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INTRODUCTION 

 

Classical input-output comes in two flavors: static and dynamic.  

 

The dynamic version was developed as an extension of the static one, to cope 

with time. But not with any influence of time: specifically with the effect of 

capital accumulation. Thus dynamic input-output models are considered among 

the early members of the family of growth models. 

 

From mathematical considerations, we conclude in this paper that their long 

time accepted interpretation can hardly be sustained. Under certain 

assumptions, they do represent an economic reality but not growth. 

 

Some directions for future empirical research are extracted from the analysis. 

 

In the rest of the paper, we shall use capital letter S, as synonymous of 

“Leontief static model” and letter D as a substitute for “dynamic input-output 

model”. 

 

MATHEMATICAL BACKGROUND 

 

Static formulae. 

 

The characteristic balance equation of S is  

 

   X = A X + Y       E.1.1. 

 

where X is a vector of output, Y is a vector of final demands and A is a square 

matrix of interindustry coefficients. 
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The solution of  E.1.1.  is: 

 

   X = [ I – A ]–1 Y      E.1.2. 

 

Dynamic formulae 

 

The characteristic balance equation of D is: 

 

   X(t) = A X(t) + Y(t) + B X’(t)    E.2.1. 

 

where B is a square matrix of capital coefficients. It represents the willingness 

of the economy to invest (1). 

 

E.2.1 can also be written: 

 

X’(t) = B–1 [ I – A ] X(t) –  B–1 Y(t)   E.2.2. 

 

Naming   M = B–1 [ I – A ]   and    N =- B–1    , E.2.2.  becomes: 

 

   X’(t) = M X(t) + N Y(t)     E.2.3. 

 

Its solution is:  

           t  

   X(t) = e Mt X(0) + ∫ e M (t - τ)  N Y(τ) d τ            E.2.4. 
             o 

 

(1) The rigorous technical definition is certainly different. It measures the involvement 

of each sector in the capital accumulation of the rest. For simplicity and better 

understanding we associate involvement with willingness. 
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ON THE CONSISTENCE OF S AND D   

 

The process of understanding under which conditions S may be considered a 

particular solution of D, allows to surface some not so evident characteristics of 

D’s behavior. 

There is more than one way to see the solutions of S and D coincide. 

Let us review different approaches: 

 

1.  Approach 1. Case 1.  

 

Assuming that B = 0, in  E.2.1. 

 

This is generally considered the obvious approach (2). 

 

This situation would correspond to an economy where production 

fluctuates but the willingness to invest is zero. Consequently 

investment itself is also zero. 

 

In fact, a situation like this can be depicted by S but not by D. This is 

clear when we consider D under its form  E.2.2 . If B is singular, B-1 

does not exist and D is not operational. We do not have then two 

working models which merge, but a model which works and another 

which does not. 

 

Therefore, this approach tries to eliminate the distance between the 

two models by annihilating one of the two terms of comparison. This 

is not acceptable as means to establish a parenthood relationship 

between the two models. 

 

 

(2) See for instance this viewpoint in: 

“Linear programming and economic analysis” Robert Dorfman, Paul A. Samuelson 

and Robert M. Solow .  Mc Graw Hill 1958 
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2. Approach 2. Case 2. 

 

An alternative way is to assume that  B ≠ 0  but  X’(t) = 0 in  E.2.1 . 

This situation would correspond to an economy with willingness to 

invest but where production needs do not grow. Therefore 

investment is again zero. 

 

Under those assumptions, D truly satisfies the equation: 

 

  X(t) = [I – A]–1 Y(t) 

 

and S and D describe equally the same reality from two different 

view points. Both models are operational and independent.  

 

It is also true that the approach does not generate any information of 

interest about the dynamics of the economy: E.3 only works if    

X(t)=C since otherwise X’(t) would be ≠ 0, which is against the 

assumptions; it also necessarily implies  Y(t) = K. 

 

We end up concluding that  E.3  is in reality: 

 

  C = [I – A]–1 K                 

 

an expression which adds nothing to what we know from  E.1.2. 

 

 

3. Approach 3. Different cases. 

 

Approaches 1 and 2 have something in common: they both try to 

approximate the balance equations of S (E.1.1) and D (E.2.1) by 

removing the term BX’(t)  from  E.2.1. 
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But it is not necessary to make BX’(t)=0 to have S and D confirm 

each other. 

