the EM literature, not to be confused
with the marginal likelihood in a Bayesian context (see [3], for instance).

Face likelihood function. Note that Ly(θ) differs from the quantity

λ(y; θ) =
r∏
j=1

P (X ∈ Aj; θ)n.j ,

called the “face likelihood” in Ref. [9, 27]. The latter quantity does not refer to the
observation process, and replaces the probability of reporting Aj as the result of an
observation (i.e. P (Y = Aj)) by the probability that the true outcome falls inside the
set Aj, P (X ∈ Aj). In particular, the occurrence of event “X ∈ Aj” is a consequence
of, but does not necessarily coincide with the outcome “Y = Aj”. In our context,
p(y; θ) represents the probability of occurrence of the result “(y1, . . . , yN) = y”,
given the hypothesis θ. Therefore given two arbitrary different samples y 6= y′ the
respective events (y1, . . . , yN) = y and “(y1, . . . , yN) = y′” are mutually exclusive. In
contrast, λ(y; θ) denotes the probability of occurrence of the event (X1, . . . , XN) ∈
G1 × . . . × GN , where Gj = Aj if Yj = Aj. Events of this form may overlap,
in the sense that, given two different samples y 6= y′, the corresponding events
(X1, . . . , XN) ∈ G1× . . .×GN and (X1, . . . , XN) ∈ G′1× . . .×G′N are not necessarily
mutually exclusive. Therefore λ(y; θ) cannot be regarded as a likelihood in the sense
of Edwards ([16]).

However, under the CAR assumption and the assumption of distinctness of pa-
rameters, maximizing the face likelihood is the same as maximizing the visible like-
lihood. Jaeger ([26], Th. 2.18) points out that under CAR, the following equality
obtains

P (Y = A|X = x) = P (Y = A|X ∈ A) = P (Y = A)
P (X ∈ A) .

This is easy to see noticing that since from CAR, P (Y = A|X = x) = kA does not
depend on x ∈ A, the equality

P (X = x|Y = A) · P (Y = A) = P (Y = A|X = x) · P (X = x)
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implies ∑
x∈A

P (X = x|Y = A) · P (Y = A) = kA ·
∑
x∈A

P (X = x).

Hence P (X ∈ A|Y = A) · P (Y = A) = kA · P (X ∈ A), but P (X ∈ A|Y = A) = 1.
So, P (Y = A) only depends on the probability of event A on X . We can deduce from
this fact that, under the assumption of separability with respect to M (also referred
to as distinctness of the parameters) the arguments of the maxima of the visible and
the face likelihoods do coincide. Further comments about this equivalence will be
provided in Subsection 4.5.

Latent likelihood function. p(x, θ) = ∏N
i=1 p(xi; θ) = ∏m

i=1(pθk.)nk. , where nk. de-
notes the number of occurrences of ak in the sample x = (x1, . . . , xN). This sample
is never observed directly, by assumption. However it must be in agreement with
the observed sample y. Each virtual sample of X in X y yields a possible likelihood
function p(x, θ) in agreement with the actual observations y. The logarithm of this
likelihood function will be denoted by

Lx(θ) = log p(x; θ) =
N∑
i=1

log p(xi; θ) =
m∑
k=1

nk. log pθk.,

where nk. = ∑r
j=1 nkj and nkj is such that ∑m

k=1 nkj = n.j, the number of times
Y = Aj has been observed. Note that the definition of nk. is in agreement with
x ∈ X y. We call p(x; θ) the latent likelihood function, because x is not actually
observed, nor are the nk.’s, since only the n.j’s are.

Total likelihood function. p(z, θ) = ∏N
i=1 p(zi; θ) = ∏m

k=1
∏r
j=1(pθkj)nkj is the like-

lihood function induced by the whole artificial sample z, we call the total likelihood.
Again, it must be in agreement with the observed sample y = (y1, . . . , yN), which
is fixed by assumption. Each virtual sample of Z in Zy yields a possible likelihood
function p(z, θ) in agreement with the actual observations y. We will denote its
logarithm by

Lz(θ) = log p(z; θ) =
N∑
i=1

log p(zi; θ) =
m∑
k=1

r∑
j=1

nkj log pθkj.

Maximizing p(z, θ) allows us to introduce assumptions on the measurement pro-
cess, either in terms of imprecisiation or disambiguation. Namely, the conditional
probabilities p.j|k. may be known because, for instance, the superset assumption is
made. Alternatively, probabilities p.k|.j could be known, which, along with a partic-
ular distribution on Y (to be estimated from observations y), is enough to derive a
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concrete distribution on Z and therefore on X . More generally, there may be some
dependence between the process driving the latent variable X and the measurement
process driving the actual observations y. In this case, maximizing Lz(θ) enables
this kind of additional information to be accounted for.

Remark 3.1. In the above expressions, we use the convention 00 = 1. In other
words, the expression ∏m

k=1
∏r
j=1 p

nkj

kj replaces the formally correct expression∏
(k,j)∈{1,...,m}×{1,...,r} :nkj 6=0

p
nkj

kj .

Example 2. Consider again Example 1, i.e. the coin tossing experiment, assuming
for 10 tosses that Peter reports 4 times Heads, 2 times Tails and 4 times nothing.
Let us write the four likelihood functions.

• Visible likelihood:
p(y, θ) = P ({{h})4 ·P ({{t}})2 ·P ({{h, t}})4 = [[(1− α)p]4[(1− α)(1− p)]2α4]
using the parameters introduced earlier. Note that P ({{h}}) + P ({{t}}) +
P ({{h, t}}) = 1 as it is a probability distribution on 2{h,t}.

• Face likelihood: p(y, θ) = P ({h})4 · P ({t})2 = p4(1 − p)2 since P ({h, t}) = 1.
Optimizing it comes down to forgetting the missing information.

• Hidden Likelihood: p(x, θ) = p4+n13 · (1 − p)6−n13, where n13 is the unknown
number of times Peter does not report, while the result is Head.

• Total likelihood: p(z, θ) = [[(1− α)p]4[(1− α)(1− p)]2(αp)n13(α(1− p))4−n13 ].
The four outcomes obtained by describing both the toss result and the report
are evaluated.

3.2. Maximum likelihood strategies
In this paper we will compare different existing strategies of likelihood maximiza-

tion, based on a sequence of observations y = (y1, . . . , yN) ∈ YN :

• Maximizing Ly(θ). The argument of the maximum of Ly considered as a
mapping defined on Θ is called maximum likelihood estimator (MLE) i.e.:

θ̂ = arg max
θ∈Θ

Ly(θ) = arg max
θ∈Θ

r∏
j=1

(pθ.j)n.j .
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Note that this maximization process does not need any reference to the non-
observed variable X. From optimizing Ly(θ), what is obtained is a proba-
bility distribution on Y , which, as already suggested can also be viewed as
a Dempster-Shafer mass assignment mθ on ℘(X ), letting mθ(Aj) = pθ.j for
j = 1, . . . r. But a concrete choice of θ ∈ Θ also leads us to select a specific
joint distribution on X ×Y (pθij)i=1,...,m;j=1,...r. When the argument of the max-
imum of the log-likelihood function Ly is not unique, the MLE determines a
collection of joint distributions on X ×Y . Under some circumstances, this col-
lection of joint distributions coincides with the credal set associated to a mass
function, and such a mass function determines a unique distribution on Y . We
will provide a brief discussion about such a situation in Example 3. The EM
algorithm [31] is an iterative technique that uses a latent variable X in order
to reach a local maximum of Ly when its optimization is tricky. In this case,
we also obtain a precise imputation x ∈ X y. The latent variable is sometimes
fictitious, as in the case of learning a mixture of normal distributions [11].

• Maximizing Lx(θ). This is the genuine goal if one is interested to find the
MLE of X despite the imprecise data. However, since the precise sample x
is not available, there is a subset LXy(θ) = {Lx(θ) : x ∈ X y} of possible
likelihood functions [19]. So we must find not only an optimal value of θ, but
also an optimal sample x, according to some strategy. There are two obvious
strategies that come to mind:

1. Maximax strategy: find a pair (x∗∗, θ∗∗) ∈ XN ×Θ satisfying

(x∗∗, θ∗∗) = arg max
x∈Xy,θ∈Θ

Lx(θ) = arg max
x∈Xy,θ∈Θ

m∏
k=1

(pθk.)nk. .

It comes down to maximizing an upper log-likelihood function L
x(θ) =

max{Lx(θ) : x ∈ X y}, which can be viewed as an optimistic strategy; it
tends to favor distributions with small entropy, under certain conditions,
as we shall see later. The maximax technique has been proposed by E.
Hüllermeier ([23]) using more general loss functions. His paper makes the
point that the choice of an optimal pair (x∗∗, θ∗∗) leads to a simultaneous
selection of a best model together with a disambiguation of the imprecise
observations.

