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PhD thesis presented during the year 2017



l-=
-t1
t1
11
¿

-11
f,

-
-F

-
-
-
-
-
-
-e
-
-
-
-r-
;-
n
f1
f4
t+
14
F
F
F
iE
F
iE
F
}T
F'
l-
l-
F
t-
lt"
l¡t
F
F
F
FFFrrr{FF'
Itr
t'Tbr

rt
th

d&

***W.**W**.\N.\WW
**$

RESUMEN DEL CONTENIDO DE TESIS DOCTORAL

l.- Título de la Tesis
Español/Otro ldioma: I Inglés:
Teorías Gauge en 5 y menos dimensiones, I Gauge theories in 5 and lower dimensions,
holoqrafía v resultados exactos holoqraphv and exact results

2.- Autor
Nombre: Alessando Pini DN l/Pasaporte/N I E: 

Proqrama de Doctorado: Física fundamental y aplicada
Orqano responsable: Universidad de Oviedo

RESUMEN (en español)

Dr"lrante los últimos años grandes progresos sobre la comprensión de teorías cuánticas de

campos en un numero diferente de dimensiones han sido hechos. Esto ha sido posible

haciendo uso de nuevas herramientas matemáticas que han sido descubiertas en Teoría de
Cuerdas. En particular la correspondencia AdS/CFT nos ha permitido estudiar una teoría de
campo en régimen de acoplo-fuerte usando su dual gravitatorio. Por otra parte, ha sido
descubierto que es posible relacionar una teoría cuántica de campos con una específica
configuración de Dp branas, dándonos un modo completamente distinto de estudiar dichas
teorías.
En esta tesis vamos a aplicar las herramientas matemáticas anteriores a teorías cuánticas de
campos en 5d con N= y teorías de campos supersimétrica en un número menor de
dimensiones. Las teorías de campos en 5d son muy interesantes. De hecho, aunque dichas
teorías no son renormalizable, para una elección del grupo gauge y materia pueden estar en
punto fijo, el cual puede exhibir exóticos fenómenos como simetrías excepcionales.
Empezamos el estudio de los flujos del grupo de renormalización entre diferentes teorías en 5d
con N=1 haciendo uso del correspondiente dual gravitacional. En particular podemos identificar
dos tipologías distintas de flujos dependientes del operador particular que toma un valor
esperado en la teoría de campo dual. De hecho, podemos ver que cuándo movemos las branas
de la singularidad presente en la métrica el flujo está provocado por un operador mesonico,
mientras, cuando eliminamos la q!¡gularidad haciendo un blow-up, el flujo esta provocado por
un operador bariónico.
Por otra parte, hemos estudiado el límite de Nekrasov-Shatashvili (NS) del índice
superconforme en 5d. En general dicho límite es singular. Por este motivo introducimos una
prescripción que nos asegura que todos los coeficientes del índice, una vez que ha sido

tomado el límite, son números enteros. Por otra parte, aplicamos la prescripción anterior a

diferentes teorías con grupo de gauge U (1) y diferentes grupos de simetría global. Hemos visto
que la nuestra prescripción para el limite NS reproduce el índice de Schur en 4d.

Estudiamos el límite rígido de la supergravedad euclídea conforme en 5d con N=2 sobre una

variedad de Riemann. Mostramos que la condición necesaria y suficiente que asegura la

existencia de una solución es la existencia de un vector de Killing conforme.
En la última parte examinamos el moduli space de instantones self-duales sobre CP^2. Por
hacerlo usamos la correspondiente construcción ADHM, que puede ser puesta en una teoría de
campo en 3d con N=2. En particular nos concentramos sobre los siguientes aspectos:

1) En generalel moduli space de los instantones sobre CP^z tiene unas cuantas direcciones
compactas que no pueden ser caracterizadas haciendo uso del método usual basado en la
computación del Serie de Hilbert para los operadores gauge invariantes de la teoría.
Empezamos el estudio de dichas direcciones usando una ungauging techinique.

2) Haciendo uso de la correspondencia AdS/CFT obtenemos parte del moduli space de
los instantones en el dual qravitacional.
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3) Aportamos la construcción AD
computaciÓn de la Serie de Hilbert correspondiente para grupo de simetría local unitario,
ortogonal y simpléctico. Por otra parte, después de una oportuna identificación de los nodos del
diagrama a quiver, obtenemos la Serie de Hilbert para el moduti space de instantones sobre
C^2lZn.

RESUMEN (en Inglés)

Great improvements in our understand
dimensions have been performed during the last years. This has been possible using new
mathematical tools that have been discovered in a String Theory context. First of all the
AdS/CFT correspondence provided us the possibility to study a strongly-coupled eFT using its
gravity dual. Moreover it was discovered that we can associate a particular Dp branes

I configuraljg1,to a QFT, provlding us a completely new way to study these theories
i In this thesis-üve apply the above mathematical tools in the context of 5d N=1 and lower
dimensional supersymmetric QFTs. Among the others 5d theories are particularly interesting.
As a matter of fact, even if these theories are not renormalizable, they exhibit a rich structuré of

; symmetries and for a proper choice of the gauge group and of the flávour group can be at
fixed point.
We begin the study of RG flows between different 5d N=1 theories using their gravity dual. ln
particular we are able to identify two different kinds of flow depending on the particuÉr operator
that acquires a VEV in the dual QFT. As a matter of fact we see that when we move the branes
away from the singularity present in the metric the flow is triggered by a mesonic operator. On
the other hand when we perform a blow-up of the singularity the flow is triggered by a baryonic
operator.
Moreover we study the Nekrasov-Shatashvili (NS) limit of the 5d superconformal index. In
general this limit is singular. Therefore we introduce a consistent prescription, such that all the
coefficients of the expansion of the superconformal index, once the limit has been taken, are
integers. Moreover we apply the above prescription to various U(1) gauge theories with different
global symmetry group. We find that our limit matches the 4d Scñur index.
We study the rigid limit of 5d N=2 euclidean conformal supergravity on Riemannian manifolds.
We show that the necessary and sufficient condition for the existence of a solution is the
existence of a conformal Killing vector.
Finally we examine the moduli space of self-dual instantons on CP^2.ln order to do this we use
the corresponding ADHM-like construction, which can be embedded in a 3d N=2 eFT. ln
particular we focus on the following aspects:

1) ln general the moduli spaJe of self-dual instantons on CP^2presents some compact
directions that can not be characterized using the usual approach based on the
computation of the Hilbert Series for the gauge invariant operators of the theory. We
begin the study of the above directions using an ungauging technique.

2) Using the AdS/CFT we realize part of the instanton moduli space in the corresponding
gravity dual. :

3) We provide the ADHM-like construction for instantons on CP^2lZn and we perform the
computation of the corresponding Hilbert Series for unitary, orthogonal and symplectic
gauge groups. Moreover, after a proper identifications of the nodes of the quiver, we
recover the Hilbert Series for the moduli space of instantons on C^2lZn.
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Summary:

Great improvements in our understanding of quantum field theories in dif-
ferent numbers of dimensions have been performed during the last years.
This has been possible using new mathematical tools that have been discov-
ered in a String Theory context. First of all the AdS/CFT correspondence
provided us the possibility to study a strongly-coupled QFT using its grav-
ity dual. Moreover it was discovered that we can associate a particular Dp
branes configuration to a QFT, providing us a completely new way to study
these theories.

In this thesis we apply the above mathematical tools in the context of 5d
N = 1 and lower dimensional supersymmetric QFTs. Among the others
5d theories are particularly interesting. As a matter of fact, even if these
theories are not renormalizable, they exhibit a rich structure of symmetries
and for a proper choice of the gauge group and of the flavour group can be
at fixed point.

We begin the study of RG flows between different 5d N = 1 theories us-
ing their gravity dual. In particular we are able to identify two different
kinds of flow depending on the particular operator that acquires a VEV in
the dual QFT. As a matter of fact we see that when we move the branes away
from the singularity present in the metric the flow is triggered by a mesonic
operator. On the other hand when we perform a blow-up of the singularity
the flow is triggered by a baryonic operator.

Moreover we study the Nekrasov-Shatashvili (NS) limit of the 5d supercon-
formal index. In general this limit is singular. Therefore we introduce a
consistent prescription, such that all the coefficients of the expansion of the
superconformal index, once the limit has been taken, are integers. Moreover
we apply the above prescription to various U(1) gauge theories with different
global symmetry group. We find that our limit matches the 4d Schur index.

We study the rigid limit of 5d N = 2 euclidean conformal supergravity on
Riemannian manifolds. We show that the necessary and sufficient condition
for the existence of a solution is the existence of a conformal Killing vector.

Finally we examine the moduli space of self-dual instantons on CP 2. In
order to do this we use the corresponding ADHM-like construction, which
can be embedded in a 3d N = 2 QFT. In particular we focus on the following



aspects:

1. In general the moduli space of self-dual instantons on CP 2 presents
some compact directions that can not be characterized using the usual
approach based on the computation of the Hilbert Series for the gauge
invariant operators of the theory. We begin the study of the above
directions using an ungauging technique.

2. Using the AdS4/CFT3 we realize part of the instanton moduli space in
the corresponding gravity dual.

3. We provide the ADHM-like construction for instantons on CP 2/Zn
and we perform the computation of the corresponding Hilbert Series
for unitary, orthogonal and symplectic gauge groups. Moreover, after a
proper identifications of the nodes of the quiver, we recover the Hilbert
Series for the moduli space of instantons on C2/Zn.



Resumen:

Durante los últimos años han sido hechos grandes progresos sobre la com-
prensión de teoŕıas cuánticas de campos en un numero diferente de dimen-
siones. Esto ha sido posible haciendo uso de nuevas herramientas matemáticas
que han sido descubiertas en Teoŕıa de Cuerdas. En particular la correspon-
dencia AdS/CFT nos ha permitido estudiar una teoŕıa de campo en régimen
de acoplo-fuerte usando su dual gravitatorio. Por otra parte, ha sido des-
cubierto que es posible relacionar una teoŕıa cuántica de campos con una
espećıfica configuración de Dp branas, dándonos un modo completamente
distinto de estudiar dichas teoŕıas.

En esta tesis vamos a aplicar las herramientas matemáticas anteriores a
teoŕıas cuánticas de campos en 5d con N = 1 y teoŕıas de campos super-
simétrica en un número menor de dimensiones. Las teoŕıas de campos en 5d
son muy interesantes. De hecho, aunque dichas teoŕıas no son renormaliz-
able, para una elección del grupo gauge y materia pueden estar en punto fijo,
el cual puede exhibir exóticos fenómenos como simetŕıas excepcionales.

Empezamos el estudio de los flujos del grupo de renormalización entre difer-
entes teoŕıas en 5d con N = 1 haciendo uso del correspondiente dual grav-
itacional. En particular podemos identificar dos tipoloǵıas distintas de flujos
dependientes del operador particular que toma un valor esperado en la teoŕıa
de campos dual. De hecho, podemos ver que cuándo movemos las branas de
la singularidad presente en la métrica el flujo está provocado por un operador
mesonico, mientras, cuando eliminamos la singularidad haciendo un blow-up,
el flujo esta provocado por un operador bariónico.

Por otra parte, hemos estudiado el ĺımite de Nekrasov-Shatashvili (NS) del
ı́ndice superconforme en 5d. En general dicho ĺımite es singular. Por este mo-
tivo introducimos una prescripción que nos asegura que todos los coeficientes
del ı́ndice, una vez que ha sido tomado el ĺımite, son números enteros. Por
otra parte, aplicamos la prescripción anterior a diferentes teoŕıas con grupo
de gauge U(1) y diferentes grupos de simetŕıa global. Hemos visto que la
nuestra prescripción para el limite NS reproduce el ı́ndice de Schur en 4d.

Estudiamos el ĺımite ŕıgido de la supergravedad eucĺıdea conforme en 5d
con N = 2 sobre una variedad de Riemann. Mostramos que la condición
necesaria y suficiente que asegura la existencia de una solución es la existen-
cia de un vector de Killing conforme.



En la última parte examinamos el moduli space de los instantones self-duales
sobre CP 2. Por hacerlo usamos la correspondiente construcción ADHM, que
puede ser puesta en una teoŕıa de campos en 3d con N = 2. En particular
nos concentramos sobre los siguientes aspectos.

1. En general el moduli space de los instantones sobre CP 2 tiene unas
cuantas direcciones compactas que no pueden ser caracterizadas ha-
ciendo uso del método usual basado en la computación del Serie de
Hilbert para los operadores gauge invariantes de la teoŕıa. Empezamos
el estudio de dichas direcciones usando una ungauging techinique.

2. Haciendo uso de la correspondencia AdS4/CFT3 obtenemos parte del
moduli space de los instantones en el dual gravitacional.

3. Aportamos la construcción ADHM para instantones sobre CP 2/Zn y
hacemos la computación de la Serie de Hilbert correspondiente para
grupo de simetŕıa local unitario, ortogonal y simpléctico. Por otra
parte, después de una oportuna identificación de los nodos del diagrama
a quiver, obtenemos la Serie de Hilbert para el moduli space de los
instantones sobre C2/Zn
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Preface

This thesis has been submitted to the Faculty of Science, University of
Oviedo, as a partial fulfilment of the requirements to obtain the PhD degree.
The work presented here has been developed during the years 2013-2017 un-
der the supervision of Dr. Diego Rodŕıguez-Gómez at the Department of
Physics University of Oviedo. Moreover I also spent two months at Queen
Mary University of London and one month at Theoretical Physics Depart-
ment of the Imperial College of London during the Spring of 2015. This
collaboration was very productive and resulted in the article number 4 (re-
ported in the list of papers of the present thesis).

Thesis Objectives

The objectives of the present thesis concern the study of different aspects of
quantum field theories in five and lower dimensions (d = 3, 4). In particular
we focused on:

� The study of RG flows in 5d N = 1 theories using their holographic
duals.

� The computation of the Nekrasov-Shatashvili limit of the superconfor-
mal index of a 5d N = 1 QFT. We discovered that, for a proper choice
of the gauge and flavour groups, the previous limit matches the Schur
limit of the superconformal index in 4d.

� The characterization of the moduli space of self-dual instantons on CP 2

whose dual ADHM-like construction is provided by a 3d N = 2 QFT.

� The study of the rigid limit of 5d conformal supergravity on a Riemann
manifold.
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1. Introduction

“Aveva sopra il capo [...] l’unico riscatto
alla dannazione del panta rei, e pensava

che fossero affari Suoi, e non suoi”

Umberto Eco, “Il pendolo di Foucault”.

During the 20 th century two new physical theories completely changed our
understanding of nature. These are General Relativity (GR) and Quantum
Mechanics (QM). The first provided us a very good description of the Uni-
verse at a very large scale, and it drastically changed our understanding of
the gravitational interaction, that has been reinterpreted as a curvature of
the space-time. Furthermore it led to important physical predictions such as
gravitational waves1 and black holes.

On the other hand QM changed our understanding of nature at a very
small distance. We had to change our mind for what concern the description
of the subatomic world. Moreover it led to important experimental predic-
tions and to the description of atomic spectra.

However, despite their empirical success, these two theories seem to be
incompatible. A theory that is able to incorporate QM and GR in a unified
way does not seem easy to achieve. The main problem that arises in the
quantization of gravity is that the resulting theory is not renormalizable. In
order to see this let’s consider the Einstein-Hilbert action in four dimensions

S =
1

16πGN

∫
d4x
√−gR. (1.1)

If we require that the action (1.1) is dimensionless we see that the coupling
constant that regulates the gravitational interaction GN must have the di-
mension of (length)2. This has an importance consequence. Let’s consider
the physical processes reported in figure 1.1, that respectively describe the
exchange of one graviton (figure 1.1 (a)) and two gravitons (figure 1.1 (b))

1Remarkably very recently there have been an experimental confirmation regarding the
existence of gravitational waves [1].



2

between fermions. The amplitude for the first process, since it must be di-
mensionless, is proportional to GN multiplied by the square of the energy
scale E at which the process takes place. 2 On the other hand the second
process (with the exchange of two gravitons) is proportional to G2

N multi-
plied by E4. Therefore the amplitude for the first process is proportional
to (E/Mp)

2, while the amplitude for the second process is proportional to
(E/Mp)

4. This has two important consequences. First of all it means that
at ordinary energy scale (i.e. E � Mp) gravity is irrelevant and can be
neglected compared to other fundamental interactions (that have dimension-
less coupling constants). That’s why the Standard Model of Particle Physics,
even if it does not include gravity has a great empirically success. However
when E/Mp ∼ 1 perturbation theory breaks down and we are not able to take
care of the gravitational interaction! Historically this situation is analogous
to the Fermi theory of weak interactions [2]. As a matter of fact also this
theory was regulated by a dimensional coupling constant called GF . Conse-
quently this theory could be used to make predictions only at low energies,
i.e. when GF/E � 1. However in order to makes sense of this theory at high
energies it was necessary to introduce an UV cut-off. This problem was solved
with the discovery of new more fundamental particles: the W+, W− and Z0

bosons and led to the current formulation of the Weak interactions. This
analogy could suggest that also Einstein theory of general relativity could be
considered as a low-energy effective theory and should be replaced by a new
more fundamental theory at higher energy scales. Among the others String
Theory is one of the most successful attempts that have been formulated in
order to solve this problem. 3

Historically string theory4 arose in the 1960s as an attempt to describe
strong interactions. The basic idea of the theory is that all the particles ap-
pear as different oscillation modes of a unique one-dimensional fundamental
object, a string. In 1970 due to the discovery of Quantum Chromodynamics
(QCD) string theory was ruled out as possible explanation of strong interac-
tions. However, as it was observed, among other particles in the spectrum
there was also a massless spin-2 particle, that can be identified with the gravi-
ton (the particle mediating the gravitational interaction). However, despite
the possibility to incorporate gravity with the other interactions in a natural
way, a consistent string theory was not easy to develop. First of all it was

2Note that for simplicity we work in natural unit with c = ~ = 1. Moreover G
−1/2
N =

Mp = 1.22× 1019GeV .
3In this thesis we only consider the String Theory approach. We refer the interested

reader to [3] for a overview of the different attempts that have been formulated in order
to find a consistent theory of the gravitational interaction.

4For an exhaustive introduction to string theory we refer the reader to [4, 5, 6].
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g g g

Figure 1.1: Feynamn diagrams showing the exchange of one gravition (a)
and two gravitons (b).

understood that in order to reproduce the known spectrum of particles (in-
cluding fermions) string theory requires supersymmetry. Moreover in order
to be consistent string theory had to be define in 1 + 9 dimensions.

In 1984 the so called first string revolution took place. It was discovered
that a N=1 consistent string theory was possible in ten space-time dimen-
sions provided that the gauge group was chosen to be SO(32) or E8 × E8.
These are called Heterotic string theories. At a later time it was understood
that it was possible to construct consistent string theories in ten dimensions
with the double of supercharges (i.e. N = 2 theories). These are the so
called Type II A string theory and Type II B string theory. Finally the last
possible consistent theory is called Type I string theory and can be obtained
starting from Type II B performing an orientifold projection.

At a first time the existence of five different consistent theories in 10d
was a bit puzzling. However it was discovered that these theories were not
independent, but were related by the so called duality relations. For example
the type II A string theory and Type II B string theory as well as the two het-
erotic string theories are related by T − duality. T-duality implies that two
different string theories defined on two different geometries can be physically
equivalent. In the most simple example of T-duality a circle of radius R is
equivalent to a circle of radius l2s/R (where ls is the string length). Moreover
during the so called second superstring revolution another kind of duality
called S-duality was discovered. An S-duality transformation relates a string
theory with coupling constant gs

5 with a string theory whose coupling con-
stant is 1/gs and the two theories are physically equivalent. In particular S
-duality relates Type I string theory to SO(32) heterotic string theory and
Type II B string theory to itself. Therefore, due to these duality transforma-

5The string coupling constant gs is given by the vacuum expectation value of eφ, where
φ is a scalar field called the dilaton. Moreover string theory is regulated by the parameter
α′ that is proportional to the inverse of the string tension.
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Type IIA Type IIB ST

Orientifold
projection

Type I’ Type I
T S heterotic
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E8 × E8

T

Figure 1.2: Connections between the different superstring theories using the
dualities transformations.

tions, the five string theories that have been discovered should not be really
regarded as distinct theories. We summarize the relations between the dif-
ferent string theories in figure 1.2. Moreover all these five string theories can
be seen as different limits of a more fundamental, but still mysterious theory,
called M-theory. The low-energy limit of M-theory is the eleven dimensional
supergravity.

Moreover, in addition to strings, superstring theories contains also non
perturbative objects called Dp-branes. All the branes decouple at low-energy,
i.e. when gs 7→ 0. Therefore they do not appear in perturbation theory. A
Dp brane can be defined as an object on which strings, that satisfy Dirichlet
boundary conditions, can end. This implies that QFT can be realized on the
world-volume of the branes. This led to the possibility to study a QFT in
completely different way. As a matter fact, at least in some specific cases,
we can characterize a given QFT studying the corresponding dual brane
configuration (see e.g. [7] for a review of this topic).

Another important discovery arising from string theory is the AdS/CFT
correspondence [8, 9]. In its strongest formulation it is a holographic strong-
weak correspondence between string theory on an Anti de Sitter (AdS) d-
dimensional background and a conformal field theory (CFT) in d − 1 di-
mensions. A dictionary between the gravity theory and the QFT has been
established. Fields on the gravity side are related to operators on the QFT
side and local symmetry on the gravity side are related to global symmetry
in the dual QFT. Moreover the correspondence has been extended also in the
context of non conformal field theories.

In this thesis we apply some of the mathematical tools and physical re-
sults outlined above in order to study quantum fields theories in different
numbers of dimensions. First of all we focus on 5d quantum field theories
with N = 1 supersymmetry. Remarkably the mere existence of these theo-
ries is surprising. As a matter of fact these theories are non renormalizable



Introduction 5

and therefore it was believed that could be properly defined only through
the introduction of an UV cut-off. However it was discovered in [10] that ,
for a proper choice of the gauge group and the matter content of the theory,
some 5d supersymmetric field theories can be at fixed point. Moreover it
was provided a brane construction that allows to embed and study the above
theories in Hetoritic string theory [10, 11]. Alternatively these theories can
be realized starting from M-theory and performing a dimensional reduction
over a Calabi-Yau three-fold [12]. A surprising feature of these theories is
that they exhibit an enhancement of the global symmetry group at the fixed
point. In particular it was conjectured [10] that for a theory with SU(2)
gauge group and Nf ≤ 8 flavours the global symmetry group is enhanced to
ENf+1 at the UV fixed point. Moreover the previous theories admit a gravity
dual that allows to study some of their properties in a holographic way. In
section 3 we review the main aspects related to these theories. In particular
we examine how we can construct their gravity dual starting from a proper
brane configuration and how the theories proposed in [10] can be generalized
taking an orbifold. An interesting feature concerning these theories is the
study of their RG flow. This can be triggered perturbing the initial theory
by a relevant operator. In particular in [13] we begin the study of the holo-
graphic RG flow between different 5d N = 1 QFTs classifying the operators
that are taking a VEV according to their conformal dimension and other
quantum numbers. We refer the reader to the article reported in section 6.1
for the full analysis of such RG flows.

The 5d theories introduced in [10] are defined on a flat background.
Therefore it’s natural to try to understand if the above theories can also
be placed on a generic curved background preserving at least some part of
the initial supersymmetry. A systemic procedure that allows to define a
SUSY QFT on a curved manifold has been introduced by Seiberg and Fes-
tuccia [14]. We review the main aspects of this technique in section 4.3 and
in [15] we applied it in the context of 5d N = 1 QFTs. We found that the
necessary and sufficient condition that must be satisfied in order to have a
well defined supersymmetric theory on a Riemann manifold is the existence
of a conformal Killing vector. The full analysis has been carried out in the
article reported in section 6.3.

Among the others a particular interesting background on which we can
define a 5d supersymmetric QFT is S1×S4. This manifold arises naturally in
the computation of the superconformal index (SCI) of the theory, that can
be expressed as a path integral over S1× S4. As we review in section 4.1 the
SCI allows to count BPS operators of the theory according to their global
symmetry quantum numbers, providing in this way a lot of information. In
general it’s also useful to consider particular limits of the SCI that allow



6

to extract information arising form a particular subset of operators of the
theory [16]. For example we review the so-called Schur limit in section 4.2.2.
Among the others a particular interesting limit is the Nekrasov-Shatashvili
limit of the 5d SCI. This limit is implemented turning off one of the two
epsilon parameters defining the Ω background [17]. In [18] we examine such
limit and we see that, at least in the case of Abelian theories, we recover the
Schur limit of the 4d N = 2 index. This computation has been performed in
the article reported in section 6.4.

Moreover, as we review in section 4.1, the computation of the SCI using
localization includes instanton corrections that can be studied characterizing
the corresponding moduli space. We review the basic information regarding
the instantons moduli space and how we can embed the mathematical ADHM
construction [19] in string theory in section 5. Furthermore in section 5.1.3
we analyse how we can characterize the corresponding moduli space using
the so called “Plethystic programe” [20]. In the particular case of the 5d
N = 1 QFT considered in [10] the instanton contribution to the index can be
studied through the characterization of the moduli space of instantons on R4.
However as we discovered before we can define a consistent supersymmetric
5d theory also on a different kind of background. Therefore the study of the
moduli space of instantons on different kind of four-dimensional manifold
becomes of great importance. A particular interesting manifold, that has
been considered in [21], is CP 2 × S1. In particular in [22] it was considered
the ADHM construction for the moduli space of self-dual instantons on CP 2.
In [23] we extend such analysis making use of the notion of resolved moduli
space [24, 25, 26] and we begin its its characterization from a physical point
of view. Moreover we also consider a Zn orbifold of the initial space and
we provide the ADHM-like construction for instantons on CP 2/Zn. The full
description is reported in the article in section 6.2.

We report the various articles, on which this thesis is based in section 6.
Finally we end up with some conclusions and possible future work in section
7.



2. Introducción

“Aveva sopra il capo [...] l’unico riscatto
alla dannazione del panta rei, e pensava

che fossero affari Suoi, e non suoi”

Umberto Eco, “Il pendolo di Foucault”.

Durante el siglo veinte dos nuevas teoŕıas han modificado completamente
nuestra comprensión de la naturaleza. Dichas teoŕıas son la Relatividad
General (RG) y la Mecánica Cuántica (MC). La primera nos ha dado una
comprensión muy precisa del Universo a una escala muy grande, y ha cam-
biado completamente nuestra interpretación de la interacción gravitacional,
que es reinterpretada como curvatura del espacio-tiempo. Además, ha pro-
porcionado nuevas importantes predicciones f́ısicas como las ondas gravita-
cionales 1 y agujeros negros.

Por otra parte, la MC ha cambiado nuestra comprensión de la naturaleza
a escala muy pequeña, modificando nuestra visión del mundo subatómico.
Además, ha aportado importantes predicciones experimentales, como la de-
scripción de los espectros de los átomos.

Sin embargo, a pesar del éxito experimental, dichas teoŕıas parecen ser
incompatibles. Una teoŕıa que pueda incorporar MC y RG en un modo
completamente unificado no parece que se pueda obtener de modo sencillo. El
problema principal que se manifiesta cuando se intenta cuantizar la gravedad
es que la correspondiente teoŕıa no es renormalizable. Para entender esto
consideramos la acción de Hilbert-Einstein en cuatro dimensiones

S =
1

16πGN

∫
d4x
√−gR. (2.1)

Si imponemos que la acción (2.1) sea adimensional podemos ver que la con-
stante de acoplamiento que regula la interacción gravitacional GN tiene que

1Notablemente recientemente tuvo lugar un importante confirma experimental sobre la
existencia de ondas gravitacionales [1].
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tener dimensión de (longitud)2. Esto tiene una consecuencia muy impor-
tante. Consideremos el proceso f́ısico reportado en la figura 2.1, que de-
scribe respectivamente el intercambio de un gravitón (figura 2.1 (a)) y dos
gravitónes (figura 2.1 (b)) entre dos fermiones. La amplitud del primer pro-
ceso, dado que tiene que ser adimensional, es proporcional a GN multiplicado
por el cuadrado de la escala de enerǵıa E del proceso. 2. En cambio el se-
gundo proceso (con el intercambio de dos gravitones) es proporcional a G2

N

multiplicado por E4. Consecuentemente la amplitud del primer proceso es
proporcional a (E/Mp)

2, mientras la amplitud para el segundo proceso a
(E/Mp)

4. Esto tiene dos consecuencias muy importantes. La primera es que
a una escala de enerǵıa ordinaria (es decir E � Mp) la gravedad es irrel-
evante y puede ser despreciada en comparación con las otras interacciones
fundamentales (que tienen una constante de acoplamiento adimensional).
Por este motivo el Modelo Estándar de la F́ısica de Part́ıculas, aunque no
incluya la gravedad, tiene un gran éxito a nivel experimental. Sin embargo,
cuando E/Mp ∼ 1 no se puede hacer un desarrollo perturbativo de modo
que no se puede estudiar la gravedad en el mismo modo que las otras in-
teracciones! Históricamente esta situación es análoga a la teoŕıa de Fermi
de la interacción débil [2]. De hecho, esta teoŕıa estaba controlada por una
constante de acoplamiento dimensional llamada GF . Consecuentemente esta
teoŕıa pod́ıa ser usada solo para hacer predicciones a baja enerǵıa, es decir
cuando GF/E � 1. Sin embargo, para poder usar esta teoŕıa a enerǵıas
más altas es necesario introducir un cut-off UV. Al final este problema fue
solucionado con el descubrimiento de dos nuevas part́ıculas fundamentales:
los bosones W+, W− y Z0 y ha llevado a la formulación actual de las in-
teracciones débiles. Esta analoǵıa puede sugerir que también la teoŕıa de la
relatividad general de Einstein pueda ser considerada como una teoŕıa efec-
tiva y pueda ser remplazada por una nueva teoŕıa mas fundamental a una
escala de enerǵıa más alta. Entre otras, la Teoŕıa de Cuerdas es una de las
propuestas que tuvieron más éxito para solucionar este problema. 3

De un punto de vista histórico la teoŕıa de cuerdas fue formulada en los
años sesenta como tentativa para describir las interacciones fuertes. La idea
de base de la teoŕıa es que todas las part́ıculas aparecen como diferentes
modos de oscilación de un único objeto con una sola dimensión: una cuerda.
En el 1970 debido al descubrimiento de la Cromo Dinámica Cuántica (QCD)
la teoŕıa de cuerdas fue excluida como posible explicación de las interacciones

2 Por simplicidad usamos las unidades naturales con c = ~ = 1 Por otra parte G
−1/2
N =

Mp = 1.22× 1019GeV .
3En esta tesis tomamos en consideración solo la Teoŕıa de Cuerdas. Pero enviamos

el lector interesado a [3] para una visión global de las diferentes teoŕıas que han sido
formuladas para explicar la interacción gravitacional.
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g g g

Figure 2.1: Diagramas de Feynman que describen el intercambio de un
gravitón (a) y dos gravitones (b).

fuertes. Sin embargo entre otras part́ıculas en el espectro hab́ıa también una
part́ıcula con masa igual a cero y spin 2, y que puede ser identificada con el
gravitón (la part́ıcula que media la interacción gravitatoria). No obstante,
encontrar una teoŕıa de cuerdas completamente consistente a nivel cuántico
no fue sencillo. En primer lugar, resulta que para reproducir el espectro de las
part́ıculas conocidas (incluyendo también los fermiones) la teoŕıa de cuerdas
necesitaba supersimetŕıa. Por otra parte, para ser consistente respetando
todas las simetŕıas la teoŕıa teńıa que ser definida en 1 + 9 dimensiones.

En el 1984 tuvo lugar la primera revolución de la teoŕıa de cuerdas. Fue
descubierto que una teoŕıa de cuerdas con N = 1 pod́ıa ser definida en diez
dimensiones a condición que el grupo de simetŕıa local de la teoŕıa fuese
SO(32) o E8 × E8. Dichas teoŕıas se llaman teoŕıas de cuerdas Heteróticas
de Tipo I. Más adelante se entendió que era posible construir una teoŕıa de
cuerda consistente en diez dimensiones con un numero doble de supercargas
(es decir N = 2). Dichas teoŕıas se llaman teoŕıas de cuerdas de Tipo II A
y teoŕıas de cuerdas de Tipo II B. Por ultimo, la teoŕıa de cuerdas de Tipo
I se puede obtener a partir de la teoŕıa de cuerda de Tipo IIB haciendo una
orientifold projection.

Al principio la existencia de cinco teoŕıas de cuerdas consistentes en 10
dimensiones parećıa problemática. Sin embargo, se vio que estas teoŕıas
no son independientes y están relacionadas por relaciones de dualidad. Por
ejemplo, la teoŕıa de Tipo IIA y la teoŕıa de Tipo IIB aśı como las dos teoŕıas
de cuerdas heteróticas están relacionadas por T-dualidad. La T dualidad
implica que dos teoŕıas diferentes de cuerdas definidas sobre dos geometŕıas
diferentes pueden ser equivalentes a nivel f́ısico. En el caso más sencillo de
T-dualidad, un circulo de radio R es equivalente a un circulo de radio l2s/R
(donde ls es la longitud de la cuerda). Por otra parte durante la segunda
revolución de las supercuerdas ha sido descubierta otro tipo de dualidad
llamada S-dualidad. Una transformación de S-dualidad pone en relación una
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Tipo IIA Tipo IIB ST
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Tipo I’ Tipo I
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Figure 2.2: Conexiones entre las diferentes teoŕıas de cuerdas usando las
transformaciones de dualidad.

teoŕıa de cuerda con constante de acoplamiento gs
4 con una teoŕıa de cuerda

con constante de acoplamiento 1/gs y las dos teoŕıas son equivalentes de un
punto de vista f́ısico. En particular la S-dualidad pone en relación la teoŕıa
de Tipo I con la teoŕıa heterótica con grupo de simetŕıa local SO(32) y la
teoŕıa de Tipo IIB con se misma. Por lo tanto, debido a dichas relaciones
de dualidad, las cinco teoŕıas de cuerdas que han sido descubiertas no tienen
que ser consideradas como teoŕıas distintas. Resumimos las relaciones entre
las diferentes teoŕıas de cuerdas en la figura 2.2. Por otra parte, las cinco
teoŕıas de cuerdas pueden ser vistas como diferentes ĺımites de una teoŕıa
más fundamental, y aún misteriosa, conocida como teoŕıa M. El ĺımite de
baja enerǵıa de la teoŕıa M es la supergravedad en once dimensiones.

Por otra parte, además de las cuerdas, las teoŕıas de supercuerdas tienen
también objetos no perturbativos conocidos como Dp-branas. Todas las
branas se desacoplan a bajas enerǵıas, es decir cuando gs → 0. Por lo tanto,
no aparecen en teoŕıa de perturbaciones. Una Dp brana se puede definir como
un objeto donde las cuerdas, que satisfacen condiciones de contorno de tipo
Dirichlet, pueden acabar. Esto implica que una teoŕıa cuántica de campos
puede vivir sobre el world-volume de la brana. Esto ha llevado a la posibili-
dad de estudiar teoŕıas de campos de un modo completamente diferente. De
hecho, por los menos en algunos casos espećıficos, podemos caracterizar una
dada teoŕıa de campo estudiando la configuración de branas dual a dicha
teoŕıa (ver por ejemplo [7] para un a review sobre este argumento).

Otro importante descubrimiento debido a la teoŕıa de cuerdas ha sido
la correspondencia AdS/CFT [8, 9]. En su formulación más fuerte es una
correspondencia entre una teoŕıa de cuerdas sobre un espacio Anti de Sitter
(AdS) en d-dimensiones y una teoŕıa de campo conforme (CFT) en d − 1

4La constante de acoplamiento en teoŕıa de cuerdas gs es igual al valor esperado de eφ,
donde φ es un campo escalar llamado dilatón. Además la teoŕıa de cuerdas está regulada
por el parámetro α′ que es proporcional al inverso de la tension de la cuerda.
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dimensiones. Ha sido encontrado un diccionario entre la teoŕıa de gravedad
y la teoŕıa de campos. En particular campos en lado gravitacional están
relacionados con operadores de la teoŕıa de campos y simetŕıas local en lado
de gravedad están puestas en relación con simetŕıas globales en la teoŕıa de
campo dual. Además, recientemente la correspondencia ha sido extendida
en el contexto de teoŕıas de campos non conformes.