 

To prove it, let us solve  E.2.4  for different shapes of  Y(t). 

 

Case 3 

 

To allow an easier comparison with the previous approach, let us 

solve first the case  Y(t) = K. 

 

This situation would represent an economy with willingness to invest, 

where production is allowed to fluctuate while final demand is 

constant. One must not take for granted that constant final demands 

lead to constant productions. As we shall see, under Leontief’s 

dynamic formulae, production can grow in an explosive way even 

when final demands remain unchanged over time. 

 

Under this assumption,    E.2.4.  becomes (demonstration in 

Appendix A): 

 

  X(t) = [I – A]–1 K + eMt [ X(0) – [I – A]–1 K ]    E.4. 

 

If the second term of the right hand side of E.4 can be made zero, S 

and D do provide an identical solution: 

 

This can happen in two ways:  

 

3.1   When  X (0) = [ I – A ]–1 K    E.5 

 

that is when the economy is already working at time zero at the 

regime corresponding to the long term steady state. 
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This case is a redefinition of E.3.  All assumptions coincide: 

 

o B ≠ 0 
o Y(t) = K 
o X’(t) = M eMt[ 0] = 0, therefore X(t) = C. 

 

Nevertheless approach 3 has obviously enriched, with respect to 

approach 2, our information about the dynamic equilibrium. We know 

now that the validity of E.3. , which rests on the constancy of 

productions, implies two conditions: not only constant final demands 

but also very specific requirements about the initial situation of the 

economy. 

 

3.2  Additionally, approach 3 tells us that even if E.5. does 

not hold and therefore X’(t) ≠ 0, E.4. can still reproduce the solution 

of the static model when (and only when) the system is stable: 

the second term will fade away as time passes and become zero for 

practical purposes after a while. 

 

Case 4. 

Appendix B solves again D for steadily growing final demands : 

Y(t) = Kt. 

 

In this case, B ≠ 0 , final demands are not constant and  X’(t) is never 

zero. No restrictions are imposed on initial conditions. 

 

Nevertheless, the conclusion is again the same: if the system is 

stable, the solution of D converges to that of S and the models 

provide consistent results (see Appendix B).  

 

On the contrary, if the system is unstable, the static and dynamic 

input-output models will provide solutions that diverge continuously 

over time, even when identical final demands are applied. 
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A minor difference in initial conditions from the required state, leads 

also without real justification to contradictory solutions of the two 

models. 

 

As mentioned before, stability requests that all eigenvalues of matrix 

M = B-1[I – A] have negative real parts. 

 

ON THE STABILITY OF LEONTIEF’S DYNAMIC MODEL 

 

Appendix C proves for the two sector case that if coefficients of matrix B are 

prevented from being negative, D is unstable. It can only exhibit the following 

types of behaviors, corresponding to a system with only this variety of singular 

points: unstable focus, unstable nodes or saddle points 

 

Those behaviors would be: 

 

o Explosive diversion from the steady state with 

oscillations for unstable focus. 

 

o Explosive diversion, in either direction, without 

oscillations for unstable nodes. 

 

o “Strange” non oscillatory trajectories for saddle points, 

which start coming closer to the steady state, to depart 

always in the opposite direction in an explosive 

divergence before ever reaching it (3).  

 

The situation described above occurs always under Leontief’s hypothesis since 

the very definition of capital coefficients request from them to be positive or 

zero (although we point in this paper, in case of zero coefficients, they must not 

be situated in positions which make B singular). 
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If the coefficients of B are negative, it is still possible to have the same type of 

instabilities or under additional restrictions (see again Appendix C for the 

details), one can find the only cases of stability and consistency of the two 

models. 

 

In Leontief’s interpretation negative coefficients may have no meaning. 

 

But alternative interpretations are possible: when production decays, X’(t) is 

negative and a negative B would turn into positive the component of output 

BX’(t), thus meaning a compensation of the slow down taking place. 

 

In case of growing production, X’(t) is positive and B<0 makes BX’(t) negative, 

thus representing a correction effect to the expansion occurring. 