2. Maximin strategy: find a pair (x∗∗, θ∗∗) ∈ XN ×Θ satisfying:

(x∗∗, θ∗∗) = arg max
θ∈Θ

min
x∈Xy

Lx(θ) = arg max
θ∈Θ

min
x∈Xy

m∏
k=1

(pθk.)nk. ,
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where nk. = ∑N
i=1 1{ak}(xi) denotes the number of repetitions of ak in the

sample x. It comes down to maximizing a lower log-likelihood function
Lx(θ) = min{Lx(θ) : x ∈ X y}, which can be viewed as a robust strategy,
that copes with the imprecision of the likelihood function; it tends to favor
distributions with large dispersions, as we shall see later. The maximin
technique has been proposed in Ref. [19].

Note that one might object to these approaches. First, considering L
x(θ) or

Lx(θ) requires the comparison of values of Lx(θ) for several samples x, which
maximal likelihood advocates will strongly question. Following them, one can-
not compare likelihood functions coming from distinct data sets [16]. However
one may reply to it that in the case of our imprecise information setting, two
samples x,x′ ∈ X y not only have the same size, but represent the same data
set. This data set is unique but ill-known, and the considered samples are
in agreement with the same body of observations y. It is then sure that
the true likelihood function lies in the interval [Lx(θ), Lx(θ)]. Maximizing
one of its bounds is a usual strategy in the face of intervals. We may also
use any other strategy that compares intervals, for example the safe but very
demanding (if not impossible to reach) partial interval ordering requirement
Lx(θ?) > L

x(θ), ∀θ 6= θ?.
Hüllermeier [23] justifies the maximax approach by saying that if Lx1(θ1) >
L

x2(θ2) then the sample x1 is arguably more plausible than the the sample
x2, simply because the first instantiation allows for a much better fit to the
model based on θ1 than the second one based on θ2. This philosophy leads
to disambiguating the imprecise data through the choice of the best model.
However, this line of reasoning makes sense if we are sure that the random
process generating X follows a model in the prescribed class parameterized by
θ. Then it is natural to consider that the most plausible values compatible
with the imprecise observations are those which enable a best fit with the
class of parameterized model, so that one may select at the same time the
best model and the best sample that justifies it. In that case, the resulting
disambiguation is a form of data reconciliation [14]. In constrast, if the set of
parameterized models is chosen for its computational simplicity and is known
to be an approximation of the real phenomenon, the disambiguation rationale
of the maximax approach is then not so strong.

• Maximizing Lz(θ). As said earlier this is the natural way to go, if some
information regarding the dependence between the latent variable X and its
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measurement process is available, for instance the superset or the CAR as-
sumption is made. We can again adopt maximax or maximin strategies, since
the full sample z is not available, and only the observations y are. There is
also an iterative strategy that exploits the links between X and Y , such as the
EM algorithm, which maximizes Ly(θ) via the production of a fake sample z.

1. The maximax strategy aims at finding the pair (z∗, θ∗) ∈ ZN × Ω that
maximizes the function Lz(θ):

(z∗, θ∗) = arg max
z∈Zy,θ∈Θ

Lz(θ) = arg max
z∈Zy,θ∈Θ

m∏
k=1

r∏
j=1

(pθkj)nkj .

It comes down to maximizing an upper log-likelihood function L
Zy

(θ) =
max{Lz(θ) : z ∈ Zy}. The complete sample z∗ also yields an optimal
sample x∗ ∈ X y since Lz(θ) can be viewed as a function fy : XN ×Θ→ R
that only depends on x. This maximization procedure has been considered
in [24] under the superset assumption.

2. It is clear we can similarly envisage the corresponding maximin strategy
and find the pair (x∗, θ∗) ∈ XN × Ω induced by the pair (z∗, θ∗) that
maximizes the lower log-likelihood function LZ

y(θ) = min{Lz(θ) : z ∈
Zy}.

(z∗, θ∗) = arg max
θ∈Θ

min
z∈Zy

Lz(θ) = arg max
θ∈Θ

min
z∈Zy

m∏
k=1

r∏
j=1

(pθkj)nkj .

3. Guess an initial value of θ, which enables to construct a fictitious sample z;
then, an MLE of θ for this sample can be found, and this process is iterated
till convergence. This kind of strategy is adopted by the EM algorithm and
tries to find a probability model pθ as close as possible to the empirical
distribution of a fake sample z ∈ Zy, in the sense of Kullback-Leibler
divergence [31] (see also [6]).

In this paper, we focus on the maximax and maximin strategies for maximizing Lx

and Lz.

3.3. Connections between MLE strategies
Under some particular conditions about the matrices M and M ′, some of the

above maximization procedures may coincide. Below, some results are provided.
There are two kinds of results: some that relate the total likelihood function p(z; θ)
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and the latent one p(x; θ) under suitable assumptions, and those that relate the total
likelihood function p(z; θ) and the visible one p(y; θ). This is done by introducing
assumptions about the incomplete data or the conditional distributions describing
the measurement process. It comes down to some information about the matrices
M and M ′.

A first issue concerns the parameter θ, which so far is used in the three likelihood
functions as driving the joint distribution on Z = X × Y , hence the respective
marginals on X and Y . In some situations, X and Y are driven by distinct parameters
θ1, θ2.

The following result concerns the disambiguation point of view and involves ma-
trix M ′.

Definition 1. We say that the parameter θ ∈ Θ is separable with respect to the ma-
trix (M ′|p′) if it can be “separated” into two (maybe multidimensional) components
θ1 ∈ Θ1, θ2 ∈ Θ2 such that Θ = Θ1 × Θ2, where pθk.|.j and pθ.j can be respectively
written as functions of θ1 and θ2.

Proposition 1. ∪z∈Zy arg maxθ∈Θ L
z(θ) ⊆ arg maxθ∈Θ L

y(θ) provided that θ is sep-
arable wrt (M ′|p′).4

Proof: Let y ∈ YN denote the observed sample. Let us select an arbitrary
complete sample z ∈ Zy. p(z; θ) = ∏r

j=1
∏m
k=1(pθkj)nkj = ∏r

j=1
∏m
k=1(pθk.|.j · pθ.j)nkj =∏r

j=1(pθ.j)
∑m

k=1 nkj ·∏r
j=1

∏m
k=1(pθk.|.j)nkj = ∏r

j=1(pθ.j)n.j ·∏r
j=1

∏m
k=1(pθk.|.j)nkj . Thus, if θ

is separable wrt (M ′|p′) we can write:

p(z; θ) =
r∏
j=1

(pθ1
.j )n.j

r∏
j=1

m∏
k=1

(pθ2
k.|.j)

nkj .

Thus, if θ∗ is an optimal parameter such that Lz(θ∗) = maxθ∈Θ L
z(θ), then its projec-

tion on Θ1, θ∗1 ∈ Θ1 must necessarily satisfy the equality Ly(θ∗1) = maxθ1∈Θ1 L
y(θ1).

�

Now let us check the consequence of the uniform conditional distribution assump-
tion.

4Remember that arg maxθ∈Θ L
z(θ) is the set of θ’s that maximize Lz(θ). It may be a singleton,

but not an element of Θ.
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Proposition 2. Let y = (y1, . . . , yN) ∈ YN denote the observed sample. Let us sup-
pose that ∏r

j=1
∏
k:nkj 6=0 p

nkj

k.|.j is a value c that does not depend on the particular choice
of z ∈ Zy, nor on θ. Then for every z ∈ Zy we have p(z; θ) = cp(y; θ) and therefore
arg max(x,θ)∈Xy×Θ p(z; θ) = arg maxθ∈Θ arg minz∈Zy p(z; θ) = arg maxθ∈Θ p(y; θ).

Proof: Using the previous proof, we already have that

p(z; θ) =
r∏
j=1

p
n.j

.j

∏
k:nkj 6=0

(pk.|.j)nkj = cp(y; θ).

�

Proposition 3. Let y = (y1, . . . , yN) ∈ YNdenote the observed sample. Let us
consider the uniform conditional distribution assumption. Then ∏r

j=1
∏
k:nkj 6=0 p

nkj

.j|k.
is a value c that does not depend on the particular choice of z ∈ Zy, nor on θ.

Proof: Under the uniform conditional distribution assumption we have:

pk.|.j =


1

#Aj
if ak ∈ Aj

0 otherwise.

Therefore,
r∏
j=1

∏
k:nkj 6=0

p
nkj

k.|.j =
r∏
j=1

1
#Aj

∑
k:nkj 6=0 nkj

=
r∏
j=1

(
1

#Aj

)n.j

.

