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ABSTRACT 
 

This paper provides a parametric method of decomposing a generalized 
Malmquist-type productivity index into terms related to technical change, technical 
efficiency changes and returns to scale. The decomposition is based on parametric 
estimation of translog output-oriented distance functions and draws on the so-
called exact index number approach to the derivation of productivity change 
measures. An empirical application using panel data from Spanish savings banks 
is included. 
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1. Introduction 
 

Overall productivity measures have enjoyed a great deal of interest among 
researchers analyzing the performance of firms. In the latest years, applications 
using Malmquist indexes have begun to be very common in productivity analysis. 
This index has the advantage over traditional Fisher and Törnqvist productivity 
indexes of decomposing into technical change and technical efficiency change 
using only quantity information.  

 
A controversial issue here is how to enhance the Malmquist productivity index 

so that scale efficiency is taken into account. Grifell and Lovell (1995) show that 
the Malmquist productivity index introduced by Caves, Christensen and Diewert 
(1982) does not provide an accurate measure of productivity change because it 
ignores the potential contribution of scale economies to productivity change. In 
order to avoid this problem, Balk (1999) proposes several measures of productivity 
change, encompassing not only technical change and technical efficiency change 
but also scale efficiency change for a multiple-input and multiple-output firm. Grifell 
and Lovell (1999) address this issue in a different way. They suggest using a 
generalized Malmquist productivity index, which can be expressed as the product 
of a conventional Malmquist productivity index and a Malmquist scale index. They 
demonstrate in the single-input and single-output context that a generalized 
Malmquist productivity index accurately measures and decomposes productivity 
change into technical change, technical efficiency change and scale change 
components. The approach proposed in the present paper can address this issue 
in a quite simple way. 

 
The Malmquist productivity index can be calculated using non-parametric 

techniques (DEA) as in Färe, Grosskopf, Lindgren and Roos (1992), or parametric 
frontier approaches as in Fuentes, Grifell and Perelman (1998). Overall, they show 
that several distance functions must be previously calculated -using parametric or 
non-parametric techniques- in order to compute and decompose a Malmquist 
productivity index.1  

 
This paper provides a parametric method of decomposing a generalized 

Malmquist-type productivity index into terms related to technical change, technical 
efficiency changes and returns to scale. In contrast to previous works, the 
decomposition draws on the so-called exact index number approach to the 
                                                 
1 If some restrictive conditions are satisfied, the Malmquist productivity index can 
be calculated directly from price and quantity data. Färe and Grosskopf (1992) 
show that the Fisher index is equal to a Malmquist index under constant returns to 
scale and competitive cost minimization performance. Caves, Christensen and 
Diewert (1982) show under similar restrictive conditions that for translog 
technologies the Törnqvist index is equivalent to the geometric mean of two 
Malmquist productivity indexes. With non-constant returns to scale, Grifell and 
Lovell (1999) prove that the geometric mean of two generalized Malmquist 
productivity indexes is equal to the Törnqvist productivity index.  
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derivation of productivity change measures. This approach allows us measuring 
the returns to scale effect on productivity growth using only the estimated 
parameters of a translog output-oriented distance function with variable returns to 
scale.  

 
As a by-product, this paper offers a method of decomposing the traditional 

Törnqvist productivity index without having to approximate concepts that are 
specified in the continuous time framework. Building on earlier work by Denny, 
Fuss and Waverman (1981), Bauer (1990) decomposes the standard Divisia 
productivity index, which is the continuous counterpart of the Törnqvist index. 
However, this model relies on time derivatives of production or cost functions. 
Since there are many ways to approximate continuous time derivatives by discrete 
differences, the Divisia-based models do not lead to an exact formula for the 
decomposition of the Törnqvist index. The exact index number approach has the 
advantage over the continuous Bauer’s model of leading a formula that is directly 
suitable for discrete data.  

 
The paper is organized as follows. In Section 2 a generalized Malmquist-type 

productivity index is decomposed using output-oriented distance functions. Section 
3 includes an application to a panel data from Spanish savings banks during the 
period 1985-98. Section 4 contains a summary and some conclusions. 
 