En esta tesis aplicamos herramientas matemáticas y resultados f́ısicos de
teoŕıas de cuerdas para estudiar teoŕıas cuánticas de campos en varias dimen-
siones. En primer lugar nos enfocamos sobre el estudio de teoŕıas cuántica
de campos en 5d con N = 1 de supersimetŕıa. Extraordinariamente la mera
existencia de dichas teoŕıas es sorprendente. De hecho estas teoŕıas no son
renormalizable y por ello se pensaba que pod́ıan ser definidas sólo con la
introducción de un cut-off ultravioleta. Sin embargo en [10] fue descubierto
que, con una oportuna elección del grupo de simetŕıa local y del contenido de
materia de la teoŕıa, ciertas teoŕıas de campos en 5d pod́ıan admitir un punto
fijo. Además se encontró una construcción con branas que permite integrar
y estudiar dichas teoŕıas en teoŕıa de cuerdas heterótica [10, 11]. Alternati-
vamente estas teoŕıas se pueden realizar en teoŕıa M haciendo una reducción
dimensional sobre una variedad de Calabi-Yau[12]. Una caracteŕıstica sor-
prendente de estas teoŕıas es que muestran un aumento del grupo de simetŕıa
global al punto fijo. En particular fue conjeturado por Seiberg [10] que para
una teoŕıa con grupo de simetŕıa local SU(2) y numero de flavor Nf ≤ 8 el
grupo de simetŕıa global es aumentado a ENf+1 en el punto fijo ultravioleta.
Además las teoŕıas anteriores admiten un dual gravitatorio que permite de es-
tudiar unas de sus propiedades en modo holográfico. En sección 3 revisamos
los aspectos principales de dichas teoŕıas. En particular examinamos como
podemos construir el dual gravitatorio empezando por la correspondiente
configuración en termino de branas y como las teoŕıas introducida en [10]
se puedan generalizar tomando un orbifold de la teoŕıa inicial. Una carac-
teŕıstica interesante relativa a estas teoŕıas es le estudio del flujo del Grupo de
Renormalización (GR). Esto se puede generar perturbando la teoŕıa por un
operador relevante. En particular en [13] empezamos el estudio del flujo del
GR holograf́ıco entre diferentes teoŕıa cuántica de campos en 5d con N = 1
clasificando los operadores que toman un valor esperado según sus dimension
conforme y otros números cuánticos. Enviamos el lector al art́ıculo reportado
en la sección 6.1 para una análisis completa de dichos flujos del GR.

Las teoŕıas de campos introducidas en [10] están definidas sobre un back-
ground plano. Por lo tanto es natural estudiar si dichas teoŕıas se puedan
poner también sobre una variedad curva genérica preservando por lo menos
una parte de la supersimetŕıa inicial. Un procedimiento que permite definir
una teoŕıa cuántica de campos supersimetŕıca sobre una variedad curva fue
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introducido por Seiberg y Festuccia en [14]. Revisamos los principales aspec-
tos de esta técnica en la sección 4.3. En [15] aplicamos dicho procedimiento
para el caso de teoŕıas cuántica de campos en 5d con N = 1. Hemos descu-
bierto que la condición necesaria y suficiente que tiene que estar satisfecha
para poder tener una teoŕıa de campos supersimetŕıca bien definida sobre una
variedad de Riemann es la existencia de un vector de KIlling conforme. La
análisis completa ha sido desarrollada en el art́ıculo reportado en la sección
6.3.

Entre los otros un background particularmente interesante, sobre el cual
podemos definir una teoŕıa cuántica de campos en 5d, es S1× S4. Dicha var-
iedad se presenta en modo natural para el calculo del ı́ndice superconforme
(SCI) de la teoŕıa, que se puede exprimir como un path-integral sobre S1×S4.
En la sección 4.1 revisamos cómo el ı́ndice superconfrome permita de contar
los operadores BPS de la teoŕıa de acuerdo con los sus números cuánticos
de simetŕıa global, dando en este modo mucha información sobre la teoŕıa
considerada. Es también útil considerar limites particulares del ı́ndice que
permiten de extraer información proveniente por un particular sector de op-
eradores de la teoŕıa. Por ejemplo en la sección 4.2.2. revisamos el limite de
Schur del indice superconforme en 4d. Entre los otros un limite particular-
mente interesante es limite de Nekrasov-Shatashvili del ı́ndice superconforme.
Este limite está implementado poniendo a cero uno de los dos parámetros
epsilon que definen el background Ω [17]. En [18] examinamos dicho limite y
vemos como, por lo menos en el caso de teoŕıas Abelianas, se pueda recuperar
el limite de Schur del indice superconforme de una teoŕıa en 4d con N = 2.
Esta computación ha sido desarrollada en el art́ıculo reportado en la sección
6.4.

Además, como revisamos en la sección 4.1, la computación del ı́ndice
superconforme usando la técnica de calculo llamada “localization” incluye
correcciónes no perturbativas debidas a instantones y dichas correcciónes
se pueden estudiar caracterizando el moduli space correspondiente. Por lo
tanto el estudio de dicho espacio es muy relevante. Revisamos las informa-
ciones básicas sobre el moduli space de los istantones y como la construcción
ADHM [19] se pueda realizar en teoŕıa de cuerdas en la sección 5. Además
en la sección 5.1.3 examinamos como podemos caracterizar el moduli space
correspondiente usando el “Plethystic programe” [20]. En el caso particular
de una teoŕıa en 5d con N = 1 del tipo considerado en [10] la contribución
de lo instantones se puede estudiar a través de la caracterización del moduli
space de los instantones sobre R4. Sin embargo hemos descubierto que se
puede definir una teoŕıa cuántica de campos consistente en 5d también sobre
otros tipos de variedad. Por lo tanto el estudio del moduli space de los instan-
tones sobre diferentes tipos de variedades en cuatro dimensiones llega a ser
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de gran importancia. Un tipo de variedad particularmente interesante que
fue considerado en [21] es CP 2×S1. En particular en [22] fue considerada la
construcción ADHM para instantones sobre CP 2. En [23] ampliamos dicha
análisis haciendo uso de la noción de resolved moduli space [24, 25, 26] y
empezamos el estudio de dicho espacio desde un prospectiva f́ısica. Además
también consideramos un orbifold Zn del espacio inicial y aportamos la con-
strucción ADHM para instantones sobre CP 2/Zn. Reportamos los diferentes
art́ıculos, sobre los cuales esta tesis está basada en la sección 6. Al final
acabamos con unas conclusiones y posibles planes de trabajo futuro en la
sección 8.





3. 5d quantum field theories

In general 5d quantum field theories are non-renormalizible. In order to see
this it is enough to consider the Yang-Mills term of the action

1

g2
YM

∫
d5xTrFµνF

µν , (3.1)

performing dimensional analysis it turns out that the coupling constant gYM
must have the dimension of length, i.e. [g2

YM ] = L. Therefore naively the
only way to make sense of these kind of theories is to introduce an UV cut-off.
Surprisingly it has been discovered [10, 12, 11] that some of these theories, for
a specific choice of the matter content and of the gauge group, are well defined
via UV fixed points. Moreover these theories can be embedded in string
theory using an appropriate brane construction and admit a gravity dual.
In this chapter we review the basic aspects related to these theories, their
holographic duals and their possible generalization to quiver gauge theories.
The material of this chapter is necessary for the articles in sections 6.16.2
and 6.4.

3.1 General features of 5d QFT

3.1.1 5d QFT with N = 1

The N = 1 supersymmetric theory in 5d enjoys F (4) superconformal sym-
metry whose bosonic subgroup is SO(2, 5) × SU(2); where SO(2, 5) is the
conformal group in five dimensions, while SU(2) is an R-symmetry group
under which the central charges transform as a doublet. The corresponding
superconformal algebra is related by dimensional reduction to N = 2 algebra
in four dimensions and to N = 4 algebra in three dimensions. The massless
representation of the 5d N = 1 algebra are

� The hypermultiplet H consisting of a complex scalar qA and a com-
plex fermion ψ.
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� The vectormultiplet A consisting of a vector field Aµ, a real scalar
field φ and a fermion λA

1.

The U(1)I topological symmetry

A common characteristic of 5d QFT is that the current

J = ?(F ∧ F ), (3.2)

is always conserved. Therefore these theories have a further U(1)I global
symmetry. The charge of this symmetry is the instanton number I.

3.1.2 Higgs branch and Coulomb branch

Inside a 5d N=1 QFT we can identify two different kinds of branches

� MC Coulomb branch is associated with the vacuum expectation val-
ues of the scalar fields φi in the vector multiplets. In general on the
Coulomb branch the gauge group G of the theory is broken to its max-
imal torus

G 7→ U(1)r, where r = rank(G)

Away from the origin of the Coulomb branch the low-energy theory is
characterized by a prepotential F(Ai), that is locally a function of the
vectormultiplets.

� MH Higgs branch is associated with the vacuum expectation values
of the scalar fields in the hypermultiples. This space is an hyper-Kähler
manifold and is protected against quantum corrections.2

In the particular case in which the gauge group of the theory is Sp(N)
without massless matter fields in the fundamental representations we have
to specify another discrete parameter in order to completely characterize the
theory. This parameter can be interpreted as a Z2 valued theta angle related
with π4(Sp(N)) = Z2.

3.1.3 Well defined 5d QFT and the prepotential F
The Coulomb branch of the theory is described by a prepotential F(Ai) that,
in order to preserve gauge invariance, can be at most cubic in the vector

1Where A denotes an SU(2)R symmetry index
2This is due to the fact that, like in the four dimensional case [27], the gauge coupling

can be thought as the vacuum expectation value of a vector multiplet.
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multiplet. Moreover the prepotential is completely determined by a one-loop
computation. For an arbitrary gauge group G and matter multiplets with
mass mf the most general expression that can be assumed by the prepotential
on the Coulomb branch is [12]

F =
1

2g2
0

hijφ
iφj+

c0

6
dijkφ

iφjφk+
1

12

∑
R

| R · φ |3 −
∑
f

∑
w∈Wf

| w · φ+mf |3
 ,

(3.3)
being

hij = Tr(TiTj), dijk =
1

2
Tr(Ti(TjTk + TkTj)),

and where the Ti are the Cartan generators of G. Moreover R are the roots
of G, while Wf are the weights of G in the representation rf . Finally c0 is
quantized parameter related to a five dimensional Chern-Simons term. The
first two terms appearing in (3.3) are the classical prepotential while the last
two terms are the quantum corrections due to vector multipltes and matter
multiplets. Once the prepotential is known we can compute the metric on
the moduli space and the effective gauge coupling geff . That reads

t(φ)ij =

(
1

g2
eff

)
ij

= ∂i∂jF , (3.4)

while the metric reads
ds2 = tij(φ)dφidφj. (3.5)

Nontrivial RG fixed points

As discussed in [12] if the metric (3.5) is not negative throughout the moduli
space we can take the strong coupling limit sending m0 = g−2

0 → 0, so that
we have a fixed point. On the other hand, if this is not case, the fact that
the metric becomes negative is a reflection of the non renormalizability of
the theory.

The condition t(φ)ij ≥ 0 can also be reformulated as a condition on the
prepotential. As matter a fact is equivalent to require that prepotential (3.3)
is a convex function along the Coulomb branch, ie. it must satisfy

F(λx+(1−λ)y) ≤ λF(x)+(1−λ)F(y) for 0 ≤ λ ≤ 1 ∀ x,y ∈MC , (3.6)

since F and ∂iF vanish at the origin a consequence of the condition (3.6) is
that F ≥ 0 along all the Coulomb branch. An inspection to the expression
(3.3) allows to see that the vector multiplet contribution is purely convex
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while the hypermultiplet term, due to the minus sign in front of it, leads to
a purely concave contribution. Finally the c0 has not a completely defined
behaviour. Therefore naively the prepotential is a convex function provided
there is not too much matter inside the theory. This means that, choosing
in a proper way the matter content of the theory, it’s possible to construct
5d QFT at fixed point.

Example: G = SU(2) with matter

Let’s make an example and let’s consider the particular case in which G =
SU(2) with Nf matter hypermultiplets in the fundamental representation.
This case has been considered in [10]. The Coulomb branch isMC = R+ and
it is parametrized by the scalar field φ in the vector multiplet. The effective
gauge coupling geff , using the expression (3.3), reads

1

g2
eff

=
1

g2
0

+ 16 | φ | −
Nf∑
i=1

| φ−mi | −
Nf∑
i=1

| φ+mi | (3.7)

Therefore if Nf < 8 the metric is positive and we can take the strong coupling
limit sending g0 → 0. This theory has also an SO(2Nf ) × U(1)I global
symmetry. The SO(2Nf ) factor is associated to the hypermultiplets while
the U(1)I is the topological symmetry associated to the instanton number
current (3.2).

3.1.4 Brane construction

A possible generalization of the theory considered in the previous example is
a quantum field theory with gauge group G = Sp(N) and a matter hypermul-
tiplet A in the antisymmetric representation. Following [10] we can embed
this theory in Type I ′3 string theory using a system of Nf D8 branes, N D4
branes and an orientifold plane O8−. The corresponding brane configuration
is summarized in table 3.1.

The quantum field theory under consideration lives on the stack of the N
D4 branes, the open string between the D4 and D8 give the Nf fundamental
hypermultipltes of the theory, while the locations of the D8 branes along the
interval corresponds to their masses. The Coulomb branch of this theory
is parametrized by the scalar fields φi and it corresponds to the position of
the D4 branes. On the other hand the Nf fundamental hypermultiplet and
the antisymmetric hypermultiplet (which is in the trivial representation for

3The Type I ′ theory is obtained starting from Type II A string theory and performing
an orientifold projection.



5d quantum field theories 19

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

O8− x x x x x x x x x
Nf D8 x x x x x x x x x
N D4 x x x x x

Table 3.1: Branes configuration for a theory with gauge group G = Sp(N)
with Nf matter hypermultipltes.

x9

mj
........

m1 mNf φ

D4
Nf D8 Branes

O8−

plane

........

Mirror image

Figure 3.1: Graphical representation of the brane configuration reported in
table 3.1, when N = 1 on the Coulomb branch of the theory.

N = 1) parametrize the Higgs branch, that is the moduli space of SO(2Nf )
one-instanton4. The full global symmetry group of this theory is

SU(2)R × SU(2)× SO(2Nf )× U(1)I (3.8)

where SU(2)R is due to the R-symmetry, the second SU(2) factor is associ-
ated with the massless antisymmetric hypermultiplet, SO(2Nf ) factor with
the Nf fundamental hypermultiplets and the U(1)I factor with the topolog-
ical current (3.2).

Only one D4 brane

Let’s consider initially the simplest case setting N = 1, i.e. let’s consider
only one D4 brane. Therefore the gauge group is G = Sp(1) ' SU(2).

Let’s now derive the coupling constant of the theory living on the world-
volume of the D4 brane. The D8 background metric reads

ds2 = H8(x9)−1/2(−dt2 + dx2
1 + ...+ dx2

8) +H8(x9)1/2dx2
9, e−φ = H8(x9)5/4,

(3.9)

4see section 5 for a brief review of this topic
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moreover let’s assume that the orientifold plane O8− is located at x9 = 0,
while the D8 branes are located at various points along the x9 direction, i.e.
at x9 = 0 ≤ x1

9 ≤ x2
9 ≤ ... ≤ x9

Nf
, this configuration is summarized in figure

3.1. The function H8(x9) is given by

H8(x9) = c+ 16
x9

ls
−

Nf∑
i=1

| x9 − xi9 |
ls

−
Nf∑
i=1

| x9 + xi9 |
ls

(3.10)

Let’s assume that the D4 brane is a probe for the D8 branes. The gauge cou-
pling geff of the worldvolume QFT theory of the D4 brane and the function
H8(x9) are related as 5

g2
eff =

ls
H8(x9)

(3.11)

If we take the field theory limit, i.e

g2
eff = fixed, φ =

x9

l2s
= fixed, ls 7→ 0 (3.12)

we get

1

g2
eff

=
1

g2
cl

+ 16φ−
Nf∑
i=1

| φ−mi | −
Nf∑
i=1

| φ+mi |, (3.13)

where gcl = c/ls. This way we obtain again the relation (3.7).

It has been conjectured that at fixed point the global symmetry is en-
hanced to SU(2)R × SU(2) × ENf+1 [10]. The Higgs branch of the cor-
responding theory is conjectured to be the moduli space of 1 instanton of
ENf+1

6 From a brane picture perspective we reach the fixed point when all
the D8 branes and the D4 brane have been located at the orientifold plane,
moreover we have to require that c→ 0 in the equation (3.10) and that the
dilaton blows up at the orientifold plane. This corresponds to take the strong
coupling limit sending gcl → ∞ and φ → 0. The further degree of freedom,
that are responsible of the symmetry enhancement, are due to instantons
that correspond to D0 branes. These instantons become massless at the UV
fixed point since their masses mI are proportional to 1/g2

eff . See figure 3.2
for a graphical representation of the strong coupling limit.

5This relation can be derived expanding the DBI action of the D4 brane in the back-
ground (3.9).

6We refer the reader to section 4.1 for a test of the global symmetry enhancement using
the superconformal index.
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x9φ

D4
Nf D8

O8−

plane

D0
instanton

Figure 3.2: Brane configuration corresponding to the symmetry enhancement
at the UV fixed point

The general case

The previous construction can be easily generalized for the case in which
N D4 branes are considered. This time the gauge group is Sp(N) while
the global symmetry group is still given by (3.8). The Higgs branch, away
from the UV fixed point, is expected to be the moduli space of SO(2Nf ) N -
instantons. When we reach the fixed point the global symmetry is enhanced
as before, while the corresponding Higgs branch is conjectured to be the
moduli space of ENf+1 N -instantons.

3.1.5 The supergravity description

As initially suggested in [28] and then shown in [29] it’s possible to construct
an holographic gravity dual to the quantum field theory analysed in the
previous section. Here we review such construction. As outlined above we
consider Nf D8 branes located at the orientifold plane O8−. The bosonic
part of type II A supergravity that we need to take into account is

S =
1

2κ2
10

∫
d10x
√−g

(
e−2ΦR + 4∂µΦ∂µΦ)− 1

2 · 6!
| F6 |2 −

1

2
m2

)
. (3.14)

As shown in [29], it’ possible to find a solution of the equations of motion
such that the near horizon limit of the metric reads

ds2 = Ω̂(α)2

(
Q
−1/2
4 u2dx2

1,4 +
9

4
Q

1/2
4

du2

u2
Q

1/2
4 dΩ2

4

)
, (3.15)

where

Q4 =

(
211π4

34(8−Nf )

)1/3

N, Ω̂(α) =

(
3

4π
(8−Nf )sinα

)−1/6

, (3.16)



22 3.1. General features of 5d QFT

and

dΩ2
4 = dα2 +

1

4
cos2α[(dψ + cosθdφ)2 + dθ2sin2θdφ2], (3.17)

with

0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, 0 ≤ ψ ≤ 4π and 0 ≤ α ≤ π/2. (3.18)

The space-time described by the metric (3.15) is a warped product between
an AdS6 space and S4. This space has a boundary located at α = 0, that
corresponds to the location of the O8− (z = 0) orientifold plane. Therefore
the topology of the boundary is AdS6 × S3.

At the boundary the dilaton blows up as

eΦ = Q
−1/4
4 Ω̂5(α) (3.19)

Moreover also the Ricci scalar diverges at the boundary. As stated in [29]
it’s possible to establish a duality relation between TypeI

′
string theory on

the background (3.15) with a 4-form flux of N units on S4 a N = 1 super-
symmetric 5d QFT at a fixed point.

Finally let’s analyse the symmetries on both sides of the correspondence

� The SO(2, 5) isomtrey group of the AdS6 space corresponds to the
conformal symmetry of the 5d theory.

� The SO(4) ∼ SU(2) × SU(2) subgroup of the isometry group of the
sphere S3 preserved by the warping is related to the SU(2)R R-symmetry
and to the SU(2) symmetry associated with the massless hypermulti-
plet in the antisymmetric representation.

� The flavor symmetry SO(2Nf ) and the enhancement to ENf+1 can not
be seen in the gravity dual background. This is due to the fact that it
takes place at the boundary where the dual gravity description is not
valid. However we can identify the instantonic U(1)I symmetry. This
is dual to the RR 1-form potential C1 in the bulk. Moreover there are
not wrapped D-branes in this background corresponding to the fact
that there are not baryonic operators [30].

3.1.6 Orbifolds of the initial theory

Following [31] we can generalize the previous class of theories taking orbifold
of the internal space. In order to achieve this aim we replace the R4 space
transverse to the D4 branes by an ALE space asymptotic to C2/Zn. The
corresponding brane configuration is summarized in table 3.2
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x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

O8− x x x x x x x x x
Nf D8 x x x x x x x x x
N D4 x x x x x

Table 3.2: Brane configuration for a theory with gauge group G = Sp(N)
with matter and orbifold action. The directions in the circle are subjected
to the orbifold action.

Such that the orbifold action is defined as

Zn : (z1, z2) ∼ (e2πi/nz1, e
−2πi/nz2), z1 = x5 + ix6, z2 = x7 + ix8,

Following [31] we review the matter content of the corresponding theory. We
begin in Type IIA string theory on C2/Zn that preserves SO(1, 5)×SU(2)R×
U(1) global symmetry and N = (1, 1) supersymmetry in six dimensions.
Then we perform the orientifold projection I9Ω. Where I9 is the reflection
along the x9 spatial direction, while Ω is the worldsheet parity. This gives
raise to SO(1, 4) × SU(2)R × U(1) space-time symmetry and to 5d N = 1
supersymmetry. After this operations we get

� N = 1 gravity multiplet, one vector multiplet and one hypermultiplet
in the untwisted sector of the theory.

� While in the twisted sector the result depends on the number n that
characterize the orbifold action:

– If n = 2k+1 we obtain k vector multiplets and k hypermultipltes.

– If n = 2k we obtain k− 1 vector multiplets, k− 1 hypermultiples.
While for the kth twisted sector there are two possibilities [32].
The so called No Vector Structure (NVS), in which we keep an
hypermultiplet and the Vector Structure (VS) in which we keep a
vector multiplet.

If we do not take into account the Nf contributions we get three different
families of quiver gauge theories, that have been summarized in the following
sections.

Odd orbifolds

The gauge group of this theory is G = Sp(2N) × SU(2N)k. While we have
a U(1)I instantonic symmetry factor for each gauge group and U(1) factor
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for each bifundamental and for the antisymmetric field. The corresponding
quiver gauge theory is reported in figure 3.3. The global non R-symmetry
group is

U(1)k+1 × U(1)k+1
I (3.20)

Sp(2N)
x1 SU(2N)

x2 . . . xk SU(2N) A

Figure 3.3: quiver diagram for the C2/Z2k+1 case.

.

Even orbifold, k = 2n with vector structure

The corresponding quiver gauge theory is described by the quiver reported
in figure 3.4. The gauge group is G = Sp(2N) × SU(2N)k−1 × Sp(2N).
Moreover we have k+1 instantonic symmetries, and U(1) symmetry for each
bi-fundamental xi

7 The global non R-symmetry group is

U(1)k × U(1)k+1
I (3.21)

SU(2N)
x1 SU(2N)

x2 . . . xk−1
SU(2N) A′A

Figure 3.4: quiver diagram for the C2/Z2k with no vector structure case.

Even orbifold, k = 2n without vector structure

The gauge group is G = SU(2N)k. Moreover also in this case we have a
U(1) instantonic symmetry for each gauge group and U(1) global symmetry
for each bifundamental 8 The corresponding quiver gauge theory is described
by the quiver reported in figure 3.4. The global non R-symmetry group is

U(1)k+1 × U(1)kI (3.22)

7Note that if k = 1 this symmetry is enhanced to SU(2) since the bi-fundamental of
Sp(2N)× SU(2N) is pseudoreal.

8The case k = 1 is different since the matter global symmetry is enhanced to SU(2)×
U(1)
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Sp(2N)
x1 SU(2N)

x2 . . . xk−1
SU(2N)

xk Sp(2N)

Figure 3.5: quiver diagram for the C2/Z2k case with vector structure.

The supergravity dual

The geometry of the gravity dual, after the action of the orbifold, is AdS6 ×
S4/Zn. The metric is still given by the expression (3.15), however the peri-
odicity of the angle ψ is changed as follows

ψ : [0, 4π] 7→ [0, 4π/n].

Also in this case we can identify the symmetries between the two sides of
the correspondence. The internal space S3/Zn has an SU(2) × U(1) global
symmetry. Where the SU(2) factor comes from the S2 base of the space
while the U(1) factor comes from the S1 ψ fiber. The above SU(2) factor
is identified with the SU(2)R symmetry of the dual quantum field theory.
While the U(1) factor is identified with the U(1)M mesonic symmetry. In
the particular case in which n = 2 the previous symmetry is enhanced to
an SU(2) × SU(2) symmetry in accordance with the enhancement of the
mesonic global symmetry discussed in 3.1.6.

3.1.7 RG flows in 5d gauge theories

Let’s focus for simplicity on a Z2 orbifold of the initial theory. As discussed
in section 3.1.6 this leads to two different gauge theories

� The first theory has gauge group G = Sp(2N)× Sp(2N) with bifun-
damentals matters. Its global symmetry group is SU(2)M × U(1)I1 ×
U(1)I2 × SU(2)R, where the mesonic symmetry SU(2)M acts on the
hypermultiplets. Moreover U(1)I1 and U(1)I2 are two topological sym-
metries associated to the two gauge groups.

� The second theory has gauge group G = SU(2N). Its global sym-
metry group is SU(2)M ×U(1)I ×U(1)B ×SU(2)R, where the mesonic
symmetry SU(2)M acts on the antisymmetric hypermultipltes, U(1)I is
a topological symmetry associated to the gauge group . Finally U(1)B
is a baryonic symmetry under which one of the two antisymmetric hy-
permultiplet, let’s say A1, has charge +1 and the other antisymmetric
hypermultiplet A2 has charge −1.
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Following the analysis performed in [33] for the 4d with N = 1 case we
can examine two different kinds of RG flow. First of all we we can imagine
an RG flow triggered by the VEV of a mesonic operator. This kind of RG
flow, in terms of the brane description, corresponds to move the D4 branes
away from the singularity present in the metric. On the other hand, only
when the second theory is is concerned, we can consider an RG flow triggered
by the VEV of a baryonic operator. This corresponds to a blow-up of the
singularity present in the metric.

This picture can be tested solving the equations of motion for the warp
factor near the boundary and classifying the operators that are a taking a
VEV in the dual QFT according to their conformal dimension and other
global symmetry quantum numbers. Moreover the fact that, for the second
kind of RG flow, the U(1)B baryonic symmetry is broken can be tested per-
forming the computation of the DBI action for a D2 brane wrapping a 3-cycle
in the dual geometry. This must be equivalent to the modulus of the bary-
onic condensate [31]. On the other hand, following the procedure outlined in
[34] for the 4d case, we can also determine the phase of the condensate and
study the Goldstone boson arising from the breaking of the baryonic global
symmetry.

In the article reported in section 6.1 we study these kinds of holographic
RG flows. We examine, as a warm-up, the case of 4d N = 2 theories and
then we move to consider the 5d N = 1 case. Even if the two cases are
quite similar there is an remarkable difference. As a matter of fact in the
5d case the boundary is reached when both the bulk radial coordinate r and
the angle α (3.18) that parametrizes the internal S3 sphere goes to zero. As
discussed in section 3.1.5, both the dilaton and the Ricci scalar diverge at
α = 0. Therefore we had to fix in a proper way the boundary condition
there. We refer the reader to the corresponding article for further details.



4. The Superconformal Index

In this chapter we briefly review supersymmetric localization and we examine
how its application in the context of supersymmetric quantum field theories
drastically simplify the computation of the partition function of the theory.
Then we introduce the Superconformal Index (SCI) for 5d N = 1 and 4d
N = 2 quantum field theories and we see how we can compute it using
localization. Moreover we examine how the SCI can be used to text the
global symmetry enhancement discussed in chapter 3 in the context of 5d
N = 1 theories.

4.1 Supersymmetric localization

After its introduction in the seminal paper [35] in the context of QFTs there
have been a lot of application of the computational technique called super-
symmetric localization. In the following section we review how localization
can be applied for the computation of VEV of observables and of the parti-
tion function of a supersymmetric quantum field theory. The main result is
that the path integral can be reduced to a lower dimensional integral over a
a localization locus weighted by the classical action and a 1-loop superdeter-
minat of the fluctuations transverse to the localization locus.1.

4.1.1 Supersymmetry and the partition function

Let’s consider a QFT with a fermionic symmetry generated by the charge
Q (in particular Q can be a supercharge), such that it squares to a bosonic
charge

Q2 = B (4.1)

1For a full review regarding localisation and its application in the context of supersym-
metric gauge theories we refer the reader to [36, 37, 38]
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Moreover let’s focus on BPS gauge invariant operators OBPS. These opera-
tors are annihilated by the supercharge Q

QOBPS = 0. (4.2)

We want to compute exactly the vacuum expectation value of such observ-
ables

〈OBPS〉 =

∫
F

[DX]OBPSe−S[X] (4.3)

where the symbol X denotes the various fields present in the theory and F
denotes the field space, i.e. the set over which the various fields take a value.
In order to compute the VEV (4.3) we observe that the expectation value of
a Q-exact observable vanishes

〈QO〉 =

∫
F

[DX](QO)e−S[X] =

∫
F

[DX]Q(Oe−S[X]) = 0 (4.4)

where we assumed that the measure [DX] and the action S[X] are invariant
under the Q-action. We found the integral of a total derivative, that vanishes
if there are not boundary terms. Therefore in general we have

〈OBPS〉 = 〈OBPS +QO〉 (4.5)

This means that we can deform the path integral (4.3) adding the Q variation
of B-invariant fermionic functional PF [X] without changing the VEV of the
BPS operator. If we do so the path-integral (4.3) now reads

〈OBPS〉 =

∫
F

[DX]OBPSe−S[X]−tQPF [X] ∀ t (4.6)

As a check we can take the t-derivative of the expression (4.6) and we get

d

dt

∫
F

[DX]OBPSe−S[X]−tQPF [X] = −
∫
F

[DX](QPF )OBPSe−S[X]−tQPF [X] =

−
∫
F

[DX]Q(PFOBPSe−S[X]−tQPF [X]) = 0

(4.7)

Therefore, if there are not boundary terms, the previous integral does not
depend on t. This means that we can evaluate the previous integral taking
the limit

〈OBPS〉 = lim
t7→∞

∫
F

[DX]OBPSe−S[X]−tQPF [X] (4.8)
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In the above limit the path integral will be dominated by the saddle points
of the localising action

Sloc[X] = QPF [X] (4.9)

In order to evaluate (4.8) let’s expand the fields X around the saddle point
configurations of Sloc and then we take the limit t 7→ ∞. 2

X = X0 +
1√
t
δX (4.10)

where X0 denotes the classical configuration. The semi-classical expansion
of the action reads

S[X0] +
1

2

∫ ∫
δ2Sloc[X]

δX2
|X=X0 (δX)2 (4.11)

It’s important to note that this result is 1-loop exact since higher terms of the
expansion are eliminated once the limit t 7→ ∞ is taken. Inserting the above
expansion in the path-integral (4.8) and integrating out the fluctuations we
obtain

〈OBPS〉 =

∫
FQ

[DX0]OBPS |X=X0 e
−S[X0]SDet

[
δ2Sloc[X0]

δX2
0

]−1

(4.12)

We observe that is possible to proof that the original path integral over the
full field space F has been localized to a new lower dimensional integral over
the BPS locus FQ, that is the space

FQ = {[X] ∈ F | fermions = 0, Q(fermions) = 0} (4.13)

The VEV (4.12) can be computed performing the integration of the classical
action contribution S[X0] that must be corrected, due to the integration
of the fluctuations δX, with the 1-loop Super-Determinant. The Super-
Determinant is given by the ratio of the determinants of the operators that
give a contributions at the quadratic order in the bosonic and fermionic
fluctuations.

4.2 The Superconformal Index in different di-

mensions

Historically the precursor of the SCI is the so called Witten index [39]

Tr[(−1)F e−βH ], (4.14)

2Note that the inverse of the parameter t plays the role of an auxiliary Planck constant,
i.e. }aux = 1/t.
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where F is the fermion number operator, that is equal to one for a fermionic
state and zero for a bosonic state. In a supersymmetric QFT each state
with an energy eigenvalue different from zero contains the same number of
fermionic and bosonic degree of freedom. Therefore the Witten index (4.14)
does not depend on the temperature. Physically it gives the number of zero
energy bosonic states minus the number of zero energy fermionic vacuum
states.

The superconformal index has been in introduced [40] in the context of
4d N = 1 QFT and subsequently generalized for supersymmetric theories in
different numbers of dimensions and with a different amount of supersym-
metry [41]. This quantity encodes the information regarding the protected
spectrum of a SCFTs. Basically it counts gauge invariants operators in-
side the QFT taken into consideration. These gauge invariant operators are
classified according to representations of the superconformal algebra of the
theory and correspond to physical states in the radial quantization of the
theory. Schematically it takes the form [40]

I = Tr[(−1)F e−µiTie−βδ], δ = {Q,Q†}, (4.15)

where, as before, F is the fermion number operator. {Ti} denotes a complete
set of generators (with corresponding fugacities µi) that commutes with the
supercharge Q with respect the index is computed. The trace is taken over
the states of the theory on Sd−1, after radial quantization. The index counts
only the states with δ = 0 (since with δ 6= 0 cancel pairwise). Moreover it is
possible to prove that different choice of Q leads to indices that are physically
equivalent [16]. In the following we concentrate only to the 5d N = 1 and
the 4d N = 2 case.

4.2.1 Superconformal Index in 5d

In the 5d case we can radially quantize theory on R× S4. Then the physical
states are then labelled by the charges of the Cartan generators of the bosonic
sublagebra SO(2, 5)× SU(2)R. The energy ε0 corresponds to dilatation, the
angular momenta j1 and j2 are the charges of SU(2)1 × SU(2)2 ⊂ SO(5)
and finally jR is the SU(2)R charge. Moreover in the radial quantized theory
the supercharges QA

m and the superconformal supercharges SmA are conjugate.
Their commutator reads [42, 41]

{QA
m, S

m
A } = δnmδ

A
BD + 2δABM

n
m − 3δnmR

A
B, (4.16)

where D is the dilatation, Mm
n is the SO(5) rotation and RA

B are the SU(2)R
symmetry. The states satisfying the bound (4.16) are BPS and live in short
multiplets. The above bound allows to count the BPS spectrum of a CFT.
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Cartan generators Chemical potential

∆ ↔ e−β

j1 +R ↔ x = e−γ1

j2 ↔ y = e−γ2

k ↔ q
Hi i = 1, ..., Nf ↔ e−mi

Table 4.1: Cartan generators and corresponding chemical potentials .

Features of the 5d SCI

Following [43] we select the supercharge Q = QA=1
m=2. This way we can count

states that are annihilated by Q and S = Q†. Therefore the states that
satisfy the above property are 1/8 BPS states. We use the Cartan generators
reported in table 4.1 to label the physical states of the theory. All these
Cartans commute with Q and S. The 5d superconformal index reads [43]

I(x, y,mi, q) = Tr[(−1)F e−β{Q,S}x2(J1+R)y2J2e−i
∑

j mjHjqk], (4.17)

where the trace is taken over the Hilbert space on S4. After a Wick rotation
and a compactification along the euclidean time direction we can express the
superconfromal index (4.17) as a path integral over S1 × S4, with periodic
boundary conditions for both bosonic and fermionic fields along the S1 time
direction. So that the expression (4.17) becomes

I(x, y,mi, q) =

∫
S1×S4

DΨe−SE [Ψ]. (4.18)

The localization technique outlined in section 4.1 has been applied in [43] for
the evaluation of the path integral (4.18). The final result is that the SCI
(4.17) can be expressed as

I(x, y,mi, q) =

∫
DαIpertIinst (4.19)

where Dα is the Haar measure of the gauge group of the theory.