�

Corollary 4. If the uniform conditional distribution assumption holds then, for all
z ∈ Zy, p(z; θ) = cp(y; θ), where c does not depend either on the particular z ∈ Zy

nor on θ and therefore

arg max
(x,θ)∈Xy×Θ

p(z; θ) = arg max
θ∈Θ

arg min
z∈Zy

p(z; θ) = arg max
θ∈Θ

p(y; θ).

The next results concern the imprecisiation process and involve matrix M :

Definition 2. We say that the parameter θ ∈ Θ is separable with respect to the
matrix (M |p) if it can be “separated” into two (maybe multidimensional) components
θ3 ∈ Θ3, θ4 ∈ Θ4 such that Θ = Θ3×Θ4 and pθ.j|k. and pθk. can be respectively written
as functions of θ3 and θ4.

This type of separability corresponds to the notion of “distinct parameters” in the
sense of Heitjan and Rubin ([22]) in the context of coarse data, and Little and Rubin
([30]) in the context of missing data.
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Proposition 5. If θ is separable wrt (M |p) then, given a specific sample x ∈ XN

and the corresponding z ∈ (X × Y)N induced by x and y, arg maxθ∈Θ L
z(θ) ⊆

arg maxθ∈Θ L
x(θ).

Proof: The proof of this result is similar to the one given in Proposition 1. �

Remark 3.2. Proposition 5 assumes a fixed sample x ∈ XN . Let us notice that
the separability wrt M does not imply that the respective solutions of both maximax
problems, θ∗∗ = arg maxθ∈Θ L

X y

(θ) and θ∗ = arg maxθ∈Θ L
Zy

(θ), coincide. They can
be attained for different samples in X y.

Proposition 6. Let y = (y1, . . . , yN) ∈ YN denote the observed sample. Let us
suppose that ∏m

k=1
∏
j:nkj 6=0 p

nkj

.j|k. is a value c that does not depend on the partic-
ular choice of z ∈ Zy, nor on θ. Then, for all x ∈ X y and the correspond-
ing z ∈ Zy we have p(z; θ) = cp(x; θ) and therefore arg max(x,θ)∈Xy×Θ p(x; θ) =
arg max(x,θ)∈Xy×Θ p(z; θ).

Proof:
p(z; θ) =

m∏
k=1

∏
j:nkj 6=0

p
nkj

kj =
m∏
k=1

∏
j:nkj 6=0

(p.j|k. · pk.)nkj =

m∏
k=1

∏
j:nkj 6=0

p
nkj

.j|k. · p
nkj

k. =
m∏
k=1

p

∑r

j=1 nkj

k. ·
m∏
k=1

∏
j:nkj 6=0

(p.j|k.)nkj =

m∏
k=1

pnk.
k. · c = p(x; θ) · c.

�

Proposition 7. Let y = (y1, . . . , yN) ∈ YN denote the observed sample. Let us
suppose that {A1, . . . , Ar} forms a partition of X or that the superset assumption is
satisfied. Then ∏m

k=1
∏
j:nkj 6=0 p

nkj

.j|k. is a constant c.
Proof:
On one hand, we can easily check that, if {A1, . . . , Ar} forms a partition of X

then ∏m
k=1

∏
j:nkj 6=0 p

nkj

.j|k. = 1. Now, let us check that the above condition holds under
the superset assumption. Under the superset assumption we have already shown
that p.j|k. = 2m−1 if ak ∈ Aj, and 0 otherwise. Therefore, ∏m

k=1
∏
j:nkj 6=0 p

nkj

.j|k. =∏m
k=1

(
1

2m−1

)∑
j:nkj 6=0 nkj = ∏m

k=1

(
1

2m−1

)nk. =
(

1
2m−1

)N
. �

Corollary 8. If any of the following conditions is satisfied:

• {A1, . . . , Ar} forms a partition of X
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• The superset assumption holds

then p(z; θ) = cp(x; θ) and therefore arg max(x,θ)∈XN×Θ p(x; θ) = arg max(x,θ)∈XN×Θ L
z(θ).

Furthermore c = 1 in the first case.

Most approaches in statistical inference insist on the necessity to have a statisti-
cal model of the observation process. In that case the natural likelihood function to
maximize is p(z, θ). In contrast, if we maximise the latent likelihood function p(x, θ)
directly with respect to both x and θ, we in some way give up the idea of providing a
statistical model for the observation (imprecisiation) process. The superset assump-
tion can be used to justify the use of p(x, θ) by providing such a statistical model,
since in that case maximizing p(z, θ) is the same as maximizing p(x, θ) (this is the
message apparently carried by the authors of [24], for instance). When no informa-
tion about the measurement process is available, it is to us an open question whether
one should maximize p(x, θ) or p(z, θ) with respect to both x and θ. Indeed, the
two corresponding MLE may differ as indicated on examples in the following.

4. Comparing the maximum likelihood strategies on examples

Based on some of the results provided in Subsection 3.3, we can compare the
various choices of likelihood functions (maximization of Ly(θ), Lx(θ), Lz(θ)) in an
imprecise environment, on the basis of the acceptability of results obtained by their
maximization on a number of prototypical examples. These examples, shed light on
the nature of the maximin and the maximax strategies, as opposed to maximizing
the visible likelihood function. We consider several settings where imprecise data
occur in various ways: the possible observations may form a partition of space X ,
the data is either precise or missing, and the general case where imprecise data may
overlap.

4.1. Observations forming a partition: separable case
The first example illustrates the situation where imprecise data form a partition

of X and the parameter θ is separable.

Example 3. Consider the random experiment that consists on rolling a dice. We
do not know whether the dice is fair or not. Suppose that the person that rolls it
just tells us whether the outcome is even or odd. Let X be the random variable
denoting the actual outcome of the dice roll (ai = i for i = 1, . . . , 6) and let Y
be a binary variable taking the values b1 (odd) and b2 (even). So, the collection
{A1 = {1, 3, 5}, A2 = {2, 4, 6}} determines a partition of the whole set of possible
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outcomes X = {1, . . . , 6}. Let the 6-dimensional vector (p1., . . . , p6.) represent the
actual (unknown) probability distribution of X, where pi. = P (X = ai), i = 1, . . . , 6
and p6. = 1−∑5

i=1 pi..
Let p.2 = π = p2. +p4. +p6. denote the probability of getting an even number. The

six-dimensional vector (p1., . . . , p6.) can be alternatively expressed as

((1− π)α1, πβ1, (1− π)α2, πβ2, (1− π)(1− α1 − α2), π(1− β1 − β2))

where α = (α1, α2) and β = (β1, β2) respectively denote αi = p(2i−1).

1−π and βi = p2i.
π

.
Therefore, we can identify (p1., . . . , p6.) with the parameter θ = (θ1, θ2) = (π, (α, β))
and see that it is separable with respect to the matrix (M ′|p′) given as(

α1 0 α2 0 1− α1 − α2 0 1− π
0 β1 0 β2 0 1− β1 − β2 π

)
since (α, β) determines the conditional distribution of X given Y while π determines
the marginal distribution of Y .

Maximizing Ly(θ). Based on a sample of n.1 occurrences of b1 and n.2 occurrences
of b2 in a sample of N = n.1 + n.2 trials, any parameter θ̂ of the form (θ̂1, θ2) =(
n.2
N
, (α, β)

)
, for an arbitrary pair (α, β))((α1, α2), (β1, β2)) is an MLE from y. Such

an MLE determines a single marginal distribution on Y, (p̂.1, p̂.2) = (n.1
N
, n.2
N

). Due to
the separability, such an MLE does not constrain any of the conditional distributions
X|Y = b1 or X|Y = b2. Furthermore, neither does the parameter θ2 = (α, β)
constrain them.Therefore, the collection of marginal distributions on X associated
to the collection of MLE from y is the credal set associated to the mass function
mθ̂1

({1, 3, 5}) = n.1
N

, mθ̂1
({2, 4, 6}) = n.2

N
.