2. Decomposition of a generalized Malmquist-type productivity index 
 

The Malmquist index is usually defined in terms of distance functions. The 
principal advantage of distance functions is that they allow the possibility of specifying 
multiple-input, multiple-output technologies only using data on quantities. On the 
other hand, it is closely related with efficiency measurement.  

 
Suppose that the firm’s technology in period t can be represented by the 

technology set: 2 
 

} yproduce can  x,  y, x:)y,{(x=T ttn
+

tm
+

tttt ℜ∈ℜ∈            (1) 
 
where yt=(y1

t...ym
t) is the output vector and xt=(x1

t...xn
t) is the input vector at time t. 

The technology set Tt is the list of the technological feasible combinations of inputs 
and outputs in period t. For each input vector xt, let Pt(xt) be the set of feasible outputs 
vectors yt that are obtainable from the input vector xt. Formally,  
 

} T)y,(x:  y{=)(xP tttttt ∈       (2) 
 

Thus, the ouput distance function can then be defined in terms of the output set 
as: 
 

                                                 
2 I assume that technology satisfies the axioms listed in Färe and Primont (1995). 
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The output distance function is defined as the maximum feasible expansion of 

the output vector with the input vector held fixed. Given a input vector xt, the value of 
the output distance function Dt

o(xt,yt) puts yt/Dt
o(xt,yt) on the outer boundary of Pt(xt) 

and on the ray through yt. The preceding discussion suggests that the value of the 
output distance function is less than or equal to one if the output vector yt is an 
element of the feasible production set Pt(xt). The value of the output distance function 
equals 1 if there is technical efficiency. Hence the output distance function can be 
viewed as the reciprocal of Farrell’s output-oriented measure of technical efficiency. It 
also follows from the definition of the output distance function that it is linearly 
homogeneous in outputs.  
 

 Assume now that the firm’s output distance function follows a translog form: 
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Next, observe that the translog distance function can be regarded as a 

quadratic function in the variables lnxt, lnyt and t. Hence it is possible to apply the 
so-called Diewert (1976) quadratic identity. Using this identity, the difference 
between the distance function (4) evaluated at period t and t+1 can be written as 
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where lnDo(t) represents the distance function evaluated at appropriate values for 
period t. This equation can also be expressed as 
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where the superscript “M” stands, as it is explained below, for Malmquist-type 
index, and 
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The left-hand side of equation (6) can be viewed as an index of total factor 

productivity, defined in a broad sense as the difference between the weighted 
average rate of growth of outputs minus the weighted average rate of growth of 
inputs. 3 The first term on the right-hand side of (6) measures changes in the value 
of the output distance function from one period to the next. Since the output 
distance function is the reciprocal of Farrell’s output-oriented measure of technical 
efficiency, this term measures changes in technical efficiency. The second term 
captures the shift in technology (technical change) between two periods evaluated 
at two different observed output and input vectors. In this case, the negative sign 
transforms technical progress (regress) into a positive (negative) value.  

 
In short, we can use equation (6) to measure the contribution to productivity 

growth of changes in technical efficiency and technical change given information 
on the value and the proportional shifts in the distance function over time. This 
information can be obtained by estimating a translog distance function that 
satisfies any type of returns to scale. 

 
It is noteworthy that the decomposition presented in equation (6) is similar in 

form to that of a traditional output-based Malmquist productivity index defined as 
(Caves, Christensen and Diewert, 1982): 
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3  The weights are respectively output distance elasticities and (negative) input 
distance elasticities. Since the output distance function is decreasing in inputs, the 
negative sign in the input weights transforms inputs increases (decreases) into a 
positive (negative) value. 



 6

Note that the right-hand side of this index can be rewritten as 
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where the ratio outside the bracket measures changes in technical efficiency, and 
the geometric mean of the two ratios inside the bracket captures shifts in the 
production frontier along two rays.  
 