 

Negative coefficients cannot represent growth but yes perhaps some kind of 

short term countercyclical policy. 

 

(3) The saddle points include one case of stability. Out of the infinite numbers of 

possible trajectories, all of them are unstable except one, which happens when the 

system moves along one of the two separatrice lines. 

 

This requests such stringent conditions on the proportions of the coefficients and 

their maintenance over time that the probability of such things occurring is not 

small or very small but absolutely negligible. 

The situation, if occurring, would be more a consequence of a successful lottery 

draw than a case representative of the behavior of the system. 

 

One specific case deserves attention: when B is the negative identity matrix.  

 

Case 5.  Assumptions: B = -I , Y(t) = K  and  X(t) is allowed to fluctuate. 

 

The balance equation of D, 2.2.1, becomes: 
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   X’(t) = [A – I] X(t) + Y(t)    E.6 

 

or   X’(t) = A X(t) + Y(t) – X(t)     E.7 

 

In the right hand side of E.7 : 

 

o The term  AX(t) + Y(t)  represents total demand of the economy. 

o The term  X(t)  represents total output of the economy. 

 

Therefore E.7 is the representation of an economy that introduces short term 

charges in its production levels (X’(t) is change of output over time) following 

the information received about the excess or default of demand over supply 

occurred in the previous period. 

 

It is the general case of the static model whose equation E.1.1. can be 

rewritten: 

 

   0 = A X + Y – X      E.8. 

 

The static model assumes perfect equilibrium of supply and demand instant by 

instant. D with  B = -I   , covers that possibility but also more general situations 

of temporary unbalances. 

 

The  application  of  the stability  criteria developed  in  Appendix C applied to 

the case B = -I, confirm fully that it is one of the situations of stability and 

therefore identical solution of S and D. 
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CONCLUSIONS 

 

1. The largely accepted notion that S is equivalent to D with B = 0 is 

incorrect. 

 

2. If the coefficients of B are not negative, D is unstable: 

 

It provides unrealistic descriptions of the world: the economy could grow 

indefinitely under unchanged final demands and minor differences in 

initial conditions lead to explosive growth whether oscillatory or not. 

 

In none of these cases S and D would provide coherent solutions. 

 

Thus S and D can be considered inconsistent models if   B  > 0 

 

3. D with negative B coefficients is the only approach which produces 

behaviors consistent with the static model, whatever the initial conditions 

and the final demands applied. Therefore B coefficients might be 

reinterpreted as an expression of short term countercyclical policy and 

not as long term growth agents. 

 

4. D is the general version of S, when B is the negative identity matrix. 

 

5. From the previous observations, it must be concluded that matrix B 

cannot be interpreted as a capital coefficient matrix. 
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6-DIRECTIONS FOR FUTURE EMPIRICAL RESEARCH 

 

1. The equivalence of the static model and the dynamic model with B = - I, 

allows to tackle all the research typical of the static model by numerical 

computation of equation E.7 instead if going through the inversion of 

matrix [I – A]. 

 

Numerical computation of E.7 allows the introduction of a number of 

non-linearities. In particular it is possible to substitute constant 

interindustry coefficients by ones variable with the level of occupation, 

reproducing some law of diminishing returns or any other behavior 

determined by parameter estimation techniques. 

 

2. Equation E.2.4 reminds us that the output of one period does not 

depend only of the final demand of the period but also of the initial load 

of backlogs. 

 

In the real world the economy exhibits at any time some inertia. The 

influence of the original momentum vanishes if the period selected is 

very long since, after a while, the weight of the new flowing final 

demand plays the major role in the determination of production levels. 

 

Nevertheless, if the period is one year, the influence of the initial 

conditions certainly distorts the output calculated by the model if only 

final demand of the period is taken into account by the model. 

 

In empirical research some attention should be paid to the topic. 

 

Again, the use of numerical computation may make easier to introduce 

the influence of the initial loads. 

 



 14

3. The conventional dynamic model represented by E.2.1. assumes naively 

that  the output of a period corresponds to the final demand of the same 

period, whether the period is long or short. 

 

Since production consumes time, it is unrealistic to maintain such 

simultaneity, if the period considered is very short.  

 

It is necessary to introduce production lags so that the research can 

trace the propagation over time of effects – demands and corresponding 

outputs – through the structure of the economy. 