Maximax strategy. Assume a fixed probability vector (p1., . . . , p6.) and let i∗ be the
index of the greatest of p1., p3., p5., j∗ be the index of the greatest of p2., p4., p6.. The
maximum of

p(z; θ) = p(x; θ) = pn11
1. · pn22

2. · pn31
3. · pn42

4. · pn51
5. · pn62

6. ,

where n1 = n11 +n13 +n15, n2 = n22 +n24 +n26 is reached for any selection x∗ ∈ XN

where n.1 identical outcomes corresponding to odd number i∗ and the remaining ones,
n.2 = N − n.1, identical outcomes corresponding to even number j∗ are obtained.
Now, maximizing wrt (p1., . . . , p6.) leads to let pi∗· = pj∗· = 1. This means any choice
θ∗ = (n.2

N
, α∗, β∗) ∈ Θ, with α∗ ∈ {(1, 0), (0, 1), (0, 0)} and β∗ ∈ {(1, 0), (0, 1), (0, 0)}

is optimal. In words, the maximum of Lx(θ) = Lz(θ) is attained for all situations
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where only two facets of the dice, one of them corresponding to an even number and
the other one representing an odd one, are possible. The parameter θ∗ determines
the probability distribution of X where the probabilities of those two numbers are
respectively π and 1− π. The sample x∗ is the only sample compatible with y where
there are n.2 repetitions of the even number and n.1 repetitions of the odd one. Taking
into account the separability of θ wrt M ′ and according to Proposition 1, the collection
of optimal selections of the parameter:{(

n.2
N
,α∗, β∗

)
, with α∗ ∈ {(1, 0), (0, 1), (0, 0)} and β∗ ∈ {(1, 0), (0, 1), (0, 0)}

}
is included in the set of maximum likelihood estimators for Ly,{(

n.2
N
, (α1, α2), (β1, β2)

)
: α1, α2, β1, β2 ∈ [0, 1]

}
.

Maximin strategy. Assume a fixed (p1., . . . , p6.) and let i∗ be the index of the least
of p1., p3., p5. j

∗ be the index of the least of p2., p4., p6.. Since, Lx(p1., . . . , p6.) =∑6
i=1 ni log pi., we easily observe that Lx(θ) reaches its minimum when ni∗. = n1. +

n3. + n5. = n.1 and nj∗ = n2. + n4. + n6. = n.2 and therefore, Lx(p1., . . . , p6.) =
n.1 log pi∗· +n.2 log pj∗·. Now let us maximise Lx(θ) with respect to (p1., . . . , p6.). For a
fixed value of π = p2.+p4.+p6.; this maximum is reached at pi∗ = p1. = p3. = p5. = 1−π

3
and pj∗ = p2. = p4. = p6. = π

3 and therefore

max
(p1.,...,p6.)

Lx(p1., . . . , p6.) = max
π∈[0,1]

n.1 log
(
π

3

)
+ n.2 log

(1− π
3

)
.

The argument of the maximum is therefore the vector (p1∗· , . . . , p6∗· ) where pi∗· = n.1
3N

i = 1, 3, 5 and pi∗· = n.2
3N i = 2, 4, 6. In words, the maximin approach assigns the

same probability to all odd outcomes, and also to the even outcomes. Note that it
does not suggest a best imputation of (n1., . . . , n6.), as all corresponding samples x
in agreement with the n.1 observations of odds and n.2 observations of evens are
equiprobable.

The above example shows that the maximax strategy supplies, as most plausible
imputations, one odd and one even number only (any pair can be chosen). More
generally, the same reasoning applies to the general case where {A1, . . . Ar} forms a
partition and Py ⊆ PΘ, where PΘ denotes the set of parameterized joint distributions
(dependent on θ) and Py the set of joint distributions whose marginals on Y agree
with the empirical distribution induced by y. Namely:
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Proposition 9. If the imprecise observations {A1, . . . Ar} form a partition of X
and Py ⊆ PΘ then the maximax strategy applied to Lx(θ) with respect to x and θ is
reached for any sample of X consisting of n.j copies of the same element ak ∈ Aj for
each Aj (i.e., nk.

N
= nkj

N
= n.j

N
), the corresponding parameterized distribution on X is

the one that coincides with the empirical one induced by this sample, i.e., p̂k. = n.j

N

for ak ∈ Aj, and p̂k′. = 0 for ak′ 6= ak, ak′ ∈ Aj.
Proof: The proof is the same as in the case when r = 2 given in the above

example. �

In other words the maximax solution presupposes that each occurrence of Y = Aj
underlies the same outcome X = ak ∈ Aj (for instance, we may assume the midpoint
of Aj is the most likely, if Aj is an interval). If the number of observations Y = Aj is
large, it becomes a very strong assumption, whereby constant imprecise observations
hide constant outcomes. One may argue on the contrary, that the coarse sensor is
insensitive to the variability of the outcomes, which explains its apparent constant
measurements. An interesting consequence follows:

Corollary 10. If the imprecise observations {A1, . . . Ar} form a partition of X and
Py ⊆ PΘ, then the maximax strategy applied to Lx(θ) yields a distribution on X
minimizing the entropy among distributions whose marginals on Y coincide with the
empirical distribution induced by the observed sample y.

We have a companion result for the maximin strategy.

Proposition 11. If the imprecise observations {A1, . . . Ar} form a partition of X
and Py ⊆ PΘ, then the maximin strategy applied to Lx(θ) with respect to x and θ is
reached for a parameterized distribution whose restriction to each Aj is uniform and
such that pθk. = n.j

N#Aj
if ak ∈ Aj. All samples x ∈ X y are equally probable.

Proof: The proof is the same as in the case when r = 2 given in the above
example. �

An interesting consequence, opposite to the maximax case, follows:

Corollary 12. If the imprecise observations {A1, . . . Ar} form a partition of X and
Py ⊆ PΘ, then the maximin strategy applied to Lx(θ) yields a distribution on X
maximizing the entropy among distributions whose marginals on Y coincide with the
empirical distribution induced by the observed sample y.
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In the terminology of belief functions, the estimated probability distribution on X
is the maximum entropy distribution among the probabilities dominating the belief
function, that here coincides with the pignistic transform of the belief function.

The maximin strategy in the partition case seems to presuppose incomplete in-
formation hides pure randomness corresponding to maximal entropy. The idea can
be that the sensor reporting an element of the partition is too coarse to perceive the
variability of X inside the n.j actual outcomes in Aj. In other words, an interval-
valued observation reflects a set of precise observations inside each interval. The
maximin strategy tries to propose a model that covers all these situations. On the
contrary, the maximax strategy explains the n.j observations Aj as resulting from
the occurrence of the same outcome ak n.j times. Clearly, these two strategies are in
some sense extreme.

The above results will be generalized in Propositions 13 and 14 to the case where
the imprecise observations {A1, . . . Ar} do not necessarily form a partition of X .

4.2. Observations forming a partition: non-separable case
The next (well-known) example is a case where the MLE for Ly is not the one

obtained from Lx via any of the above strategies, and the parameter θ is not sep-
arable. Namely, the visible likelihood Ly determines the actual one Lx to a large
extent.

Example 4. Let us consider the following example by Dempster et al. in Reference
[11] under the light of our analysis. It is based on a former example by Rao. There
is a sample of 197 animals distributed into four categories, so that the observed data
consist of:

n.1 = 125, n.2 = 18, n.3 = 20, n.4 = 34.

Suppose that the first category is in fact a mixture of two sub-categories, but we do not
have information about the number of individuals observed from each of them. On
the other hand, a genetic model for the population specifies the following restrictions
about the five categories: p11 = 0.5, p12 = p.4, p.2 = p.3. If we use the notation:
p12 = 0.25π = p.4 and p.2 = 0.25(1 − π) = p.3, the corresponding matrix (M ′|p′) is
given as 

0.5
0.5+0.25π

0.25π
0.5+0.25π 0 0 0 0.5 + 0.25π

0 0 1 0 0 0.25(1− π)
0 0 0 1 0 0.25(1− π)
0 0 0 0 1 0.25π


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and only depends on a single parameter. Dempster et al. ([11]) maximize Ly(π) =
log [(0.5 + 0.25π)125(0.25(1− π))18(0.25(1− π))20(0.25π)34] by making its derivative
vanish. The maximum likelihood estimator of π with respect to Ly is found to be
π̂ = 0.6268214980. They show that using the EM algorithm, this value can be retrieved
as the limit of a sequence of values obtained by a iterative procedure.

The likelihood associated to a sample x compatible with the observed sample y
will be of the form:

Lx(θ) = log
[
0.5n11(0.25π)n12(0.25(1− π))18(0.25(1− π))20(0.25π)34

]
,

where n11 + n12 = 125. There, the collection {A11, A12, A2, A3, A4} forms a parti-
tion of X (the set representing five categories of animals). Therefore, according to
Corollary 8, Lx(π) and Lz(π) do coincide for every π. Thus, the strategies based on
their respective maximizations lead to the same optimal pairs. Consider the maximax
strategy. It yields (x∗, π∗), where π∗ = 0.4722222. The corresponding optimal sample
x∗ is the (only) sample inducing the empirical distribution (125

197 , 0,
18
197 ,

20
197 ,

34
197). Thus,

according to this criterion, all the 125 observed outcomes from group one are assumed
to belong to the first subgroup, again a questionable choice. The maximin strategy
leads to the opposite choice, that is x∗ = (0, 125

197 ,
18
197 ,

20
197 ,

34
197) since 0.25π < 0.5. The

maximin optimal π∗ is 159/197 = 0.8071. Besides, the parameter π is not separable
wrt (M ′|p′). Consequently, none of the values π∗ = 0.4722222, π∗ = 0.8071 coincides
with the maximum likelihood estimator of π with respect to Ly, π̂ = 0.6268214980.
The latter yields another imputation that is not as extreme as the samples obtained
with the other strategies.