In the same way that equation (6), this last expression decomposes a 
Malmquist productivity index into the product of a technical efficiency change term 
and a technical change term.4 In this sense, the productivity index in the left-hand 
side of equation (6) can also be viewed as the parametric counterpart of a 
Malmquist-type productivity index when the output distance function is of translog 
form. Equation (6) also shows how one can obtain from the estimated shape of the 
frontier surface the weights associated with the Malmquist productivity index, 
which are implicit using non-parametric techniques.  

 
Further decompositions of productivity growth are also possible. The 

decomposition above can be first extended to allow for the effect of nonconstant 
returns to scale. Following Färe and Primont (1995), returns to scale can be 
computed from the output distance function as follows  
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The expression in brackets is the proportional increase in all outputs caused 

by an increase in all inputs in the same proportion. Therefore, increasing 
(decreasing) returns to scale are indicated by a value of RTS greater (less) than 
zero. Using (9) as a measure of returns to scale, equation (5) can be rearranged 
as  
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4 In equation (7), no restrictions are imposed on the returns to scale nature of the 
reference technology. If the reference technology is defined as having constant 
returns to scale, the traditional Malmquist productivity index also includes a scale 
effect (see Färe, Grosskopf, Norris and Zhang, 1994). 
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where the superscript “G” stands for Generalized Malmquist-type index, and 
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The left-hand side of equation (10) is the growth in outputs not accounted by 

the growth in inputs, where the weights are respectively distance elasticity shares 
respect to outputs and inputs.5 The right-hand side of (10) decomposes 
productivity growth into technical efficiency change and technical change -just like 
in equation (6)- and the effect of nonconstant returns to scale when inputs expand 
over time (i.e. movements along the distance function). This last term depends on 
the degree of local returns to scale and on changes in input quantities. In 
particular, the scale term vanishes under the assumption of constant returns to 
scale (or constant input quantities) and, hence, returns to scale have not any effect 
on productivity growth. 

 
Adding the three terms referred above, the equation (10) provides an 

accurately measure of productivity change when a translog output distance 
function with variable returns to scale is estimated using econometric techniques. 
The attribution of productivity growth to technical efficiency change, technical 
change, and scale economies in the multiple output case is made without recourse 
to price information required by Bauer (1990).  
 

It is worth noting that the decomposition presented in equation (10) is quite 
similar to that of the generalized Malmquist productivity indexes introduced 
recently by Grifell and Lovell (1999). An output-oriented period t generalized 
Malmquist productivity index can be expressed and decomposed as follows: 6 

 

                                                 
5 Note that ∆GlnYt,t+1=∆MlnYt,t+1 due to the output distance function is homogeneous 
of degree +1 in the output quantities. 
 
6 See equation (3.4) in Grifell and Lovell (1999). 
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where the subscript “c” in Do indicates output distance functions defined relative to 
a reference technology characterized by constant returns to scale. In accordance 
with this equation, the generalized Malmquist productivity index is decomposed as 
the product of a technical efficiency change term, a technical change term 
calculated using period t+1 data, and a scale effect that measures the contribution 
of scale economies to productivity change.7  
 

In summary, the generalized Malmquist productivity index introduced by 
Grifell and Lovell (1999) includes the effect of scale economies into the 
measurement of productivity growth, just like the index in the left-hand side of 
equation (10). In this sense, the right-hand side of equation (10) can be viewed as 
a parametric decomposition of a generalized Malmquist-type productivity index. 
This decomposition is based on the estimation of a translog output-oriented 
distance function with variable returns to scale. Hence, equation (10) provides an 
exact decomposition for a translog approximation to the structure of production 
technology.  

 
However, the scale effect terms in both decompositions differ. While the 

scale effect in Grifell and Lovell (1999) is based on distance functions defined 
relative to both variable and constant returns to scale reference technologies, the 
scale effect here is defined relative to distance function with variable returns to 
scale. So it does not impose any restriction on the returns to scale nature of the 
reference technology. 