 

It is possible to introduce easily such a treatment, starting from equation 

E.7. but we leave for a further paper this presentation. 

 

The inclusion of production delays would complete the timing picture: 

while the output of a year is influenced by situations inherited from the 

previous year, part of the consequences of the final demand of one year 

will be filtered through the industrial system in later periods. 

 

Much of the difficulties attributed to an inappropriate selection of the 

level of aggregation or to practical problems in the collection of statistical 

data, could probably be transferred to an insufficient understanding and 

treatment of these timing factors, completely ignored in the static 

analysis. 

 

 

 

 

 

 

 

 



 15

APPENDIX A 

 

Solution of Leontief’s dynamic model for constant final 

demands: Y(t) = K 

 

E.2.4  becomes 

       t 

X(t) = eMt X(0) + eMt ∫ e -Mτ N K d τ      A.1 

     o 

  t                       t  

but  ∫ e -Mτ N K dτ =   -M-1 e –Mt  N K       A.2 

 o                       o 

 

We prove, before any further progress, that  M-1 N = - [I – A]-1  A.3 

 

Proof of  A.3. 

 

M-1 N = [ B-1 (I – A) ]-1 . [- B-1] = [I – A]-1 B [- B-1 ] = - [I – A]-1  

 

Therefore, the expression inside the parenthesis in A.2 is: 
 
- M-1 e –Mt N K =  - M –1 e –Mt [- M] . [- M –1] N K 
 
    = - M –1 [- M] e –Mt [ - M –1 N K ] 
   

    =  e –Mt  [ I  - A ]-1 K 

 

Therefore the solution of  A.2 is: 

 

   t            

∫ e -Mτ N K d τ = e-Mt . [I - A]-1 K – e-M0 [I – A]-1 K=  

 o   
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                     = e –Mt [I – A]–1 K –  [I – A]–1 K    A.4 
 
If we replace in A.1 the expression  A.2  by  A.4 , we obtain: 

 

X(t) = e Mt X(0) + e Mt .   e –Mt[I - A] –1 K – [I – A] –1 K  

       

 = e Mt     X(0) – [I – A] –1 K    +      I – A  -1 .  K  
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APPENDIX B 

 Solution of D when final demand grows steadily: Y(t) = Kt 

                t 

Equation  E.2  becomes:  X(t) = eMt X(0) + eMt ∫ e-Mτ N K τ d τ 

    o 
 
 

We solve this equation in three steps: 

 

1. Integration by parts of: 

  t 

∫ e-Mτ N K τ d τ 

 o 
 
to obtain 
 
[ - M-1 e-Mt t – M-2 e-Mt – M-2 ] . N . K 

 
2. Multiplication by  eMt  to obtain: 

 

- M-1 N Kt  – M-2 N K  - eMt M-2 N K 

 

3. Addition of  eMt X(0) and reordering: 

 

[I – A]-1 Kt –  M-1[I – A]-1 K +  eMt [ X(0) – M-1[I – A]-1 K ]    B.1 

 

(remember from Appendix A: - M-1 N = [I – A]-1 ) 

 

If B = - I , then 

 

X(t) = [I – A]-1 K t - [I – A]-2 K + eMt [ X(0) – [I – A]-2 K ]    B.2 

 

 

In  B.1  and  B.2: 
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1. The first term coincides with the solution of the static model. 

 

2. the second term represents a steady state error. It is constant. 

When the first term grows this component looses its weight. 

 

3. The third term fades away to become zero if the system is stable. 

 

Therefore the solution of D converges to that of  S when  t          ∞ 

again if the system is stable. 
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APPENDIX C   (4) 

 

Determination of the stability conditions of D for the two sector 

case.  