This example reveals again the extreme nature of the maximin and maximax
strategies. The empirical distribution associated to the samples x∗ and x∗ are re-
spectively the least and the most entropic in the set Py.The connection with entropy
maximization and minimization of the corresponding optimal parametric distribu-
tions is less clear because the likelihood functions are constrained by a single param-
eter. As p11 > p12,∀π, the maximin strategy leads to grant the maximal number of
outcomes to the least probable situation.

4.3. Miss-or-observe case with or without the superset assumption
In the following example, either the outcome is observed or the observation is

just missing. So, the collection of imprecise observations does not form a partition,
but it contains the singletons in X and X itself. We compare the CAR and superset
assumptions with the case when no information on the measurement process is made.
For simplicity, we assume X has only two elements, so that the “superset assumption”
can be made. Moreover the parameter θ is separable.
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Example 5 (The CAR and the superset assumptions). Let us take up the sit-
uation of Example 1. A coin is tossed. The random variable X : Ω → X , where
X = {h, t}, represents the result of the toss. We do not directly observe the outcome.
The outcome is reported by Peter. Let us suppose that the coin is tossed N = 10
times, and that Peter faithfully reports 4 heads, 2 tails and he does not report any-
thing for the remaining 4 times. Let us consider again the parameter θ = (p, α, β),
where p = P (X = h), α = P (Y = {h, t}|X = h) and β = P (Y = {h, t}|X = t). This
is clearly a case where θ is separable. As seen in Example 1, the CAR assumption
yields α = β and the superset assumption yields α = β = 0.5. In words, no matter
what the true outcome is (heads or tails) Peter does not give any information about
it 50% of the time. The only remaining parameter is p.

The set-valued mapping Γ underlying variable Y takes the “values” {h}, {t} and
{h, t} with respective probabilities (1 − α)p, (1 − β)(1 − p) and αp + β(1 − p). Un-
der the CAR assumption, these three probabilities are (1 − α)p, (1 − α)(1 − p) and
α. Furthermore, under the superset assumption, they are 0.5p, 0.5(1 − p) and 0.5,
respectively.

Maximizing Ly(θ). Let us maximize the visible log-likelihood under each of these
assumptions.

• The CAR assumption. We have to find the argument of the maximum of

Ly(α, p) = log
[
[(1− α)p]4[(1− α)(1− p)]2α4

]
= log[(1− α)6α4p4(1− p)2].

The maximum is attained for (α̂, p̂) = (0.4, 2/3). According to this criterion
(MLE based on the observed sample) those tosses where Peter does not report
the result are not taken into account. This idea fits the initial assumptions about
the conditional probability of Y with respect to X. In fact, according to the CAR
assumption, P (Y = {h, t}|X = h) = P (Y = {h, t}|X = t) = P (Y = {h, t}) or,
in other words, Y = {h, t} and X = h are independent events. Therefore, we
deduce that X = h is also independent from the complementary of Y = {h, t},
Y ∈ {{h}, {t}} and therefore:

P (X = h) = P (X = h|Y ∈ {{h}, {t}}) = P (X = h, Y ∈ {{h}, {t}})
P (Y ∈ {{h}, {t}}) =

P (X = h, Y = {h})
P (Y ∈ {{h}, {t}}) = P (Y = {h})

P (Y = {h}) + P (Y = {t}) .

The above two equalities mean that, according to the CAR assumption, the
ill-informed tosses are assumed to correspond to each of the possible outcomes

29



of the coin (heads or tails) in the same proportion as the observed ones. So,
P (X = h) coincides, under the CAR assumption, with the expected proportion
of times when Peter says “heads” divided by the expected proportion of times
when he provides us information about the result, whatever it is, heads or tails.
Thus, it makes sense to estimate the probability of heads P (X = h) by means of
the quotient 0.4

0.4+0.2 = 2/3, representing the quotient of the respective frequencies
of the events Y = {h} and Y ∈ {{h}, {t}}. In this case, the statistical model
obtained on Y (such that p.1 = 2(1− α)/3 = 0.4 since α = 0.4, p.2 = 0.2, p.3 =
0.4) is in agreement with the empirical distribution.

• The superset assumption. Under this assumption, the visible log-likelihood
function is:

Ly(p) = log[(0.5p)4 · [0.5(1− p)]2 · 0.54].
As Ly(p) is equal to f(p) = log[p4(1−p)2] up to an additive constant, it reaches
its maximum at p̂ = 2/3. The restrictions on the set of statistical models due to
the superset assumption imply that the distribution on Y induced by the MLE
distribution on X (p = 2/3) is not in agreement with the empirical distribution
on Y. The former is such that p.1 = 2(1− α)/3 = 1/3 since α = 0.5; likewise
p.2 = 1/6, p.3 = 0.5.

Maximax strategy on Lx(θ). Let us compare the above estimation of θ with the
maximax strategy-based estimation: Given a sample x ∈ X y, we can easily observe
that

Lx(θ) = n1. log p+ (N − n1.) log(1− p) = (4 + n13) log p+ (6− n13) log(1− p),

(where n13 denotes the number of tosses where the result is “heads” and Peter did
not report.) Thus, according to this strategy, we calculate the argument

max
x∈Xy,θ∈Θ

Lx(θ) = max
n13∈{1,2,3,4},p∈[0,1]

(4 + n13) log p+ (6− n13) log(1− p).

For a specific n13 ∈ {0, 1, 2, 3, 4}, the maximum of fn13(p) = (4 + n13) log p + (6 −
n13) log(1−p) is attained at p∗(n13) = 4+n13

10 . Therefore, the above maximum coincides
with the maximum: maxn13=1,2,3,4 f

(
4+n13

10

)
. We can check that it is attained for

n∗13 = 4 and p∗ = 4+n∗13
10 = 0.8. According to this procedure, the optimal estimate

of p is 0.8 and the optimal sample is the one that assigns the result “heads” to all
those tosses where Peter has not reported the result. It is clear that the distribution
on Y induced by the maximax strategy (p = 0.8 on X ) is not in agreement with
the empirical distribution on Y, whatever the assumption made. Under CAR, the
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former is of the form (0.8(1 − α), 0.2(1 − α), α) which cannot match the empirical
(0.4, 0.2, 0.4) whatever the choice of α. Under the superset assumption α = 0.5 and
the induced distribution on Y is p.1 = 0.4, p.2 = 0.1, p.3 = 0.5.

Maximax strategy on Lz(θ). Under the CAR assumption, the expression of the
log-likelihood Lz for a specific z ∈ Zy is as follows:

Lz(α, p) = log
[
[(1− α)p]4[(1− α)(1− p)]2(αp)n13 [α(1− p)]4−n13

]
=

log
[
(1− α)6α4 · p4+n13(1− p)6+n13

]
,

which is maximized at (n13, α, p) = (4, 0.4, 0.8). Again, all non-informed outcomes
are understood as heads as for the maximax strategy on Lx under CAR.The result is
slightly different from the former case, as this time α is set to 0.4, while it remains
free under the maximisation of Lx.

Under the superset assumption, following Corollary 8, Lx(θ) − Lz(θ) is a con-
stant. The maximax procedure aiming to maximize Lz(θ) will give the same result
as maximizing arg maxLx(θ), with θ = p that does not depend on (α, β) (conditional
probabilities are fixed under the superset assumption).

Maximin strategy on Lx(θ). The maximin approach consists of considering all
log-likelihood functions Lx

k(p) = (4+n13) log p+(6−n13) log(1−p) with 0 ≤ n13 ≤ 4.
The approach consists in finding for each value of p the complete data that minimizes
Lx(p). Since Lx

n13(p) is of the form n13 log p
(1−p) + a, it is easy to see that if p < 1/2,

the minimum L(p) is reached for n13 = 4, and if p > 1/2, it is reached for n13 = 0.
So, it is 8 log p+2 log(1−p) if p < 1/2 and 4 log p+6 log(1−p) otherwise. So L(p) is
increasing when p < 1/2 and decreasing when p > 1/2. It reaches its maximum for
p = 1/2. So the maximin approach is cautious in the sense of maximizing entropy
in the coin-tossing experiment. However, the corresponding imputation (n1., n2.) =
(4+n13, 6−n13) is totally free, as all sequences of outcomes of N tosses in agreement
with y are equally probable in this case. Under CAR, none of the possible distributions
on Y in agreement with p = 0.5 is in agreement with the empirical distribution (since
it predicts the same number of heads and tails). It implies that under the superset
assumption, the distribution on Y induced by the maximin strategy (using p = 0.5
on X and α = 0.5) is not in agreement with the empirical distribution on Y. The
former is such that p.1 = 0.25, p.2 = 0.25, p.3 = 0.5.