 

                                                 
7 In this formulation, the technical change term is evaluated using only period t+1 
data, and the scale effect is calculated relative to the same period t technology. 
Alternatively, one could define a generalized Malmquist productivity index using 
technology in period t+1 as the reference technology. In order to avoid choosing an 
arbitrary benchmark, one can employ the geometric mean of adjacent-period 
generalized Malmquist productivity indexes. In this case, the decomposition can be 
written as: 
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where the first term coincide with the traditional Malmquist productivity index 
defined in equation (8). The last two terms measure the contribution of scale 
economies to productivity change using the period t and t+1 technology, 
respectively.  
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Finally, equation (10) can be used to derive a translog-consistent 
decomposition of the traditional Törnqvist productivity index. This index can be 
expressed as:  
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where the superscript “T” stands for Törnqvist index, Rj

t is the revenue share of 
output yj in total revenue, and Sk

t the cost share of input xk in total cost. Using this 
definition, equation (10) can be rearranged as follows 
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Equation (13) decomposes the Törnqvist productivity index into five sources. 

The first three terms measure the pure productivity growth (i.e. changes in 
efficiency, technical change and the scale effect). The following two terms are 
related to output and input aggregation biases. Note that the Törnqvist productivity 
index (12) uses revenue and cost shares to aggregate respectively outputs and 
inputs. If observed shares are not equal to output and input distance function 
shares, the Törnqvist index will be a biased measure of the pure productivity 
growth. The output aggregation biases measures any effect that non-marginal cost 
pricing may have on productivity growth because firms are not allocative efficient 
with respect to output prices or firms are no price-takers in output markets. This 
term vanishes, however, under proportional mark-up pricing or if outputs change at 
the same rate. On the other side, the input aggregation biases occurs because the 
firms are allocative inefficient with respect to input prices. This term vanishes when 
firms are input allocative efficient, then ek(t)=Sk

t, or inputs change at the same 
rate.  

 
In summary, once a translog output distance function is estimated, equation 

(13) provides a decomposition of the Törnqvist productivity index into three 
general sources: technical change, scale economies and technical efficiency 
change. It also allows for evaluating output and input aggregation biases. It is 
noteworthy that this equation leads to an exact decomposition suitable for discrete 
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data. That is, it can be implemented without having to approximate concepts that 
are specified in the continuous time framework, just like in Bauer (1990). 

 
3. Empirical illustration: the Spanish savings banks 

 
In this section, the parametric decomposition of the generalized Malmquist 

productivity index developed above is calculated using panel data from Spanish 
savings banks. This decomposition is based on the estimation of a translog output-
oriented distance function using econometric techniques. 
 
3.1. Econometric specification 
 

 Following Färe and Primont (1996), the econometric version of the output 
distance function can be written as: 
 

itititito uv),t,x,y(Dln1ln ++β=     (14) 
 

where subscript “i” stands for firms, β is a vector of parameters to be estimated, ui 
is a non-negative disturbance allowing for technical inefficiency, and the stochastic 
nature of the frontier is modeled by adding a two-sided random error term vit. The 
following distribution assumptions are imposed: 
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where η=(η1 η2) is a vector of parameters to be estimated, N is the total number of 
firms in the sample, ψ(i) represent the set of Ti time periods among the T periods 
involved for which observations for the ith firm are obtained. That is, the noise term 
vit is assumed to follow a normal distribution with mean zero and variance σv

2. The 
inefficiency term uit is modeled as the product of an exponential function of time 
and a non-negative time-invariant firm effect, uI. The term uI is the inefficiency level 
of the ith producer at time T and is supposed to come from a non-negative 
truncated normal distribution with mean zero and variance σu

2.  
 
Note that the exponential function of time is a generalization of the model by 

Battese and Coelli (1992). They assumed η2=0 above, which is a rigid 
parameterization since efficiency must either increase at a decreasing rate (i.e. 
η1>0), decrease at an increasing rate (i.e. η1<0) or remain constant (i.e. η1=0). In 
order to relax monotonicity, I propose a two-parameter specification, which allows 
for decreasing and increasing efficiency over the whole period considered. 
 