 

Determination of the sign of the eigenvalues of matrix M = B-1[I – A] 

 

We define: 

 

    b11 b12      b22
 -b12  

                   B    B  

*      B =      therefore  B-1 =     - b21  b11 

  b21 b22            B    B  

 

  where  B  = b11 b22 – b12 b21 

 

    (1-a11)    - a12     

 *  [ I – A ] =   

    -a21   (1-a22) 

 

therefore 

  

   m11 m12     

 M =      = B-1[ I – A ] =  

   m21 m22  

 

   

b22 (1-a11)+ b12 a21  - b22a12  - b12 (1-a22) 

    B         B  

 =  

- b21 (1-a11) – a21b11 b21a12 + b11 (1 –a22) 

  B      B  
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We calculate the eigenvalues λ of M defined by: 

 

 λ I – M  = 0  that is: 

 

 

  λ - m11  - m12 

      ⇒ and therefore: 

   - m21 λ - m22  

 
 (m11 + m22) +        ∆  
λ1 =       and 

    2 
 
 
 (m11 + m22) –      ∆ 
λ2 =  

    2 
 
 where ∆ = ( m11 + m22 ) 2  - 4  M 

 

 where  M = m11 m22 – m12 m21 

 

 We do not develop the following demonstrations which are mechanical: 

     b22 (1-a11)  + b12 a21 + b21 a12 + b11 (1 – a22)  
 m11 + m 22 =          
     b11 b22 – b12 b21 

 

 and 

 

     
    (1-a11) (1-a22) – a12 a21 
 M =       
   b11 b22 – b12 b21 

 

We have to assume that the system complies with the two Hawkin-Simons 

conditions necessary for the existence of the underlying static model. 
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o ( 1 – a11 ) ( 1 – a22 ) – a12 a11 > 0 
 
o ( 1 – a11 ) > 0  and  ( 1 – a22 ) > 0 

 
We analyze the following possible cases: 
 

(A) All coefficients  bij  are positive. 

(B) All coefficients  bij  are positive or zero. 

(C) All coefficients  bij  are negative. 

 
(A) All  bij  positive leads to two possibilities: 

 
A1) When  b12 b21  >  b11 b22 

 

o m11 + m22 < 0 since its numerator is positive and the denominator 

is negative. 

 

o But M< 0 for the same reason 

 

o Therefore  ∆ is the addition of two positive quantities and    ∆ is 

not complex. Both eigenvalues are real. 

 
Since    ∆ is larger then  m11 + m22 ,  
 
λ1 is real and positive. 
 
λ2 is real and negative. 
 

Therefore the system exhibits a saddle point. 
 
 A2) When b12 b21  <  b11 b22  , 
 

o m11   +  m22  >  0  , since both numerator and denominator are 
positive. 

 
o M > 0 for the same reason 

 
o Therefore  ∆  is the addition of one positive quantity  ( m11+m22)2 

 
and a negative quantity:  - 4 M 
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Two cases are possible: 
 
A.2.1.  When  (m11 + m22)2 >  4 M,  ∆ is positive 
 
and      ∆  is not complex. Both eigenvalues are real. 
 
but since      ∆  <  m11 + m22   ,  
 
both  λ1  and λ2  are positive. 
 
The system has an unstable node. 
 
A.2.2.  When  ( m11 + m12 )2 < 4M , ∆ < 0 ,     ∆ is complex, 

and both eigenvalues are complex with real parts [ ( m11 + m22 ) ] 

positive. 

The model shows an unstable focus. 

 

(B) Coefficients  bij  positive or zero. 

 

B1) At least all the coefficients of one of the diagonals must be non 

zero. Otherwise  B  would be singular and  D  would not exist. 

 

B2) When one or two coefficients of the main diagonal are zero and 

the rest positive: 

 

o m11 + m22 < 0  since numerator is positive and denominator 

 negative 

o but  M < 0  for the same reason. 

 

We fall in case A1. 

 

B3) When one or two coefficients of the second diagonal are zero and 

the rest positive. 
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o m11 + m12 > 0 since numerator and denominator are 

positive 

o but  M > 0  for the same reason 

 

We fall in case A2.  

 

(C) All coefficients  bij  are negative 

 

Two alternatives: 

 

C1) When  b11  b22 <  b12  b21 , then 

 

o m11 + m22 > 0 since both the denominator and the numerator are 

negative 

o but  M < 0  since the numerator is positive and the 

denominator negative 

o therefore  ∆ = ( m11 + m 22 )2 – 4 M is the addition of two 

positive quantities 

o     ∆ is then real and both eigenvalues are real. 

o Since      ∆  >   m11 + m22  , 

o λ1  is real positive 

o λ2 is real negative 

Therefore we have a saddle point. 