Maximin strategy on Lz(θ). As we have pointed out above, under the CAR as-
sumption, the expression of the log-likelihood Lz for a specific z ∈ Zy is as follows:

Lz(α, p) = log
[
[(1− α)p]4[(1− α)(1− p)]2(αp)n13 [α(1− p)]4−n13

]
=
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log
[
(1− α)6α4 · p4+n13(1− p)6+n13

]
.

Now, taking into account the above course of reasoning about the maximin strategy,
our estimation under this strategy is (α, p) = (0.4, 0.5) and the corresponding im-
putation would be completely free. Note that this time, the induced distribution on
Y is in agreement with the empirical distributions, as it is precisely the unique such
one among the possible distributions obtained from the maxmin solution on Lx un-
der CAR. Under the superset assumption, following Corollary 8, Lx(θ)− Lz(θ) is a
constant, and therefore this strategy coincides with the maximin approach from last
paragraph.

The obtained results in this example are summarized on Table 1. It shows that
under the superset assumption, maximizing Ly(θ) sometimes comes down to doing
away with missing information, while maximizing Lx(θ) over x and θ (or equivalently
Lx(θ)) with the maximax strategy implicitly relies on the sample where the unobserved
outcomes correspond to the most probable among the visible ones. On the other
hand, the maximin approach maximizing Lx(θ) in this example, comes down again
to maximizing entropy among distributions compatible with the missing information,
thus turning ignorance into maximal randomness. Clearly the three strategies here
yield different results.

Table 1: Comparison of maximum likelihood strategies

Method (α, β, p) on X = {h, t} on Y = {{h}, {t}, {h, t}} n13

Ly CAR (0.4, 0.4, 2/3) (2/3, 1/3) (0.4, 0.2, 0.4) free
Ly superset (0.5, 0.5, 2/3) (2/3, 1/3) (1/3, 1/6, 0.5) free

Lx max-max CAR (α, α, 0.8) (0.8, 0.2) (0.8(1− α), 0.2(1− α), α) 4
Lx max-max superset (0.5, 0.5, 0.8) (0.8, 0.2) (0.4, 0.1, 0.5) 4
Lz max-max CAR (0.4, 0.4, 0.8) (0.8, 0.2) (0.48, 0.12, 0.5) 4

Lz max-max superset (0.5, 0.5, 0.8) (0.8, 0.2) (0.4, 0.1, 0.5) 4
Lx max-min CAR (α, α, 0.5) (0.5, 0.5) (0.5(1− α), 0.5(1− α), α) free

Lx max-min superset (0.5, 0.5, 0.5) (0.5, 0.5) (0.25, 0.25, 0.5) free
Lz max-min CAR (0.5, 0.5, 0.5) (0.5, 0.5) (0.25, 0.25, 0.5) free

Ly (α, β, p) (p, 1− p) (0.4, 0.2, 0.4) free
Lz max-max (0.5, 0.0, 0.8) (0.8, 0.2) (0.4, 0.2, 0.4) 4
Lx max-max (α, β, 0.8) (0.8, 0.2) (0.8(1− α), 0.2(1− β), 0.8α+ 0.2β) 4
Lx max-min (α, β, 0.5) (0.5, 0.5) (0.5(1− α), 0.5(1− β), 0.5(α+ β) free
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Remark. The results of the maximin strategy on Lx(θ) can be extended to the case
of N coin tosses, only No of which are observed, and k among the latter are heads.
Then Lx(θ) = (k + n13) log p + (N − k − n13) log(1− p), where 0 ≤ n13 ≤ No is the
number of unobserved heads. The same analysis as above would lead to estimate
p = k+N−No

N
if k > N − k, using the maximax strategy, and the corresponding

imputation being (n1., n2.) = (k + N − No, No − k). Under the maximin strategy,
we again get p = 0.5, and no preferred imputation. If k = N − k then the maximax
strategy yields maximal likelihood by interpreting all No unobserved outcomes as
heads or as tails, leading to any of the two estimates p = k

N
or p = k+N−No

N
.

Example 6 (No assumption on the measurement process). Let us consider
the same Example 1 without the superset assumption. Now, we do not assume
anything about the proportion of times where Peter does not inform us about the
results of the tosses. Such a proportion does exist, but it is not necessarily equal
to 0.5 and furthermore it may depend on the true result of the coin. In other
words, we do not put any assumption about the “imprecisiation process”. Formally
speaking, the conditional probability α = P (Y = {h, t}|X = h) may differ from
β = P (Y = {h, t}|X = t) and each of them can be any number in the unit interval.

Maximization of Ly. Taking into account the marginal distribution of Y calculated
at the beginning of this section, we can write:

Ly(θ) = log([(1− α)p]4 · [(1− β)(1− p)]2 · [αp+ β(1− p)]4)

where θ = (p, α, β). The maximum is attained for any θ satisfying the constraints:

• (1− α)p = 0.4 and

• (1− β)(1− p) = 0.2,

i.e., the set of tuples for which the respective probabilities of Y = {h}, Y = {t} and
Y = {h, t} are 0.4, 0.2 and 0.4. In other words, in this general setting, the MLE on
X constrained by y is not unique, contrary to the case when the superset assumption
is made, as in the previous example where we fixed the conditional probability of Y
given X. Here the collection of MLE obtained from y corresponds to the set of all
the joint distributions whose marginals on Y coincide with the empirical distribution
(0.4, 0.2, 0.4). It corresponds all probability distributions compatible with the mass
assignment m({h}) = 0.4,m({t}) = 0.2,m({h, t}) = 0.4 on {h, t}. Clearly, in this
case, the set of statistical models defined by the three parameters is compatible with
the empirical distributions on observations.
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Maximization of Lz. On the other hand, the likelihood based on z is:

Lz(p, α, β) = log([(1− α)p]4(αp)n13 [(1− β)(1− p)]2[β(1− p)]4−n13)

where 0 ≤ n13 ≤ n.3 = 4. Regrouping terms, we can alternatively express it as:

Lz(p, α, β) = log([p4+n13(1− p)6−n13 ]) + log(·[αn13(1− α)4]) + log([β4−n13(1− β)2]).

Thus, given a specific sample z, the optimal parameter θ∗(n13) is obtained as:

p∗(n13) = 4 + n13

10 ; α∗(n13) = n13

n13 + 4; β∗(n13) = 4− n13

6− n13
,

where n13 denotes the number of times where the result of the coin was “heads” in
the true sample z, but Peter did not report it. The optimal pair (z∗, θ∗) is attained
for the sample z∗ ∈ Zy satisfying the equality n13 = 4 (the sample where all those
tosses of the coin where Peter provided no information corresponds to “heads”). The
optimal θ∗ = (p∗, α∗, β∗) is therefore p∗ = 0.8, α∗ = 0.5, β∗ = 0. Let the reader notice
that, for every n13 ∈ {0, 1, 2, 3, 4}, vector (p∗(n13), α∗(n13), β∗(n13)) is an MLE based
on y, i.e., it satisfies the constraints:

• (1− α∗(n13))p∗(n13) = 0.4 and

• (1− β∗(n13))(1− p∗(n13)) = 0.2.

According to the maximax strategy, the optimal estimation of the probability of heads
is 0.8. On the other hand, according to this maximization criterion, it is postulated
that Peter decides 50% of the times to inform us about the result when it is “heads”,
but he always decides us to inform us about it when it is “tails”. This is the same
distribution on X as under the superset assumption, however, with different param-
eters driving the joint distributions, as here α∗ = 0.5, β∗ = 0, so that the empirical
and theoretical distributions on Y are the same (see Table 1).

Finding the lower distribution Lz and the maximin estimate of the parameter θ
is trickier.

Maximization of Lx. Finally, as we already pointed out in Example 5, Lx(θ) =
(4+n13) log p+(6−n13) log(1−p) depends neither on α nor on β. According to this,
we easily deduce that the argument of the maximum of Lx(θ) is the same as in the
last example. Thus given a sample x inducing the frequency n13 of times where the
result was heads and Peter did not report it, the optimal value of p is p∗(n13) = 4+n13

10 .
The argument of the maximum maxx∈Xy,θ∈Θ L

x(θ) therefore corresponds to n∗13 = 4
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and p∗(n∗13) = 0.8 and leaves the conditional probabilities α and β move freely in the
unit interval. According to the maximax strategy on Lx, the probability of “heads”
is again estimated to be 0.8. Nevertheless, nothing is postulated about the probability
that Peter does not inform us about the result, and about the relation between his
decision and the true result. However, enforcing the identity between the empirical
and parametric distributions on Y enforce α = 0.5 and β = 0.