The model defined by equation (14) can only be estimated as long as the 
homogeneity restrictions are imposed. The linear homogeneity in output quantities is 
imposed normalizing, using an arbitrary output as numeraire, the constant 
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regressand and the other outputs.8 Using the following notation y*
jit=yjit/ymit (j=1...m-1), 

the translog version of model (14) can be written as: 
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3.2. Data and sample 

 
The data are yearly data (1985-98) from the Spanish Savings banks 

Confederation. The number of banks decreased throughout the sample period due 
to mergers and acquisitions. These mergers took place especially among savings 
banks. In this paper, a merged institution is treated as a different bank from the 
institution that existed before the merging process. That is, if two institutions 
merged into a new one they disappear and a new bank is born.  
 

 To select the variables I follow the majority of the literature and apply the 
intermediation approach proposed by Sealey and Lindley (1977) which treats 
deposits as inputs and loans as outputs. Four types of outputs and three types of 
inputs are included. The outputs are (OA) Bonds, cash and others assets not 
covered by the following outputs; (LO) Loans to no-banks; and (NI) noninterest 
income. Using this last output goes beyond the intermediation approach as 
commonly modeled. I include noninterest income in an attempt to capture off-
balance-sheet activities such as securitization, brokerage services, and 
management of financial assets, which are becoming increasingly important at 
Spanish banks. The inputs are: (D) time and savings deposits; (F) deposits from 
banks and other funds; (L) Labor, measured by personnel expenses; and (K) 
Capital, measured by physical capital depreciation and other non-interest expenses. 
A summary of the descriptive statistics of these variables can be found in Table 1. 
All monetary variables are expressed in millions of pesetas and in real terms of 
1985 by deflating by the GDP deflator index. 
      

All variables have been mean-corrected prior to estimations. That is, each 
output and input variable has been divided by its geometric mean. In this way, the 
first order coefficient can be interpreted as distance elasticities evaluated at the 
sample mean. In addition, linear homogeneity in outputs is imposed using output 
OA as a numeraire.  

                                                 
8 This method is widely described in Coelli and Perelman (1996). 
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3.3. Empirical results 
 

The output distance function (14) is estimated allowing error structure to differ 
between no-merged and merged banks. Since a merger process involve important 
structural changes (closure of branches, staff reallocation, etc.), the temporal 
pattern of technical efficiency of merged banks may be quite different to that of no-
merged banks. Therefore, both groups of banks do not share likely the same 
random (efficiency) distributions. 

 
The empirical results for the estimated model are presented in Table 2. All the 

elasticities have the expected signs at the geometric mean. Therefore, the estimated 
distance function fulfills at this point the property of monotonicity (i.e. non-decreasing 
in outputs and decreasing in inputs). The sum of the input elasticities is -1.0303 and 
is significantly different from zero, indicating the presence of moderate increasing 
returns to scale at the mean, as found in many past banks studies. 
 

Following Battese and Coelli (1992) the estimated parameters can be used 
to calculate indexes of technical efficiency. Summary statistics of the technical 
efficiency indices appear in Table 3. The results shown in this table reveal that non-
merged banks are on average more efficient than merged banks. Other feature of 
technical efficiency is noteworthy. Our model allows assessing the variations in 
technical efficiency over time. A likelihood ratio test is used to determine whether 
the data supported a model with time-invariant cost efficiency, i.e. imposing that η
1=η2=0. While this hypothesis was rejected for merged banks, it was not rejected 
for the group of non-merged banks. This result indicates that the measured 
variations in efficiency for non-merged savings banks over the period 1985-98 are 
not statistically significant. This result conforms to the results obtained in the majority 
of empirical Spanish banking studies (see, for example, Maudos, 1996). 