� The perturbative contribution Ipert is obtained taking the Plethystic
Exponential (PE)3 of the single letter contribution, due to the vector

3The Plethystic Exponential of a function f(x1, ..., xn) such that f(0, ..., 0) = 0 is
defined as

PE[f(x1, ..., xN )] = Exp

[ ∞∑
n=1

f(xn1 , ...x
n
N )

n

]
(4.20)
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multiplet and half-hypermultiplet present in the theory

iv = − x(y + y−1)

(1− xy)(1− x
y
)
χAdj, iM =

x

(1− xy)(1− x
y
)
χM (4.21)

where χAdj are the characters of the adjoint representation of the gauge
group while χM are the characters of the representation M under which
the half-hypermultiplet transforms.

� The instanton contribution Iinst arises due to the fact the path in-
tegral (4.18) localizes on instantonic solutions around the north pole
(anti-instantons) and south pole (instantons) of the S4. Therefore the
instanton partition function is given by the product of a factor I(N)

from the north pole and a factor I(S) from the south pole. The result
reads [43]

Iinst = I(N)(q)I(S)(q) = I(S)(q−1)I(S)(q), where I(S)(q) =
∞∑
k=0

Ikq
k

(4.22)
It has been shown in [44] that the instanton partition function Ik, in
the particular case of pure gauge theories, is equal to the Hilbert for
the moduli space of instantons on R4.

The instanton partition function (4.22) for a SU(2) gauge theory with Nf

hypermultiplet has been computed in [43] and independently in [45] using
the topological vertex.

SCI and enhancement of the global symmetry

The enhancement of the global symmetry conjectured by Seiberg [10] can
take place if at the UV fixed point there are additional conserved currents,
such that, if are taken together with the currents generating SO(2Nf ) ×
U(1)I symmetry, constitute the current algebra of ENf+1. Moreover these
currents are non perturbative and therefore the enhancement of the global
symmetry can only seen examining observables that contain some amount
of nonperturbative information about the theory. For this reason the SCI
is a suitable quantity that can be used to text the enhancement of global
symmetry at the UV fixed point. As a matter of fact in [43] the computation
of the SCI for a theory with SU(2) gauge group and number of flavours
Nf ≤ 5 has been performed. It has been found that, at the lowest order in
the x chemical potential, the SCI for a theory with Nf flavours always takes
the form

INf
= 1 + χ

ENf+1

Adj x2 +O(x3) (4.23)
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where χ
ENf+1

Adj are the characters of the adjoint representation of ENf+1. The

appearance of the adjoint characters χ
ENf+1

Adj leads to a global symmetry en-
hancement at every order of the expansion of the SCI [46]. In order to show
this we have to examine the coefficient of the x2 in the above expansion
(4.23). As shown in [46] only scalar fields in the adjoint representation of
SU(2)R and with conformal dimension ∆ = 3 contribute to this term. This
implies that in all these theories taken into account and labelled by different
value of Nf there is a superconformal multiplet. The primaries operators
of this multiplet are scalar fields that are a triplet under SU(2)R and that
furthermore are in the representation of SO(2Nf )×U(1)I obtained from the
adjoint representation of ENf+1. Moreover it also possible to show that the
above multiplet is equal to the superconformal multiplet of flavour currents
that leads to the enhancement of the global symmetry 4.

4.2.2 Superconformal index in four dimensions

Following the same conventions employed in in [16] we can express the 4d
N = 2 index (4.15) as

I(p, q, t) = Tr[(−1)Fp
1
2
δ1+q

1
2
δ1−tR+re−βδ̃1−̇ ] (4.24)

where

δ1+ = E + 2j1− 2R− r, δ1− = E − 2j1− 2R− r, δ̃1−̇ = E − 2j1− 2R+ r

and where E is the conformal dimension, j1 and j2 are the Cartan genera-
tors of the SU(2)1 × SU(2)2 isometry group, while R and r are the Cartan
generators of the SU(2)R × U(1)r R-symmetry group. Moreover we observe
that the index (4.24) depends on three superconformal fugacities, since the
subalgebra commuting with a single supercharge has rank three

The Schur limit

Among the others a particular limit of the index (4.24) that can be considered
is the Schur limit. This is obtained setting q = t and leaving p arbitrary. This
index receives contribution from states with both δ1+ = δ1−̇ = 0. Therefore
the Schur Index IS reads

IS = Tr[−(1)F qE−R]. (4.25)

4We refer the interested reader to [46] for a detailed proof of the above statement.
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4.2.3 Nekrasov-Shatashvili limit of 5d superconformal
index

As in the four dimensional case it would be interesting to take a particular
limit of the 5d SCI that can isolate the contributions arising only from some
particular operators. In particular we can consider the Nekrasov-Shatashvili
(NS)5 of the index. This limit is implemented turning off one of the two
epsilon parameters (ε1, ε2) that characterize the Ω background [17]. These
parameters are related to the (x, y) fugacities introduced in section 4.2.1 as

xy = e−ε1 ,
x

y
= e−ε2 . (4.26)

Therefore the naive implementation of the NS limit reads

xy → 1,
x

y
→ fixed. (4.27)

However a look to the expressions (4.21) for the single letter partition func-
tions shows that this naive implementation of the NS limit leads to a sin-
gularity. In the article reported in section (6.4) we overcome this problem
introducing a prescription that allows to take the NS limit giving a finite
result and ensuring that all the coefficients of the expansion of the index,
once the limit has been taken, are given by integer numbers. 6

Moreover in [48] it was outlined a connection between the Schur limit of
the 4d SCI (introduced in section 4.2.2) and an algebraic quantity associated
with the BPS spectrum on the Coulomb branch. More explicitly in the case
of a rank-r theory it was conjectured that the index IKS is given by the trace
of the Kontsevich-Soibelman (KS) operator O. 7

IKS = (q)2r
∞Tr[O] (4.29)

The particular expression of the operator O can be read off starting from the
BPS quiver of theory taken in consideration. In the article reported in section
6.4 we consider the NS limit of different 5dN = 1 abelian gauge theories with

5This limit was introduced for the first time in a four-dimensional context in [47].
6This last condition is motivated by the fact that the coefficients of the expansion of

the index, as discussed above, are the numbers of operators with a given set of quantum
numbers.

7where the Pochhammer symbol is defined as

(q)0 = 1, (q)n =

n∏
k=1

(1− qk) (4.28)
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different flavour groups. We construct the corresponding 5d BPS quiver and
we extract the trace of the corresponding KS operator. Finally we compute
the quantity expressed by the formula (4.29). An important difference with
the four dimensional case is the presence of a further global fugacity related
with the topological charge. In terms of BPS quiver data we see that this
further global symmetry translates in the presence of a further node of the
diagram. We refer the reader to the article 6.4 for further details.
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4.3 Rigid supersymmetry in curved space time

In this section we outline the problem to define a supersymmetric QFT on
a curved space time M endowed with a non flat metric gµν in a way that
allows to preserve at least a partial amount of the initial supersymmetry.

Following [36] let’s consider a supersymmetric QFT defined on a flat
space-time. Let’s assume that this QFT is described by an action S(0)

S(0) =

∫
ddxL(0). (4.30)

Moreover let’s assume that it is endowed with a SUSY algebra generated by
infinitesimal transformations δ(0). This algebra schematically acts as follows
on the bosonic and fermionic degree of freedom of the theory

δ(0)(boson) = fermion, δ(0)(fermion) = boson, (4.31)

in order to preserve supersymmetry we must require that

δ(0)L(0) = ∂µ(...)µ (4.32)

this means that the variation of the langragian under a SUSY transformation
must be a total derivative.

In order to obtain a QFT defined on a curved background we have to
replace to flat metric ηµν with the curved metric gµν that defines the back-
ground. Moreover we have to replace all the ordinary derivatives with co-
variant derivatives

ηµν 7→ gµν , ∂µ 7→ 5µ. (4.33)

However in general the new theory (even if it will be well defined on the
curved background gµν) will not be any more supersymmetric since

δ(0) | η → g
∂ →5

L(0) | η → g
∂ →5

6= 5µ(...)µ. (4.34)

However, as we review in the next section, a systematic procedure that allows
to define a supersymmetric QFT on a curved background has been developed
in [14].

Supersymmetric field theories on curved background

The method introduced by Seiberg and Festuccia in [14] is a two step proce-
dure
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1. Firs of all we couple the supersymmetric field theory taken in considera-
tion with supergravity. The supergravity multiplet in general contains
the metric gµν , the gravitino ψµα and some auxiliary fields (that of
course depend on the particular supergravity that have been selected).

2. Then we take the rigid limit, i.e. we send GN 7→ 0. Once this limit has
been taken gravity decouples and the metric is sent to a fixed back-
ground metric. Moreover also the auxiliary fields of the supergravity
multiplet now assume a fixed background value.

In order to preserve supersymmetry we have to impose that the supersym-
metic variations of the gravitini as well as of al the fermionic fields in the
gravity multiplet vanish. This requirements lead to a set of Killing spinor
equations. This is a set of first order differential equations which are the
conditions that must be satisfied in order to preserve supersymmetry on the
manifold M that we are considering. Finally, once a a solution a of the above
Killing spinor equations is known, we can find the lagrangian of the super-
symmetric field theory and the supersymmetric transformations of the fields
on the curved manifold M .

4.3.1 5d N = 1 theories on curved backgrounds

As we saw in the previous chapters a 5d supersymmetric QFT can be very
interesting object to study due to its properties and its applications related
to the computation of some observables of the theory. As a matter of fact the
partition function of a 5d N = 1 theory can be expressed as a path-integral
over S5 [49, 50], while the superconformal index as a path integral over S1×S4.
Therefore supported by these motivations a natural question is to understand
which conditions must be satisfied in order to define a 5d theory on a curved
manifold preserving at least some part of the initial supersymmetry.

In the article reported in section 6.3 we address this question and we apply
the technique outlined in section 4.3 in the context of 5d N = 1 quantum
field theory. In order to this we consider 5d N = 2 conformal euclidean
supergravity coupled to 5d conformal matter consisting of both vector and
hypermultiplets. Following the same procedure outlined in [51] in the context
of 4d N = 2 supergravity we look for a solution of the gravitino and dilatino
equations that must be satisfied in order to preserve supersymmetry. We
find that necessary and sufficient condition for existence of a solution is the
existence of a conformal Killing vector v.

Then we study under which conditions we can turn on a VEV for scalar
field in the backgrounds vector multiplet. Such a VEV breaks the initial con-
formal invariance of the theory and leads to a flow to a standard gauge theory,
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characterized by the term g−2
YMF

2. Where the Yang-Mills coupling constant
gYM as the VEV for the scalar field. We find that this can takes place if
the vector v is Killing and not only conformal Killing. Furthermore we find
that most of the backgrounds exhibit a more involved geometric structure,
that is called transversally holomorphic foliation (THF). We examine which
conditions must be satisfied in order to ensure that a generic background
of conformal supergravity admits a THF. We find that the necessary and
sufficient condition is the existence of a global section of an su(2)/R bundle
that is covariantly constant with respect to a connection DQ that arises from
the intrinsic torsion parametrizing the spinor. We refer the reader to the
corresponding article for further details.



5. Moduli space of instantons and
Hilbert Series

In this chapter we introduce the notion of moduli space of instantons. We
analyse its basic property for the case of instantons on R4. Finally we examine
how we can embed it in string theory using an ADHM-like construction [52,
53, 54]. Moreover we examine how the problem regarding the characterization
of the moduli space of instantons can be replaced with the study of the moduli
space of vacua of supersymmetric quantum field theory.

5.1 Instantons on R4

Instantons can be defined as classical solutions of the equation of motion
with a finite action 1. Let’s consider the action for a QFT with gauge group
G.

S =
1

2g2

∫
d4xTr[F µνFµν ], (5.1)

where g is the gauge coupling of theory. The equation of motions are

DµFµν = 0, (5.2)

where Dµ is the covariant derivative. The requirement that the action is
finite implies a constraint on the gauge potential Aµ at spatial infinity of R4,
where we must require that the gauge potential is a pure gauge, i.e.

Aµ → ig−1∂µg r →∞, (5.3)

where g(x) = eT (x) and the T (x) are the generators of the gauge group G. It’s
possible to prove that these solutions are classified according to the instanton

1There are different reviews regarding instantons and the corresponding moduli space.
For a more detailed analysis of this topic we refer the reader to [55].
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number k

k =
1

24π2

∫
S3
∞

d3SµTr(∂νg)g−1(∂ρg)g−1(∂σg)g−1. (5.4)

Therefore the space of all possible solutions is divided in different sectors
each of one is labelled by a different valued of the integer k. Moreover it
can be shown that the value of the action of an instanton in given sector is
bounded, this is called the Bogomonln’yi bound

S ≥ 8π2

g2
| k |, (5.5)

and the equality holds if and only if

Fµν = ∗Fµν with k > 0

Fµν = −∗Fµν with k < 0
(5.6)

where
∗Fµν =

1

2
εµνρσF

ρσ, (5.7)

a solution of the equations (5.6) must solve the full equations of motion, since
it minimizes the action in a given sector.

5.1.1 The moduli space of instantons

The moduli spaceMk,N is defined to be the set of all solutions to equations
(5.6) with a given instanton number k and with gauge group G = SU(N) 2.
The dimension of this space can be calculated using the Atiyah-Singer index
theorem, that counts the number of zero modes. A zero mode δαAµ can be
defined as follows. Given a solution of the self-dual equation Aµ(xµ, Xα) (5.6)
(where Xα is the set of all collective coordinates) we define the corresponding
zero modes as

δαAµ =
∂Aµ
∂Xα

+DµΩα, (5.8)

where we note that each zero mode is defined up to an infinitesimal gauge
transformation DµΩα. In order to fix the gauge we choose to impose the
gauge fixing condition

Dµ(δαAµ) = 0. (5.9)

2For the moment let’s restrict our analysis to the particular case in which the gauge
group is SU(N).
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........

N D7

........

k D3

Figure 5.1: Pictorial representation of the ADHM-like construction for the
moduli space of instantons on R4 (when p = 7). The Higgs branch of this
configuration is reached when we put the stack of D3 breanes inside the stack
of D7 branes.

It turns out that the dimension of the moduli space Mk,N is

dim(Mk,N) = 4kN. (5.10)

Moreover the moduli space can be endowed with a metric gαβ

gαβ =
1

2g2

∫
d4xTr[(δαAµ)(δβAµ)]. (5.11)

It turns out that the moduli space of instantons is a smooth Hyper-Kähler
manifold, away from the points in which the size of the instantons goes to
zero (corresponding to small instantons).

5.1.2 The ADHM construction of the moduli space

The ADHM construction is a mathematical construction introduced by Ati-
hay, Drinfeld, Hitchin and Manin in [19]. This algorithm allows to construct
all the solution to the self-dual equations (5.6). Subsequently it has been un-
derstood that such construction can be embedded in string theory, providing
this way an ADHM-like construction. [52, 53, 54]. In the following we briefly
review how the ADHM-like construction works.

Let’s consider a configuration with a stack of N Dp branes, and another
stack of k D(p − 4) branes in Type II string theory. This configuration is
graphically summarized in figure 5.1. We place all the Dp branes at same
point in spacetime. The QFT living on the worldvolume of the coincident
Dp branes is SYM with gauge group G = U(N). This worldvolume the-
ory includes also the couplings with the different RR-fields in the bulk. In
particular it includes the term

Tr

∫
Dp

dp+1x Cp−3 ∧ F ∧ F, (5.12)



42 5.1. Instantons on R4

where F is the gauge field of the theory living on the stack of coincident Dp
branes, while Cp−3 is the RR-form that couples to the D(p− 4) branes. The
important observation is that an instanton on the Dp branes with a non zero
F ∧ F gives rise to the source term

8π2

g2

∫
dp−3xCp−3, (5.13)

however this is the same source induced by a D(p − 4) brane [56]. Since
the factor 8π2/g2 can be reinterpreted as the mass and the charge of the
brane. Therefore we can identify the instantons on the worldvolume theory
of the Dp branes with the D(p − 4) branes. In order to derive the ADHM
-like construction let’s consider the QFT living on the worldvolume of the
D(p − 4) branes. For instance, without loss of generality, let’s fix p = 7.
Then let’s denote the scalar fields that parametrize the D3 branes position
as

(Xµ, X̂m) µ = 1, 2, 3, 4 m = 5, ..., 10, (5.14)

such that X̂µ parametrize the directions transverse to the branes while Xµ

the position of the branes. All these fields can be represented by a k × k
matrix (Xµ)αβ (with α, β = 1, ..., k). We can define

Z = X1 + iX2, W = X3 − iX4 (5.15)

Moreover we have further fields arising from the open strings stretched be-
tween the two stacks of branes. We denote these fields with ψ and ψ̃

ψαa, ψ̃aα, whit α = 1, ..., k and a = 1, ..., N. (5.16)

The scalar potential of this theory reads

V =
1

g2

∑
m,n

[X̂m, X̂n]2 +
∑
m,µ

[X̂m, Xµ]2 +
∑
a

((ψa)†X̂2
mψa + ψ̃aX̂2

m(ψ̃a)
†)+

g2Tr(
∑
a

ψa(ψ
a)† − (ψ̃a)

†ψ̃a + [Z,Z†] + [W,W †])2 + g2Tr |
∑
a

ψaψ̃
a + [Z,W ] |

(5.17)

We consider a configuration that minimizes the previous scalar potential
(5.17), i.e. V = 0 and where the D3 branes are inside the D7 branes (i.e.
X̂m = 0). This configuration corresponds to the Higgs branch MH of the
previous theory. Formally is defined as

MH = {V = 0, X̂m = 0}/U(k). (5.18)
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where we take the quotient by the gauge group of the theory. The remarkable
result is that the Higgs branch coincides with the moduli space of k-SU(N)
instantons. This means that the metric on the Higgs branch is equal to the
metric on the moduli space of instantons. Moreover the equivalence implies
that the Higgs branch is an HyperKähler manifold.

We can check that the dimension of the Higgs branch (5.18) matches
the dimension of the moduli space of instantons (5.10). As a matter of fact
we have 4kN degree of freedom due to ψa and ψ̃a, 4k2 in Z and W while
the F-terms gives 2k2 real constraints, the D-term k2 constraints and since
we are are taking the quotient by U(k) gauge group we have also further k2

constraints. Therefore summing up the different contributions the dimension
of the Higgs branch reads

dim(MH) = 4kN (5.19)

The previous construction ADHM-like construction can also be generalized
for the case of symplectic and orthogonal instantons. This is generalization
is obtained adding an orientifold plane of the appropriate charge.

Therefore due to this ADHM-like construction the problem concerning
the characterization of instanton moduli space has been reformulated into
a problem regarding the characterization of the moduli space of vacua of a
supersymmetric QFT. We examine in the next section how this aim can be
carried out systematically using the so called ”Plethystic program” and the
a mathematical tool called Hilbert Series.

5.1.3 Moduli space of vacua of 4d N = 1

In this section we review how we can characterize the moduli space of su-
persymmetric QFT (and consequently how we can study the moduli space
of instantons) counting gauge invariants chiral operators (GIO). As we will
se the Hilbert Series will be a very useful tool. 3

In general a supersymmetric QFT in 4d with N = 1 supersymmetry
endowed with a superpotential W has a scalar potential V that takes the
form

V =
∑
i

| Fi |2 +
g2

2

∑
a

(Da)2, (5.20)

3 For a full review regarding the Plethystic program and its use in string theory we
refer the reader to the seminal papers [20, 57]. While for a review regarding the Hilbert
Series and its application in the context of 4d and 3d with N ≥ 2 we refer the reader to
the review [58]. In the present section we summarize only the most relevant aspects of
this mathematical constructions that have been employed in the paper reported in section
6.2.
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Given by the sum of the squares of two distinct contributions called F-terms
and D-terms

� F-terms are given by

Fi(X) =
∂W

∂X i
(5.21)

� the D-terms read

Da(X,X†) =
∑
i

X†i (T
a)ijX

j (5.22)

where the T a are the generators of the gauge group of the QFT. While
X i is the scalar field inside the N = 1 chiral multiplet.

The moduli space of vacua M is obtained when we set to zero the scalar
potential (5.20), this means that

M = {(X,X†) | Fi(X) = 0 ∀ i, Da(X,X†) = 0 ∀ a}/G
∼= {(X) | ∂W (X) = 0}/GC (5.23)

where GC is the complexified gauge group.
The usual strategy that is employed in order to characterize the space

(5.23) is to consider chiral gauge invariant operators (GIO). These in 4d N =
1, Oi(x). These are 1/2 BPS operators annihilated by all the supercharges
with positive R-symmetry eigenvalue, i.e.

Q̄α̇Oi(x) = 0 ∀ α̇ = 1, 2 (5.24)

The chiral operators form a commutative ring, that is called chiral ring R.
Moreover these operators satisfy

OiOj = ckijOk, (5.25)

up to Q̄-exact term. The chiral ring is determined when a basis {O}{i} has
been specified and when the structure constants ckij are given. There is a
one to one correspondence between vacuum expectation values of GIO 〈Oi〉
and holomorphic functions on M, once also possible relations between the
generators of the chiral ring have been taken into account. This means that a
complete characterization of the chiral ringR allows to completely determine
the manifold M. The chiral Ring in general is a quotient ring

R = C[O1, ...,On]/I, (5.26)

where C[O1, ...,On] denotes the polynomial ring with complex coefficients,
while the ideal I encodes the possible relations between the generators of the
chiral ring. For 4d N = 1 theories the chiral operators are gauge invariant
polynomials constructed using the chiral fields X.
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The Hilbert Series

A very useful mathematical tool that can be employed for the characteriza-
tion of the chiral ring (5.26) is the Hilbert Series. This is a generating function
that counts scalar gauge invariants chiral operators according to their con-
formal dimension and other quantum numbers. Formally the Hilbert Series
reads

HS(t, ki) = TrH

[
t∆

N∏
i=1

kqii

]
(5.27)

where the trace is taken over,

H = {Oi | Q̄α̇Oi = 0, MµνOi = 0}, (5.28)

that is the space of scalar gauge invariant chiral operators. Moreover t
denotes the chemical potential related with the U(1)R R-symmetry, while
(k1, ...kN) are the chemical potentials related with other global quantum num-
bers (q1, ...qN). Using the Hilbert Series we can extract useful information
regarding the moduli space of vacua M
� The complex dimension of the moduli space M is equal to the dimen-

sion of the pole at t = 1 of the unrefined Hilbert Series HS(t, 1).

� Moreover if M has the topology of a cone (which is the case for a
superconformal quantum field theory) the coefficient of (1 − t)−d is
proportional to the volume of the base of the cone.

� Finally taking the Plethystic Logarithm (PLog)4 of the Hilbert Series
we can extract the charges of the generators of the chiral ring and the
relations among them.

Using the properties of the Hilbert Series outlined above we can characterize
the moduli space M as an algebraic variety.

5.2 The moduli space of instantons on CP 2

In the article reported in section 6.2 we move a further step in the charac-
terization of the moduli space of self-dual instantons on CP 2. The ADHM

4Given a function f(t), such that f(0) = 0. The corresponding Plethystic Logarithm
is defined as

PLog[f(t)] =

∞∑
k=1

µ(k)

k
log(f(tk)),

where µ(k) is the Möbius function.



46 5.2. The moduli space of instantons on CP 2

construction for this moduli space has been introduced by a King 1989 [59].
Then, at a later time, it was understood that such ADHM construction can
be embedded in a 3d N = 2 quiver gauge theory summarized in figure 5.2.
Using this ADHM-like construction it was possible to begin the study of this

U(N)

U(kL) U(kR)

A1, A2

B1, B2

qQ

Figure 5.2: Quiver for the 3d N = 2 theory encoding the ADHM-like con-
struction for self-dual instantons on CP 2.

moduli space [22] from a physical perspective using the technique outlined
in section 5.1.3. This moduli space can be characterized by two quantum
numbers, namely the instanton number k̂ and, since CP 2 is a non trivial
topological space, also by the first Chern number ĉ. These can be expressed
in terms of quiver data in the following way

k̂ =
1

2
(kL + kR)− 1

2N
(kL − kR)2, ĉ = kL − kR, (5.29)

where kL, kR and N are the ranks of the gauge and flavour groups of the 3d
theory. Moreover it turn out that the Hilbert Series for the moduli space
of instantons on CP 2 is equal to the Hilbert Series for the moduli space of
instantons C2 [22]. 5 This result naively suggests that the complex dimension

of the moduli space of instantons on CP 2 M
SU(N)

CP 2 should be equal to

dimCM
SU(N)

CP 2 = 2Nmin(kL, kR), (5.31)

however the above quantity depends only on two of three integers N, kL and
kR that must be specified in order to completely determine a given instanton

5As shown in [22] the equality between the two Hilbert Series is obtained after an
identification of the rank of the flavor group of the two theories and imposing that K the
rank of the gauge node of the C2 is equal to the minimum of the ranks of the gauge nodes
of the CP 2 theory, i.e.

K = min(kL, kR). (5.30)
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configuration. This observation suggests that the moduli space of instantons
on CP 2 has extra directions (associated to all three quantum numbers) and
that in general the Hilbert Series is blind to these directions. In order to
resolve these directions it’s useful to introduce the notion of resolved moduli
space M̂

SU(N)

CP 2 , whose complex dimension reads [24, 25, 26]

dimCM̂
SU(N)

CP 2 = 2k̂N = dimCM
SU(N)

CP 2 + ĉ(N − ĉ) (5.32)

We can observe that when ĉ = 0 the dimension of M
SU(N)

CP 2 is equal to the

dimension of M̂
SU(N)

CP 2 .
In the article reported in section 6.2 we begin the study and the charac-

terization of the above directions from a physical point of view. We explicitly
analyse the simplest configurations. These have an instanton number k̂ equal
to zero but a non-vanishing first Chern class ĉ. In particular using an un-
gauging technique we perform the computation of the Hilbert Series for such
configurations and we find an agreement with the dimension of the moduli
space predicted by the formula (5.32). In more details we rewrite the full
U(k) gauge group of the theory as U(1) × SU(k) and we promote the U(1)
part to a global baryonic symmetry. This way we are able to construct gauge
invariant operators and we get a non trivial result for the corresponding
Hilbert Series.

Moreover, in the particular case in which kL = kR and N = 1 (and in the
large kL limit), the 3d N = 2 QFT that describes the moduli space of in-
stantons on CP 2 admits a gravity dual [60]. Therefore using the AdS4/CFT3

correspondence and a dual giant graviton provided by an M2 branes wrapping
the temporal direction and the S2-sphere inside the AdS4 space we realize
part of the instanton moduli space in the dual geometry. As in other cases
already analysed in the literature (see e.g.[61]) we see that the gravity dual
is able to capture only the mesonic subranch of the full moduli space.

Finally we also provide the ADHM-like construction as well as the com-
putation of the Hilbert Series of the corresponding moduli space of instantons
on CP 2/Zn. We worked out the case of unitary, orthogonal and symplectic
instantons. We conjecture a possible relation between the quiver data of the
ADHM-like construction with the instanton quantum numbers. Moreover we
outline the correspondence between the Hilbert Series for the moduli space
of instantons on CP 2/Zn and the Hilbert Series for the moduli space of in-
stantons on C2/Zn, that was previously studied in [62]. We found that, after
a proper identification of the gauge and flavour nodes of the quiver diagrams
describing the two theories, the Hilbert Series of the two moduli space are
the same. We refer the reader to the corresponding article 6.2 for further
details.
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Abstract

We discuss RG flows in 5d gauge theories triggered by VEVs of either mesonic or baryonic operators.
As a warm-up, we explicitly discuss the counterpart of these flows in 4d gauge theories with N = 2 super-
symmetry by focusing on the A1 theory. As opposed to the N = 1 case, in cases with 8 supercharges we
need to solve a more involved PDE. In the 5d case the boundary conditions for such equation play a crucial
role in order to reproduce the expected spectrum.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.

1. Introduction

The basic version of the AdSd+1/CFTd correspondence equates gravity in an AdSd+1 back-
ground with a certain CFTd living on its boundary. On general grounds, the AdSd+1 space arises
as the near brane geometry of a stack of branes at the tip of a certain – typically singular – cone
whose radial coordinate becomes the AdSd+1 radius while its base encodes the details of the
CFTd . While the CFTd might have a rich structure of vacua, the AdSd+1 dual describes just the
trivial one where no operator is taking a VEV. In the following we will assume the CFTd to
have a moduli space of vacua. Hence, it is natural to probe its structure by moving among vacua
upon considering operator VEVs in the CFTd . On general grounds, operator VEVs will trigger
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RG flows from the original theory to a new IR fixed point. Conversely, the dual gravitational
description will not anymore be exactly AdSd+1 but only an asymptotically AdSd+1. In fact,
since we are considering moving on the moduli space of the CFTd rather than adding a defor-
mation, the asymptotics should be just the same. Then, the internal structure of the space as one
goes from the boundary to the bulk encodes the precise details of the RG flow, in particular which
operators are taking a VEV as well as their dimensions and other quantum numbers. Of course,
deep in the interior, one expects a different AdSd+1 throat to locally develop standing for the IR
fixed point theory.

In this paper we study aspects of these RG flows in theories with 8 supercharges in 4 and
5 dimensions. Our flows come in two broad types, namely one in which a meson-like operator
acquires a VEV, and another in which a baryon-like operator acquires a VEV. The former cor-
responds to locating the branes sourcing the geometry away from the tip of the singular cone –
hence we dub them singular flows – while the later correspond to blow-ups of the cone – we re-
fer to them as baryonic flows. As the name indicates, in the baryonic flows a baryonic symmetry
undergoes spontaneous breaking by the VEV. In the 4d case, similar flows have been considered,
mostly for the N = 1 case (see e.g. [1–6]). Here we consider in detail the N = 2 case, which
presents some particularities such as the need to solve a rather involved PDE. Furthermore, this
case serves as warm-up for the basically unexplored 5d case. In the later we find an interesting in-
terplay among boundary conditions which allows to find the correct dimensions for the operators
in the gravity side.

We will particularize our discussion to branes probing the A1 singularity. While the 4d case
corresponds to D3 branes probing C2/Z2 × C, the 5d case corresponds to D4 branes probing the
A1 singularity wrapped by an O8− plane with Nf D8. Then, the organization of the paper is as
follows. In Section 2 we study the gravitational aspects of d = 4 flows, both in the singular and
resolved cases. We then turn to the gauge theory description, discussing first the wavefunctions
on the A1 singularity. Through these we can explicitly identify the dual operators, both in the
singular and resolved case. The latter nicely fits as a broken baryon symmetry phase. Indeed,
using standard techniques, we identify both the VEV of the baryon condensate and the Gold-
stone boson. In Section 3 we turn to the 5d case. This case is a bit more subtle, as two possible
theories, due to the orientifold action, are possible. After describing them, we turn to study flows
in the singular and resolved spaces. A singularity in the background, already present in the trivial
AdS6 vacuum and with a clear string theory interpretation, plays a crucial role in selecting the
dimensions of the operators taking VEV. In the broken baryon symmetry case we also identify
the VEV of the condensate as well as the Goldstone boson. We finish in Section 4 with some
conclusions.

2. 4d N = 2 flows

In this section we study RG flows in a 4d N = 2 gauge theory through its holographic dual.
The simplest example is the so-called A1 gauge theory, which can be engineered by placing N

D3 branes probing a C2/Z2 × C singularity [7]. The CFT is a SU(N) × SU(N) gauge theory
with global non-R symmetry SU(2)M × U(1)B , being SU(2)M a mesonic global symmetry and
U(1)B a baryonic symmetry.

The types of flows which we will consider are triggered by motion on the moduli space,
that is, by the VEV of certain operators. On general grounds we can imagine two types of such
flows: one “mesonic” type where all operators acquiring a VEV are neutral under the U(1)B and
another “baryonic” type where an operator charged under the U(1)B acquires a VEV. The former

54 6.1. Gauge/gravity duality and RG flows in 5d gauge theories
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possibility corresponds to the case where the stack of D3 branes sourcing the geometry is located
away from the tip of the cone, while the later possibility corresponds to the blow-up of the cone.
We stress that in both cases the backgrounds corresponding to the flows asymptote to the same
geometry, namely that of the singular cone. Hence both geometries indeed correspond to motion
on the moduli space of the dual gauge theory – rather than turning on a deformation.

In the gravity side, we consider a stack of D3 branes probing the – possibly resolved –
C2/Z2 × C geometry (we collect some useful details on the geometry of the C2/Z2 singular-
ity in Appendix A). On general grounds we can write the standard Freund–Rubin ansatz for the
background

ds2 = h− 1
2 dx2

1,3 + h
1
2 ds2

6 , F5 = (1 + �)d
(
h−1) ∧ dx0 ∧ · · · ∧ dx3; (1)

where h is only a function of the internal coordinates and the internal space metric ds2
6 is

ds2
6 = dr2

1

f (r1)
+ r2

1

4
f (r1)(dψ + cos θdφ)2 + r2

1

4

(
dθ2 + sin2 θdφ2) + dr2

2 + r2
2 dχ2 (2)

being

f (r1) = 1 − c4

r4
1

. (3)

The equation of motion of the 5-form field strength yields to

d �6 dh = Cδ, (4)

being �6 the Hodge dual with respect the metric in the internal space, C a normalization constant
and δ the source term – in the end we have D3 branes somewhere in the cone. In the following
we will particularize this general equation to the cases of interest.

2.1. Flows on the singular cone

We consider a stack of D3 branes at a certain point away from the tip of the singular C2/Z2 ×
C in the internal space. The equation of motion (4) is just the Laplace equation in the internal
space, which can be written as

1

r3
1

∂r1

(
r3

1∂r1h
) + 4

r2
1

	h + 4

r2
1

∂2
ψh + 1

r2
∂r2(r2∂r2h) + 1

r2
2

∂2
χh = C√

det g6
δ(X − X0), (5)

where X is a generic label for the internal coordinates and X0 is the position where the stack is;
and where C is a constant related to the AdS5 radius L as

L4 = C
4 vol(S5/Z2)

. (6)

Besides

	 = 1

sin θ
∂θ (sin θ∂θ ) +

(
∂φ

sin θ
− cot θ∂ψ

)2

. (7)

Let us collectively denote the {ψ,θ,φ,χ} coordinates by ξ . Then the Laplacian reads schemati-
cally (	r1 +	r2 +	ξ)h = Cδ(r1 − r0

1 )δ(r2 − r0
2 )δ(ξ − ξ0), being 	k the appropriate Laplacians

along the Xk directions.
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Introduce now the functions ỸR,l,m = eimφeiRψJR,l,m(θ) satisfying1 [8]

	ỸR,l,m = −(
l(l + 1) − R2)ỸR,l,m. (8)

We can then construct

YI = einχ ỸR,l,m, (9)

where I collectively stands for all indices. As reviewed in Appendix B, in order to have a well-
defined solution, R, l,m ∈ Z (with l ≥ |m|, l ≥ |R|). Besides, since χ ∈ [0,2π ], it is clear that
n ∈ Z. Upon expanding

h =
∑

hI (r1, r2)Y
�
I (ξ0)YI (ξ), (10)

then the equation of motion becomes of the form
∑

(	r1 + 	r2 + f (r1, r2))hI Y
�
I (ξ0)YI (ξ) =

Cδ(r1 − r0
1 )δ(r2 − r0

2 )δ(ξ − ξ0). Since ỸR,l,m form a complete set of eigenfunctions, so do the YI .
Hence

∑
I Y �

I (ξ0)YI (ξ) = δ(ξ − ξ0). Thus, in order to find a solution of the complete equation
we need to demand (	r1 + 	r2 + f (r1, r2))hI = Cδ(r1 − r0

1 )δ(r2 − r0
2 ), which explicitly reads

1

r3
1

∂r1

(
r3

1 ∂r1hI

) − 4l(l + 1)

r2
1

hI + 1

r2
∂r2(r2∂r2hI ) − n2

r2
2

hI

= C
r3

1 r2
δ
(
r1 − r0

1

)
δ
(
r2 − r0

2

)
. (11)

In order to further proceed, it is useful to introduce polar coordinates as r1 = ρ cosα and r2 =
ρ sinα. In these coordinates the branes will be at {ρ0, α0}. It is easy to check that the regular
solutions are

h<
I = C

4l + 2n + 4

1

ρ4
0

(
ρ

ρ0

)2l+n

cos2l α sinn α ↔ ρ < ρ0,

h>
I = C

4l + 2n + 4

1

ρ4

(
ρ0

ρ

)2l+n

cos2l α sinn α ↔ ρ > ρ0. (12)

Collecting all the pieces, we can write the warp factor in the ρ > ρ0 region as

h = C
4ρ4

+
∑
l,n>0

C
4l + 2n + 4

1

ρ4

(
ρ0

ρ

)2l+n

YI (α0, ξ0)
�YI (α, ξ); (13)

while in the ρ < ρ0 region it reads

h = C
4ρ4

0

+
∑
l,n>0

C
4l + 2n + 4

1

ρ4
0

(
ρ

ρ0

)2l+n

YI (α0, ξ0)
�YI (α, ξ); (14)

being

YI (α, ξ) = cos2l α sinn αYI (ψ, θ,φ,χ). (15)

Note in particular that, as advertised above, the geometry asymptotes just like the singular cone.
Indeed h, in the ρ > ρ0 region, starts as ρ−4.