The maximin strategy on Lx also yields the same solution (p = 0.5) as when the
superset assumption holds, this time with freedom on the choice of α and β (as these
parameters are not involved in the optimisation). Enforcing the identity between the
empirical and parametric distributions on Y enforces α = 0.2 and β = 0.6.

These three optimal solutions (each of them attending a particular criterion)
match the results given in Propositions 1 and 5. We can easily observe that the
parameter is separable with respect to both matrices (M |p) and (M ′|p′). According
to Proposition 1,

{arg max
θ∈Θ

Lz(θ) : z ∈ Zy} ⊆ {arg max
θ∈Θ

Ly(θ)}.

Furthermore, according to Proposition 5, given a specific sample x ∈ XN , the set
arg maxθ∈Θ L

z(θ) is included in arg maxθ∈Θ L
x(θ).

4.4. Overlapping observations
Finally consider an example with pure overlap of imprecise observations.

Example 7. Consider the same dice setting as in Example 3, but now take a sample
of N tosses of the dice and assume that the reporter has told us n1 of the times that
the result was less than or equal to 3 and the remaining n2 = N − n1 tosses, he told
us that it was greater than or equal to 3. After each toss, when the actual result
(X) is 3, the reporter needs to make a decision. Let us assume that such a decision
does not depend on the previous trials of the dice. In other words, let us assume
that Yn is independent from (X1, Y1), . . . , (Xn−1, Yn−1)- Furthermore, let us assume
that the conditional probability P (Yn = y1|Xn = 3) is a fixed number α ∈ [0, 1] for
every trial, n = 1, . . . , N . According to this information, we can easily check that
((X1, Y1), . . . , (XN , YN)) is a sequence of N i.i.d. vectors. The joint distribution of
(X, Y ) can be written as a function of (p1, . . . , p6) and α, since it is determined by
the following matrix: (M |p) :
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

1 0 p1
1 0 p2
α 1− α p3
0 1 p4
0 1 p5
0 1 p6


corresponding to the joint probability

Y,X 1 2 3 4 5 6
y1 p1 p2 α p3 0 0 0
y2 0 0 (1− α) p3 p4 p5 p6

Suppose that we toss the dice N = 1000 times and the reporter tells us n.1 = 300
times that the result was less than or equal to 3. The remaining n.2 = 700 times
he tells us that the result was greater than or equal to 3. Let θ denote the vector
(p1, p2, p3, p4, p5, p6, α). The likelihood function based on the observed sample y can
be written as5:

Ly(θ) = (p1 + p2 + αp3)300 · ((1− α)p3 + p4 + p5 + p6)700.

Such a function is maximized for any vector θ satisfying the constraints:

p1 + p2 + αp3 = 0.3 and (1− α)p3 + p4 + p5 + p6 = 0.7.

The other likelihood functions take the form

Lx(θ) =
∏
i 6=3

pni.
i. · pn31+n32

3 and Lz(θ) =
∏
i 6=3

pni.
i. · pn31

31 · pn32
32

with n1. = n11, n2. = n21, n4. = n24, n5. = n25, n6. = n26. The maximax value of Lx is
clearly obtained (with p(x∗; θ∗) = 1) for p3 = 1 and n31 = n.1 , n32 = n.2, while there
are many maximax fake samples z consisting in n1 times any i ∈ {1, 2, 3}, and n2
times any k ∈ {3, 4, 5, 6}, the corresponding parameters being pi1 = n1

N
and pk2 = n1

N
.

It includes the maximax solution for Lx since it is obtained when i = k = 3.

5And not, as pointed out in Section 3.1,

P (A1)300 · P (A2)700 = (p1 + p2 + p3)300 · (p3 + p4 + p5 + p6)700,

whose maximum is reached for p3 = 1.
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This example confirms the trend of the maximax solution to disambiguate the data
assuming the same imprecise observations to underlie the same outcome. Namely,
when all observations Aj overlap, it is clear that the maximax strategy on Lx comes
down to a disambiguation that selects an element in the intersection and a maximum
probability assignment to it. In the example the result of the maximax strategy looks
debatable because it comes down to assuming a deterministic dice. It would make
sense if as part of our knowledge, the underlying process was not die tossing, but
a single number hidden in a box and that the reporter opens each time. From the
obtained reports it is then clear that the most likely value is 3. It again corresponds
to the idea of minimizing entropy as shown by the following result.

Let PΘ again denote the set of parameterized joint distributions (dependent on θ)
and Py the set of joint distributions whose marginals on Y agree with the empirical
distribution induced by y. Let PXΘ and PXy denote the respective collections of their
marginals on X .

Proposition 13. If PXy ⊆ PXΘ then the argument of the maximax strategy with
respect to Lx is the collection of pairs in the form (x∗, θ∗) where:

• The empirical distribution induced by x∗ on X attains the minimum entropy
(among the set of all the feasible samples X y).

• The marginal of Pθ∗ on X coincides with such an empirical distribution.

Proof: First notice that the set arg max(x,θ)∈Xy×Θ L
x(θ) coincides with the set

arg maxx∈Xy arg maxθ∈Θ L
x(θ). Now, for a fixed x ∈ X y inducing the empirical dis-

tribution (n1.

N
, . . . , nM.

N
) we can write Lx(θ) = ∑m

i=1
ni.

N
log pθi.. According to Gibbs’

inequality, we therefore get Lx(θ) ≤ ∑m
i=1

ni.

N
log ni.

N
. Furthermore, according to the

hypotheses, the empirical distribution (n1.

N
, . . . , nM.

N
) belongs to PXΘ . Thus, given

x ∈ X y inducing such an empirical distribution, arg maxθ∈Θ L
x(θ) = θ∗(x), where

p
θ∗(x)
i. = ni.

N
, ∀ i = 1, . . . ,m. Now, we need to maximize the expression Lx(θ∗(x)) =∑m

i=1
ni.

N
log ni.

N
with respect to the first argument, which consists in finding a sample

x∗ ∈ X y inducing an empirical distribution on X with the minimum possible entropy.
�

A similar result can be obtained, using the same kind of proof, in relation to the
maximax strategy associated to Lz:

Proposition 14. If Py ⊆ PΘ then the argument of the maximax strategy with respect
to Lz is the collection of pairs in the form (z∗∗, θ∗∗) where:
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• The empirical distribution induced by z∗∗ on X × Y attains the minimum en-
tropy (among the set of all the feasible samples Zy).

• The distribution Pθ∗∗ on X × Y coincides with such an empirical distribution.

The problem of computing the minimal entropy distribution in a convex set of
probabilities has been addressed in Ref. [1], and can be applied to find the maximax
solution for the total or latent likelihood function optimization.

The maximin solution is less easy to obtain in this case, but one can show it
does maximize entropy on Py. Problems of the form maxθ∈Θ minx∈Xy Lx(θ) are well-
known in the framework of game theory [51] and lead to the notion of Nash equi-
librium. The major issue is to check whether conditions under which this expression is
equal to minx∈Xy maxθ∈Θ L

x(θ) are satisfied. The inequality maxθ∈Θ minx∈Xy Lx(θ) ≤
minx∈Xy maxθ∈Θ L

x(θ) always holds. That the other inequality holds was recently
proved in [20].

The maxmin strategy on the hidden likelihood function considers the problem
maxθ minn∈Xy f(n,p), where function f has the form: f(n,p) = ∑m

k=1 nk. log pk.,
and p is the unknown distribution on X , n is the count vector of a sample on X
with components nk. compatible with y (x ∈ X y for the corresponding sample). It is
shown in [20] that maxθ minn∈Xy f(n,p) = minn∈Xy maxθ f(n,p) and the following
result is obtained:

Proposition 15. The optimal solution to the maxmin optimisation of the hidden
likelihood has maximal entropy, namely it is the solution to: maxn−

∑
k=1,...,m

nk.

N
·

log nk.

N
. under conditions that n corresponds to a sample x ∈ X y.

So the maxmin optimisation of the hidden likelihood comes down to finding the
maximum entropy probability in the credal set Py a problem already addressed in
the past by [1, 2]. Similar considerations can be devised about the maxmin strategy
for the total likelihood function. The connection between maximal entropy, game
theory, and minimizing worst-case expected loss (of which maximum likelihood is a
special case) has been studied more generally by Grünwald and Dawid [18].