 
Total factor productivity growth can be measured from the estimated output 

distance function using equation (10). This combines the effect of technical 
change, technical efficiency changes and a scale effect as outputs expand over 
time. Table 4 reports the annual decomposition of growth of total factor 
productivity, together with an overall year average and three sub-period averages, 
for non-merged banks. The results show an increase of total factor productivity 
over the entire period. This is largely attributable to a strong technical progress and 
the positive, but modest, effect of scale economies. On the contrary, the efficiency 
changes have not had an important effect on productivity growth. Overall, these 
results are quite similar to those found by Pastor (1995), Maudos (1996) and Grifell 
and Lovell (1997), although their results rely on data up to 1994. 

 
Table 5 reports the decomposition of growth of total factor productivity for 

merged banks. These banks experienced increased productivity since the early 
1990s. This increase was especially intense since 1994. Through 1994 productivity 
growth can be attributed mainly to technical progress, whereas the efficiency effect 
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is negative, but after 1990 the productivity increase is a consequence of 
improvements in both technical efficiency and technical progress. As expected, the 
scale effect in merged banks had a smaller effect on productivity growth than in 
non-merged banks.  
 
4. Summary and conclusions 
 

The primary objective of this paper is to decompose a generalized 
Malmquist-type productivity index into terms related to technical change, technical 
efficiency changes and returns to scale. This decomposition is based on 
parametric estimation of translog output-oriented distance functions and draws on 
the so-called exact index number approach to the derivation of productivity change 
measures. This approach also allows us decomposing the traditional Törnqvist 
productivity index without having to approximate concepts that are specified in the 
continuous time framework.  

 
The parametric decomposition of the generalized Malmquist productivity 

index was applied to panel data coming from Spanish savings banks. The results 
show an increase of total factor productivity for both merged and non-merged 
banks. The main factor contributing to this increase was a strong technical 
progress. I also find that returns to scale have also a positive effect on productivity 
growth, indicating that the scale effect should be included in an examination of 
bank productivity growth. 
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Table 1  
Descriptive statistics of selected variables 

Variable Mean St. Dev.  Minimum Maximum 

OA 74068 167019 583 1737633 

LO 134773 248454 1066 2641366 

NI 1473 3863 5 51670 

D 225808 409165 2802 3539309 

F 31978 95042 38 1184926 

L 4515 7423 69 68081 

K 2923 5103 33 46767 
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Table 2  
Estimated parameters of equation (15) 

Variable Coefficient Value t-test Variable Coefficient Value t-test 

Constant α0 0.0716 3.296 Ln(D)· Ln(LO) γ12 0.0657 0.882 
Ln(NI) β3 0.0445 1.853 Ln(F)· Ln(LO) γ22 -0.0135 -1.004 
Ln(LO) β2 0.6800 19.161 Ln(L)· Ln(LO) γ32 -0.0639 -0.973 
Ln(D) α1 -0.6561 -11.133 Ln(K)· Ln(LO) γ42 0.0106 0.171 
Ln(F) α2 -0.0634 -5.138 Ln(D)· Ln(F) α12 0.0019 0.058 
Ln(L) α3 -0.1254 -2.368 Ln(D)· Ln(L) α13 -0.3537 -2.329 
Ln(K) α4 -0.1774 -2.602 Ln(D)· Ln(K) α14 0.0483 0.373 

1/2Ln(NI)2 β33 -0.0688 -2.425 Ln(F)· Ln(L) α23 0.0254 0.934 
1/2Ln(LO)2 β22 0.0236 0.529 Ln(F)· Ln(K) α24 0.0220 0.830 
1/2Ln(D)2 α11 0.3028 2.462 Ln(L)· Ln(K) α34 -0.0292 -0.301 
1/2Ln(F)2 α22 -0.0455 -5.503 t ψ0 -0.1383 -3.970 
1/2Ln(L)2 α33 0.3271 1.840 1/2 t2 ψ00 -0.0052 -0.201 
1/2Ln(K)2 α44 -0.0208 -0.139 t· Ln(NI) τ3 0.0352 1.815 