1 See the Appendix B for an introduction to these eigenfunctions.
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2.1.1. An alternative computation
The coordinates used in the previous section are adapted to the orbifold, as the A1 singularity

is explicitly separated from the C factor. However, upon a change of coordinates, the metric in
the internal space can be written as

ds2
6 = dρ2 + ρ2ds2

S5/Z2
. (16)

The equation for h is just

1

ρ5
∂ρ

(
ρ5∂ρh

) + 1

ρ2
	S5/Z2

h = Cδ, (17)

being 	S5/Z2
the Laplacian on the S5/Z2. Since that space is locally identical to S5, the equation

of motion looks exactly like the S5 one. Denoting the S5 angular coordinates by ξ̄ and setting

h =
∑

hI (ρ)Y�
I (ξ̄0)YI (ξ̄ ), (18)

with YI the S5 spherical harmonics, the hI (ρ) eom is

1

ρ5
∂ρ

(
ρ5∂ρhI

) − �(� + 4)

ρ2
hI = C

ρ5
δ(ρ − ρ0); (19)

whose solution is

h<
I = C

4 + 2�

1

ρ4
0

(
ρ

ρ0

)�

↔ ρ < ρ0,

h>
I = C

4 + 2�

1

ρ4

(
ρ0

ρ

)�

↔ ρ > ρ0. (20)

We have not yet taken into account the orbifold. Prior to orbifolding, we see that modes
are classified into representations of spin � of SO(6). Decomposing such representations into
U(1)χ × SU(2)M × SU(2)R , the orbifold selects a subset of representations with even spin, that
is � = 2l + n, where 2l stands for the orbifold, hence recovering the results in the previous anal-
ysis.

2.2. Flows on the resolved cone

We now consider the resolution of the cone (see Appendix A). Then Eq. (4) becomes

r−3
1 ∂r1

(
r3

1 f ∂r1h
) + 4

r2
1

	h + 4

r2
1 f

∂2
ψh + 1

r2
∂r2(r2∂r2h) + 1

r2
2

∂2
χh = Cδ, (21)

where we collectively denote the sources by δ and where

	 = 1

sin θ
∂θ (sin θ∂θ ) +

(
∂φ

sin θ
− cot θ∂ψ

)2

. (22)

Just as in the singular case we can write

h =
∑
I

hI (r1, r2)Y
�
I (ξ0)YI (ξ). (23)

Hence, the equation for hI (away from the sources) is
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r−3
1 ∂r1

(
r3

1f ∂r1hI

) − 4(l(l + 1) − R2)

r2
1

hI − 4R2

r2
1 f

hI + 1

r2
∂r2(r2∂r2hI ) − n2

r2
2

hI = 0. (24)

Since the D3 branes will be located at r1 = c and r2 = 0, where the χ circle and the ψ circle
shrink, it’s reasonable to truncate to R = n = 0. Then, the equation to solve is

1

r3
1

∂r1

(
r3

1 f ∂r1hI

) − 4l(l + 1)

r2
1

hI + 1

r2
∂r2(r2∂r2hI ) = 0. (25)

Let us now switch to the {ρ,α} coordinates, so that the above equation becomes(−4l(1 + l)ρ4hI sec(α)2 tan(α) + (
ρ4 − (

3ρ4 + c4(2 + cos(2α)
)

sec(α)4) tan(α)2)∂αhI

+ tan(α)
((

ρ4 − c4 sec(α)2 tan(α)2)∂2
αhI + ρ

((
5ρ4 + c4 sec(α)2)∂ρh(ρ,α)

+ 2c4 sec(α)2 tan(α)∂α∂ρhI + ρ
(
ρ4 − c4 sec(α)2)∂2

ρhI

)))
tan(α) = 0. (26)

We have not been able to solve exactly the previous equation. Nevertheless, we can study its
large-ρ asymptotic properties. To that matter, we set to first order

hI =
(

c

ρ

)a

f (α), (27)

and expand in powers of c
ρ

. The leading term determines f (α) as(−4a + a2 − 2m2 + (−4 + a)a cos(2α)
)
f sinα + 2

(
cos(3α)f ′ + cos2 α sinαf ′′) = 0;

(28)

where for simplicity we have set m2 = 4l(l + 1). The solution to this is

f = cos−1+
√

1+m2
α 2F

1
[

3

2
− a

2
+

√
1 + m2

2
,

− 1

2
+ a

2
+

√
1 + m2

2
,1 +

√
1 + m2, cos2 α

]
. (29)

Regularity at α = 0 demands

a = 4 +
√

1 + m2 − 1 + 2q = 4 + 2l + 2q, (30)

for q ∈ Z. This integer arises since regularity at α = 0 demands a certain �(x)−1 function to
vanish, which happens for x = −q . This integer should not be confused with the n in Section 2.1,
as the later is related to the U(1) charge conjugate to χ , while q is not related to any charge.

We can directly read off the dimension of the modes from here, which is just a−4. Hence 	 =
2l+2q . Note that, since a = 4+	, we again have that, as promised, the geometry asymptotically
becomes just the same as the singular cone. This explicitly reflects the fact that also the blow-up
geometry corresponds to a flow triggered not by a deformation of the gauge theory but by a VEV.

2.3. Gauge theory

The AdS/CFT duality implies that the above geometries describe two different RG flows
along which certain operators OI acquire a VEV. Such operators correspond to the wavefunctions

〈OI 〉 = ρ2l+mn
0 YI (ξ0)

�, (31)
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being m = 1 for the singular case and m = 2 for the resolved case.
In order to identify the gauge theory operators corresponding to the YI (ξ0)

�, let us first turn
to the algebraic geometry of the C2/Z2 × C. Introducing complex coordinates zi related to the
real ones as

z1 = ρ cosαei
ψ+φ

2 cos
θ

2
, z2 = ρ cosαei

ψ−φ
2 sin

θ

2
, z3 = ρ sinαeiχ , (32)

we have that the C2/Z2 ×C space is defined by the zi coordinates together with the identification
(z1, z2) ∼ (−z1,−z2).

Let us strip off the C factor and concentrate on the C2/Z2 space. In complex coordinates,
the metric is simply ds2

A1
= dz1dz̄1 + dz2dz̄2. This is invariant under SU(2)M × SU(2)R . The

SU(2)M symmetry acts on the (z1, z2) doublet, while the SU(2)R symmetry acts on the (z1, z̄2)

doublet. Both these actions are compatible with the orbifold projection for this Z2 case – since it
acts diagonally by a −1 on either doublet.

Let us first forget about the orbifold projection. Out of the SU(2)R , only its U(1)R subgroup
is manifest. Hence, it is useful to consider the manifest symmetry subgroup SU(2)M × U(1)R .
The charges of the {zi, z̄i} under its U(1)M × U(1)R Cartan are

z1 z2 z̄1 z̄2

U(1)M
1
2 − 1

2 − 1
2

1
2

U(1)R 1 1 −1 −1

(33)

Following [1], we consider forming the states

∣∣∣∣n2 ,m

〉
=

√
1

( n
2 + m)!( n

2 − m)! z
n
2 +m

1 z
n
2 −m

2 ,

∣∣∣∣n2 ,m

〉
=

√
1

( n
2 + m)!( n

2 − m)! z̄
n
2 +m

2 z̄
n
2 −m

1 . (34)

Here m ∈ [−n
2 , n

2 ]. Such states have the following charges

|n
2 ,m〉 |n

2 ,m〉
U(1)M m m

U(1)R n −n

(35)

Thus these states are the states in a spin l = n
2 representation of SU(2) – hence the labels of the

states. On the other hand, for the |n
2 ,m〉, since l = n

2 and R = n, it is clear that n
2 = l

2 + R
4 , while

for the |n
2 ,m〉, since l = n

2 and R = −n, n
2 = l

2 − R
4 . Hence, we can label the states as

∣∣∣∣n2 ,m

〉
=

∣∣∣∣ l

2
+ R

4
,m

〉
,

∣∣∣∣n2 ,m

〉
=

∣∣∣∣ l

2
− R

4
,m

〉
. (36)

With these we can now construct arbitrary SU(2)M and U(1)R states. These are labeled by the
SU(2)M quantum numbers {l,m} and by the R charge as |l,m;R〉, and are constructed as

|l,m;R〉 =
∑

C
{l,m}
{{ l

2 + R
4 ,m1},{ l

2 − R
4 ,m2}}

∣∣∣∣ l

2
+ R

4
,m1

〉∣∣∣∣ l

2
− R

4
,m2

〉
, (37)

Articles 59



A. Pini, D. Rodríguez-Gómez / Nuclear Physics B 884 (2014) 612–631 619

where C
{j,m}
{{j1,m1},{j2,m2}} are the top spin Clebsch–Gordan coefficients. One can then easily check

that the states |l,m;R〉, when written in terms of the real coordinates, become just the ỸR,l,m

functions.
We are still not done, as we need to recover the C factor. It is parametrized by the complex

coordinate z3, and the metric is ds2
C = dz3dz̄3, which is obviously invariant under a U(1)χ

symmetry. The relevant wavefunctions are simply, up to a normalization, |n〉 = zn
3 , which have

U(1)χ charge n. It then follows that

YI = |n〉|l,m;R〉. (38)

Note that zn
3 adds a factor of sinn α, so that the YI recover the expression of the wavefunctions

obtained from the gravity side.
We still need to consider the effect of the orbifold projection. Upon acting with the orbifold,

the states in Eq. (34) pick a factor (−1)±n. Hence, the surviving states are those for which n is
even. This translates into the fact that the only allowed states are those with even R.

We now turn to the gauge theory. It is a N = 2 SU(N) × SU(N) gauge theory with 2 hy-
pers which can be broken in N = 1 language into two bifundamentals in the (�, �̄) and two
bifundamentals in the (�̄,�). The W is

W = φ1AiBj ε
ij + φ2BiAjε

ij . (39)

The theory shows an SU(2)M symmetry rotating Ai and Bi . Besides, it has a U(1)r × SU(2)R
R-symmetry. The Cartan of the non-abelian factor of the R-symmetry will be denoted U(1)R ,
while the Cartan of the SU(2)M will be denoted by U(1)M . The charges of each field under such
Cartans are

φ1 φ2 A1 A2 B1 B2

U(1)M 0 0 1
2 − 1

2
1
2 − 1

2

U(1)R 0 0 1 1 1 1
U(1)r

2
3

2
3

2
3

2
3

2
3

2
3

(40)

Note that we can combine U(1)R and U(1)r into a new U(1)χ such that only the φi are charged.
The F-terms are

A1B2 = A2B1, B1A2 = B2A1, Biφ1 = φ2Bi, φ1Ai = Aiφ2. (41)

Let us start considering operators purely in the Higgs branch, i.e. those made out of Ai and Bj

with no adjoints. Imposing the F-terms, we can construct the following three operators u = A1B1,
v = A2B2 and w = A1B2 subject to the relation uv = w2 defining the C2/Z2 singularity. We can
solve this relation introducing u = z2

1, v = z2
2 and w = z1z2. Clearly (z1, z2) ∼ −(z1, z2). Hence

this way we have an explicit mapping between the states constructed above and the operators in
field theory, which we will collectively denote by OI .

Denoting by J
M,R
3 the third component of the SU(2)M,R , one can check that the states with

the maximal J
M,R
3 are of the form z2l

1 , which becomes (A1B1)
2l . Lower J

M,R
3 operators generi-

cally involve both zi and z̄i , and hence correspond to non-holomorphic operators. However, they
can be thought as descendants obtained by repeatedly acting with SU(2)M,R raising/lowering op-
erators, acting on the doublets (Ai,Bi) and (Ai, εijB

†
j ) respectively. Hence, every operator can

be regarded as belonging to the same multiplet as a purely holomorphic operator, hence having
the same dimension equal to the classical one.
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Let’s now look at operators in the Coulomb branch. These will involve insertions of φn
i , and

hence will have n charge under U(1)χ . Note also that the theory has a Z2 symmetry exchanging
the two gauge groups while at the same time doing

φ1 ↔ φ2, Ai ↔ Bi. (42)

This is just the quantum symmetry of the orbifold. We can construct operators which are not
invariant under the symmetry. Consider for example

O+ = Trφ2
1 + Trφ2

2 , O− = Trφ2
1 − Trφ2

2 . (43)

Clearly, only O+ is invariant, while O− picks a minus sign. As only twisted sector states are
charged under the quantum symmetry of the orbifold, we must conclude that the O− field comes
from the twisted sector. On the other hand, it is natural to expect that the operators capturing the
motion of the branes are neutral under this symmetry. This naturally leads to consider the branch
where φ1 = φ2, so that φn naturally corresponds to the zn

3 above. In fact, the U(1)χ charge is
precisely the expected n.

2.3.1. The singular case
Since in the singular flows we placed the branes away from the tip of the singular cone, it is

natural to expect that no twisted sector field will get a VEV. Hence, let us consider the branch
of the moduli space which freezes twisted sector fields by setting φ = φ1 = φ2. Then, the F-term
relations imply that φ1,2 commute with Ai and Bi . Therefore a generic operator can be written as
TrφnOI . This exactly mimics the structure of the wavefunctions which we have found, as indeed
the |n〉 state corresponds to the φn. Such operators come in spin l representations of SU(2)M and
have dimension 2l + n, exactly as the modes found in supergravity. Thus, since only mesonic
fields take a VEV, the dual gauge theory is in a mesonic branch.

Note that we could place the stack of branes at the origin of the C plane, which would force
us to impose n = 0. Then the operators taking a VEV are purely mesonic operators on the Higgs
branch, which is then isomorphic to C2/Z2. Alternatively we could place the branes at the origin
of the C2/Z2, which would demand to set l = 0. Hence the operators taking a VEV would be
those of the form φn.

2.3.2. The resolved case and baryonic symmetry breaking
Recall that in this case we truncated R = 0 and n = 0. Hence the wavefunctions for the modes

can be translated into operators following the general discussion above upon setting R = 0 and
n = 0. The dimension of these operators is 	 = 2l + 2q . Setting for the moment q = 0, we
see that we get a tower of operators with spin l under SU(2)M and neutral under SU(2)R –
because R = 0. The lowest operator is l = 1, which has dimension 2 and includes, as its m = 0
component, the familiar U ∼ A

†
i Ai − BiB

†
i + [φ1, φ̄1] − [φ2, φ̄2] operator, which is part of the

baryonic current multiplet, just as in [1], thus supporting the claim that the resolved background
corresponds to a spontaneously broken baryonic symmetry phase.

For higher l modes one can simply use the dictionary in our general discussion above and
find the corresponding operator OI . In addition, analogously to the conifold case [1], one can
check that going one order further in c

ρ
, the dimension of the operator is 	 + 2, which suggests

that these higher order terms corresponds to insertions of powers of U , that is, to operators of the
form UnOI for n = 1,2, · · ·.

Let us now turn to the integer q . Again the wavefunctions can be read off from our general
discussion just by setting R = 0 and n = 0. It thus seems that there is no room for the extra
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integer q . Nevertheless one can imagine constructing an operator of the form T ∼ φ1φ
†
1 − φ2φ

†
2

which is only charged under U(1)r and has dimension 2, at least classically. Even though this is
a non-chiral field, based on the findings on the holographic dual, we conjecture that the classical
dimension continues to hold, so that the modes with higher q correspond to insertions of this
operator, that is, to T qOI . Note that this is a twisted sector field, which fits naturally within the
blow-up scenario.

As we have argued, among the lowest dimension operators taking a VEV we find the scalars
in the conserved current multiplet. Hence it is natural to identify this background with a phase
of the gauge theory where the baryonic symmetry has been spontaneously broken by giving a
VEV to a single chiral field, which, with no loss of generality we can take as A1 = c1. This
gives a VEV to a dimension 	 = N baryonic operator BA = AN

1 ∼ cN . Such VEV is captured
holographically by the so-called baryonic condensate, namely an Euclidean D3 brane wrapping
X = {r1, r2,ψ,χ}. Its DBI action is

SDBI = T3

2

∫
X

r1r2h. (44)

Plugging in the expression for the warp factor we find2

SDBI = T3

2
(2π)2

∑
l

Ỹ �
0,l,0(ξ0)Ỹ0,l,0(ξ)

∫
r1r2hl(r1, r2). (45)

The integrand scales asymptotically as ρ−1−2l . Hence all the l �= 0 terms will give some finite ρ

integral, while the l = 0 will give a logarithmically divergent integral which has to be cut-off at
some ρc. So we can separate the l = 0 term and write

SDBI = T3

2
(2π)2

∫
r1r2h0(r1, r2)

+ T3

2
(2π)2

∑
l>0

Ỹ �
0,l,0(ξ0)Ỹ0,l,0(ξ)

∫
r1r2hl(r1, r2). (46)

It is easy to show that the divergent term diverges like SDBI = N logρc, being ρc a UV cut-off.
This corresponds to the VEV of dimension 	 = N operator, as expected for a baryon VEV.

Alternatively, we can consider a D3 brane wrapping the blown-up S2. Its action is simply

SDBI = −T3c
2π

∫
dx0dx1. (47)

This finite-tension object, which looks like a cosmic string from the field theory perspective and
is “electric–magnetic” dual to the baryon condensate, would source a δC4 such that

δF5 = (1 + �)da2 ∧ W, (48)

being W a 2-form in the internal space which, for r ∼ c, becomes the volume form of the blown-
up cycle while a2 is a 2-form in the Minkowski directions whose existence, along the lines in [4],
we assume here. The δF5 then contains a piece with δF5 ⊃ �4da2 ∧(h�6 W). We can locally write

2 Note that one can re-write this warped volume in terms of the Kähler form of the cone, finding SDBI = T3
4

∫
X hω2

2! ,
and hence adapt the proof in [8] to the CY3 case to conclude that VEV of the baryon condensate will have the expected
form.
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�4da2 = dp, so a local integration is δC4 = p(h �6 W). Note that �6W is a 4-form transverse, in
the internal space, to the blown-up 2-cycle, that is, precisely along the directions wrapped by the
baryonic condensate brane. Thus, its WZ action is of the form eiT3p

∫
h�6W , that is, becomes the

phase of the VEV of the baryon. Then the Minkowski scalar p is naturally identified with the
Goldstone boson of the broken global symmetry. Furthermore, the equations of motion of δF5
demand that p satisfies d �4 dp = δ(x −x0) begin x0 the position of the cosmic string – D3 brane
– in the Minkowski, thus showing how the Goldstone boson is an axionic field winding around
the defect arising from spontaneous symmetry breaking [4].

3. 5d RG flows

We now turn to the 5d case. Naively, gauge theories in 5d are non-renormalizable. Neverthe-
less it was shown in [9] that, under certain circumstances, upon appropriately choosing gauge
group and matter content they can be at fixed points. As these theories admit a large N limit [10],
it is natural to look for a gravity dual.

For the class of theories discussed in [9] the gravity dual was found in [11] by considering Nf

D8 branes on top of an O8− probed by N D4 branes. If Nf < 8, and upon tuning the dilaton to
diverge on top of the 8-brane stack, the near brane geometry becomes AdS6 × Ŝ4, being Ŝ4 half of
a 4-sphere due to the left-over of the orientifold projection in the near brane region. On the other
hand, the dual field theory is a USp(2N) gauge theory with one antisymmetric hypermultiplet.

As opposed to lower dimensionalities, AdS6 geometries are very scarce [12].3 However, the
basic AdS6/CFT5 duality can be naturally extended by orbifolding the internal space [15]. The
geometry becomes AdS6 × Ŝ4/Zk , while the dual fixed point theory is a quiver gauge theory
whose details depend on whether k is even or odd and, in the former case, how exactly the
orientifold projection acts.

In order to ease the discussion, let us concentrate in the following on the case of a Z2 orbifold
and set, for simplicity, Nf = 0. As discussed in [15], there are two possible orientifold projec-
tions, depending on their action on the twisted sector of the orbifold projection. In the so-called
vector structure (VS) case the orientifold projection keeps a 5d hypermultiplet from the orbifold
twisted sector so that the resulting theory is a USp(2N) × USp(2N) gauge theory with bifun-
damental matter. In turn, the so-called no-vector structure (NVS) projection keeps a 5d vector
multiplet and leads to a SU(2N) gauge theory with 2 antisymmetric hypermultiplets.

Both theories correspond to N D4 branes probing an O8− wrapping C2/Z2 and are dual to
exactly the same AdS6 × Ŝ4/Z2 background. Reassuringly, in both cases the classical flavor-blind
sector of the Higgs branch – probed by dual giant gravitons spinning in Ŝ4/Z2 – is precisely the
A1 singularity [16] (see also [17] for further holographic checks regarding operator counting in
orbifold theories).

We are interested in exploring flows in these theories triggered by VEVs of operators. Just as
in the 4d case discussed in the previous section, in the gravity dual we can imagine either moving
the stack of branes sourcing the geometry away from the orbifold singularity or alternatively
blowing up the singularity. Note that, on general grounds, if the singularity is blown-up a brane
behaving as a cosmic string will be allowed [15]. Hence exactly as in the 4d case it is natural
to expect the flows in the singular cone to be triggered by mesonic VEVs while those on the
resolved cone to be triggered by baryonic VEVs. However, while the NVS has a U(1)B baryonic

3 See however [13,14] for new AdS6 geometries.
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symmetry the VS case does not. This is inherited from the orientifold projection, which in the
VS case removes the blow-up mode for the orbifold singularity while keeps it in the NVS case.
Hence, even though the same AdS6 × Ŝ4 background is dual to both the VS and the NVS theories,
the spectrum of allowed fluctuations will be different. In particular the resolution mode is only
present in the NVS case. Thus, when dealing with flows in the resolved conifold, we must refer
to the NVS case, where the blow-up mode is allowed and the dual CFT has a U(1)B symmetry.

On general grounds, the geometry sourced by N D4 branes probing a stack of Nf D8 branes
on top of an O8− plane must be of the form

ds2 = Ω2(z)
{
h− 1

2 dx2
1,4 + h

1
2
[
ds2

4 + dz2]}, (49)

where

Ω(z) =
(

3

2
mz

)− 1
6

. (50)

In addition to the Romans mass F0 = m, there is a 6-form field strength given by the standard
Freund–Rubin ansatz

F6 = d
(
h−1)dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dx4. (51)

The equations of motion of the 6-form fix h to satisfy

d
(
Ω−2 �5 dh

) = Cδ; (52)

where �5 is the Hodge-star operator with respect to the ds2
4 + dz2 metric, C a normalization

constant proportional to N and δ a source term supported at the location of the D4 branes.
The ds2

4 stands for the metric on the transverse space to the D4s inside the 8-branes. In the
singular case it is just the singular A1 space. Locating the D4s at the tip we obtain the warped
AdS6 × Ŝ4/Z2 geometries of [15]. The warp factor of the AdS6 is a function of the azimuthal
angle α of the Ŝ4. Moreover, one can see that both curvature and dilaton diverge at the north pole
of the Ŝ4 when α = 0, which is then identified with the location of the orientifold. This should
expected since, in order to find the fixed point theory, we need to remove the bare YM coupling,
which in the gravity side amounts to tune the dilaton to diverge on top of the orientifold plane.4

Note that, even though the geometry blows-up at α = 0 and in principle the full string theory
should be used to describe the physics there, at least certain quantities are well-defined in the
supergravity solution. In fact, the part of the Higgs branch not involving fundamental fields is
well-captured by giant gravitons spinning at α = 0 [16].

In the following we will be interested on moving the branes away from the singularity as well
as on replacing the singular A1 space by its resolution. On general grounds we expect the first
type of geometries to correspond to RG flows triggered by mesonic VEVs – and hence possible in
both the VS and NVS cases – while the second ones to correspond to flows triggered by baryonic
VEVs. Of course, as described above, the latter can only happen in the NVS case.

3.1. Flows on the singular space

Let us concentrate on flows on the singular space. The equation of motion for h is

4 In fact, due to string duality, this suggests the emergence of enhanced global symmetries in these fixed point theories
[9].
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1

r3
∂r

(
r3∂rh

) + 1

z
1
3

∂z

(
z

1
3 ∂zh

) + 4

r2
	h + 4

r2
∂2
ψh = Cδ. (53)

We localize the branes at a given point ξ0 in the angular coordinates ξ = {ψ,θ,φ}. Following the
same procedure as above we expand

h =
∑

hI (r, z)Ỹ
�
I (ξ0)ỸI (ξ), (54)

where the ỸI functions are the eigenfunctions of the 	 Laplacian introduced above. Note that
now we do not have the circle χ – the transverse space to the A1 singularity in the internal
directions is just a line. Hence our multi-index I only involves {R, l,m}. We find the following
equation for the function hI

1

r3
∂r

(
r3∂rhI

) + 1

z
1
3

∂z

(
z

1
3 ∂zhI

) − 4l(l + 1)

r2
hI = Cδ. (55)

It is useful to switch to polar coordinates in the {r, z} plane defining r = ρ cosα and z = ρ sinα.
We then find

h<
I = 1

ρ
10
3

(
ρ

ρ0

)a

cos2l α 2F
1
[
−a

2
+ l,

5

3
+ a

2
+ l,2 + 2l, cos2 α

]
↔ ρ < ρ0,

h>
I = 1

ρ
10
3

(
ρ0

ρ

)a

cos2l α 2F
1
[
−a

2
+ l,

5

3
+ a

2
+ l,2 + 2l, cos2 α

]
↔ ρ > ρ0. (56)

As described above, the north pole of the S4 has to be treated with care in this case, as both
dilaton and curvature diverge there. Hence, we need to carefully discuss the boundary conditions
to be imposed on α. To that matter, let us consider a generalized version of the eom in the singular
case

1

r3
1

∂r1

(
r3

1∂r1ϕ
) + 1

ra
2
∂r2

(
ra

2 ∂r2ϕ
) − 4l(l + 1)

r2
1

ϕ = 0, (57)

so that a = 1 is the eom for the AdS5 case and a = 1
3 the eom for the AdS6 case.

The equation depends on the eigenvalue l. We can consider two copies of the equation for
modes for different eigenvalues l1,2. Manipulating them, we find

∂r1

(
r3

1 ra
2 (χ∂r1ϕ − ϕ∂r1χ)

) + ∂r2

(
r3

1 ra
2 (χ∂r2ϕ − ϕ∂r2χ)

)
= [

4l1(l1 + 1) − 4l2(l2 + 1)
]
r1r

a
2 ϕχ. (58)

So defining the “current”

ji = r3
1 ra

2 (χ∂ri ϕ − ϕ∂ri χ), (59)

we can write

∂ri jri = [
4l1(l1 + 1) − 4l2(l2 + 1)

]
r1r

a
2 ϕχ. (60)

Hence we find a good candidate for internal product for our wavefunctions, namely

〈χ |ϕ〉 ∼
∫

r1r
a
2 χϕ, (61)

provided we impose boundary conditions such that
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∫
∂ri jri =

∫
∂

jri dri = 0. (62)

We will be interested on normalizable wavefunctions for which the above inner product is well-
defined. This can be done by demanding the current to vanish on the α = 0 singularity. One can
easily check that this is satisfied provided that a = 2l, so that finally, and upon fixing the correct
normalization, we have

h<
I = C

10
3 + 4l

1

ρ
10
3

0

(
ρ

ρ0

)2l

cos2l α ↔ ρ < ρ0,

h>
I = C

10
3 + 4l

1

ρ
10
3

(
ρ0

ρ

)2l

cos2l α ↔ ρ > ρ0. (63)

The leading term in the asymptotic region is ρ− 10
3 . Recalling that the AdS6 radial coordinate is

� = ρ
2
3 it is easy to see that, together with the contribution from the overall Ω2 warping, we

recover, in the asymptotic region, the warped AdS6 × Ŝ4/Z2 geometry. This strongly suggests
that this geometry again corresponds to a flow in the original gauge theory triggered by a VEV.

We could again check our results against a computation performed upon changing from the
beginning into polar coordinates. Just as in the AdS5 case one easily obtains the same spectrum
upon imposing the appropriate quantization conditions on the quantum numbers.

3.2. Flows on the resolved space

We now change the ds2
4 metric for that of the Eguchi–Hanson space with resolution parame-

ter c. As stressed above, c �= 0 is only possible in the NVS case, as the VS projection kills this
mode. The equation for h is now

1

r3
∂r

(
r3f ∂rh

) + 1

z
1
3

∂z

(
z

1
3 ∂zh

) + 4

r2
	h + 4

r2f
∂2
ψh = Cδ. (64)

Since we will place our stack of D4 branes on the blow-up S2 where the ψ circle shrinks, we
will set R = 0. Then, expanding h = ∑

I hI Ỹ
�
I (ξ0)ỸI (ξ), we find an equation for hI in the {r, z}

plane. As in the AdS5 case, this equation is fairly complicated, so we will content ourselves with
the analysis of the asymptotic properties. Switching to the {ρ,α} polar coordinates we write

hI =
(

c

ρ

)a

f (α). (65)

We then find the equation(−10a + 3a2 − 6m2 + a(−10 + 3a) cos(2α)
)
f sinα

+ cosα
(
2
(−4 + 5 cos(2α)

)
f ′ + 3 sin(2α)f ′′) = 0, (66)

where m2 = 4l(l + 1). The solution to this equation is

f = cos2l α 2F
1
[

5

3
− a

2
+ l,

a

2
+ l,2 + 2l, cos2 α

]
. (67)

Demanding the current to vanish at α = 0 sets
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a = 10

3
+ 2l. (68)

Hence

hI = 1

ρ
10
3

(
c

ρ

)2l

cos2l α. (69)

Therefore, when written in the � radial coordinate and taking into account the overall warp
factor Ω , this geometry is again asymptotically the same AdS6 × Ŝ4/Z2 cone, thus showing that
it must correspond to a VEV deformation of the original – recall, NVS – CFT.

3.3. Gauge theory

Let us now turn to the gauge theory operators. Borrowing the discussion in Section 2.3, it is
clear that the ỸI wavefunctions must correspond to the states in Eq. (37).

On the other hand, the two gauge theories relevant to our discussion are, respectively,
a USp(2N) × USp(2N) gauge theory with bifundamental matter in the VS case and a SU(2N)

theory with an antisymmetric hypermultiplet in the NVS case. In both cases we can add up to 8
fundamental hypermultiplets. Nevertheless our wavefunctions do not involve any flavor quantum
number, signaling that the geometry is blind to flavor degrees of freedom. Recall that in [16] the
geometry was not able to capture operators on the Higgs branch involving fundamental matter,
since the open string sector corresponding to D8–D8 strings which would be responsible for
those operators is just not present in the near brane limit geometry (this is a generic feature when
including flavor as non-compact larger branes into the gauge/gravity duality, as the decoupling
limit freezes such modes). Hence it comes as no surprise that in this case the same happens.
Because of this we will set Nf = 0.

For future reference, let us spell the symmetries in each case and the representations of each
field. In the VS case the global non-R symmetry is SU(2)M × U(1)I1 × U(1)I2 , being SU(2)M
a global mesonic symmetry acting on the hypermultiplet. Besides, U(1)I1,2 are the topological
symmetries associated to each gauge group. On the other hand, in the NVS case, the global non-R
symmetry is SU(2)M × U(1)B × U(1)I , where again SU(2)M is a global mesonic symmetry
acting on the antisymmetric hypermultiplet. Besides U(1)B is a baryonic symmetry under which
one complex doublet in the antisymmetric hyper – call it A1 – has charge 1 and the other – call
it A2 – has charge −1. Finally U(1)I is the topological symmetry associated to the gauge group.
In addition, in both cases there is a global SU(2)R symmetry.

It is important to recall that the correct AdS coordinate is �. Hence the modes both in the
singular and resolved cases scale like �3l , and thus correspond to 	 = 3l operators. Note that
indicates no large anomalous dimension, even though, just as in the 4d case, some of the operators
taking VEV will be non-chiral (in the 4d sense). This is again due to the combination of SU(2)M
and SU(2)R , which allows to place any operator in the same multiplet as a chiral operator.

3.3.1. The singular case
As described above, the geometries corresponding to placing the stack away from the singular-

ity correspond to flows triggered by VEVs of mesonic operators. These flows exist in both VS and
NVS theories, which, consequently, have an identical spectrum of mesonic operators [15–17]. In
fact, in both cases the mesonic moduli space is classified under the SU(2)M × SU(2)R global
symmetry, common to both VS and NVS. Using this, since the ỸI correspond to the states in
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Eq. (37) whose quantum numbers under all relevant symmetries are known, it is easy to trans-
late among fluctuations and their corresponding operators – basically those listed in [16,17] –
finding a perfect matching. Exactly as in the 4d case, the SU(2)R ×SU(2)M allows to relate non-
holomorphic operators to holomorphic ones, hence ensuring that the dimensions should equal
the classical ones. Note in particular that SU(2)M spin l operators involve 2l scalars – which in
5d are dimension 3

2 , and hence they have the expected 	 = 3l.
Note that the operators so constructed belong to the Higgs branch. As opposed to the case

of 4d gauge theories, in 5d the R-symmetry does not contain a U(1)r . In particular this stands
for the fact that the scalar φ in the 5d vector multiplet is a real field. Hence the n quantum
number analogous to that in Section 2.1 is absent. Nevertheless one might wonder about operators
including q powers of φ, which in this case seems to be absent. Indeed, the boundary conditions
setting the current at α = 0 to zero don’t allow for any other quantum number in any similar
way to the q in Section 2.2. In support of this, analogously to Section 2.1.1, one can repeat the
computation in polar coordinates from the beginning and make use of angular eigenfunctions on
the S4 to impose the correct quantization conditions. However, on the S4 the eigenfunctions are
classified into SO(5) reps. The two Cartans of SO(5) must correspond to l3 and R, so there is no
room for another quantum number, in agreement with the discussion above.

3.3.2. The resolved case
We now turn to the resolved case. As emphasized above, the resolution mode is only allowed

in the NVS case. Hence, the fluctuations we have obtained correspond to the states in Eq. (37)
upon setting R = 0.

The lowest-dimensional operators taking a VEV is a triplet of scalars involving U ∼ A1A
†
1 −

A2A
†
2 at m = 0. These correspond to the scalars in the U(1)B conserved current multiplet as

expected for a flow triggered by a baryonic VEV.
With no loss of generality we can assume a VEV for the A1 field proportional to c. Then, the

baryon-like operator B = AN
1 of dimension 	 = 3

2N would acquire a VEV. On the other hand,
we can consider an Euclidean D2 brane wrapping X = {r, z,ψ}, which stands for the baryonic
condensate [15]. The DBI action for the brane is

SDBI = i
T2

2
(2π)

(
2

3m

)− 1
3
∫
X

rz
1
3 h. (70)

Asymptotically the integrals for the hI modes are∫
dρ ρ−1−2l (71)

so again the l > 0 yield finite integrals, while the l = 0 term leads to a logarithmically divergent
term which has to be regulated by a cut-off. It is easy to see that, upon using the correct AdS
radial coordinate �, the leading divergence goes like 3

2N log�c, being �c the UV cut-off. Hence
this corresponds to the dimension of the expected baryon operator VEV, namely 	 = 3

2N . Fur-
thermore, we can consider a D4 brane wrapping the blown-up S2 and describing a cosmic string
in the field theory directions – which is a (1 + 2)-dimensional defect in 5d. Its DBI action is

SDBI = −T4

∫
e−ΦΩ5h− 1

4
c2

4
sin θ = −T4c

2π

∫
dx0dx1dx2. (72)
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So we find a finite-tension object “electric–magnetic” dual to the baryon condensate. The δF6
sourced by the brane is of the form

δF6 = da3 ∧ W ; (73)

being W a closed 2-form in the internal space which asymptotes to the volume form of the
blown-up S2. The dual δF4 is of the form

δF4 = �5da3 ∧ (
Ω−2h �internal W

)
. (74)

Writing �5da3 = dp, a local integration is

δC3 = p ∧ (
Ω−2h �internal W

)
. (75)

It is clear that (Ω−2h�internal W) threads the cycle wrapped by the baryonic condensate, so that its
WZ action is proportional to ip. Therefore we see that indeed the baryon condensate captures the
baryonic VEV including the Goldstone boson of the broken symmetry. The D4 brane is nothing
but the cosmic string around which the Goldstone boson of the – spontaneously broken – baryon
symmetry winds.