4.5. Maximizing the face likelihood
Finally let us reconsider the face likelihood of λ(y; θ) = ∏r

j=1 P (X ∈ Aj; θ)n.j ,
after Jaeger [27]. As said earlier, in this criterion, the set Aj is not an outcome for Y ,
it is a more general event for X. Then the face likelihood is not always a likelihood
for the space X stricto sensu. If we consider Aj as an outcome, we should consider
it as a singleton in the set of possible results 2X . Note that even if Ai ∩ Aj 6= ∅,
we do have that {bi} ∩ {bj} = ∅ (distinct outcomes are always mutually exclusive,
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following Edwards [16]). Nevertheless, the maximization of the face likelihood will
come down to standard likelihood maximization in three cases.

• The case where the range {A1, . . . , Ar} of Γ forms a partition of X . In this
case, P (X ∈ Aj) = P (Y = Aj) = p.j, ∀ j = 1, . . . , r, and therefore the face
likelihood ∏r

j=1 P (X ∈ Aj; θ)n.j coincides with the visible likelihood p(y; θ).

• The miss-or-observe situation when the the range of Γ contains either single-
tons from X or X itself. Then λ(y; θ) = (∏k

i=1 P (Y = {ai}; θ)n.i) · P (X ∈
X ; θ)n.k+1) = ∏k

i=1 P (X = ai; θ)n.i since P (X ∈ X ; θ) = 1. In other words, the
face likelihood is the standard likelihood on X based only on precise observa-
tions, dropping the missed ones.

• The case where there is CAR and distinctness of the parameters (separabil-
ity with respect to (M |p)). Heitjan and Rubin ([22]) prove that, under this
assumptions, the optimal argument of the face likelihood coincides with that
of the visible likelihood function. In fact, taking into account the fact that
Y = Aj implies X ∈ Ai, i.e., P (Y = Ai|X 6∈ Ai) = 0, the visible likelihood can
be decomposed as follows under those assumptions:

p(y; θ) =
r∏
j=1

P (Y = {Aj}; (θ3, θ4))n.j =

 r∏
j=1

P (Y = Aj|X ∈ Aj; θ3) · P (X ∈ Aj; θ4)
n.j

=

r∏
j=1

P (Y = Aj|X ∈ Aj; θ3)n.j ·
r∏
j=1

P (X ∈ Aj; θ4)n.j =

r∏
j=1

P (Y = Aj|X ∈ Aj; θ3)n.j · λ(y; θ4).

Therefore,

arg max
θ4∈Θ4

(
arg max

θ3∈Θ3
p(y; θ3, θ4)

)
= arg max

θ4∈Θ4
λ(y; θ4).

In the case where the sets A1, . . . , Ar do overlap the face likelihood and the visible
one do not necessarily coincide, as shown in the following example.
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Example 8. Let us consider again the situation described in Example 7, where on
a sample of N tosses of the dice, the reporter has told us that n1 of the times the
result was less than or equal to 3, and n2 = N − n1 otherwise. The face likelihood is
λ(y; θ) = (p1 +p2 +p3)n1 ·(p3 +p4 +p5 +p6)n2 with ∑6

i=1 pi = 1. We can easily observe
that, like in the case of the maximax strategy on  Lx(θ), the face likelihood reaches its
maximum (λ(y; θ) = 1) for any vector θ satisfying the constraint p3 = 1. But such
a prediction of θ is not a reasonable estimate for θ. The visible likelihood function
is of the form py(θ) = (p1 + p2 + αp3)n1 · [αp3 + p4 + p5 + p6)]n2, and optimizing it
yields different results (see Example 7).

More generally, in the extreme situation where the imprecise observations completely
overlap (∩ri=1Ai 6= ∅) then the face likelihood is maximal for any distribution on X
such that P (∩ri=1Ai) = 1.

5. Conclusion

This paper is a preliminary investigation of the problem of likelihood maximisa-
tion under incomplete information. The contribution of this paper lies in the proposal
of new formulations of maximum likelihood problems in the presence of incomplete
information and the strategies for solving them. The main message is that there
is not a single way to define a likelihood function, hence not a single solution to
the problem of statistical inference in this situation. All depends on the problem
one is interested to solve and the available information. The maximization of the
visible likelihood function p(y; θ) has been the topic of a large literature, especially
the EM algorithm, for which the underlying variable X has been often introduced
artificially as a trick to facilitate likelihood maximization via an iterative alternating
optimisation method [31, 13, 42].

The EM algorithm has been proposed as a general approach to handling in-
complete data as well [11], at least in the case when the data partitions the range
of the random variable X of interest. However, imprecise data does not neces-
sarily form a partition, but it generally corresponds to a random set in the sense
of the other well-known paper by Dempster [11]; moreover the EM algorithm is
mainly used to retrieve the unobserved sample of the latent random variable and to
provide an estimate of the underlying probability distribution over X based on it,
thanks to the existing relations between the parameters of the measured quantity
Y and the latent variable X. Thus, when there is a unique maximum likelihood
estimate based on the observed sample y, this method selects a single marginal dis-
tribution over X . Alternatively, when the parameter θ = (θ1, θ2) is separable with
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respect to (M ′|p′), the MLE from y only depends on θ1 (the component that deter-
mines the marginal distribution on Y) and therefore the MLE is not unique. But,
when there is a single θ̂1 such that arg maxLy(θ) = {θ̂1} × Θ2 and furthermore the
parametrization does not impose any additional restriction on the conditional dis-
tributions, then this maximization procedure yields a belief function on X , as we
have illustrated in Example 3. Nevertheless, this does not happen in general. To
give an example, we may consider the case where X = Y and PΘ represents the
collection of uniform distributions of the form U(θ, θ + 1), θ ∈ Y = R. In that case,
the collection of marginal distributions over X based on the maximization of Ly is
{U(θ̂, θ̂ + 1) : θ ∈ [min{y1, . . . , yn},max{y1, . . . , yn} − 1]}, that does not coincide
with the credal set of any belief measure.

In this paper, we address the case when we are interested in directly maximizing
the likelihood function of the precise data that would have been obtained, had the
observations been complete and precise. We introduce the latent and total likelihood
functions p(x; θ) and p(z; θ) that are possible candidates for maximization. The lat-
ter is instrumental if some knowledge of the measurement process is available in the
form of conditional probabilities of observations, while the former does away with
the idea of modeling the measurement process. Such likelihood functions are impre-
cisely known due to the lack of precision of the observed data. Two optimization
strategies, maximin and maximax, have been studied to cope with such imprecision.
Their behavior has been observed via examples and compared to the strategy based
on the maximization of p(y; θ). The parametric marginal distributions over X deter-
mined from those strategies do not necessarily coincide with the parametric marginal
distribution over X determined from the maximization of p(y; θ).

Further studies would be needed in order to select the most appropriate strategy
in each practical problem. In particular one may use other strategies different from
maximin and maximax to compare the interval-valued latent and total likelihood
functions, by means of some interval order, or choosing another reference point like
the midpoint of the interval. A preliminary discussion about the necessity to find
a satisfactory interval order was developed in Ref. [43] in the context of machine
learning. There, empirical risk values were considered instead of likelihood values.
The connection between both notions, under the corresponding assumptions regard-
ing the underlying distribution of X, is well known in Statistics. Besides, the natural
partial ordering between intervals (where [a, b] is said to be less than of equal to [c, d]
if and only if b ≤ c) is considered in Ref. [44]. A collection of “non-dominated”
solutions for the optimisation of the latent likelihood is derived from this compari-
son criterion. The comparison between the mid-points of the interval-valued latent
likelihoods has been also used as a criterion to select the best classifier in [35]. A
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more exhaustive collection of interval orders is considered in [8].
We have pointed out that the face likelihood discussed by Jaeger [27] also differs

from the three other ones studied in more details here. The maximisation of the
face likelihood leads to results different from but quite related to the ones of the
max-average criterion, as explained by E. Hüllermeier in [[23], Section 5]. This
criterion has been generalized to uncertain data and exploited in the Evidential EM
algorithm of Denœux [12]. This extension of EM has been successfully used in some
applications (see [39, 40] and references therein). A variant of the maximization
procedure considered in Ref. [12], where the proposed generalization of λ(y; θ) to
uncertain data would be replaced by the corresponding generalization of p(y; θ) seems
to be a promising alternative in the context of parametric estimation. A comparison
between both procedures in practice is worth carrying out.

Finally, it has been shown that the maximax strategy favors estimated distribu-
tions concentrated on precise selections of the imprecise observations (minimizing
entropy), while the maximin strategy favors estimated distributions with large en-
tropy. These conjectures must be studied in further research. Moreover, the com-
parison of solutions for p(x; θ) and p(z; θ) needs to be better understood, especially
conditions where maximax or maximin solutions for p(x; θ) are distinct from solu-
tions for p(z; θ). Finally, these maximum likelihood schemes should be studied in
the light of existing imputation methods for incomplete data [45, 50].
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