 

C2) When  b11  b22  > b12  b21  

o m11 + m22  <  0 , since its numerator is negative and its 

denominator is positive 

o but  M > 0  since both numerator and denominator are positive 
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Two cases are possible: 

 

C.2.1.  ( m11 + m22 )2  > 4 M and therefore      ∆  is real. 

Both eigenvalues are real and  

since      ∆  >   m11 + m22  , 

      λ1 is real positive 

and  λ2 is real negative. 

We again have a saddle point as in A1. 

 

C.2.2. ( m11 + m22 )2 < 4M and therefore   ∆  is complex 

The two eigenvalues are complex with negative real parts. 

Therefore the system shows a stable focus. 

 

C.2.3.  ( m11  + m22 )2 = 4M and therefore     ∆  = 0 . 

The two eigenvalues are identical real and negative. 

The system shows a stable node. 

 

The specific cases C.2.2. and C.2.3. of B with negative coefficients are the only 

ones which prevent inconsistency of the static and the dynamic model, by 

representing a stable system where dynamic stationary behavior and static 

provide consistent representations of the same reality.   

  

(4) For the analysis included on the nature of the singular points we suggest contrast with 

“Modern Control Engineering” – Katsuhiko Ogata – Prentice Hall, 1970, Pages 583 – 584 
 

 

 

 

 

 

 

 



 25

REFERENCES 

 

1. Blanc M. (1976) “Leontief Model: a dynamic, stochastic and non-linear 

version”. Working paper. Alfred P. Sloan School of Industrial 

Management. Massachusetts Institute of Technology. 

2. Blanc M. (1979) “Dynamic Input-Output: an alternative approach”. Paper 

submitted to the “Seventh International Conference on “Changes in the 

structure of the world economy””. Innsbruck 9-13 April. Session 5. id 79 

2117. 

3. Dervis K., de Melo, J. & Robinson, S. (1982) “General equilibrium models 

for Development Policy”. (Cambridge U.K., Cambridge University Press) 

4. Dixon P., Parmenter B., Powell W. (1992) “Notes and problems in applied 

general equilibrium economics”. North Holland. Amsterdam. 

5. Dorfman R., Samuelson P.A. and Solow R.M. “Linear programming and 

economic analysis”. McGraw Hill 1958.  

6. Fossati A. (1996). “Economic modeling under the applied general 

equilibrium approach” (ed.) Avebury, Ashgate Publising Limited, England. 

7. Hawkins, D. / Simon, H.A. “Note: Some Conditions of Macroeconomic 

Stability” in Econometrica vol. 17. Nr. 3-4 July – October 1949. 

8. Kurz H.D. & Salvadori, N. (2000) “The dynamic Leontief model and the 

theory of endogenous growth”, Economic Systems Research, 12, pp. 

255-265 

9. Leontief W., (1967), “An open dynamic system for long range projection 

of economic growth” In P.N. Mathur and R. Bharadwaj (eds) Economic 

Analisys in Input-Output Framework (P.N. Mathur-Poona. India) 

10. Leontief W. (1970) “The Dynamic Inverse”. In: Carter A.P., Brody et al. 

(eds), Contributions to Input-Output Analysis. North Holland, 

Amsterdam. 

11. Leontief, W. (1989) Foreword, Economic Systems Research 1, pp. 3-4. 

12. McKenzie, L. “Matrices with Dominant Diagonals and Economic Theory” 

in Arrow/Karlin/Suppes. Mathematical Method in the Social Sciences. 

Stanford 1960. 



 26

13. Ogata K. “Modern Control Engineering”. Prentice Hall, 1970 

14. Miller, R.E., Blair PD (1985) Input-Output analysis, foundations and 

extensions. Prentice Hall, Inc. Englewood Cliffs, New Jersey. 

15. Sawyer J.A. (1992) “Forecasting with input-output matrices: are 

coefficients stationary?”, Economic Systems Research, 8 pp. 33-62 

16. Schwartz J.T. (1961) “Lectures on the mathematical Method in Analytical 

Economics” New York 1961 

17. Ten Raa, T. & Mohnen, P. (1994) “Neoclassical input-output analysis”, 

Regional Science and Urban Economics, 24-pp.135-158. 

 