4. Conclusions

In this paper we have studied geometries dual to flows triggered either by mesonic and bary-
onic VEVs in gauge theories with 8 supercharges in 4 and 5 dimensions. As opposed to the N = 1
flows well studied in the literature such as e.g. [1], in this case we need to solve an involved PDE,
whose general solution in the resolved cases we have not been able to find.

At the bottom of the geometries, close to the source branes, we expect an AdS throat to
emerge, corresponding to the IR fixed point. Unfortunately, due to the lack of explicit solution to
the PDE in the resolved cases, we have not been able to explicitly show it.

Quite remarkably, even though some of the operators taking VEVs in our flows are non-chiral,
the dimensions are those of the free field theory. As explained above, this is due to the SU(2)M ×
SU(2)R symmetry, whose combination allows to regard any non-chiral operator as in the same
multiplet of a chiral operator. It is interesting to note that this seems to be a property of the Z2
orbifold theories, as for a generic Zp orbifold the mesonic symmetry is just U(1)M . We leave a
detailed study for the future.

In the 5d case the singularity at α = 0 plays an important role in providing the correct quanti-
zation conditions. Indeed, without such conditions one seems to obtain regular modes elsewhere
for an arbitrary a – basically the scaling dimension of the dual operator, since we consider
hI ∼ ρ−af (α) –. However, demanding the vanishing of the current at α = 0 yields to the cor-

rect AdS6 asymptotics – which demand an overall ρ− 10
3 – and gives the correct – and discrete

– dimension to the operators. As raised in the text, one slightly puzzling feature is that the 5d
operators taking a VEV are purely Higgs branch operators with no vector multiplet scalar inser-
tions. Note that, despite its singularity at α = 0, the SUGRA background captures well the CFT
properties, as it also happens in the case of [16].

The resolved geometries correspond to flows triggered by VEVs of baryonic operators. Indeed
we find a fully consistent picture, with the baryonic VEV being identified with the appropriate
baryonic condensate brane. Its DBI action gives the modulus of the VEV with the expected
dimensional scaling. While we have not been able to compute the finite, wavefunction, part of
the action since we don’t have the exact form for the warp factor, we expect a similar result as in
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[1]. In fact, in the AdS5 case, where the internal space is the base of a CY3 cone, we can simply
borrow the general result in [8] appropriately adapted to the CY3 case. On the other hand, the DBI
action for the baryon condensate brane is nicely proportional to the Goldstone boson, sourced
by a finite-tension cosmic string brane. While we have not been able to check the existence and
properties of the required W -form since, for a start, the exact hI are not known, we believe that
it will exist along the lines of [4].
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Appendix A. Some explicit details about the CY3 structure of CCC2/ZZZ2 ×CCC

Being a direct product, the metric on the singular C2/Z2 × C can be easily written as

ds2
6 = dXIg

IJ
6 dXJ = dr2

1 + r2
1

4
(dψ + cos θdφ)2

+ r2
1

4

(
dθ2 + sin2 θdφ2) + dr2

2 + r2
2dχ2, (76)

where ψ ∈ [0,2π ]. Note that, upon introducing r1 = ρ cosα, r2 = ρ sinα the metric becomes
just dρ2 + ρ2ds2

S5/Z2
.

We can write the metric on the resolved C2/Z2 × C simply by plugging the Eguchi–Hanson
metric in the C2/Z2 piece as

ds2
6 = dr2

1

f (r1)
+ r2

1

4
f (r1)(dψ + cos θdφ)2 + r2

1

4

(
dθ2 + sin2 θdφ2) + dr2

2 + r2
2 dχ2, (77)

being

f (r1) = 1 − c4

r4
1

. (78)

Introducing complex coordinates {z1, z2, z3} defined as

z1 = (
r4

1 − c4) 1
4 ei

ψ+φ
2 cos

θ

2
, z2 = (

r4
1 − c4) 1

4 ei
ψ−φ

2 sin
θ

2
, z3 = r2e

iχ , (79)

it is easy to check that the Kähler potential reads

F = c2

√
1 + z1z̄1 + z2z̄2

c4
− c2 log

(
1 +

√
1 + z1z̄1 + z2z̄2

c4

)

+ c2 log

(
1 + z1z̄1

z2z̄2

)
+ z3z̄3. (80)

Furthermore, introducing the natural complex 1-forms

70 6.1. Gauge/gravity duality and RG flows in 5d gauge theories



630 A. Pini, D. Rodríguez-Gómez / Nuclear Physics B 884 (2014) 612–631

e1 = dr1√
1 − c4

r4
1

+ i
r1

2

√
1 − c4

r4
1

g5,

e2 = r1

2
(dθ − i sin θdφ), e3 = dr2 + ir2dχ, (81)

where g5 = dψ + cos θdφ, one can easily verify that the Kähler form arising from the Kähler
potential is just ω = ∑3

i=1 ei ∧ ēi . The holomorphic 3-form is

Ω = ei(ψ+χ)e1 ∧ e2 ∧ e3. (82)

One can easily verify that

dΩ = 0, dω = 0, Ω ∧ ω = 0. (83)

This explicitly shows the CY3 structure of the resolved C2/Z2 × C.

Appendix B. The eigenfunctions ỸR,l,m

In Section 2.1 we used the eigenfunctions YI (χ, θ,ψ,φ) of the Laplacian on the singular
cone. In this appendix we provide a short review of their construction following [8].

The Laplacian on C2/Z2 is given by

1

r3
1

∂r1

(
r3

1∂r1

) + 1

r2
1

(
4	 + 4∂2

ψ

)
, (84)

being

	 = 1

sin θ
∂θ (sin θ∂θ ) +

(
∂φ

sin θ
− cot θ∂ψ

)2

. (85)

Hence, the angular Laplace equation on C2/Z2 is(
4	 + 4∂2

ψ

)
ỸR,l,m = −ÊR,l,mỸR,l,m. (86)

Let us start by considering the reduced problem

4	ỸR,l,m(θ,ψ,φ) = −ER,l,mỸR,l,m(θ,ψ,φ). (87)

Inspection of the 	 Laplacian suggests that the {ψ,φ} part can be diagonalized by writing

ỸR,l,m(θ,ψ,φ) = eiRψeimφJl,m(θ). (88)

Since both ψ,φ have period 2π it follows that both R,m must be integers in order to ensure
single-valuedness. Furthermore, Jl,m(θ) must satisfy

1

sin θ
∂θ

(
sin θ∂θJl,m(θ)

) −
(

m

sin θ
− R cot θ

)2

Jl,m(θ) = −ER,l,m

4
Jl,m(θ). (89)

The solutions to this equation are

JA
l,m(θ) = sinm θ cotR

θ

2
2F

1
[
−l + m,1 + l + m,1 + m − R, sin2 θ

2

]
, (90)

and
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JB
l,m(θ) = sinR θ cotm

θ

2
2F

1
[
−l + R,1 + l + R,1 − m + R, sin2 θ

2

]
, (91)

in both cases the eigenvalues are

ER,l,m = 4
(
l(l + 1) − R2). (92)

Hence it immediately follows that 	ỸR,l,m = −(l(l + 1) − R2)ỸR,l,m.
It is easy to see that if R > m the solution JA

l,m(θ) is singular around θ = 0; while, if R < m it

is the solution JB
l,m(θ) that becomes singular. Therefore, depending on the value of R, we should

select only one of the two solutions. Furthermore, regularity around θ = π demands l to be an
integer such that l ≥ |m| and l ≥ |R|.

Coming back to the full problem (86), it is clear that the functions ỸR,l,m are also eigenfunc-
tions of the angular Laplacian 4	 + 4∂2

ψ with

ÊR,l,m = 4l(l + 1). (93)
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We study the moduli space of (framed) self-dual instantons on CP2. These are described by an Atiyah-
Drinfeld-Hitchin-Manin (ADHM)-like construction which allows us to compute the Hilbert series of the
moduli space. The latter has been found to be blind to certain compact directions. In this paper, we probe
these, finding them to correspond to a Grassmanian, upon considering appropriate ungaugings. Moreover,
the ADHM-like construction can be embedded into a 3d gauge theory with a known gravity dual. Using
this, we realize in AdS4=CFT3 (part of), the instanton moduli space providing at the same time further
evidence supporting the AdS4=CFT3 duality. Moreover, upon orbifolding, we provide the ADHM-like
construction of instantons on CP2=Zn as well as compute its Hilbert series. As in the unorbifolded case,
these turn out to coincide with those for instantons on C2=Zn.
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I. INTRODUCTION

In the recent past, it has become clear that studying
gauge theories in diverse circumstances is of the utmost
interest in order to unravel their dynamics. In particular, it is
very interesting to consider their response to curvature by
considering placing gauge theories on curved backgrounds.
In that respect, very recently developed techniques—such
as localization—allow us to compute exactly certain
observables, such as partition functions and surface/line
operators in certain gauge theories. In turn, these are
sensible to different physical aspects. For example, while
the supersymmetric partition functions of N ¼ 2 4d
theories on S1 × S3 have the interpretation of an index—
a weighted counting of Bogomol’nyi-Prasad-Sommereld
states—the homologous computation on S4 is interpreted as
a partition function, and it is closely related to the
Zamolodchikov metric [1].
In these computations, the nonperturbative sector typi-

cally plays a crucial role. In particular, it is well known that
instantons are very important configurations in gauge
theory. For example, the partition function of gauge theories
contains contributions from saddle points of all instanton
numbers. This can be made fully precise in the case of
supersymmetric gauge theories with eight supercharges,
when the supersymmetric partition function can be com-
puted exactly thanks to localization (see [2] for a seminal
contribution). One can then explicitly see that, in addition to
purely perturbative saddle points, the partition function
localizes on instantonic configurations, whose contribution
one has to sum. On general grounds, such contributions are
the one-loop determinants around each instanton saddle
point, which can be computed by the so-called Nekrasov
instanton partition function. In turn, in the case of pure

gauge theories, the latter coincides with the Hilbert series of
the instanton moduli space (see, e.g., [3,4]). Therefore,
the construction of instanton moduli spaces, as well as the
computation of their associated Hilbert series, is of the
greatest importance (of course, the reasons alluded to before
are just a very limited subset of those making the instanton
moduli space a very interesting object).
In the case of instantons on C2—or its conformal

compactification S4—the problem of constructing instantons
of pure gauge theories1 with gauge group A, B, C, D was
solved long ago by the Atiyah-Drinfeld-Hitchin-Manin
(ADHM) construction [5]. Moreover, it turns out that the
ADHM construction has a natural embedding into string
theory as it arises as the Higgs branch of the Dp-Dpþ 4-
brane system [6–9]. In this paper, we are interested in the
parallel story but for the case ofCP2. As opposed to S4,CP2

is a Kähler manifold. This naturally induces a preferred
orientation which distinguishes self-dual (SD) from anti-self-
dual (ASD) 2-forms. As a result, the construction of gauge
connections with ASD and SD curvatures is intrinsically
different. In this paper, we will concentrate on SD con-
nections on CP2 (and its orbifolds). In the mathematical
literature, an ADHM-like construction for such gauge
bundles has been developed long ago [10–14]. Very recently,
it has been shown that such construction can be embedded
into a gauge field theory, which, moreover, admits a string/M
theory interpretation [15]. Surprisingly, the gauge theories
engineering the ADHM construction for instantons on CP2

are 3d gauge theories with N ¼ 2 supersymmetry—that is,
four supercharges. Nevertheless, as shown in [16] (see, also,
[15,17,18] for a discussion in the physics context), the
Hilbert series and other properties do indeed satisfy proper-
ties compatible with the expected hyper-Kähler condition of
the moduli space.

*pinialessandro@uniovi.es
†d.rodriguez.gomez@uniovi.es

1We will concentrate on instantons in pure gauge theories with
eight supercharges throughout the paper.
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In this paper, we consider several aspects of these moduli
spaces for SD instantons on CP2, as well as develop their
construction on orbifolds of CP2. As introduced above,
being CP2 a Kähler manifold, a preferred orientation is
induced. In turn, this intrinsically distinguishes SD from
ASD configurations. It is then natural to ask whether both
types of instantons can be physically relevant. To elucidate
this, we need to construct a supersymmetric gauge theory
on the curved space such that its instanton sector includes
SD configurations. A very useful strategy put forward by
[19] is to couple the gauge theory to supergravity so that the
combined system is automatically supersymmetric. Then, a
suitable rigid limit freezes the gravity dynamics around the
chosen background in such a way that we are left with the
quantum field theory appropriately supersymmetrized on
the curved space. From this perspective, the vacuum
expectation values (VEVs) of the fields in the SUGRA
multiplet become the supersymmetric couplings in the
gauge theory. Moreover, in order to preserve supersym-
metry, generically the SUGRA, the background must be
nontrivial. A very natural way to supersymmetrize a gauge
theory is by means of topologically twisting—perhaps
including an equivariant version—with the R symmetry.
Following this method, in [20] the partition function for
gauge theories on Kähler spaces, in particular, CP2, was
constructed. However, the relevant instanton sector in that
case was that of ASD configurations. As we describe, this is
related to the choice of topological twist: because of the
Kähler property, twists based on left-handed spinors are
intrinsically different from twists based on right-handed
spinors. As we explicitly spell out in this paper, by
choosing the appropriate twist, it is possible to construct
a supersymmetric gauge theory on CP2 for which the
relevant instanton sector contains SD configurations.
In the case of SD instantons on CP2, the corresponding

Hilbert series was computed in [16–18] and reobtained in
[15] from a physics-based approach. In particular, it was
shown that these coincide with the Hilbert series of a
“parent” instanton on C2. This immediately raises the
question that, being CP2 a topologically nontrivial space,
it is natural to expect that our instantons are described by
extra topological data. In particular, given that CP2 con-
tains a nontrivial CP1, gauge field configurations should be
labeled as well by a first Chern class basically correspond-
ing to flux on the nontrivial CP1. Since the Hilbert series,
which coincides with the Nekrasov instanton partition
function, is insensitive to this information, it follows that
the partition function is independent on the choice of first
Chern class for the gauge bundle. However, other observ-
ables might depend on it (in particular, surface operators).
Thus, on general grounds, it is natural to explore the
structure of the full moduli space. Such description has
been accomplished in the mathematical literature [16–18]
for the unitary case. In particular, it has been shown that the
dimension of the moduli space seen by the Hilbert series is

smaller than the dimension of the actual moduli space. As
argued from a mathematical perspective for the unitary
case, in particular, in [17], such “extra directions” are
associated to (compact) Grassmanian subspaces in the full
moduli space.2 Note that these extra directions were
detected by means of other methods, as being compact,
the Hilbert series is blind to them. In this paper, we explore
from a novel physics-based perspective, these extra direc-
tions associated to the extra topological data. Our approach
applies to the unitary case as well as to orthogonal and
symplectic instantons. For that matter, we consider the
simplest case of a SD configuration probing these extra
directions, namely, that with zero instanton number but
nonzero first Chern class. Amusingly, for unitary instan-
tons, the construction degenerates into a 3d version of the
theory in [21], whose moduli space has been argued to be a
(compact) Grassmanian manifold, thus, reassuringly recov-
ering the expectations in the mathematical literature. This
theory, which admits a brane description, provides a clear
physical description of the extra directions of the moduli
space not captured by the Hilbert series. Moreover, it
suggests a novel way to study such extra directions by
using the so-called master space [22] of the theory. The
latter is an extended notion of the moduli space where one
ungauges the Abelian part of the gauge symmetry. As in
[23], upon appropriately ungauging Uð1Þ groups, we are
effectively considering the complex cone over the compact
base. In this modified scenario, we can now use the Hilbert
series, which probes the extra directions finding agreement
with the expectations. Moreover, we use this technique to
probe the resolved moduli space for orthogonal instantons
as well—symplectic instantons are trivial in this respect.
Thus, our new approach provides a direct and physical
method to explore in detail the moduli space of SD
instantons of all classical groups on CP2.
Yet another very interesting aspect of the construction of

SD instantons on CP2 is that the gauge theory containing
the ADHM construction of unitary instantons admits a
largeN limit where it is dual to an AdS4 geometry. It is then
natural to study the instanton moduli space in the gravity
dual. Similar to other examples in the literature, the gravity
dual captures the subset of operators involving only
bifundamental fields in the quiver corresponding to “closed
string degrees of freedom” (as opposed to fundamental
matter corresponding to “open string degrees of freedom”).
It is possible, however, to identify this subset in the field
theory for detailed comparisons. In particular, the expected
hyper-Kähler structure is recovered from the AdS dual.
Moreover, in order to find agreement with the field theory
description, the exact R charges of the operators are
required. This provides an interesting cross-check of the

2In [15], the full moduli space including the Grassmanian
directions was called the resolved moduli space, as it discerns the
extra directions not seen by the Hilbert series.
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field theory results. At the same time, it provides very
nontrivial evidence of the proposed AdS4=CFT3 dualities,
as, in particular, it requires detailed matchings involving R
charges inN ¼ 2 theories—free to deviate largely from the
free-field ones.
Starting the ADHM construction for instantons on a

given space can be used to find the corresponding con-
struction on related spaces obtained by orbifold projections.
In this manner, we find the ADHM construction, as well as
the Hilbert series for moduli spaces of instantons on
CP2=Zn, whose construction and description were not
known to the best of our knowledge. As these spaces have
an even richer topological structure, the identification of
ADHM-like quiver data with the instanton data is more
involved and not known, yet we propose some conjectures
supported on the observations coming from the unorbi-
folded case. We stress that our approach towards exploring
compact directions of the moduli space plays an important
role in guessing the topological properties of instantons on
the orbifolded spaces.
The structure of this paper is as follows: In Sec. II we

explicitly describe the relevance of SD instantons on CP2

in the computation of the partition function for the
topologically twisted gauge theory. In particular, we show
how SD instantons on CP2 arise as the minima of the
localization action, as well as (very briefly) review some
relevant aspects of the ADHM construction in the math-
ematical literature. In Sec. III we study unitary instantons
on CP2, considering, in particular, our novel approach
consisting of the resolution of the extra directions upon
ungauging Uð1Þ’s as well as the AdS=CFT description of
(part of) the instanton moduli space—this providing very
nontrivial evidence of both the construction and the
AdS=CFT duality, as it requires a precise matching of
superconformal R charges. In Secs. IV–VI we turn to
instantons on orbifolded spaces, for which we provide the
first explicit description. In Sec. IV we consider the
construction of unitary instantons on the orbifold space.
In Sec. V we turn to the symplectic case, finding the
ADHM construction of their moduli space on CP2=Zn. In
Sec. VI we turn to orthogonal instantons, analyzing, very
much like in the unitary case, the compact extra directions
associated to the nontrivial topology. Moreover, we provide
the construction of orthogonal instantons on the orbifolded
space. We provide a short summary of the highlights as
well as some conclusions in Sec. VII. Finally, we describe
some exotic cases as well as compile some figures in the
appendixes in order to not clutter the text.

II. SELF-DUAL INSTANTON CONTRIBUTIONS TO
SUPERSYMMETRIC GAUGE THEORY ON CP2

We are interested in pure gauge theories on CP2. Hence,
our first task is the construction of the supersymmetric
Lagrangian for the theory on the curved manifold. For that
matter, we follow the approach in [19], which amounts to

considering the combined system of supergravity plus the
gauge theory of interest. Then, a rigid limit freezes the
gravitational dynamics so that we are automatically left
with the supersymmetric gauge theory on the curved space.
Since we are interested in N ¼ 2 gauge theories, we will
use conformal supergravity as in [24].
Recently, the partition function of supersymmetric gauge

theories on CP2 was considered in [20]. However, in this
paper, we are interested in a different version of the gauge
theory. Recall that in order to find the supersymmetric
theory, we need to solve the gravitino variation as well as
the auxiliary condition in [24]. These provide both the
background fields as well as the Killing spinors for the
gauge theory on the curved space. A natural solution to
these equations is the topological twist [25]. On general
grounds, this amounts to redefining the Lorentz group—
generically locally SOð4Þ ∼ SUð2Þleft × SUð2Þright—by
twisting either SUð2Þleft;right with SUð2ÞR. Nevertheless,
as described in, e.g., [26], since for Kähler manifolds the
holonomy is really SUð2Þright ×Uð1Þleft, a second version
exists whereby one twists the Uð1Þleft by the Cartan of the
SUð2ÞR (note that in this case, one chirality is privileged
over the other by the orientation naturally induced by the
Kähler form). While in [20] this latter choice was consid-
ered, in this paper we will focus on the former version of
the topological twist, which can be performed both for
positive and negative chiralities of the background Killing
spinors.
Setting to begin with all supergravity fields other than the

metric and SUð2ÞR gauge field to zero, the equations
defining the supersymmetric backgrounds are defined by
the conformal Killing spinor equation [24] (we refer to this
reference for details)

Dμϵ
i
� −

1

4
γμDϵi� ¼ 0; ð1Þ

where the covariant derivative acting on the background
Killing spinors is

Dμϵ
i
� ¼ ∇μϵ

i
� þ ðAμÞijϵj�; ð2Þ

whileAμ is the SUð2ÞR gauge field, and ∇μ is the covariant
derivative acting on spinors including the spin connection.
Moreover, the metric of the CP2 is

dsCP2 ¼ dρ2 þ sin2ρ
4

½dθ2 þ sin2θdϕ2

þ cos2ρðdψ þ cos θdϕÞ2�;

ρ ∈
�
0;
π

2

�
; ψ ∈ ½0; 4π�; θ ∈ ½0; π�; ϕ ∈ ½0; 2π�:

ð3Þ

In hindsight, in this paper we are interested in keeping
the positive chirality spinors. Choosing then
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ðAμÞij ¼ −
i
4
ηIabωμabðσIÞij; ð4Þ

where ηIab is the ’t Hooft symbol and σI are the Pauli
matrices, we have that the spin connection part in the
covariant derivative is canceled, so that the Killing spinors
are simply3

ϵ1þ ¼

0BBB@
iα

0

0

0

1CCCA; ϵ2þ ¼

0BBB@
0

iα

0

0

1CCCA; α ∈ R: ð5Þ

Furthermore, one can check that the remaining supergravity
equation is solved upon appropriately tuning the super-
gravity scalar [25].
Following [24], negative chirality spinors could be

included choosing a Killing vector v of CP2 as ϵi− ¼
ivϵiþ upon turning on T− ¼ 2dvj−. Let us stick, however, to
the topological case. Then, since the theory is invariant
under the supersymmetry generated by the above ϵiþ, we
could add to the action the Q-invariant term −t

R
δV, being

δV ¼ jδΩiþj2 þ jδΩi
−j2. The standard argument suggests

then that the action is t invariant. A straightforward
calculation gives [we set ðϵiþÞ†ϵiþ ¼ 1]

δV ¼ 1

64
ðFþÞ2 þ jDϕ̄j2 þ 1

8
jYi

jj2 þ j½ϕ; ϕ̄�j2; ð6Þ

where we have imposed the reality condition Yi
j ¼ ðYj

iÞ⋆
[20]. Since Eq. (6) is strictly positive, in the classical limit
t → ∞, the theory localizes on configurations such that the
scalar in the vector multiplet is constant and lies along the
Cartan of the gauge group while Fþ ¼ 0. Note that, had we
chosen to keep negative chirality spinors, we would have
obtained F− ¼ 0. Being more explicit, the condition Fþ ¼
0 is, in the conventions of [24], equivalent to4

Fþ ¼ 1

2
ðF − ⋆FÞ ¼ 0 ⇝ F ¼ ⋆F: ð7Þ

That is, Fmust be SD. Since, for the standard orientation of
the CP2, the Kähler form is also self-dual, we have that the
relevant gauge configurations in this case are instantons of
the same duality type of the Kähler form. This is precisely
the type of instantons described in [15] using the King [13]
and Bryan and Sanders [14] constructions elaborating on
[10–12].

A. The construction of self-dual instantons on CP2

While we are interested in constructing self-dual instan-
tons on CP2, it is, however, more convenient to regard
them, upon orientation reversal of the base manifold, as
ASD instantons on CP2 (the opposite-oriented CP2). Then,
we can directly borrow the construction of their moduli
spaces from King [13] and Bryan and Sanders [14]. Let us
give a lightning overview of the relevant ingredients of the
construction and defer to [10–14] for the detailed account
(see, also, [15] for more references).
On very general grounds, there is a correspondence

between the moduli space of instantons on projective
algebraic surfaces and the moduli space of (stable) hol-
omorphic bundles which goes under the name of Hitchin-
Kobayashi correspondence. In this context, the ADHM
construction can be regarded as a device to construct
holomorphic bundles over the appropriate manifold.
An alternative version of the Hitchin-Kobayashi corre-

spondence, more useful for our purposes, was proven by
Donaldson by using the so-called Ward correspondence,
which associates an ASD connection—that is, a connection
whose curvature is ASD—on a (not complex) manifold X
to a holomorphic bundle on a related manifold Xholo.
Roughly speaking, one regards X as a conformal compac-
tification of some underlying complex manifold Xcplx.
Since both the Yang-Mills equations and the self-duality
constraints are conformally invariant, solutions with def-
inite duality properties (say, ASD) on Xcplx can be naturally
extended into solutions on X. Note that, in doing this, the
behavior of the gauge field at the added point must be
specified; that is, a framing must be chosen. In particular,
we choose a trivial framing, where the gauge transforma-
tions become the identity at infinity.
On the other hand, it is well known that connections with

an ASD curvature on a complex manifold Xcplx are in one-
to-one correspondence with holomorphic bundles on Xcplx.

5

Since the moduli space of the latter is a rather sick notion,
being Xcplx a noncompact space, we can considering a
holomorphic compactification of Xcplx into Xholo whereby
we add the complex line at infinity l∞ and demand the
holomorphic bundle to be trivial over there. Hence, all in
all, the problem of constructing trivially framed ASD
connections on X is mapped to the construction of
holomorphic bundles—denote them by E—over Xholo
trivial over l∞. The ADHM construction is precisely the
device constructing such bundles.
In the case at hand, we consider Xcplx ¼ bC2, the blowup

of C2 at a point defined as

3We choose a chiral representation for the Dirac algebra so that
Γ5 ¼ diagð1;−1Þ.

4Here, ð⋆FÞab ¼ 1
2
ϵabcdFcd.

5Roughly speaking, this is due to the fact that the ASD
condition on a connection A is equivalent to the integrability
condition ∂̄2

A ¼ 0 of ∂̄A ¼ ∂̄ þ Ā, hence, defining a holomorphic
bundle on Xcplx through the Newlander-Nirenberg theorem. See
[10–14] and [15] for more references.
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bC2 ¼ fðx1; x2Þ × ½z1; z2� ∈ C2 × CP1=x1z1 ¼ x2z2g: ð8Þ

Then, on one hand, we can find a conformal compactifi-
cation of Xcplx ¼ bC2 into X ¼ CP2—the opposite-oriented
CP2—as follows:

bC2 → CP2∶ ððx1; x2Þ × ½z1; z2�Þ →
� ½jxj2; x1; x2�;
½0; z1; z2�:

ð9Þ

Note that cCP2 is not really a complex manifold, as the
orientation does not follow from the Kähler form.
On the other hand, we can find a holomorphic compac-

tification by adding l∞ which compactifies bC2 into Xholo ¼
CP2 blown up at a point, that is, Hirzebruch’s first surface
F1. Hence, we have that framed ASD connections over CP2

are in one-to-one correspondence with holomorphic bun-
dles over F1 which are trivial over l∞. Since upon
orientation reversal, ASD connections on CP2 become
SD connections on CP2, it follows that the desired moduli
spaces are in correspondence with holomorphic bundles
over F1. Then, the ADHM construction is precisely the
device to construct such bundles.
While here we will not dive into more details, an

instrumental notion in arriving at the actual ADHM
construction, from this point of view, is the associated
twistor space, which takes into account the sphere bundle
of compatible complex structures over Xholo. Instead of
delving into more intricacies, here we will describe the

ADHM-like description of instantons for unitary, orthogo-
nal, and symplectic gauge groups embedded in a gauge
theory as in [15], and refer to [10–14] for the details of their
construction along the lines outlined here.
One word of caution is in order. Even though in the

following we will loosely refer to instantons on CP2, the
previous description of the precise construction should be
borne in mind—that is, we are describing SD instantons on
CP2 or equivalently ASD instantons onCP2. Moreover, we
stress that we discuss framed instantons where a particular
behavior in the added line (trivial) is imposed.

III. UðNÞ INSTANTONS ON CP2

As described in [15], the King [13] construction for
unitary instantons on CP2 can be embedded into a 3d
quiver gauge theory. The theory in question is a 3d N ¼ 2
gauge theory whose quiver is in the left panel of Fig. 1,
supplemented with the superpotential

W ¼ Tr½A1B1A2B2 − A1B2A2B1 þ qA1Q�: ð10Þ

Note that the chiral nature of the theory demands,
because of the parity anomaly, the gauge nodes to have
a nonvanishing Chern-Simons level N

2
þ kL and − N

2
þ kR,

respectively, where kL, kR are integers including zero.
In the following, we will concentrate on the case
kL ¼ kR ¼ 0.
As a 3d gauge theory, it has been argued [27,28] that the

theory flows to an IR fixed point, where the charges of the
fields are listed in Table I. For the particular case N ¼ 1, as
argued in [28], the mesonic moduli space (excluding
“Higgs-like” directions where fundamental fields take a
VEV) of the theory is the direct product of a conifold times
the complex line. In general, as N is increased, this
geometric branch of the moduli space becomes an increas-
ingly more involved toric manifold (see [28]).
The instanton moduli space of interest is that of G ¼

UðNÞ instantons on CP2, denoted as MG
CP2 . It arises as a

Higgs-like branch of the full moduli space of the gauge
theory dubbed the instanton branch where fundamental
fields take a VEV. Note that the instanton gauge group
appears as the flavor symmetry of the ADHM construction.
Note as well that in order to specify the instanton, in

FIG. 1. Quiver diagram for SUðNÞ instantons on CP2 (on the
left) and for SUðNÞ instantons on C2 (on the right).

TABLE I. Transformations of the fields for the CP2 quiver gauge theory. Here, r is an unknown real parameter
whose value, nevertheless, does not affect subsequent results.

Fields UðkLÞ UðkRÞ UðNÞ SUð2Þ Uð1ÞR
A1 ½1; 0;…; 0�þ1 ½0;…; 0; 1�−1 ½0� ½0� 1=2
A2 ½1; 0;…; 0�þ1 ½0;…; 0; 1�−1 ½0� ½0� 1=2
B1, B2 ½0;…; 0; 1�−1 ½1; 0;…; 0�þ1 ½0� [1] 1=4
q ½0� ½1; 0;…; 0�þ1 ½0;…; 0; 1�−1 ½0� 1 − 1=4r
Q ½0;…; 0; 1�−1 ½0� ½1; 0;…; 0�þ1 ½0� 1=4r
F term ½0;…; 0; 1�−1 ½1; 0;…; 0�þ1 ½0� ½0� 1
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general, a set of numbers I including the instanton number
is required. We will come back to this issue below.
More precisely, as described in [15], the instanton branch

of the moduli space arises when we set A1 (as well as all
monopole operators, typically denoted by T, ~T) to zero. It is
important to note that the truncation A1 ¼ T ¼ ~T ¼ 0 is
consistent with the quantum constraint on the moduli space
introduced in [28]. Then, the only relevant F term arises
from the superpotential and reads

∂A1W ¼ B1A2B2 − B2A2B1 þ qQ: ð11Þ

Together with the field content and gauge groups of the 3d
gauge theory, this constraint precisely realizes the King
construction. Note that even though the flavor symmetry
is UðNÞ, the Uð1Þ part is really gauged. Hence, we can
think of our instantons as instantons of SUðNÞ [even
though, as we will review below, we should really think
of SUðNÞ=ZN].
In the following, we are interested in the Hilbert series of

the instanton moduli space. The ADHM construction just
introduced (and the corresponding orthogonal and sym-
plectic versions in addition to their orbifoldings to be
described below) allows us to compute it using by now
standard methods as in, e.g., [15,29–31] (see, also, [32] for
the study of instantons on C2=Zn). Let us pause to make a
point on notation. Throughout the paper, we will denote the
Hilbert series H of the instantons’ moduli space as
H½I; G;M�, being I the integers characterizing the instan-
ton, which appears as the date of the gauge group of the
ADHM construction, G those characterizing the instanton
gauge group appearing as a flavor group in the ADHM
construction, andM the ambient manifold of the instanton.
As anticipated, in order to specify a particular G

instanton on CP2, a set of quantum numbers I is required.
It is clear that one such integer is the instanton number.
However, since CP2 is a topologically nontrivial manifold,
it is natural to expect that instantons on CP2 might carry
extra quantum numbers. Indeed, as reviewed in [15]
following [16], we can characterize the instanton by its
first Chern number bc and its instanton number k̂. Using the
correspondence between ASD connections on X and
holomorphic bundles E on Xholo, these can be written as

hc1ðEÞ; ½C�i ¼ −ĉ;
�
c2ðEÞ −

N − 1

2N
c1ðEÞ2; ½F1�

�
¼ k̂;

ð12Þ

being ½C� the CP1 class inside F1—recall that, in this case,

X ¼ CP2 and Xholo ¼ F1. These, in turn, are related to the
quiver data kL, kR as follows:

ĉ ¼ kR − kL; k̂ ¼ 1

2
ðkL þ kRÞ −

1

2N
ðkL − kRÞ2: ð13Þ

As an algebraic variety, MSUðNÞ
CP2 can be mapped into the

moduli space of a related instanton on C2—described by
the Higgs branch of the theory in the right panel of Fig. 1—
in the following way,

π∶ ðA2; B1; B2; Q; qÞ
→ ðX1 ¼ A2B1; X2 ¼ A2B2; I ¼ A2q; J ¼ QÞ; ð14Þ

being X1, X2, I, J the fields of the quiver diagram for C2

theory. Indeed, if we multiply the F-term relation (11) by
A2 and we apply the map (14), we recover the F term for
SUðNÞ instantons on C2,

½X1; X2� þ I · J ¼ 0: ð15Þ

In turn, the inverse map σ can also be defined as

σ∶ ðX1; X2; I; JÞ
→ ðA2 ¼ 1K×K; B1 ¼ X1; B2 ¼ X2; q ¼ I; Q ¼ JÞ:

ð16Þ

Let us momentarily consider the case where kL ¼ kR,
which corresponds to ĉ ¼ 0 and k̂ ¼ kL. From the con-
struction in Eq. (14), it is clear that the integer K in the
quiver in the right panel of Fig. 1 is identified with kL.
Thus, we have that as an algebraic variety, the moduli space
of kL SUðNÞ instantons on CP2 is identified with the
moduli space of kL SUðNÞ instantons on C2. Consistently,
the Hilbert series of these instantons coincide, from which

it follows that dimCM
SUðNÞ
CP2 ¼ 2NkL.

In the general case kL ≠ kR, one finds that the above
construction still holds upon setting K ¼ minðkL; kRÞ.
Consistently, as described in [15], the Hilbert series
corresponding to the instanton branch of the quiver in
the left panel of Fig. 1 coincides with the Hilbert series of
the Higgs branch of the quiver in the right panel of Fig. 1,
that is,

H½ðkL; kRÞ; SUðNÞ;CP2�ðt; x; yÞ
¼ H½minðkL; kRÞ; SUðNÞ;C2�ðt3; x; yÞ; ð17Þ

where t is the fugacity of the R charge, x the fugacity
associated with the SUð2Þ global symmetry, and y’s are the
fugacities associated with the UðNÞ global symmetry. Note
that the fugacity associated to the R charge is rescaled from
t in the CP2 case into t3 in the C2 case.
Naively, Eq. (17) suggests that the dimension of the

moduli space of unitary instantons on CP2 is

dimCM
SUðNÞ
CP2 ¼ 2NminðkL; kRÞ: ð18Þ

Note that, even though the quiver is specified by three
integers N, kL, kR, Eq. (18) is only sensitive to two of them.
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However, it is possible to consider an extended notion of
the moduli space where the extra directions associated to all
the three quantum numbers specifying the instanton are
taken into account. This is the so-called resolved (as the
extra directions are discerned) moduli space denoted asbMSUðNÞ

CP2 , whose dimension is [16–18]

dimC
bMSUðNÞ

CP2 ¼ 2k̂N ¼ dimCM
SUðNÞ
CP2 þ ĉðN − ĉÞ: ð19Þ

Note that for ĉ ¼ 0, N the dimension of bMSUðNÞ
CP2 is equal to

the dimension of MSUðNÞ
CP2 . This suggests that ĉ is really a

modulo N quantity corresponding to an instanton gauge
group which is really SUðNÞ=ZN. We warn the reader that,
while in the following we will not clutter notation by
suppressing the ZN , the global properties of the gauge
group must be kept in mind.