Ln(NI)· Ln(LO) α23 0.0964 3.430 t· Ln(LO) τ2 -0.0092 -0.339 
Ln(D)· Ln(NI) γ13 0.0746 1.397 t· Ln(D) ξ1 -0.0229 -0.471 
Ln(F)· Ln(NI) γ23 -0.0056 -0.548 t· Ln(F) ξ2 0.0160 1.935 
Ln(L)· Ln(NI) γ33 -0.0393 -0.665 t· Ln(L) ξ3 -0.0009 -0.023 
Ln(K)· Ln(NI) γ43 -0.0174 -0.260 t· Ln(K) ξ4 0.0016 0.029 

Non merged banks   Merged banks   
 σ2 0.0188 4.243  σ2 0.0199 2.695 
 λ 0.2593 3.303  λ 0.1177 2.211 
 η1 0.0192 0.612  η1 0.2158 4.749 
 η2 0.0014 0.575  η2 0.0309 5.844 
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Table 3 
Descriptive statistics of technical efficiency indexes (%) 

 Non merged banks Merged banks 

Year Mean St. Dev. Number Mean St. Dev. Number 

1985 91.1 6.57 77 . . . 
1986 91.0 6.66 77 . . . 
1987 90.9 6.73 77 . . . 
1988 90.8 6.79 77 . . . 
1989 90.9 6.86 75 93.9 0 1 
1990 91.0 5.89 54 91.4 6.30 10 
1991 90.8 6.22 42 89.1 7.89 13 
1992 91.1 6.16 39 86.1 8.06 14 
1993 90.9 6.36 36 84.7 8.74 15 
1994 91.0 6.32 36 83.9 9.18 15 
1995 91.0 6.42 34 84.1 8.92 16 
1996 91.1 6.35 34 84.9 8.50 16 
1997 91.2 6.27 34 86.5 7.70 16 
1998 91.4 6.17 34 88.6 6.60 16 

1985-1998 91.0 6.44 726 86.4 8.17 132 
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Table 4. Total factor productivity growth. Non merged banks 
 

Period Productivity 
growth  

Changes in 
Efficiency 

Technical 
Change Scale Effect 

85/86 2.84 -0.15 2.87 0.12 
86/87 2.97 -0.13 2.88 0.22 
87/88 3.08 -0.10 2.86 0.32 
88/89 3.00 -0.07 2.81 0.27 
89/90 2.94 -0.04 2.89 0.09 
90/91 3.02 -0.02 2.91 0.12 
91/92 2.84 0.01 2.69 0.14 
92/93 2.69 0.04 2.51 0.14 
93/94 2.70 0.06 2.48 0.16 
94/95 2.75 0.09 2.51 0.15 
95/96 2.85 0.12 2.56 0.17 
96/97 2.87 0.14 2.53 0.19 
97/98 2.75 0.16 2.44 0.15 

     
85/90 2.97 -0.10 2.86 0.21 
90/94 2.82 0.02 2.66 0.14 
94/98 2.80 0.13 2.51 0.17 

85/98 2.90 -0.03 2.74 0.18 

Note: Arithmetic average of annual rates in percentages. 
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Table 5. Total factor productivity growth. Merged banks 
 

Period Productivity 
growth  

Changes in 
Efficiency 

Technical 
Change Scale Effect 

85/86 . . . . 
86/87 . . . . 
87/88 . . . . 
88/89 . . . . 
89/90 0.73 -2.26 2.81 0.18 
90/91 0.33 -2.60 2.83 0.10 
91/92 0.10 -2.79 2.72 0.17 
92/93 0.58 -2.11 2.61 0.08 
93/94 1.70 -1.10 2.64 0.16 
94/95 2.73 -0.01 2.66 0.09 
95/96 3.87 1.06 2.68 0.13 
96/97 4.78 1.94 2.68 0.16 
97/98 5.27 2.50 2.61 0.16 

     
85/90 . . . . 
90/94 0.77 -2.04 2.68 0.13 
94/98 4.19 1.40 2.66 0.14 

85/98 2.69 -0.11 2.67 0.13 

Note: Arithmetic average of annual rates in percentages. 
 