A. The resolved moduli space and the Grassmanian

In order to explore the resolved moduli space, it is
instructive to first consider the simplest case where kL ¼ 0.
The theory simplifies into a one-noded quiver flavored
only with fundamental fields (and not antifundamentals)
shown in Fig. 2. Recall that the CS level is adjusted so as to
cancel the parity anomaly, and, furthermore, there is no
superpotential.
The leftover theory in this particular case corresponds to

a 3d version of the theory considered in [21]. Then, as
argued in that reference, the moduli space is a complex
Grassmanian (compact) manifold, consistent with the
expectations in [16–18].
We can now understand why MSUðNÞ

CP2 is insensitive to
these extra directions, as forming a compact Grassmanian
manifold, the Hilbert series is blind to them. Indeed, since
in the theory in Fig. 2 the gauge group is UðkRÞ, the Higgs-
like moduli space is empty, as no gauge invariant can be
constructed out of fundamental fields. Consistently, for-
mula (18) gives a zero-dimensional moduli space.
However, as in [23], we can consider a version of the
theory where only the non-Abelian SUðkRÞ part ofUðkRÞ is
gauged, while the Uð1Þ is kept as a global baryonic
symmetry [alternatively, we could think of this as the

master space [22] of the UðkRÞ theory]. In this case, we can
form baryonlike gauge-invariant operators, thus, finding a
nonempty moduli space which, in fact, is a complex cone
over the Grassmanian. It is straightforward to compute the
Hilbert series. Unrefining the flavor fugacities, we have

HS ¼
Z

PE½Ntχ□kR
�; ð20Þ

where χ□kR
is the character of the SUðkRÞ fundamental. Let

us introduce the d-Narayana numbers

Nd;n;k ¼
Xk
j¼0

ð−1Þk−j
�
dnþ 1

k − j

�Yd−1
i¼0

�
nþ iþ j

n

�

×

�
nþ i

n

�−1
: ð21Þ

Using them we can define the Narayana polynomial

P̂d;nðtÞ ¼
Xðd−1Þðn−1Þ

k¼0

Nd;n;ktdk: ð22Þ

In terms of this polynomial, one can see that

HS ¼ ð1 − tkRÞk2R−1−kRNP̂kR;N−kR : ð23Þ

We can easily read off the dimension of the moduli space
from the pole at t ¼ 1, which is simply coming from the
prefactor before the Narayana polynomial, finding (this
result, not known in the literature to the best of our
knowledge, generalizes that in [33])

dimCM
SUðNÞ
CP2 jGrassmanian ¼ kRðN − kRÞ þ 1: ð24Þ

Recalling that the þ1 is due to the Uð1Þ which we are not
integrating over—resulting in moduli space which is a
complex cone over the Grassmanian—we find a result in
accordance with Eq. (19).
Equation (24) is invariant under the exchange

kR ↔ N − kR. Indeed, one can explicitly check that the
Hilbert series of the theories with SUðkRÞ gauge group and
SUðN − kRÞ are identical up to a trivial redefinition of t,
thus, suggesting a duality among these theories. Note that
this should imply nontrivial identities among Narayana
polynomials, which would be interesting to explore. Such
duality is also suggested by the brane construction in [21].6

In that reference, in a IIA system consisting on an NS-brane
and an NS0-N D4-branes intersection, kR D2-branes are
stretched along x6 direction between the NS and the

FIG. 2. Quiver diagrams for Grassmanian (we show the dual
pair—see text).

6We should stress that the same choice of Fayet-Iliopoulos (FI)
parameters as in those references related to the stability con-
ditions in the ADHM-like construction applies.
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NS0-D4 intersection. Then, the N D4’s can be broken on
the NS0 and, say, the lower part of them can be sent to
infinity. As argued in [21], the gauge theory on the D2’s is
precisely the 2d version of the gauge theory in the first
panel of Fig. 2. Upon T duality along x2, this system
engineers the actual 3d gauge theory of interest, namely,
that in the first panel of Fig. 2. Explicitly, the system
contains

(i) An NS-brane along 012345.
(ii) A braneweb with an NS0-brane along 012389 meet-

ing N D5-branes along 012378 and emanating a
ð1; NÞ fivebrane.

(iii) kR D3-branes along 0126, starting at the braneweb
junction and ending on the NS.

Note that the NS0-D4 intersection in the IIA system
becomes a braneweb in the IIB system, as D5-branes
meeting an NS0 give rise to a ð1; NÞ fivebrane. In fact, it is
precisely this bending that gives the expected CS level in
the 3d gauge theory [34,35]. In this, it is important to recall
that the D3’s meet the fivebranes right at the junction, as
this is what makes the 3d theory contain only fundamental
(and not antifundamental) matter [21], which, in turn,
generates the N

2
CS level.

We can now imagine crossing the NS to the other side.
Then, due to the Hanany-Witten effect, the final configu-
ration contains N − kR D3-branes but is otherwise identi-
cal, consistent with our finding that the two theories in
Fig. 2 yield the same Hilbert series (for a more detailed
account of the duality in the 2d case, we refer to [21]).
Coming back to the general discussion, in view of the

kL ¼ 0 case, it is natural to guess that ungauging the
Abelian part of the largest gauge symmetry will allow us to
resolve the extra directions in M̂. For that matter, let us now
consider the case kL ¼ 1. Writing the remaining UðkRÞ
gauge group as Uð1Þ × SUðkRÞ, we can compute the
Hilbert series upon integration only over the non-
Abelian SUðkRÞ part. In this case, finding a closed analytic
form seems a daunting task. Nevertheless, from explicit
computations for kL ¼ 1 and kR ¼ 2, 3 and N ¼ 1, 2, 3, we
find that (the explicit forms of the Hilbert series are rather
unilluminating, and we will refrain from explicitly display-
ing them here) reading the dimension of the moduli space
from the order of the pole at t ¼ 1, the dimension is
compatible with the formula

dimCM̂
SUðNÞ
CP2 ¼ 2kLN þ ĉðN − ĉÞ þ 1; ð25Þ

which is precisely the expected result (19). Unfortunately,
explicitly checking higher-rank cases is technically chal-
lenging. Nevertheless, it would be very interesting to
perform further checks for higher ranks.

B. Rank one and AdS=CFT

In the particular case of kL ¼ kR, upon settingN ¼ 1 and
for kL ¼ kR ¼ 0, the theory engineering the moduli space

of unitary instantons on CP2 becomes exactly that found in
[28] to describe M2 branes probing C × C, the direct
product of a conifold times the complex line. The metric
of the CY4 cone can be written as

ds2cone ¼ dρ2 þ ρ2ds2B; ð26Þ

ds2B ¼ dα2 þ sin2αdγ2 þ cos2α
9

�
dψ þ

X2
i¼1

cos θidϕi

�2

þ
X2
i¼1

cos2α
6

ðdθ2i þ sin2θidϕ2
i Þ: ð27Þ

Then, on general grounds, the near-brane geometry for a
stack of kL M2 branes probing this cone is AdS4 × B,
which, in global coordinates, can be written as

ds2 ¼ −
�
1þ r2

L2

�
dt2 þ dr2

ð1þ r2

L2Þ
þ r2ðsin2θdθ2 þ dϕ2Þ

þ 4L2ds2B; ð28Þ
being L the radius of the AdS4 space. Besides, there is a 6-
form flux whose field strength integrates to kL on B. Hence,
in the large kLð¼ kRÞ limit, the gauge theory is holo-
graphically dual to AdS4 × B with kL units of flux through
B. It is, thus, natural to wonder whether, at least partially,
the moduli space of unitary instantons on CP2 can be
geometrically realized in this context.
As discussed in [28], the gauge theory contains a mesonic

branch of themoduli spacewhich realizes the dual geometry.
In general, it is natural to expect that the holographic dual
captures gauge theory operators made out of bifundamental
fields, while those corresponding to fundamental matter
would require extra multiplets on top of the AdS4 × B to
account for the “flavor brane open string” degrees of free-
dom. Hence, it is natural to expect that the sub-branch of the
instanton branch involving just fA2; Big fields is visible in
thegeometry. This is indeed analogous to the cases discussed
in [31,36], where only the “closed string fields” in the quiver
are captured by the gravity dual.
More explicitly, following [31,36], it is natural to expect

that this sub-branch of the instanton branch is captured by
dual giant graviton branes moving in the appropriate
subspace corresponding to the instanton branch. For that
matter, we consider a probe M2 brane wrapping ðt;Ω2Þ,
where Ω2 is the sphere inside the AdS4. Moreover, we
assume that ψ ¼ ψðtÞ and ϕ2 ¼ ϕ2ðtÞ, while

γ; α; θ1;ϕ1; θ2 ¼ constant: ð29Þ

The action for such probe brane is

S ¼ −T2

Z ffiffiffiffiffiffi
−g

p þ T2

Z
P½Að3Þ�; ð30Þ

which becomes

ALESSANDRO PINI and DIEGO RODRIGUEZ-GOMEZ PHYSICAL REVIEW D 93, 026009 (2016)

026009-8

82 6.2. Aspects of the moduli space of instantons on CP 2 and its orbifolds



S ¼ −T2V2

Z
dtr2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1þ r2

L2

�
−
4L2cos2α

9
ð _ψðtÞ þ cos θ2 _ϕ2ðtÞÞ2 −

4L2cos2αsin2θ2
6

_ϕ2ðtÞ2
s

−
r3

L

�
:

It is easy to convince oneself that the equations of motion fix α ¼ 0 (for simplicity, from now on we set α ¼ 0). Then,
with the Legendre transforming to the Hamiltonian H ¼ Hðθ2; r; Pψ ; Pϕ2

Þ, we obtain

H ¼ 1

2L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ L2

L2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð5 − cos 2θ2ÞP2

ψ − 24 cos θ2PψPϕ2
þ 2ð6P2

ϕ2
þ 4L2r4sin2θ2T2

2V
2
2Þ

2sin2θ2

s
−
V2T2r3

L
:

The minimum energy configurations are

cos θ2 ¼
Pϕ2

Pψ
; ð31Þ

for which

r ¼ 0 or r ¼ 3Pψ

2L2T2V2

: ð32Þ

Both configurations are degenerated in energy, one corre-
sponding to pointlike gravitons and the other to true dual
giant gravitons. The energy is

H ¼ 3Pψ

2L
: ð33Þ

Coming back to the solution in Eq. (31), we can para-
metrize the phase space of the spinning M2 as a dynamical

system by the coordinates QA ¼ fr; α;ψ ; θ2;ϕ2g and the
conjugated momenta PA¼fPr;Pα;Pψ ;Pθ2 ;Pϕ2

g. Moreover,
the conjugated momenta PA must obey the following
constraints:

fr ¼ Pr; fα ¼ Pα; fθ2 ¼ Pθ2 ;

fψ ¼ Pψ −
2L2T2V2r

3
;

fϕ2
¼ Pϕ2

−
2L2T2V2r cos θ2

3
:

As usual, the matrix MAB ¼ ffA; fBgPB encodes the sym-
plectic form associated to the phase space of our dynamical
system as fQA;QBgDB ¼ ðMABÞ−1 (DB stands for Dirac
brackets). Deleting the row and column corresponding to the
trivial α coordinate, we find

MAB ¼

0BBBBBB@
0 2L2T2V2

3
0 2L2T2V2 cos θ2

3

−2LT2V2

3
0 0 0

0 0 0 −2L2r sin θ2T2V2

3

−2L2 cos θ2T2V2

3
0 2L2r sin θ2T2V2

3
0

1CCCCCCA:

Therefore, the symplectic structure reads

ω ¼ 2L2T2V2

3
dr∧dψ þ 2L2T2V2 cos θ2

3
dr∧dϕ2

−
2L2T2V2r sin θ2

3
dθ2∧dϕ2:

Integrating, we obtain

ν ¼ 2L2T2V2r
3

ðdψ þ cos θ2dϕ2Þ ⇒ ω ¼ dν: ð34Þ

Hence, upon introducing ρ2 ¼ 4L2T2V2r=3, we just re-
cover the data of C2. Following [31,36], we can do
symplectic quantization of this dynamical system. On

general grounds, that amounts to identifying the holomor-
phic functions on the phase space—in this case C2—with
the allowed wave functions. These can easily be counted,
simply obtaining the Hilbert series for C2.
Let us now turn to the gauge theory. As discussed, we

expect our probe branes to be dual to operators on the
instanton branch not containing fundamental fields. These
are of the schematic form

On;m ¼ ðA2B1ÞnðA2B2Þm: ð35Þ

Note that the F terms imply that the Bi indices are
completely symmetrized; that is, the operators On;m are

in a spin ðnþmÞ
2

representation of the SUð2Þ global symmetry
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rotating the Bi’s. Hence, for a fixed R charge
R½On;m� ¼ 3

4
ðnþmÞ, the number of operators is

ðnþmÞ þ 1, and the corresponding generating function
is just

P∞
j¼0ðjþ 1Þxj ¼ ð1 − xÞ−2, which is precisely the

C2 Hilbert series; here, x is a generic fugacity.
We can explicitly compare the gauge theory operators

with our probe brane configurations on the gravity side. For
that matter, let us first note that exactly the same configu-
ration on the gravity side would have been obtained fixing
θ2 ¼ 0; π and having our brane orbiting ψ � ϕ1, respec-
tively. Hence, in all our formulas, we can trade ψ for
~ψ ¼ ψ � ϕ1. In particular, Eq. (33) becomes HL ¼ 3

2
P ~ψ .

In order to compare our probe branes with the gauge
theory operators,weneed to identify charges. It is reasonable
to guess that the momentum along ψ is proportional to theR
symmetry. Hence, let us identify Pψ ¼ r, being r (not to be
confusedwith the arbitrary integer in Table I) proportional to
the chargeR under theUð1ÞR in awaywhich wewill shortly
come back to. Moreover, in order to understand the Pϕ1;2

momenta, it is instructive to considermomentarily removing
the quarks from the gauge theory. It then exhibits an
SUð2ÞA × SUð2ÞB global symmetry rotating, respectively,
the Ai and Bi fields. Then, the quark multiplets break the
SUð2ÞA down to a Uð1ÞA, while the SUð2Þ rotating the B’s
remains as a global symmetry.We identify theUð1ÞA charge
denoted as QA, with Pϕ1

as QA ¼ Pϕ1
. With no loss of

generality, let us assume QA½A2� ¼ 1
2
, which corresponds to

the choice θ1 ¼ π. Then P ~ψ ¼ Pψ − Pϕ1
translates into

P ~ψ ¼ r −QA. Analogously, we identify Pϕ2
with the

Cartan of the SUð2ÞB denoted as QB.
Note that Eq. (31) translates into QB ¼ ðr −QAÞ cos θ2,

and, therefore, QB ∈ ½−ðr −QAÞ; ðr −QAÞ�. Let us com-
pare this with the gauge theory operators (35). Using
Table I, the charges of the operators in the expression

(35) are R½On;m� ¼ 3ðnþmÞ
4

and QA½On;m� ¼ nþm
2
. As

expected, being chiral operators, they satisfy the usual
relation Δ ¼ R. Moreover, it is clear that QB ¼ n−m

2
, so that

QB ∈ ½− 2R
3
; 2R
3
�. Comparing the ranges for QB in gravity

and field theory, we find the identification

R ¼ 3

2
ðr −QAÞ: ð36Þ

Turning now to the energy for our branes, we find
HL ¼ 3

2
ðr −QAÞ, which, upon using Eq. (36), becomes

Δ ¼ R, precisely as expected for chiral operators.
Moreover, we can explicitly fix the value of r. For that

matter, let us turn to the field theory operators and consider
the highest QB weight state, which corresponds to m ¼ 0.
For this one, QA ¼ QB ¼ n

2
, while R ¼ 3QA

2
. In turn, from

the gravity side, the brane with the highest QB is
QB ¼ r −QA. Since this must correspond to QB ¼ QA,
we find QA ¼ 2r. Hence, this implies r ¼ 4R

3
.

We can offer an alternative test of our identifications. For
that matter, let us consider metric fluctuations polarized
along the internal manifold. On general grounds, these
fluctuations correspond to operators of the schematic form
T O, being T the stress-energy tensor of the theory. Note
that, for the particular case when the inserted operator O is
one of those in Eq. (35), we expect that the dimension is
3þ Δ. In turn, these fluctuations satisfy the Klein-Gordon
equation in AdS4 × B. For a CY4 of the form C × C, this
problem was considered in [37], where it was shown that
the dimension of the dual operators can be written in terms
of the eigenvalues of the scalar Laplacian on C. In turn,
borrowing the results from [38], the eigenvalues of the
scalar Laplacian on the conifold are

EC ¼ 6

�
l1ðl1 þ 1Þ þ l2ðl2 þ 1Þ − r2

8

�
; ð37Þ

where l1;2 are, respectively, the SUð2ÞA × SUð2ÞB total
spin and r the charge along the ψ direction. For the
operators in Eq. (35), we have that l1 ¼ l2 ¼ l. In turn,
the charge r must satisfy r

2
∈ ð−l;lÞ. Focusing on the

highest weight state, we would require r ¼ 2l, which is
nothing but r ¼ 2QA as seen before. Then, using [37]

Δ ¼ 3þ 3

2
l: ð38Þ

This precisely coincides with our expectations upon iden-
tifying Δ ¼ 3

2
l. This can be written as Δ ¼ 3r

4
, which

becomes Δ ¼ R upon using the identification r ¼ 4R
3

advocated above.
Let us stress that these tests find exact matching between

the gauge theory expectations and the gravity dual com-
putations by making explicit use of Uð1ÞR charge assig-
nations. Since these are not protected in N ¼ 2 theories,
the agreement we find should be regarded as a highly
nontrivial check of the duality.
So far, we have considered the case kL ¼ kR. It is natural

to expect that kL ≠ kR can be accommodated into the
gravity dual by adding nonvanishing flat B2 over a 2-cycle
in the internal manifold [39]. Nevertheless, such modifi-
cation of the background would not change our computa-
tion. Hence, we would find the same result even for the case
kL ≠ kR, in agreement with the field theory result where the
Hilbert series only depends on minðkL; kRÞ.

IV. UðNÞ INSTANTONS ON CP2=Zn

A natural generalization of the ADHM construction of
instantons on CP2 is to consider orbifolding the ambient
manifold upon quotienting by a subgroup of its sym-
metries. In particular, sinceCP2 is invariant under aUð1Þ ×
Uð1Þ action corresponding to the ϕ, ψ coordinates in
Eq. (3), it is natural to consider quotienting such symmetry
by some discrete subgroup of it. Note that the spinors in
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Eq. (5) are constant and, moreover, annihilated by
ei

2π
k ðJ12−J34Þ (Jij are the Lorentz generators in tangent space

indices Jij ¼ i
2
½Γi;Γj�). Therefore, we can consider a Zn

orbifold of the ϕ direction whereby we restrict ϕ ∼ ϕþ 2π
n .

In the rest of the paper, we will be interested in the ADHM
construction of instantons on these orbifolded spaces. For
that matter, we will take as the starting point the ADHM
construction in the unorbifolded case, on which we will
implement the orbifold by standard methods [9].
Let us consider the case of unitary instantons presented

above. In order to find the orbifolded theory, we first need
to identify the transformation properties of the fields. These
read as follows:

(i) The fields Aj (with j ¼ 1, 2) in the bifundamental
representation,

Aj ↦ γ1Ajγ−12 : ð39Þ

(ii) The fields B1 and B2 in the bifundamental repre-
sentation,

B1 ↦ ω−1
n γ2B1γ−11 ; B2 ↦ ωnγ2B2γ−11 ; with

ωn ¼ e2πi=n: ð40Þ

(iii) The fields Q and q,

q ↦ γ2qγ−13 ; Q ↦ γ3Qγ−11 ; ð41Þ

where the matrices γ1, γ2, and γ3 are given by

γ1 ¼ diagð1;…; 1|fflfflffl{zfflfflffl}
k1 times

;ωn;…;ωn|fflfflfflfflfflffl{zfflfflfflfflfflffl}
k3 times

;…;ωn−1
n …;ωn−1

n|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
k2n−1 times

Þ with
X2n−1
i odd

ki ¼ kL;

γ2 ¼ diagð1;…; 1|fflfflffl{zfflfflffl}
k2 times

;ωn;…;ωn|fflfflfflfflfflffl{zfflfflfflfflfflffl}
k4 times

;…;ωn−1
n …;ωn−1

n|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
k2n times

Þ with
X2n
i even

ki ¼ kR;

γ3 ¼ diagð1;…; 1|fflfflffl{zfflfflffl}
N1 times

;ωn;…;ωn|fflfflfflfflfflffl{zfflfflfflfflfflffl}
N2 times

;…;ωn−1
n …;ωn−1

n|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Nn times

Þ with
Xn
i¼1

Ni ¼ N:

It is easy to check that the superpotential (10) is invariant under the transformations (39)–(41). In addition, the two gauge
groups UðkLÞ and UðkRÞ of the initial theory and the flavor group UðNÞ are broken into

UðkLÞ ↦ ⊗
2n−1

i odd
UðkiÞ; UðkRÞ ↦ ⊗

2n

i even
UðkiÞ; UðNÞ ↦ ⊗

n

i¼1
UðNiÞ;

and after the action of the transformations (39)–(41), the various fields become

A1 ¼

0BBBBBB@
A1
11 0 0 � � � 0

0 A1
22 0 � � � 0

0 0 A1
33 ⃜ 0

� � � � � � � � � � � � 0

0 0 0 0 A1
nn

1CCCCCCA; A2 ¼

0BBBBBB@
A2
11 0 0 � � � 0

0 A2
22 0 � � � 0

0 0 A2
33 ⃜ 0

� � � � � � � � � � � � 0

0 0 0 0 A2
nn

1CCCCCCA;

B1 ¼

0BBBBBB@

0 0 0 � � � B1
1;n

B1
21 0 0 � � � 0

0 B1
32 0 � � � 0

� � � � � � � � � 0 0

0 0 0 B1
n;n−1 0

1CCCCCCA; B2 ¼

0BBBBBB@

0 B2
12 0 � � � 0

0 0 B2
23 � � � 0

0 0 0 � � � � � �
� � � � � � � � � � � � B2

n−1;n

B2
n;n−1 0 0 0 0

1CCCCCCA;

q ¼

0BBBBBB@
q11 0 0 � � � 0

0 q22 0 � � � 0

0 0 q33 ⃜ 0

� � � � � � � � � � � � 0

0 0 0 0 qnn

1CCCCCCA; Q ¼

0BBBBBB@
Q11 0 0 � � � 0

0 Q22 0 � � � 0

0 0 Q33 ⃜ 0

� � � � � � � � � � � � 0

0 0 0 0 Qnn

1CCCCCCA:
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A. Constructing UðNÞ instantons on CP2=Zn

Let us now show the actual construction of unitary
instantons on CP2=Zn.

1. The CP2=Z2 case

Let us consider the simplest case of the Z2 orbifold.
Applying the rules above, we obtain a theory whose quiver
is reported in Fig. 3 together with the superpotential (42).
Note that WFI

0
denotes the superpotential for FI

0 (the first
phase of the F0 was studied in [40] in the case of 4d field
theories and in [41] in the context of 3d field theories).
Moreover, for future reference, we compile the trans-
formation properties of the fields and the F terms under
the various symmetry groups in Table II,

W ¼ Tr½Ai
11B

j
12A

k
22B

l
21ϵikϵjl þ q11A1

11Q11 þ q22A1
22Q22�

¼ WFI
0
þ Tr½q11A1

11Q11 þ q22A1
22Q22�: ð42Þ

In the unorbifolded case, the instanton branch appeared
upon setting A1 ¼ 0. Therefore, in this case, we need to
impose A1

11 ¼ A1
22 ¼ 0. Then, the only relevant F terms are

F1∶ ∂A1
11
W ¼ B1

12A
2
22B

2
21 − B2

12A
2
22B

1
21 þ q11Q11 ¼ 0;

ð43Þ
F2∶ ∂A1

22
W ¼ B1

21A
2
11B

2
12 − B2

21A
2
11B

1
12 þ q22Q22 ¼ 0:

ð44Þ

This describes the ADHM construction for instantons
on CP2=Z2.
As we have reviewed above, in the unorbifolded

case, it is possible to map instantons on CP2 into
instantons on C2. Inherited from this, we can find a
mapping from the ADHM construction for instantons
on the orbifolded space into that for instantons on the
appropriate orbifold of C2. To see this, using the map π
in Eq. (14), we have the following identifications
between the fields of the CP2=Z2 theory and the
fields of the C2=Z2 theory,

A2B2 ¼
�

0 A2
11B

2
12

A2
22B

2
21 0

�
¼

�
0 X2

12

X2
21 0

�
¼ X2;

A2q ¼
�
A2
11q11 0

0 A2
22q22

�
¼

�
I11 0

0 I22

�
¼ I;

A2B1 ¼
�

0 A2
11B

1
12

A2
22B

1
21 0

�
¼

�
0 X1

12

X1
21 0

�
¼ X1;

Q ¼
�
Q11 0

0 Q22

�
¼

�
J11 0

0 J22

�
¼ J:

Then, upon multiplication of the F-term relations (43)
and (44) by A1

11 and A
2
22, respectively, these can be rewritten

as

X1
12X

2
21 − X2

12X
1
21 þ I11J11 ¼ 0; ð45Þ

X1
21X

2
12 − X2

21X
1
12 þ I22J22 ¼ 0; ð46Þ

which are the F-term relations for the C2=Z2 theory [31].
Hence, we recover the analog to the unorbifolded case,
namely, that the moduli space (at least removing possible
compact directions, which we will come back to below) is
biholomorphic to the moduli space of C2=Z2.
The Hilbert series of instantons described by the theory

with flavor group UðN1Þ ×UðN2Þ and gauge ranks
k ¼ ðk1; k2; k3; k4Þ7 reads

H½k; F;CP2=Z2�ðt; x; y;dÞ

¼
Z

dμUðk1ÞðuÞ
Z

dμUðk2ÞðwÞ
Z

dμUðk3ÞðzÞ

×
Z

dμUðk4ÞðvÞPE½χA2
11
t2 þ χA2

22
t2 þ χBj

12
tþ χBj

21
t

þ χq11t
2 þ χQ11

t2 þ χq22t
2 þ χQ22

t2 − χF1
t4 − χF2

t4�;
ð47Þ

where we are using the following notation:

FIG. 3. Quiver diagram for the CP2=Z2 theory.

7Wewill summarize the ranks of the various gauge groups with
a vector k and the ranks of the flavor groups with a vector N.
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(i) The fugacity t is associated with the R charge and
keeps track of it in units of one quarter.

(ii) The fugacities u, w, z, and v are associated with the
gauge groups Uðk1Þ, Uðk2Þ, Uðk3Þ, and Uðk4Þ,
respectively.

(iii) The fugacities x, y, and d are associated with the
global symmetries SUð2Þ, UðN1Þ, and UðN2Þ,
respectively.

(iv) The contribution of each field is given by

χA2
11
¼

Xk1
a¼1

Xk2
b¼1

uaw−1
b ; χA2

22
¼

Xk3
a¼1

Xk4
b¼1

zav−1b ; χBj
12
¼

�
xþ 1

x

�Xk2
a¼1

Xk3
b¼1

waz−1b ;

χBj
21
¼

�
xþ 1

x

�Xk4
a¼1

Xk1
b¼1

vau−1b ; χF1
¼

Xk1
a¼1

Xk2
b¼1

u−1a wb; χF2
¼

Xk3
a¼1

Xk4
b¼1

z−1a vb;

χq11 ¼
Xk2
a¼1

XN1

b¼1

way−1b ; χQ11
¼

XN1

a¼1

Xk1
b¼1

yau−1b ; χq22 ¼
Xk4
a¼1

XN2

b¼1

vad−1b ; χQ22
¼

XN2

a¼1

Xk3
b¼1

daz−1b :

(v) The Haar measure of each UðkÞ gauge group is
taken equal toZ

dμUðkÞðuÞ ¼
1

k!

�Yk
j¼1

I
jujj¼1

duj
2πiuj

�
×

Y
1≤i<j≤k

ðui − ujÞðu−1i − u−1j Þ:

In addition, PE stands for the plethystic exponential defined

as PE½fð·Þ� ¼ expðP∞
n¼1

fð·nÞ
n Þ.

Explicit computation shows that the Hilbert series on
the instanton branch for gauge group G ¼ Uðk1Þ ×
Uðk2Þ ×Uðk3Þ ×Uðk4Þ with flavor group UðN1Þ ×
UðN2Þ corresponding to instantons on CP2=Z2 is equal
to the Hilbert series on the Higgs branch of the A1 quiver
with UðK1Þ ×UðK2Þ gauge symmetry and global
UðN1Þ ×UðN2Þ symmetry corresponding to instantons
on C2=Z2 [31], where

K1 ¼ minðk1; k2Þ; K2 ¼ minðk3; k4Þ: ð48Þ

In Fig. 4, we graphically summarize the relation between
the theory describing instantons on CP2=Z2 and that
describing instantons on C2=Z2. Note that each flavor
node flavors two adjacent nodes, which are precisely those
merging into a single node in the C2=Z2 cousin.
Let us turn to explicit examples supporting of our claim.

UðN1Þ instantons: k ¼ ð1; 1; 1; 1Þ and N ¼ ðN1; 0Þ. Using
Eq. (47), we have

H½k ¼ ð1; 1; 1; 1Þ;N ¼ ðN1; 0Þ;CP2=Z2�ðt; x; yÞ

¼ 1

ð2πiÞ4
I
juj¼1

du
u

I
jwj¼1

dw
w

I
jzj¼1

dz
z

×
I
jvj¼1

dv
v

× PE½χA2
11
t2 þ χA2

22
t2 þ χBj

12
tþ χBj

21
t

þ χq11t
2 þ χQ11

t2 − χF1
t4 − χF2

t4�;

where the various characters are given by8

TABLE II. Transformations of the fields and of the F terms for the CP2=Z2 theory.

Fields Uðk1Þ Uðk2Þ Uðk3Þ Uðk4Þ UðN1Þ UðN2Þ SUð2Þ Uð1Þ
A2
11

½1; 0;…; 0�þ1 ½0;…; 0; 1�−1 ½0�0 ½0�0 ½0�0 ½0�0 [0] 1=2
A2
22

½0�0 ½0�0 ½1; 0;…; 0�þ1 ½0;…; 0; 1�−1 ½0�0 ½0�0 [0] 1=2
B1
12, B

2
12

½0�0 ½1; 0;…; 0�þ1 ½0;…; 0; 1�−1 ½0�0 ½0�0 ½0�0 [1] 1=4
B1
21,B

2
21

½0;…; 0; 1�−1 ½0�0 ½0�0 ½1; 0;…; 0�þ1 ½0�0 ½0�0 [1] 1=4
q11 ½0�0 ½1; 0;…; 0�þ1 ½0�0 ½0�0 ½0;…; 0; 1�−1 ½0�0 [0] 1 − 1=4r
Q11 ½0;…; 0; 1�−1 ½0�0 ½0�0 ½0�0 ½1; 0;…; 0�þ1 ½0�0 [0] 1=4r
q22 ½0�0 ½0�0 ½0�0 ½1; 0;…; 0�þ1 ½0�0 ½0;…; 0; 1�−1 [0] 1 − 1=4r
Q22 ½0�0 ½0�0 ½0;…; 0; 1�−1 ½0�0 ½0�0 ½1; 0;…; 0�þ1 [0] 1=4r
F1 ½0;…; 0; 1�−1 ½1; 0;…; 0�þ1 ½0�0 ½0�0 ½0�0 ½0�0 [0] 1
F2 ½0�0 ½0�0 ½0;…; 0; 1�−1 ½1; 0;…; 0�þ1 ½0�0 ½0�0 [0] 1

8We rewrite the flavor group UðN1Þ as Uð1Þ × SUðN1Þ. We
denote with p the fugacity of theUð1Þ subgroup, while we denote
with ~y the fugacities of the SUðN1Þ group.

ASPECTS OF THE MODULI SPACE OF INSTANTONS ON … PHYSICAL REVIEW D 93, 026009 (2016)

026009-13

Articles 87



χA2
11
¼ uw−1; χA2

22
¼ zv−1;

χBj
12
¼

�
xþ 1

x

�
wz−1; χBj

21
¼

�
xþ 1

x

�
u−1v;

χF1
¼ u−1w; χF2

¼ z−1v;

χq11 ¼ wp−1½0;…; 0; 1�~y; χQ11
¼ u−1p½1; 0;…; 0�~y:

Integrating over z and v, we obtain

1

ð2πiÞ2
I
juj¼1

du
u

I
jwj¼1

dw
w

ð1− t6Þx2ðuþ t4wÞ
ðt2u−wÞðt4w− x2uÞðu− t4x2wÞ

×PE½χq11t2 þ χQ11
t2�;

then integrating over the second gauge group, we find

1þ t6

ð1− t6=x2Þð1− t6x2Þ×
1− t6

ð2πiÞ
I
juj¼1

du
u
PE½up−1t4½0;…;0;1�~y

þu−1pt2½1;0;…0�~y�:

We can reabsorb the fugacity p of the Uð1Þ flavor as
u0 ¼ up−1. Therefore, the previous integral becomes

1þ t6

ð1 − t6=x2Þð1 − t6x2Þ ×
1 − t6

ð2πiÞ
I
ju0j¼1

du0

u0

× PE½u0t4½0;…; 0; 1�~y þ t2=u0½1; 0;…0�~y�:

Finally, doing u0 ¼ u2=t, the previous expression
becomes

1þ t6

ð1− t6=x2Þð1− t6x2Þ×
1− t6

ð2πiÞ
I
ju2j¼1

du2
u2

PE½u2t3½0;…;0;1�~y
þ t3u−12 ½1;0;…0�~y�:

This last expression coincides with the Hilbert series for
one SUðN1Þ instanton on C2=Z2 [it coincides with
Eq. (2.15) of [31]].
Uð1Þ instanton: k ¼ ð2; 1; 1; 1Þ and N ¼ ð1; 0Þ. Using

Eq. (47), we find that

H½k ¼ ð2; 1; 1; 1Þ;N ¼ ð1; 0Þ;CP2=Z2�ðt; xÞ

¼ 1þ t6

ð1 − t6=x2Þð1 − t6x2Þ ;

which is the Hilbert series of oneUð1Þ instanton on C2=Z2.
Uð1Þ instanton: k ¼ ð2; 1; 2; 1Þ and N ¼ ð1; 0Þ. Using

Eq. (47), we find that

H½k ¼ ð2; 1; 2; 1Þ;N ¼ ð1; 0Þ;CP2=Z2�ðt; xÞ

¼ 1þ t6

ð1 − t6=x2Þð1 − t6x2Þ ;

which is again the Hilbert series of one Uð1Þ instanton
on C2=Z2.
Uð1Þ instanton: k ¼ ð1; 2; 1; 2Þ and N ¼ ð1; 0Þ. Using

Eq. (47), we find that

H½k ¼ ð1; 2; 1; 2Þ;N ¼ ð1; 0Þ;CP2=Z2�ðt; xÞ

¼ 1þ t6

ð1 − t6=x2Þð1 − t6x2Þ ;

which is again the Hilbert series of one Uð1Þ instanton
on C2=Z2.
Uð2Þ instanton: k ¼ ð2; 1; 1; 1Þ and N ¼ ð2; 0Þ. Using

Eq. (47), we find that

H½k ¼ ð2; 1; 1; 1Þ;N ¼ ð2; 0Þ;CP2=Z2�ðt; x; y1; y2Þ

¼ ð1þ t6Þ2x2y1y2
ðt6 − x2Þð1 − t6x2Þðt6y1 − y2Þðy1 − t6y2Þ

;

FIG. 4. Relation between the CP2=Z2

quiver gauge theory (on the left) and the
corresponding C2=Z2 quiver gauge
theory (on the right).
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being y1 and y2 the fugacities of the flavor group. The
previous expression coincides with the Hilbert series for
one Uð2Þ instanton on C2=Z2.
Uð2Þ instanton: k ¼ ð2; 2; 1; 1Þ and N ¼ ð2; 0Þ. Using

Eq. (47) and unrefining for simplicity, we find

H½k ¼ ð2; 2; 1; 1Þ;
N ¼ ð2; 0Þ;CP2=Z2�ðt; 1; 1; 1Þ

¼ 1þ 3t6 þ 11t12 þ 10t18 þ 11t24 þ 3t30 þ t36

ð1 − t6Þ6ð1þ t6Þ3 ;

which is the unrefined Hilbert series for K ¼ ð2; 1Þ
instantons with flavor group N ¼ ð2; 0Þ on C2=Z2.
Uð2Þ instanton: k ¼ ð2; 2; 1; 1Þ and N ¼ ð0; 2Þ. Using

Eq. (47), this time we find that

H½k ¼ ð2; 2; 1; 1Þ;N ¼ ð0; 2Þ;CP2=Z2�ðt; x; y1; y2Þ

¼ ð1þ t6Þðx2 þ t6x2 þ t18x2 − t12ð1þ x2 þ x4ÞÞy1y2
ðt6 − x2Þð1 − t6x2Þðt6y1 − y2Þðy1 − t6y2Þ

;

being y1 and y2 the fugacities of theUð2Þ flavor group. The
previous expression is the Hilbert series of K ¼ ð2; 1Þ
instantons with N ¼ ð0; 2Þ on C2=Z2.

2. The CP2=Z3 case

Let us now consider the case of CP2=Z3. Using the rules
above, we find that the quiver describing the moduli space
of instantons on the CP2=Z3 is Fig. 5. We summarize the
fields’ quantum numbers in Table III.
The superpotential (10) becomes

W ¼ Tr½A1
22B

1
21A

2
11B

2
12 − A1

11B
2
12A

2
22B

1
21 þ A1

33B
1
32A

2
22B

2
23

− A1
22B

2
23A

2
33B

1
32 − A1

33B
2
31A

2
11B

1
13 þ A1

11B
1
13A

2
33B

2
31

þ q11A1
11Q11 þ q22A1

22Q22 þ q33A1
33Q33�: ð49Þ

Now the instanton branch emerges upon setting A1
ii ¼ 0.

The relevant F terms are

F1∶ ∂A1
11
W ¼ B1

13A
2
33B

2
31 − B2

12A
2
22B

1
21 þ q11Q11 ¼ 0;

F2∶ ∂A1
22
W ¼ B1

21A
2
11B

2
12 − B2

23A
2
33B

1
32 þ q22Q22 ¼ 0;

F3∶ ∂A1
33
W ¼ B1

32A
2
22B

2
23 − B2

31A
2
11B

1
13 þ q33Q33 ¼ 0:

This defines the ADHM construction for instantons
on CP2=Z3.
If we multiply F1, F2, and F3, respectively, by A2

11, A
2
22,

and A2
33, we obtain

A2
11B

1
13A

2
33B

2
31 − A2

11B
2
12A

2
22B

1
21 þ A2

11q11Q11 ¼ 0; ð50Þ

A2
22B

1
21A

2
11B

2
12 − A2

22B
2
23A

2
33B

1
32 þ A2

22q22Q22 ¼ 0; ð51Þ

A2
33B

1
32A

2
22B

2
23 − A2

33B
2
31A

2
11B

1
13 þ A2

33q33Q33 ¼ 0: ð52Þ

It is easy to check using the identification provided by the
map π in Eq. (14) that the expressions (50)–(52) match the
corresponding F terms of the C2=Z3 theory. Note that, as
opposed to the unorbifolded and Z2 orbifold, the SUð2Þ
global symmetry rotating the Bi fields is broken due to the
orbifold action. This correlates with the fact that the moduli
space of instantons on CP2=Zn is biholomorphic to the
moduli space of instantons on C2=Zn, which exhibits a
SUð2Þ symmetry for n ¼ 1, 2 but not for higher n.
The Hilbert series for F ¼ UðN1Þ ×UðN2Þ ×UðN3Þ

instantons on CP2=Z3 with the configuration k ¼
ðk1; k2; k3; k4; k5; k6Þ reads

FIG. 5. The quiver diagram for the
CP2=Z3 theory.
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H½k; F;CP2=Z3�ðt; y;d; sÞ ¼
Z

dμUðk1ÞðuÞ
Z

dμUðk2ÞðwÞ
Z

dμUðk3ÞðzÞ
Z

dμUðk4ÞðvÞ ×
Z

dμUðk5ÞðjÞ
Z

dμUðk6ÞðcÞ

× PE½χA2
11
t2 þ χA2

22
t2 þ χA2

33
t2 þ χB2

12
tþ χB2

23
tþ χB2

31
tþ χB1

21
tþ χB1

13
tþ χB1

32
tþ χq11t

2

þ χQ11
t2 þ χq22t

2 þ χQ22
t2 þ χq33t

2 þ χQ33
t2 − χF1

t4 − χF2
t4 − χF3

t4�; ð53Þ

where the contributions of the F terms and the various fields are given by

χF2
¼
Xk3
a¼1

Xk4
b¼1

z−1a vb; χF3
¼
Xk5
a¼1

Xk6
b¼1

j−1a cb; χq11 ¼
Xk2
a¼1

XN1

b¼1

way−1b ; χQ11
¼
XN1

a¼1

Xk1
b¼1

yau−1b ;

χq22 ¼
Xk4
a¼1

XN2

b¼1

vad−1b ; χQ22
¼
XN2

a¼1

Xk3
b¼1

daz−1b ; χq33 ¼
Xk6
a¼1

XN3

b¼1

cas−1b ; χQ33
¼
XN3

a¼1

Xk5
b¼1

saj−1b ;

χA2
11
¼
Xk1
a¼1

Xk2
b¼1

uaw−1
b ; χA2

22
¼
Xk3
a¼1

Xk4
b¼1

zav−1b ; χA2
33
¼
Xk5
a¼1

Xk6
b¼1

jac−1b ; χB2
12
¼
Xk2
a¼1

Xk3
b¼1

waz−1b ; χB2
23
¼
Xk4
a¼1

Xk5
b¼1

vaj−1b ;

χB2
31
¼
Xk6
a¼1

Xk1
b¼1

cau−1b ; χB1
21
¼
Xk4
a¼1

Xk1
b¼1

vau−1b ; χB1
13
¼
Xk2
a¼1

Xk5
b¼1

waj−1b ; χB1
32
¼
Xk6
a¼1

Xk3
b¼1

caz−1b ; χF1
¼
Xk1
a¼1

Xk2
b¼1

u−1a wb:

As above, the Hilbert series on the instanton
branch of the quiver describing instantons on
CP2=Zn with gauge group of G ¼ Uðk1Þ ×
Uðk2Þ × Uðk3Þ × Uðk4Þ × Uðk5Þ × Uðk6Þ and
flavor group UðN1Þ ×UðN2Þ ×UðN3Þ is equal to
the Hilbert series of the Higgs branch describing the
moduli space of instantons on C2=Z3 with flavor group
UðN1Þ×UðN2Þ×UðN3Þ instantons and gauge group K ¼
ðK1; K2; K3Þ [31], where

K1 ¼ minðk1; k2Þ;
K2 ¼ minðk3; k4Þ; and K3 ¼ minðk5; k6Þ: ð54Þ

We can again summarize graphically the relation
between the theory describing CP2=Z3 instantons and its
C2=Z3 cousin as in Fig. 6. As in the Z2 orbifold case, each
flavor node flavors a pair of gauge nodes which “merge”
into a single node in the cousin C2=Z3 theory.

TABLE III. Transformations of the fields and F terms for the CP2=Z3 theory.

Fields Uðk1Þ Uðk2Þ Uðk3Þ Uðk4Þ Uðk5Þ Uðk6Þ UðN1Þ UðN2Þ UðN3Þ Uð1ÞR
A2
11

½1; 0;…; 0�þ1 ½0;…; 0; 1�−1 ½0�0 ½0�0 ½0�0 ½0�0 ½0�0 ½0�0 ½0�0 1=2

A2
22

½0�0 ½0�0 ½1; 0;…; 0�þ1 ½0;…; 0; 1�−1 ½0�0 ½0�0 ½0�0 ½0�0 ½0�0 1=2

A2
33

½0�0 ½0�0 ½0�0 ½0�0 ½1; 0;…; 0�þ1 ½0;…; 0; 1�−1 ½0�0 ½0�0 ½0�0 1=2

B1
13

½0�0 ½1; 0;…; 0�þ1 ½0�0 ½0�0 ½0;…; 0; 1�−1 ½0�0 ½0�0 ½0�0 ½0�0 1=4

B1
21

½0;…; 0; 1�−1 ½0�0 ½0�0 ½1; 0;…; 0�þ1 ½0�0 ½0�0 ½0�0 ½0�0 ½0�0 1=4

B1
32

½0�0 ½0�0 ½0;…; 0; 1�−1 ½0�0 ½0�0 ½1; 0;…; 0�þ1 ½0�0 ½0�0 ½0�0 1=4

B2
12

½0�0 ½1; 0;…; 0�þ1 ½0;…; 0; 1�−1 ½0�0 ½0�0 ½0�0 ½0�0 ½0�0 ½0�0 1=4

B2
23

½0�0 ½0�0 ½0�0 ½1; 0;…; 0�þ1 ½0;…; 0; 1�−1 ½0�0 ½0�0 ½0�0 ½0�0 1=4

B2
31

½0;…; 0; 1�−1 ½0�0 ½0�0 ½0�0 ½0�0 ½1; 0;…; 0�þ1 ½0�0 ½0�0 ½0�0 1=4

q11 ½0�0 ½1; 0;…; 0�þ1 ½0�0 ½0�0 ½0�0 ½0�0 ½0;…; 0; 1�−1 ½0�0 ½0�0 1 − 1=4r

Q11 ½0;…; 0; 1�−1 ½0�0 ½0�0 ½0�0 ½0�0 ½0�0 ½1; 0;…; 0�þ1 ½0�0 ½0�0 1=4r
q22 ½0�0 ½0�0 ½0�0 ½1; 0;…; 0�þ1 ½0�0 ½0�0 ½0�0 ½0;…; 0; 1�−1 ½0�0 1 − 1=4r
Q22 ½0�0 ½0�0 ½0;…; 0; 1�−1 ½0�0 ½0�0 ½0�0 ½0�0 ½1; 0;…; 0�þ1 ½0�0 1=4r

q33 ½0�0 ½0�0 ½0�0 ½0�0 ½0�0 ½1; 0;…; 0�þ1 ½0�0 ½0�0 ½0;…; 0; 1�−1 1 − 1=4r
Q33 ½0�0 ½0�0 ½0�0 ½0�0 ½0;…; 0; 1�−1 ½0�0 ½0�0 ½0�0 ½1; 0;…; 0�þ1 1=4r

F1 ½0;…; 0; 1�−1 ½1; 0;…; 0�þ1 ½0�0 ½0�0 ½0�0 ½0�0 ½0�0 ½0�0 ½0�0 1
F2 ½0�0 ½0�0 ½0;…; 0; 1�−1 ½1; 0;…; 0�þ1 ½0�0 ½0�0 ½0�0 ½0�0 ½0�0 1

F3 ½0�0 ½0�0 ½0�0 ½0�0 ½0;…:; 0; 1�−1 ½1; 0;…; 0�þ1 ½0�0 ½0�0 ½0�0 1
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Let us support our claim with explicit examples. Uð1Þ instanton: k ¼ ð1; 1; 1; 1; 1; 1Þ and N ¼ ð1; 0; 0Þ. Using Eq. (53),
we find that

H½ð1; 1; 1; 1; 1; 1Þ; ð1; 0; 0Þ;CP2=Z3�ðtÞ ¼
1 − t3 þ t6

ð1 − t3Þ2ð1þ t3 þ t6Þ ;

which is the Hilbert series for N ¼ ð1; 0; 0Þ instantons and K ¼ ð1; 1; 1Þ on C2=Z3. Uð2Þ instanton: k ¼ ð1; 1; 1; 1; 1; 1Þ
and N ¼ ð1; 1; 0Þ. Using Eq. (53) and unrefining, we find that

H½ð1; 1; 1; 1; 1; 1Þ; ð1; 1; 0Þ;CP2=Z3�ðt; 1; 1Þ ¼
1þ t6 þ 2t9 þ 2t12 þ 2t15 þ t18 þ t24

ð1 − t3Þ4ð1þ t3Þ2ð1þ t6Þð1þ t3 þ t6Þ2 ;

which is the unrefined Hilbert series for N ¼ ð1; 1; 0Þ instantons and K ¼ ð1; 1; 1Þ on C2=Z3. Uð1Þ instanton:
k ¼ ð2; 1; 1; 1; 1; 1Þ and N ¼ ð1; 0; 0Þ. Using Eq. (53), we find that

H½ð2; 1; 1; 1; 1; 1Þ; ð1; 0; 0Þ;CP2=Z3�ðtÞ ¼
1 − t3 þ t6

ð1 − t3Þ2ð1þ t3 þ t6Þ ;

which is again the Hilbert series for N ¼ ð1; 0; 0Þ instantons and K ¼ ð1; 1; 1Þ on C2=Z3. Uð1Þ instanton:
k ¼ ð2; 1; 2; 1; 1; 1Þ and N ¼ ð1; 0; 0Þ. Using Eq. (53), we find that

H½ð2; 1; 2; 1; 1; 1Þ; ð1; 0; 0Þ;CP2=Z3�ðtÞ ¼
1 − t3 þ t6

ð1 − t3Þ2ð1þ t3 þ t6Þ ;

which is again the Hilbert series for N ¼ ð1; 0; 0Þ instantons and K ¼ ð1; 1; 1Þ on C2=Z3. Uð2Þ instanton: k ¼
ð2; 1; 1; 1; 1; 1Þ and N ¼ ð2; 0; 0Þ. Using Eq. (53), we find that

H½ð2; 1; 1; 1; 1; 1Þ; ð2; 0; 0Þ;CP2=Z3�ðt; y1; y2Þ ¼
ð1 − t3 þ 2t6 − t9 þ t12Þy1y2

ð1 − t3Þ2ð1þ t3 þ t6Þðt6y1 − y2Þðt6y2 − y1Þ
;

being y1 and y2 the fugacities of the flavor group Uð2Þ. The previous expression is the Hilbert series for N ¼ ð2; 0; 0Þ
instantons and K ¼ ð1; 1; 1Þ on C2=Z3. Uð2Þ instanton: k ¼ ð2; 2; 1; 1; 1; 1Þ and N ¼ ð2; 0; 0Þ. Using Eq. (53) and
unrefining, we find that

H½ð2; 2; 1; 1; 1; 1Þ; ð2; 0; 0Þ;CP2=Z3�ðt; 1; 1Þ

¼ 1 − t3 þ 2t6 − t9 þ 3t12 þ 2t15 − t18 − t21 − 5t27 þ 2t30 − 5t33 − t39 − t42 þ 2t45 þ 3t48 − t51 þ 2t54 − t57 þ t60

ð1 − t3Þ4ð1þ t3Þ2ð1þ t3 þ t6Þð1 − t12Þ2ð1 − t15Þ2 ;

which is the Hilbert series for N ¼ ð2; 0; 0Þ instantons and K ¼ ð2; 1; 1Þ on C2=Z3. Uð2Þ instanton: k ¼ ð2; 1; 2; 1; 1; 1Þ
and N ¼ ð2; 0; 0Þ. Using Eq. (53), we find that

FIG. 6. Relation between the
CP2=Z3 quiver gauge theory (on
the left) and the corresponding
C2=Z3 quiver gauge theory (on
the right).
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H½ð2; 1; 1; 1; 1; 1Þ; ð2; 0; 0Þ;CP2=Z3�ðt; y1; y2Þ ¼
ð1 − t3 þ 2t6 − t9 þ t12Þy1y2

ð1 − t3Þ2ð1þ t3 þ t6Þðt6y1 − y2Þðt6y2 − y1Þ
;

FIG. 7. (a),(b) and (c) are the steps for the construction of the quiver diagram for the CP2=Z4 theory.
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being y1 and y2 the fugacities of the flavor groupUð2Þ. The
previous expression is the Hilbert series for N ¼ ð2; 0; 0Þ
instantons and K ¼ ð1; 1; 1Þ on C2=Z3.

3. The CP2=Zn case (n ≥ 3)

It is now easy to generalize the previous construction of
UðNÞ instantons to higher orbifolds ofCP2. For a generalZn
orbifold, the resulting procedure is as follows (see Fig. 7):

(i) The quiver has 2n circular nodes linked together in
an alternating way; i.e., a segment with fields A1

ii and
A2
ii is alternated with a segment with field B2

i;iþ1 [see
Fig. 7(a)].

(ii) Then we add the contribution due to the fields B1
iþ1;i.

In order to do this, we begin from one circular node
[for example, the one in which there is the gauge
group Uðk1Þ], and we move clockwise counting
three segments (in this case, we will count the
segment labeled by A1

11, the segment labeled by
B2
12, and finally the segment labeled by A1

22). When
we reach the circular node at the end of the third
segment, we draw a line between this node and the
initial circular node [in this case, a line between the
node Uðk4Þ and the initial node Uðk1Þ]. This line we
labeled by a B1

iþ1;i field (in the case we are consid-
ering, by the field B1

2;1) [see Fig. 7(b)].
(iii) We apply the same procedure starting this time from

the next circular node arising from the first gauge
groupUðkLÞ [in this case, the one labeled byUðk3Þ],
and we will continue to apply this algorithm up
to the end of the circular nodes arising from the
decomposition of the first gauge group. Finally, we
add the contributions due to thevarious flavor groups,
and we obtain the quiver reported in Fig. 7(c).

Note that N corresponds to the sum of the ranks of the
flavor nodes. In turn, the gauge ranks correspond to the
instanton number as well as, together with relative flavor
ranks, other quantum numbers describing the instanton (we
will briefly come back to these issues below).
We can compute the Hilbert series on the instanton

branch. In general, we find a correspondence between the
Hilbert series for the moduli space of N¼ðN1;…;NnÞ

instantons with k¼ðk1;k2;…;k2nÞ on CP2=Zn and the
Hilbert series for the moduli space of N¼ðN1;…NnÞ
instantonswithK¼ðK1;…;KnÞ onC2=Zn upon identifying

K1 ¼ minðk1; k2Þ;
K2 ¼ minðk3; k4Þ;…Kn ¼ minðk2n−1; k2nÞ: ð55Þ

This can be easily proven in the particular case

G ¼ ⊗
2n

i¼1
Uð1Þi; F ¼ ⊗

n

i¼1
UðNiÞ:

Moreover, we denote with zi i ¼ 1;…; 2n the fugacities of
the various Uð1Þi gauge groups and with ui and ~yi the
fugacities of each flavor groupUðNiÞ [being ui the fugacity
of theUð1Þ part, while ~yi’s are the fugacities associated with
the SUðNÞ part of the flavor group].
The Hilbert series reads

H½ð1; 1;…; 1Þ; ðN1; N2;…; NnÞ;CP2=Zn�ðt; ui; ~yiÞ

¼
Y2n
i¼1

1

2πi

I
jzij

dzi
zi

Yn
j¼1

χA2
j;j
ðt; z2j−1; z2jÞ × χB2

j;jþ1
ðt; z2j; z2jþ1ÞχB1

jþ1;j
ðt; z2j; z2j−1ÞχFj

ðt; z2j−1; z2jÞ

× χqj;jðt; z2j; ~yj; ujÞχQj;j
ðt; z2j−1; ~yj; ujÞ: ð56Þ

The contributions of the various fields are9

FIG. 8. Basic element of the quiver diagram for the CP2=Zn
theory.

9See Fig. 8.
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χA2
j;j
ðt; z2j−1; z2jÞ ¼ PE½t2z2j−1z−12j �; χB2

j;jþ1
ðt; z2j; z2jþ1Þ ¼ PE½tz2jz−12jþ1�;

χB1
jþ1;j

ðt; z2jþ2; z2j−1Þ ¼ PE½tz2jþ2z−12j−1�; χFj
ðt; z2j−1; z2jÞ ¼ PE½−t4z−12j−1z2j�;

χQj;j
ðt; z2j−1; ~yj; ujÞ ¼ PE½t2z−12j−1½1; 0;…; 0� ~yjuj�; χqj;jðt; z2j; ~yj; ujÞ ¼ PE½t2z2j½0;…; 0; 1� ~yju−1j �:

Therefore, the Hilbert series (56) becomes

Y2n
i¼1

1

2πi

I
jzij

dzi
zi

Yn
j¼1

PE½t2z−12j−1½1; 0;…; 0� ~yjuj þ t2z2j½0;…; 0; 1� ~yju−1j �ðz2j−1 − t4z2jÞ
z2j−1
z2j

ðz2j − t2z2j−1Þð1 − tz2j
z2jþ1

Þð1 − tz2jþ2

z2j−1
Þ :

It is important to note that we can integrate over the gauge groupUð1Þi with an even value of the index i. This is due to the
fact that the only contribution to these integrals comes from the poles located at z2j ¼ t2z2j−1. Therefore, performing the
integrations, we obtain

Y2n
i odd

1

2πi

I
jzij

dzi
zi

Yn
j¼1

PE½t2z−12j−1½1; 0;…; 0� ~yjuj þ t4z2j−1½0;…; 0; 1� ~yju−1j �ðz2j−1 − t6z2j−1Þ
z2j−1ð1 − t3z2j−1

z2jþ1
Þð1 − t3z2jþ1

z2j−1
Þ

;

then we perform the change of variables z2j−1 ↦ tz2j−1,

Y2n
i odd

1

2πi

I
jzij

dzi
zi

Yn
j¼1

PE½t3z−12j−1½1; 0;…; 0� ~yjuj þ t3z2j−1½0;…; 0; 1� ~yju−1j �ð1 − t6Þ
ð1 − t3z2j−1

z2jþ1
Þð1 − t3z2jþ1

z2j−1
Þ

:

Finally, we observe that instead of considering only the odd numbers between 1 and 2n, it is more useful to consider all the
integer numbers between 1 and n. Therefore, we can make the following replacements z2j−1 ↦ zj and z2jþ1 ↦ zjþ1, and
we rewrite the previous integral as

Yn
i¼1

1

2πi

I
jzij

dzi
zi

ð1 − t6Þn
Yn
j¼1

PE½t3z−1j ½1; 0;…; 0� ~yjuj þ t3zj½0;…; 0; 1� ~yju−1j �PE½t3zjz−1jþ1 þ t3zjþ1z−1j �;

which is the Hilbert series for N ¼ ðN1; N2;…; NnÞ in-
stantons withK ¼ ð1; 1;…; 1Þ on C2=Zn [it coincides with
the expression (2.41) of [31]].
Up to now, we have deliberately postponed discussing

the identification of the quantum numbers of the instanton.
Recall that in the C2=Zn case [31], the instanton is
described by n − 1 first Chern classes, one second Chern
class, and n holonomies of the gauge field, all in all a total
of 2n quantum numbers corresponding to the 2n integers
specifying the An−1 quiver.
In the case at hand, the quiver describing instantons on

CP2=Zn is specified by a total of 3n integers corresponding
to 2n gauge ranks and n flavor ranks. In turn, we expect the
instanton on CP2=Zn to be described by 2n − 1 first Chern
classes—corresponding to n orbifold copies of the CP2 2-
cycle plus n − 1 extra 2-cycles introduced by the orbifold—
one second Chern class and n holonomies, hence, totaling
the expected 3n quantum numbers. While the exact
identification of integers is not known, note that, from
the examples above, the mapping of the CP2=Zn quiver
into the C2=Zn one is such that one node of the latter arises

from the merging of two adjacent commonly flavored
nodes of the former in such a way that the common flavor
group in the CP2=Zn case becomes the flavor group in the
C2=Zn case. Hence, it is natural to guess that the n
holonomies correspond to the n flavor nodes. Moreover,
the n − 1 first Chern classes associated to the cycles arising
from the orbifold are naturally associated to the differences
among the minima of the ranks of each pair of “merging
nodes.” Obviously, there are n such nodes arising from
merging, whose n − 1 rank differences would correspond
to first Chern classes. In turn, the relative rank between the
merging nodes is naturally associated with the n remaining
2-cycles, orbifold copies of the original 2-cycle in CP2.
Finally, the sum of the ranks is naturally related to the
second Chern class. Note that clearly the identification ofN
with the sum of the ranks of the flavor nodes is consistent.
As a small consistency check, let us consider the simple

case of the vanishing first Chern class associated to cycles
introduced by the orbifold. This would correspond to a rank
assignation of the form ð� � � ; k; qn; k; qnþ1; k; � � �Þ with
qi > k, so that among each “merging pair,” the minimum
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rank is k. Then all relative rank differences among the
“merged nodes” are 0 corresponding to a C2=Zn instanton
with zero first Chern classes. Moreover, let us consider the
case of the vanishing second Chern class from the C2=Zn
point of view, which demands k ¼ 0. This is analogous to
the case kL ¼ 0 in Sec. III A. We are then left with a gauge
rank assignation of the form ð� � � ; 0; qn; 0; qnþ1; 0; � � �Þ.
According to our conjecture, these integers qi should
correspond to the first Chern classes on the n 2-cycles
coming from the orbifold images of the original 2-cycle.
Indeed, if we consider just one of them, that is, we set all
but one of the qi’s to vanish, we simply recover the
Grassmanian quiver above. Note that, as expected, indeed
we have n such possibilities corresponding to the n 2-cycles
coming from the orbifold images of the original 2-cycle.

V. SpðNÞ INSTANTONS ON CP2=Zn

So far, we have concentrated on the case of unitary
instantons. Let us now turn to the case of instantons in the
symplectic gauge group. The explicit ADHM construction
of such instantons was introduced in [14]. As described in
[15], it can be embedded into a 3d gauge theory upon
restricting to the appropriate instanton branch. In 3dN ¼ 2
notation, such theory contains one UðkÞ vector multiplet
coupled to one chiral multiplet ~A in the second rank
antisymmetric tensor representation of the gauge group
and three chiral multiplets S1, S2, ~S in the second rank
symmetric tensor representation. In addition, there is a
number of chiral multiplets in the fundamental representa-
tion with an SpðNÞ global symmetry. The corresponding
quiver is reported in Fig. 9.
In turn, the superpotential is

W ¼ ϵαβðSαÞab ~SbcðSβÞcd ~Ada þ ~AabQi
aQj

bJij; ð57Þ
being J the SpðNÞ symplectic matrix. As shown in [15], the
instanton branch emerges upon setting ~A—as well as the
monopole operators—to zero.
As in the unitary case, it is possible to embed the CP2

symplectic instantons ADHM construction into the C2

symplectic ADHM construction and vice versa [15]. It
should be noted though that now the equivalent to the map
π in Eq. (14) is quadratic and, hence, does not define a
proper mapping. Nevertheless, as a consequence, the
Hilbert series for symplectic instantons on CP2 coincides
with that of symplectic instantons on C2. We refer to [15]
for further details.

A. Constructing SpðNÞ instantons on CP2=Zn

Just as in the case of unitary instantons, we can consider
orbifolding the base CP2 manifold and study SpðNÞ
instantons on CP2=Zn. It is then natural to engineer the
ADHM-like construction by orbifolding the CP2 case, just
as for unitary instantons. As a guideline, let us compare
with the case of instantons on C2 and its orbifolds [31]. The
gauge theory realizing the ADHM construction for unitary
instantons on C2=Zn can be thought of as the world volume
theory on a D3-D7 system, where the transverse directions
to the D3’s inside the D7’s wrap C2=Zn. Then, symplectic
(and orthogonal) instantons can be constructed upon add-
ing O7 planes of the appropriate charge. A comprehensive
picture appears upon T duality along the asymptotically
locally Euclidean (ALE) space. Then, the D3-branes are
mapped to D4-branes wrapping a circle. In turn, the D7’s
are mapped into D6 at fixed positions in the circle. Finally,
n NS5-branes on the circle arise from T dualizing the ALE
space. In this context, the construction of symplectic
(alternatively, orthogonal) instantons boils down to adding
two identical— because they come from T duality of a
single O7-O6 plane of the appropriate charge at opposite
points in the circle such that each side of the circle mirrors
—due to the orientifold projection—the other side. This
procedure highlights an obvious difference between the
cases of even and odd orbifolds. As the distribution of NS5-
branes must be symmetric on the circle, for an odd n, it is
clear that one suchNS5must be stuck in an orientifold plane.
In turn, in the case of even n, we can have a symmetric
distribution by either sticking oneNS5 at eachO plane or not
sticking anyNS5’s on theO planes. These possibilities lead,
respectively, to the so-called no-vector structure (NVS) and
vector structure (VS).We refer to [31] and references therein
for further explanations.Note that theT-duality construction
suggests that the two O planes are of the same type.
Nevertheless, once in the IIA setup, one might imagine
other versions whereby the O planes are of different type.
These configurations were dubbed hybrid in [31]. We will
briefly touch on the equivalent to these in the case at hand
below, showing an explicit example in Appendix A.
In view of the C2=Zn case, it is natural to proceed in a

similar way in the case of instantons on the orbifoldedCP2,
that is, first consider orbifolding unitary instantons and then
considering orientifolding. Note, however, that in this case,
the brane picture is much less clear. Nevertheless, as we
will see, the results are qualitatively similar. Since we will
set monopole operators to zero, formally the procedure isFIG. 9. Quiver diagram for SpðNÞ instantons on CP2.
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identical to the case of 4d gauge theories. Hence, we can
borrow the technology developed [42,43] to construct the
relevant theories.
As illustrated in [42], the orientifold field theory is

obtained from the parent field theory performing a Z2

identification of the gauge groups, chiral multiplets, and
superpotential couplings. As explained in [43], this means
that the O-plane involution defines a Z2 automorphism of
the quiver diagram that reverses the directions of the
arrows. Therefore, the quiver of the parent theory has a
Z2 symmetry that can be visualized as a reflection through
a fixed line once we embed the quiver diagram in R2. In the
following, we will follow the method used in [43] that
allows us to obtain the orientifold theory starting directly
from its quiver diagram. Of course, as can be verified, the
application of the method of [42] that acts on the dimer
diagram of the theory leads to the same results.
In order to explain how this procedure works, we apply it

to the case of the CP2=Z2 theory, and we refer to [43] for
the analysis of the general case. An inspection of the
corresponding quiver diagram shows that there are two
inequivalent ways to cut it with a line, such that the quiver
displays arrows reversing the symmetry with respect to this
line (see Fig. 10).
In order to obtain the corresponding orientifold theory,

we label each node and each line intersecting perpendicu-
larly to the cutting line with a sign (denoted with a roman
number in the figure) that can be positive or negative. Then,
the orientifold theory is constructed as follows. Each node
untouched by the cutting line corresponds to a UðkÞ group,
while each node touched by the line corresponds to an
SOðNÞ or SpðNÞ (for a positive or negative sign, respec-
tively) in the orientifold field theory. In the same way, each
edge of the quiver diagram away from the cutting line

corresponds to bifundamental matter, while each edge
crossing the cutting line perpendicularly corresponds to
symmetric matter (positive sign) or antisymmetric matter
(negative sign) in the orientifold field theory. The values of
the signs must be fixed requiring that the superpotential of
the parent theory is invariant under the involution. Note
that, in general, more than one choice is allowed. For
example, in the case of the quiver diagram in Fig. 10(b), we
can choose the following values of the signs ðþ;þ;þ;þÞ,
ð−;þ;þ;−Þ, ðþ;−;þ;−Þ, ðþ;þ;−;−Þ. In the following,
we will always fix the signs in order to obtain the theory
whose Higgs branch describes the moduli space for SpðNÞ
instantons (respectively, SO) on CP2=Zn, which, in the
case at the hand, means to select the ðþ;þ;þ;þÞ con-
figuration. The remaining allowed choices correspond to
the “hybrid configurations” discussed in [31]. Even though
we will not touch upon these further in this paper, we
present an explicit example in Appendix A.
Therefore, as in [31], we have two different situations

depending on whether the degree of the orbifold is even
or odd.

(i) If n is odd, we have only one type of quiver diagram
corresponding to the fact that we have only one
inequivalent way to cut it with a line.

(ii) If n is even, we have two types of quiver gauge
theories corresponding to the two possible inequi-
valent ways to cut it with a fixed line. These two
cases are just the equivalent of the vector-structure
and no-vector-structure cases for C2=Zn symplectic
instantons. By analogy, in the following we will
refer to them as the VS and the NVS, respectively.

Note that N corresponds to the sum of the ranks of the
flavor groups in the ADHM quiver. In turn, gauge group
ranks correspond to the instanton number (as well as to
other possible quantum numbers labeling the instanton).

1. SpðNÞ instantons on CP2=Z2: VS

Starting from the CP2=Z2 and applying the rules above,
we can obtain the VS theory for SpðNÞ instantons on
CP2=Z2. The corresponding quiver diagram is reported in
Fig. 11, while we summarize the transformations of the

FIG. 11. Quiver diagram for VS symplectic instantons on
CP2=Z2.

FIG. 10. The two inequivalent ways to obtain the CP2=Z2

orientifold theory. The VS case (a) and the NVS case (b).
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fields under the different groups in Table IV. Note
that N ¼ N1 þ N2.
The branch of themoduli space that can be identified with

SpðNÞ instantons on CP2=Z2 is the one on which ~A1 ¼ 0
and A2 ¼ 0. Then, the Hilbert series of the instanton branch
corresponding to the VS theory with flavor symmetry
SpðN1Þ × SpðN2Þ and gauge ranks k ¼ ðk1; k2Þ is
H½k; F;CP2=Z2�ðt; x; y;dÞ

¼
Z

dμUðk1ÞðzÞ
Z

dμUðk2ÞðpÞPE½χS2t2 þ χ ~S1t
2 þ χBjt

þ χQ1
t2 þ χQ2

t2 − χF1
t4 − χF2

t4�; ð58Þ
where z and p are the fugacities of the Uðk1Þ and Uðk2Þ
gauge groups, respectively, while y and d denote the
fugacities of the SpðN1Þ and SpðN2Þ flavor groups, respec-
tively. Finally, x denotes the fugacity of the global SUð2Þ
symmetry rotating the B1 and B2 fields. The contribution of
each field is given by

χQ1
¼

XN1

i¼1

�
yi þ

1

yi

�Xk1
a¼1

za;

χQ2
¼

XN2

j¼1

�
dj þ

1

dj

�Xk2
b¼1

p−1
b ; χF1

¼
X

1≤a<b≤k1

zazb;

χS2 ¼
X

1≤a≤b≤k2

papb; χ ~S1
¼

X
1≤a≤b≤k1

z−1a z−1b ;

χBj ¼
�
xþ 1

x

�Xk1
a¼1

Xk2
b¼1

zap−1
b ; χF2

¼
X

1≤a<b≤k2

p−1
a p−1

b :

Explicit computation shows that the Hilbert series for the
instanton branch of the VS theory with gauge group G ¼
Uðk1Þ ×Uðk2Þ and flavor group SpðN1Þ × SpðN2Þ corre-
sponding to the moduli space of instantons on CP2=Z2

turns out to be equal to the Hilbert series for SpðNÞ
instantons on C2=Z2 with gauge group G ¼ OðK1Þ ×
OðK2Þ (see [31] for more details). The two theories share
the same flavor groups, and the gauge groups are related as

K1 ¼ k1; K2 ¼ k2: ð59Þ

Let us show some explicit examples supporting our claim.
Spð2Þ instanton: k ¼ ð1; 1Þ andN ¼ ð1; 1Þ. Using Eq. (58)
and unrefining, we find that

H½k ¼ ð1; 1Þ; Spð1Þ × Spð1Þ;CP2=Z2�ðt; 1; 1; 1Þ

¼ 1 − 2t3 þ 6t6 − 2t9 þ t12

ð1 − t3Þ6ð1þ t3Þ4 ;

which is the unrefined Hilbert series for Spð2Þ instantons
on C2=Z2 with K ¼ ð1; 1Þ and N ¼ ð1; 1Þ. Spð3Þ instan-
ton: k ¼ ð1; 1Þ and N ¼ ð1; 2Þ. Using Eq. (58) and
unrefining, we find that

H½k ¼ ð1; 1Þ; Spð1Þ × Spð2Þ;CP2=Z2�ðt; 1; 1; 1; 1Þ

¼ ð1þ t6Þð1 − 2t3 þ 10t6 − 2t9 þ t12Þ
ð1 − t3Þ8ð1þ t3Þ6 ;

which is the unrefined Hilbert series for Spð3Þ instantons
on C2=Z2 with K ¼ ð1; 1Þ and N ¼ ð1; 2Þ.

2. SpðNÞ instantons on CP2=Z2: NVS

Let us now consider the second possible configuration
corresponding to the NVS case. The quiver diagram of the
corresponding theory is reported in Fig. 12, while the

TABLE IV. Transformations of the fields for VS symplectic instantons on CP2=Z2.

Fields Uðk1Þ Uðk2Þ SpðN1Þ SpðN2Þ SUð2Þ Uð1Þ
~A1

½0; 1; 0…; 0�−2 ½0� ½0� ½0� [0] 1=2
~S1 ½2; 0;…; 0�−2 ½0� ½0� ½0� [0] 1=2
A2 ½0� ½0; 1; 0;…; 0�þ2 ½0� ½0� [0] 1=2
S2 ½0� ½2; 0;…; 0�þ2 ½0� ½0� [0] 1=2
B1, B2 ½1; 0;…; 0�þ1 ½0;…; 0; 1�þ1 ½0� ½0� [1] 1=4
Q1 ½1; 0;…; 0�þ1 ½0� ½1; 0;…; 0� ½0� [0] 1=2
Q2 ½0� ½0;…; 0; 1�þ1 ½0� ½1; 0;…; 0� [0] 1=2
F1 ½0; 1;…; 0�þ2 ½0� ½0� ½0� [0] 1
F2 ½0� ½0; 1;…; 0�−2 ½0� ½0� [0] 1

FIG. 12. Quiver diagram for NVS symplectic instantons on
CP2=Z2.
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transformations of the fields and of the F term are
summarized in Table V.
The branch of the moduli space that can be identified

with SpðNÞ instantons on CP2=Z2 is the one on which
A1
11 ¼ 0. Then, the Hilbert series of the instanton branch

corresponding to the NVS theory with flavor symmetry
UðNÞ and gauge ranks k ¼ ðk1; k2Þ is
H½k; F;CP2=Z2�ðt; x; yÞ

¼
Z

dμUðk1ÞðzÞ
Z

dμUðk2ÞðpÞ × PE½χSi tþ χ ~Sj
t

þ χA2
11
t2 þ χQt2 þ χqt2 − χFt4�; ð60Þ

wherez andp are the fugacities of theUðk1Þ andUðk2Þ gauge
groups, respectively,while y denotes the fugacity of theUðNÞ
flavor group, and x denotes the fugacity of the global SUð2Þ
symmetry acting separately on the two doublets ~Sα and Sβ.
The contribution of each field is given by

χSj ¼
�
xþ1

x

� X
1≤a≤b≤k2

papb; χ ~Si
¼
�
xþ1

x

� X
1≤a≤b≤k1

z−1a z−1b ;

χA2
11
¼
Xk1
a¼1

Xk2
b¼1

zap−1
b ; χQ¼

XN
i¼1

Xk1
a¼1

z−1a yi;

χq¼
XN
j¼1

Xk2
b¼1

pby−1j ; χF¼
Xk1
a¼1

Xk2
b¼1

z−1a pb:

In this case, by explicit computationof theHilbert series of the
instanton branch of the NVS theory with gauge group G ¼
Uðk1Þ ×Uðk2Þ and flavor group UðNÞ for the moduli space
of instantons onCP2=Z2, we find that it turns out to be equal
to the Hilbert series for SpðNÞ instantons on C2=Z2 with

gauge groupG ¼ UðK1Þ (see [31] for more details). The two
theories share the same flavorgroup, and the gaugegroups are
related in the following way:

K1 ¼ minðk1; k2Þ: ð61Þ
Let us explicitly show a few examples supporting our claim.
Spð1Þ instanton: k ¼ ð1; 1Þ and N ¼ 1. Using Eq. (60) and
unrefining, we find that

H½k ¼ ð1; 1Þ; Uð1Þ;CP2=Z2�ðt; 1; 1Þ

¼ 1þ 2t6 þ 2t9 þ 2t12 þ t18

ð1 − t3Þ4ð1þ 2t3 þ 2t6 þ t9Þ2 ;

which is the Hilbert series for Spð1Þ instantons on C2=Z2

with N ¼ 1 and K1 ¼ 1. Spð2Þ instanton: k ¼ ð1; 1Þ and
N ¼ 2. Using Eq. (60) and unrefining, we find that

H½k ¼ ð1; 1Þ; Uð2Þ;CP2=Z2�ðt; 1; 1; 1Þ

¼ 1 − t3 þ 5t6 þ 4t9 þ 4t12 þ 4t15 þ 5t18 − t21 þ t24

ð1 − t3Þ6ð1þ t3Þ2ð1þ t3 þ t6Þ3 ;

which is the Hilbert series for Spð2Þ instantons on C2=Z2

with N ¼ 2 and K1 ¼ 1. Spð1Þ instanton: k ¼ ð2; 1Þ and
N ¼ 1. Using Eq. (60) and unrefining, we find that

H½k ¼ ð2; 1Þ; Uð1Þ;CP2=Z2�ðt; 1; 1Þ

¼ 1þ 2t6 þ 2t9 þ 2t12 þ t18

ð1 − t3Þ4ð1þ 2t3 þ 2t6 þ t9Þ2 ;

which is again the Hilbert series for Spð1Þ instantons on
C2=Z2 withN ¼ 1 andK1 ¼ 1. Spð1Þ instanton:k ¼ ð2; 2Þ
and N ¼ 1. Using Eq. (60) and unrefining, we obtain

H½k ¼ ð2; 2Þ; Uð1Þ;CP2=Z2�ðt; 1; 1Þ

¼ 1

ð1 − t3Þ8ð1þ t3Þ4ð1þ t6Þ2ð1þ t3 þ t6Þ2ð1þ t3 þ t6 þ t9 þ t12Þ2 ð1þ 2t6 þ 2t9 þ 9t12 þ 10t15 þ 15t18 þ 18t21

þ 28t24 þ 26t27 þ 34t30 þ 26t33 þ palindromeþ t60Þ;
which is the Hilbert series for Spð1Þ instantons on C2=Z2 with N ¼ 1 and K1 ¼ 2. In the NVS case, we can graphically
summarize the relation between the parent C2=Z2 instanton and the CP2=Z2 one as in Fig. 13. Note that, as in the unitary
instanton case, we again have a merging of the flavored pair of gauge nodes into a single node with the rank the minimum of
the “merged ones.”

TABLE V. Transformations of the fields for NVS symplectic instantons on CP2=Z2.

Fields Uðk1Þ Uðk2Þ UðNÞ SUð2Þ Uð1Þ
~S1, ~S2 ½2; 0;…; 0�−2 ½0� ½0� [1] 1=4
S1, S2 ½0� ½2; 0;…; 0�þ2 ½0� [1] 1=4
A2
11

½1; 0;…; 0�þ1 ½0; 0;…; 1�þ1 ½0� ½0� 1=2
q ½0� ½1; 0;…; 0�þ1 ½0;…; 0; 1�þ1 ½0� 1=2
Q ½0;…; 0; 1�þ1 ½0� ½1; 0;…; 0�þ1 ½0� 1=2
F ½0;…; 0; 1�þ1 ½1; 0;…; 0�þ1 ½0� ½0� 1
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3. SpðNÞ instantons on CP2=Z3

For the case of odd orbifolds, there is only one
inequivalent choice. We report in Fig. 14 the quiver
diagram of the corresponding field theory, while we
summarize the fields and F-term transformations in
Table VI. Note that N ¼ N1 þ N2.
The branch of the moduli space that can be identified

with SpðNÞ instantons on CP2=Z3 is the one on which
A1
22 ¼ 0 and ~A1 ¼ 0. The Hilbert series of the instanton

branch corresponding to the theory with flavor symmetry
SpðN1Þ ×UðN2Þ and gauge ranks k ¼ ðk1; k2; k3Þ is

H½k; F;CP2=Z3�ðt; x; y;dÞ

¼
Z

dμUðk1ÞðzÞ
Z

dμUðk2ÞðpÞ
Z

dμUðk3ÞðwÞ

× PE½χq1t2 þ χq2t
2 þ χq3t

2 þ χB2
12
tþ χA2

22
t2

þ χB1
13
tþ χ ~S1

t2 þ χ ~S2
tþ χS3t − χF1

t4 − χF2
t4�; ð62Þ

where z, p, and w are the fugacities of the Uðk1Þ, Uðk2Þ,
and Uðk3Þ gauge groups, respectively, while y denotes the
fugacity of the SpðN1Þ flavor group and d the fugacity of
the UðN2Þ flavor group. Finally, x is the fugacity of the
Uð1Þ symmetry acting on the ~S2 and S3 fields. The
contribution of each field and of the F terms are

χ ~S1
¼

X
1≤a≤b≤k1

z−1a z−1b ; χ ~S2
¼

X
1≤a≤b≤k2

p−1
a p−1

b x−1;

χS3 ¼
X

1≤a≤b≤k3

wawbx;

χq1 ¼
Xk1
a¼1

XN1

i¼1

za

�
yi þ

1

yi

�
; χq2 ¼

Xk3
a¼1

XN2

j¼1

wad−1j ;

χq3 ¼
Xk2
a¼1

XN2

j¼1

p−1
a dj; χF2

¼
Xk2
a¼1

Xk3
b¼1

p−1
a wb;

χB2
12
¼

Xk1
a¼1

Xk2
b¼1

zap−1
b ; χA2

22
¼

Xk2
a¼1

Xk3
b¼1

paw−1
b ;

χB1
13
¼

Xk1
a¼1

Xk3
b¼1

zawb; χF1
¼

X
1≤a<b≤k1

zazb:

By explicit computation, we find that the Hilbert series
of the theory with gauge group G ¼ Uðk1Þ ×Uðk2Þ ×
Uðk3Þ and flavor group SpðN1Þ × UðN2Þ for the moduli
space of instantons on CP2=Z3 coincides with the Hilbert
series for the moduli space of SpðNÞ instantons on
C2=Z3 with gauge group G ¼ OðK1Þ ×UðK2Þ and flavor

TABLE VI. Transformations of the fields for symplectic instantons on CP2=Z3.

Fields Uðk1Þ Uðk2Þ Uðk3Þ SpðN1Þ UðN2Þ Uð1Þ Uð1Þ
q1 ½1; 0;…; 0�þ1 ½0� ½0� ½1; 0;…; 0� ½0� ½0� 1=2
q2 ½0� ½0� ½1; 0;…0�þ1 ½0� ½0;…; 0; 1�þ1 ½0� 1=2
q3 ½0� ½0;…; 0; 1�þ1 ½0� ½0� ½1; 0;…; 0�þ1 ½0� 1=2
B2
12

½1; 0;…; 0�þ1 ½0;…; 0; 1�þ1 ½0� ½0� ½0� ½0� 1=4
A2
22

½0� ½1; 0;…; 0�þ1 ½0;…; 0; 1�þ1 ½0� ½0� ½0� 1=2
B1
13

½1; 0;…; 0�þ1 ½0� ½1; 0;…; 0�þ1 ½0� ½0� ½0� 1=4
~S1 ½2; 0;…; 0�−2 ½0� ½0� ½0� ½0� ½0� 1=2
~S2 ½0� ½2; 0;…; 0�−2 ½0� ½0� ½0� 1=x 1=4
S3 ½0� ½0� ½2; 0;…; 0�þ2 ½0� ½0� x 1=4
F1 ½0; 1; 0;…; 0�þ1 ½0� ½0� ½0� ½0� ½0� 1
F2 ½0� ½0;…; 0; 1�þ1 ½1; 0;…; 0�þ1 ½0� ½0� ½0� 1

FIG. 13. Relation between the CP2=Z2 quiver gauge theory in
the NVS case (on the left) and the C2=Z2 quiver gauge theory (on
the right). ~Dβ are two fields in the symmetric conjugate
representation of the gauge group UðK1Þ, while Dα are two
fields in the symmetric representation of the gauge group UðK1Þ
(see [31] for more details).

FIG. 14. Quiver diagram for symplectic instantons on CP2=Z3.
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group SpðN1Þ ×UðN2Þ (see [31] for more details) upon
identifying

K1 ¼ k1; K2 ¼ minðk2; k3Þ: ð63Þ
Let us turn to explicit examples supporting our claim.

Spð1Þ instanton: k ¼ ð1; 1; 1Þ and N ¼ ð1; 0Þ. Using
Eq. (62) and unrefining, we find that

H½k ¼ ð1; 1; 1Þ; Spð1Þ;CP2=Z3�ðt; 1; 1Þ

¼ ð1þ t6Þð1 − t3 þ t6Þ
ð1 − t3Þ4ð1þ t3Þ2ð1þ t3 þ t6Þ ;

which is the Hilbert series for Spð1Þ instantons on C2=Z3

withN¼ð1;0Þ andK¼ð1;1Þ. Spð1Þ instanton:k ¼ ð1; 1; 1Þ
andN ¼ ð0; 1Þ. Using Eq. (62) and unrefining, we find that

H½k ¼ ð1; 1; 1Þ; Uð1Þ;CP2=Z3�ðt; 1; 1Þ

¼ 1þ t6 þ 2t9 þ 2t12 þ 2t15 þ t18 þ t24

ð1 − t3Þ4ð1þ t3Þ2ð1þ t6Þð1þ t3 þ t6Þ2 ;

which is the Hilbert series for Spð1Þ instantons on C2=Z3

with N ¼ ð0; 1Þ and K ¼ ð1; 1Þ. Spð2Þ instanton: k ¼
ð1; 1; 1Þ and N ¼ ð1; 1Þ. Using Eq. (62) and unrefining,
we find that

H½k ¼ ð1; 1; 1Þ; Spð1Þ ×Uð1Þ;CP2=Z3�ðt; 1; 1; 1Þ ¼
1 − 2t3 þ 5t6 − 2t9 þ 6t12 − 2t15 þ 5t18 − 2t21 þ t24

ð1 − t3Þ6ð1þ t6Þð1þ 2t3 þ 2t6 þ t9Þ2 ;

which is the Hilbert series for Spð2Þ instantons on C2=Z3 with N ¼ ð1; 1Þ and K ¼ ð1; 1Þ. Spð1Þ instanton: k ¼ ð1; 2; 1Þ
and N ¼ ð1; 0Þ. Using Eq. (62) and unrefining, we find that

H½k ¼ ð1; 2; 1Þ; Spð1Þ;CP2=Z3�ðt; 1; 1Þ ¼
ð1þ t6Þð1 − t3 þ t6Þ

ð1 − t3Þ4ð1þ t3Þ2ð1þ t3 þ t6Þ ;

which is again the Hilbert series for Spð1Þ instantons on C2=Z3 with N ¼ ð1; 0Þ and K ¼ ð1; 1Þ. Spð1Þ instanton:
k ¼ ð1; 1; 2Þ and N ¼ ð1; 0Þ. Using Eq. (62) and unrefining, we find that

H½k ¼ ð1; 2; 1Þ; Spð1Þ;CP2=Z3�ðt; 1; 1Þ ¼
ð1þ t6Þð1 − t3 þ t6Þ

ð1 − t3Þ4ð1þ t3Þ2ð1þ t3 þ t6Þ ;

which is again the Hilbert series for Spð1Þ instantons on C2=Z3 with N ¼ ð1; 0Þ and K ¼ ð1; 1Þ. Spð1Þ instanton:
k ¼ ð1; 1; 2Þ and N ¼ ð0; 1Þ. Using Eq. (62) and unrefining, we find that

H½k ¼ ð1; 1; 2Þ; Uð1Þ;CP2=Z3�ðt; 1; 1Þ ¼
1þ t6 þ 2t9 þ 2t12 þ 2t15 þ t18 þ t24

ð1 − t3Þ4ð1þ t3Þ2ð1þ t6Þð1þ t3 þ t6Þ2 ;

which is again the Hilbert series for Spð1Þ instantons on C2=Z3 with N ¼ ð0; 1Þ and K ¼ ð1; 1Þ. Spð1Þ instanton:
k ¼ ð1; 2; 1Þ and N ¼ ð0; 1Þ. Using Eq. (62) and unrefining, we find

H½k ¼ ð1; 2; 1Þ; Uð1Þ;CP2=Z3�ðt; 1; 1Þ ¼
1þ t6 þ 2t9 þ 2t12 þ 2t15 þ t18 þ t24

ð1 − t3Þ4ð1þ t3Þ2ð1þ t6Þð1þ t3 þ t6Þ2 ;

which is again the Hilbert series for Spð1Þ instantons on C2=Z3 with N ¼ ð0; 1Þ and K ¼ ð1; 1Þ. Spð1Þ instanton:
k ¼ ð2; 1; 1Þ and N ¼ ð1; 0Þ. Using Eq. (62) and unrefining, we find that

H½k ¼ ð2; 1; 1Þ; Spð1Þ;CP2=Z3�ðt; 1; 1Þ

¼ 1

ð1 − t3Þ6ð1þ t3Þ4ð1þ t3 þ t6Þð1þ t3 þ 2t6 þ 2t9 þ 2t12 þ t15 þ t18Þ2 ð1þ t3

þ 3t6 þ 4t9 þ 8t12 þ 14t15 þ 19t18 þ 23t21 þ 27t24 þ 26t27 þ 27t30 þ palindromeþ t54Þ
¼ 1þ 4t6 þ 2t9 þ 13t12 þ 14t15 þ 33t18 þ 42t21 þ 80t24 þ 104t27 þ oðt27Þ;

which is the Hilbert series for Spð1Þ instantons on C2=Z3 with N ¼ ð1; 0Þ and K ¼ ð2; 1Þ.
As shown in Fig. 15, we can graphically summarize the relation between the symplectic CP2=Z3 instanton and its cousin

on C2=Z3 as the merging of the flavored pair of gauge nodes into a single node whose rank is the minimum among the
“merging ones.”
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4. SpðNÞ instantons on CP2=Z4: VS

Starting from the theory whose instanton branch
describes instantons on CP2=Z4 and applying the rules
in [42], we obtain the theory for SpðNÞ instantons on

CP2=Z4 in the VS case. The corresponding quiver diagram
is reported in Fig. 16, while we summarize the trans-
formations of the fields under the different groups in
Table VII.

TABLE VII. Transformation of the fields for VS symplectic instantons on CP2=Z4.

Fields Uðk1Þ Uðk2Þ Uðk3Þ Uðk4Þ SpðN1Þ UðN2Þ SpðN3Þ Uð1Þ
B2
12

½1; 0;…; 0�þ1 ½0;…; 0; 1�þ1 ½0� ½0� ½0� ½0� ½0� 1=4
A2
22

½0� ½1; 0…; 0�þ1 ½0;…; 0; 1�þ1 ½0� ½0� ½0� ½0� 1=2
B2
23

½0� ½0� ½1; 0…; 0�þ1 ½0;…; 0; 1�þ1 ½0� ½0� ½0� 1=4
~S2 ½2; 0;…; 0�−2 ½0� ½0� ½0� ½0� ½0� ½0� 1=2
S4 ½0� ½0� ½0� ½2; 0…; 0�þ2 ½0� ½0� ½0� 1=2
B1
24

½1; 0;…; 0�þ1 ½0� ½1; 0;…; 0�þ1 ½0� ½0� ½0� ½0� 1=4
B1
32

½0� ½0;…; 0; 1�þ1 ½0� ½0;…; 0; 1�þ1 ½0� ½0� ½0� 1=4
q1 ½1; 0;…; 0�þ1 ½0� ½0� ½0� ½1; 0;…:; 0� ½0� ½0� 1=2
q3 ½0� ½0;…; 0; 1�þ1 ½0� ½0� ½0� ½1; 0;…; 0�þ1 ½0� 1=2
q2 ½0� ½0� ½1; 0;…; 0�þ1 ½0� ½0� ½0;…; 0; 1�þ1 ½0� 1=2
q4 ½0� ½0� ½0� ½0;…; 0; 1�þ1 ½0� ½0� ½1; 0;…; 0� 1=2
F1 ½0; 1; 0…; 0�þ1 ½0� ½0� ½0� ½0� ½0� ½0� 1
F2 ½0� ½0;…; 0; 1�þ1 ½1; 0;…; 0�þ1 ½0� ½0� ½0� ½0� 1
F3 ½0� ½0� ½0� ½0; 1; 0;…; ; 0�−1 ½0� ½0� ½0� 1

FIG. 15. Relation between the
quiver diagram for SpðNÞ instantons
on CP2=Z3 and the quiver diagram
for SpðNÞ instantons on C2=Z3. In
the figure, the symbol Dα denotes
two fields transforming in the sym-
metric representation of the gauge
group UðK2Þ (however, see [31] for
more details).

FIG. 16. Quiver diagram for VS
symplectic instantons on CP2=Z4.
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The branch of the moduli space that can be identified
with SpðNÞ instantons on CP2=Z4 is the one on which
A1
22 ¼ 0, ~S1 ¼ 0, and S3 ¼ 0. The Hilbert series of the

instanton branch corresponding to the VS theory with
flavor symmetry SpðN1Þ ×UðN2Þ × SpðN3Þ and gauge
ranks k ¼ ðk1; k2; k3; k4Þ is

H½k; F;CP2=Z4�ðt; x; y;d;uÞ ¼
Z

dμUðk1ÞðzÞ
Z

dμUðk2ÞðpÞ
Z

dμUðk3ÞðwÞ
Z

dμUðk4ÞðvÞ

× PE½χq1t2 þ χq2t
2 þ χq3t

2 þ χq4t
2 þ χB2

12
tþ χA2

22
t2 þ χB2

23
tþ χB1

24
tþ χB1

32
t

þ χ ~S2
t2 þ χS4t

2 − χF1
t4 − χF2

t4 − χF3
t4�; ð64Þ

where z, p, w, and v are the fugacities of the Uðk1Þ, Uðk2Þ, Uðk3Þ, and Uðk4Þ gauge groups, respectively, while y, d, and u
denote the fugacities of the SpðN1Þ flavor group, the UðN2Þ flavor group, and the SpðN3Þ, respectively. The contributions
of the various fields are

χB2
12
¼

Xk1
a¼1

Xk2
b¼1

zap−1
b ; χA2

22
¼

Xk2
a¼1

Xk3
b¼1

paw−1
b ; χB2

23
¼

Xk3
a¼1

Xk4
b¼1

wav−1b ;

χS4 ¼
X

1≤a≤b≤k4

vavb; χF1
¼

X
1≤a<b≤k1

zazb; χF3
¼

X
1≤a<b≤k4

v−1a v−1b ;

χB1
24
¼

Xk1
a¼1

Xk3
b¼1

zawb; χB1
32
¼

Xk2
a¼1

Xk4
b¼1

p−1
a v−1b ; χ ~S2

¼
X

1≤a≤b≤k1

z−1a z−1b ; χF2
¼

Xk2
a¼1

Xk3
b¼1

p−1
a wb;

χq1 ¼
Xk1
a¼1

XN1

j¼1

za

�
yj þ

1

yj

�
; χq3 ¼

XN2

j¼1

Xk2
b¼1

djp−1
b ; χq2 ¼

Xk3
a¼1

XN2

i¼1

wad−1i ; χq4 ¼
Xk4
a¼1

XN3

i¼1

v−1a

�
ui þ

1

ui

�
:

By explicit computation of the instanton branch Hilbert
series for the theory with gauge group G¼Uðk1Þ×Uðk2Þ×
Uðk3Þ×Uðk4Þ and flavor group SpðN1Þ×UðN2Þ×
SpðN3Þ, we find that it is equal to the Hilbert series for
SpðNÞ instantons onC2=Z4 with gauge groupG¼OðK1Þ×
UðK2Þ×OðK3Þ and flavor group SpðN1Þ×UðN2Þ×
SpðN3Þ (see [31] for more details) upon identifying

K1 ¼ k1; K2 ¼ minðk2; k3Þ; K3 ¼ k3: ð65Þ

Let us show some explicit examples supporting our claim.
Spð1Þ instanton: k ¼ ð1; 1; 1; 1Þ and N ¼ ð1; 0; 0Þ. Using
Eq. (64) and unrefining, we find that

H½k¼ð1;1;1;1Þ;Spð1Þ;CP2=Z4�ðt;1Þ¼
1þ t12

ð1− t6Þ4 ; ð66Þ

which is the Hilbert series for Spð1Þ instantons on C2=Z4

with N ¼ ð1; 0; 0Þ andK ¼ ð1; 1; 1Þ. Spð1Þ instanton: k ¼
ð1; 1; 1; 1Þ and N ¼ ð0; 1; 0Þ. Using Eq. (64) and unrefin-
ing, we find that

H½k¼ð1;1;1;1Þ;Uð1Þ;CP2=Z4�ðt;1Þ¼
1þ4t12þ t24

ð1− t6Þ4ð1þ t6Þ2 ;

which is the Hilbert series for Spð1Þ instantons on C2=Z4

with N ¼ ð0; 1; 0Þ and K ¼ ð1; 1; 1Þ. Spð1Þ instanton:

k ¼ ð1; 2; 1; 1Þ and N ¼ ð1; 0; 0Þ. Using Eq. (64) and
unrefining, we find again the expression (66). Spð1Þ
instanton: k¼ð1;1;2;1Þ and N¼ð1;0;0Þ. Using Eq. (64)
and unrefining, we find again the expression (66). Spð1Þ
instanton: k ¼ ð2; 1; 1; 1Þ and N ¼ ð1; 0; 0Þ. Using
Eq. (64) and unrefining, we find that

H½k¼ð2;1;1;1Þ;Spð1Þ;CP2=Z4�ðt;1Þ

¼ 1þ t6þ5t12þ8t18þ8t24þ8t30þ5t36þ t42þ t48

ð1− t6Þ6ð1þ t6Þð1þ t6þ t12Þ2 ;

which is the Hilbert series for Spð1Þ instantons on C2=Z4

with N ¼ ð1; 0; 0Þ and K ¼ ð2; 1; 1Þ.
We can graphically relate the symplectic VS CP2=Z4

instantons with their cousin on C2=Z4 as in Fig. 17.

5. SpðNÞ instantons on CP2=Z4: NVS

Let us now consider the second configuration leading to
the NVS case. The quiver diagram of the corresponding
theory is reported in Fig. 18, while the transformations of
the fields and of the F terms are summarized in Table VIII.
The branch of the moduli space that can be identified

with SpðNÞ instantons on CP2=Z4 in the NVS case is the
one on which A1

11 ¼ 0 and A1
33 ¼ 0. The Hilbert series of

the instanton branch corresponding to the NVS theory with
flavor symmetry UðN1Þ ×UðN2Þ and gauge ranks k ¼
ðk1; k2; k3; k4Þ is
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H½k; F;CP2=Z4�ðt; x; y;dÞ ¼
Z

dμUðk1ÞðzÞ
Z

dμUðk2ÞðpÞ
Z

dμUðk3ÞðwÞ

×
Z

dμUðk4ÞðvÞ × PE½χq1t2 þ χq2t
2 þ χq3t

2 þ χq4t
2 þ χB2

23
tþ χA2

11
t2 þ χA2

33
t2

þ χB1
32
tþ χ ~S1

tþ χS2tþ χ ~S3
tþ χS4t − χF1

t4 − χF2
t4�; ð67Þ

where z, p, w, and v are the fugacities of the Uðk1Þ, Uðk2Þ, Uðk3Þ, and Uðk4Þ gauge groups, respectively, while y and d
denote the fugacities of the UðN1Þ flavor group and the UðN2Þ flavor group, respectively. The contributions of the various
fields are given by

FIG. 17. Relation between the CP2=Z4

quiver gauge theory in the VS case and
the corresponding C2=Z4 quiver gauge
theory.

FIG. 18. Quiver diagram for NVS sym-
plectic instantons on CP2=Z4.
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χS4 ¼
X

1≤a≤b≤k4

vavb; χF1
¼

Xk1
a¼1

Xk2
b¼1

pbz−1a ; χF2
¼

Xk3
a¼1

Xk4
b¼1

w−1
a vb;

χ ~S1
¼

X
1≤a≤b≤k1

z−1a z−1b ; χS2 ¼
X

1≤a≤b≤k2

papb; χ ~S3
¼

X
1≤a≤b≤k3

w−1
a w−1

b ;

χq1 ¼
Xk2
a¼1

XN1

i¼1

pay−1i ; χq2 ¼
Xk1
a¼1

XN1

i¼1

z−1a yi; χq3 ¼
Xk4
a¼1

XN2

j¼1

vad−1j ; χq4 ¼
Xk3
a¼1

XN2

j¼1

w−1
a dj;

χA2
11
¼

Xk1
a¼1

Xk2
b¼1

zap−1
b ; χB2

23
¼

Xk2
a¼1

Xk3
b¼1

paw−1
b ; χA2

33
¼

Xk3
a¼1

Xk4
b¼1

wav−1b ; χB1
32
¼

Xk1
a¼1

Xk4
b¼1

vbz−1a :

Explicit computation of the instanton branch Hilbert series with gauge group G ¼ Uðk1Þ ×Uðk2Þ ×Uðk3Þ ×Uðk4Þ and
flavor group UðN1Þ ×UðN2Þ shows that it coincides with the Hilbert series for SpðNÞ instantons on C2=Z4 with gauge
group G ¼ UðK1Þ ×UðK2Þ and flavor group UðN1Þ ×UðN2Þ (see [31] for more details) upon the identification

K1 ¼ minðk1; k2Þ; K2 ¼ minðk3; k4Þ: ð68Þ

Let us show a few explicit examples. Spð1Þ instanton: k ¼ ð1; 1; 1; 1Þ and N ¼ ð1; 0Þ. Using Eq. (67) and unrefining, we
find that

H½k ¼ ð1; 1; 1; 1Þ; Uð1Þ;CP2=Z4�ðt; 1Þ ¼
1 − t3 þ 2t9 − t15 þ t18

ð1 − t3Þ4ð1þ t3Þ2ð1þ t3 þ t6 þ t9 þ t12Þ ; ð69Þ

which is the Hilbert series for Spð1Þ instantons onC2=Z4 withN ¼ ð1; 0Þ andK ¼ ð1; 1Þ. Spð2Þ instanton: k ¼ ð1; 1; 1; 1Þ
and N ¼ ð1; 1Þ. Using Eq. (67) and unrefining, we find that

H½k ¼ ð1; 1; 1; 1Þ; Uð1Þ ×Uð1Þ;CP2=Z4�ðt; 1; 1Þ

¼ 1þ 2t6 þ 3t9 þ 8t12 þ 11t15 þ 13t18 þ 12t21 þ 13t24 þ 11t27 þ 8t30 þ 3t33 þ 2t36 þ t42

ð1 − t3Þ6ð1þ t3Þ2ð1þ t3 þ t6Þ3ð1þ t3 þ 2t6 þ 2t9 þ 2t12 þ t15 þ t18Þ ;

which is the Hilbert series for Spð2Þ instantons on C2=Z4 with N ¼ ð1; 1Þ and K ¼ ð1; 1Þ. Spð1Þ instantons: k ¼
ð1; 2; 1; 1Þ and N ¼ ð1; 0Þ. Using Eq. (67), we find again the expression (69).

TABLE VIII. Transformation of the fields for NVS symplectic instantons on CP2=Z4.

Fields Uðk1Þ Uðk2Þ Uðk3Þ Uðk4Þ UðN1Þ UðN2Þ Uð1Þ
A2
11

½1; 0;…; 0�þ1 ½0;…; 0; 1�þ1 ½0� ½0� ½0� ½0� 1=2
B2
23

½0� ½1; 0;…; 0�þ1 ½0;…; 0; 1�þ1 ½0� ½0� ½0� 1=4
A2
33

½0� ½0� ½1; 0;…; 0�þ1 ½0;…; 0; 1�þ1 ½0� ½0� 1=2
B1
32

½0;…; 0; 1�þ1 ½0� ½0� ½1; 0;…; 0�þ1 ½0� ½0� 1=4
~S1 ½2; 0…; 0�−2 ½0� ½0� ½0� ½0� ½0� 1=4
S2 ½0� ½2; 0;…; 0�þ2 ½0� ½0� ½0� ½0� 1=4
~S3 ½0� ½0� ½2; 0;…; 0�−2 ½0� ½0� ½0� 1=4
S4 ½0� ½0� ½0� ½2; 0;…; 0�þ2 ½0� ½0� 1=4
q1 ½0� ½1; 0;…; 0�þ1 ½0� ½0� ½0;…; 0; 1�þ1 ½0� 1=2
q2 ½0;…; 0; 1�þ1 ½0� ½0� ½0� ½1; 0;…; 0�þ1 ½0� 1=2
q3 ½0� ½0� ½0� ½1; 0;…; 0�þ1 ½0� ½0;…; 0; 1�þ1 1=2
q4 ½0� ½0� ½0;…; 0; 1�þ1 ½0� ½0� ½1; 0;…; 0�þ1 1=2
F1 ½0;…; 0; 1�þ1 ½1; 0;…; 0�þ1 ½0� ½0� ½0� ½0� 1
F2 ½0� ½0� ½0;…; 0; 1�þ1 ½1; 0;…; 0�þ1 ½0� ½0� 1
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Finally, in Fig. 19 we graphically show the relation
between symplectic NVS instantons on CP2=Z4 and their
cousins on C2=Z4.

6. SpðNÞ instantons on CP2=Zn with n > 4

Let us now consider the generic case of instantons on Zn

orbifolds of CP2 with n > 4. Based on the previous
examples, we can extract the generic pattern of both the
quiver as well as the relation between the symplectic
instanton on CP2=Zn with its relative on C2=Zn.
Recall that N is the sum of the ranks of the flavor groups

in the ADHM quiver, while the ranks of the gauge groups
are related to instanton number and, together with the
relative flavor ranks, to other possible quantum numbers
labeling the instanton. Unfortunately, the precise identi-
fication between quiver data and instanton data is not
known. SpðNÞ instantons on CP2=Z2nþ1. Elaborating on
the previous examples, we conjecture that the theory
describing symplectic instantons on CP2=Z2nþ1 is related
to its counterpart on C2=Z2nþ1 as in Fig. 31. Moreover,
while the flavor groups continue to be the same, the ranks
of the gauge groups are related in the following way:

K1 ¼ k1; K2 ¼ minðk2; k3Þ;
K3 ¼ minðk4; k5Þ;…Knþ1 ¼ minðk2n; k2nþ1Þ: ð70Þ

SpðNÞ instantons on CP2=Z2n: VS. Elaborating on the
lowest n cases, we can extrapolate both the quiver for VS
symplectic instantons on CP2=Z2n and their relation to

their cousins (of course, VS) on C2=Z2n as shown in
Fig. 32. Moreover, while flavor nodes remain the same, the
gauge rank identification is as follows:

K1 ¼ k1; K2 ¼ minðk2; k3Þ;…
Kn−1 ¼ minðk2n−2; k2n−1Þ; Kn ¼ k2n: ð71Þ

SpðNÞ instantons on CP2=Z2n: NVS. Elaborating on the
lowest n cases, in this case, we can extrapolate both the
quiver for NVS symplectic instantons on CP2=Z2n and
their relation to their cousins (of course, NVS) on C2=Z2n
as shown in Fig. 33. Moreover, while the flavor nodes
remain the same, the gauge rank identification is as follows:

K1 ¼ minðk1; k2Þ;
K2 ¼ minðk3; k4Þ;…Kn ¼ minðk2n−1; k2nÞ: ð72Þ

It is interesting to note that the merging nodes are those
going over, in the C2=Zn parent, to unitary gauge groups.
In turn, in the parentC2=Zn, these are the nodes admitting a
blowup mode through the FI parameter. It would be
interesting to have a deeper understanding of these facts,
as well as the topological data characterizing Sp instantons
on CP2=Zn.

VI. SOðNÞ INSTANTONS ON CP2 AND ITS
ORBIFOLDS

We now turn to the case of orthogonal instantons on CP2

and its orbifolds. As described in [15], the ADHM
construction for orthogonal instantons can be embedded
into a 3d gauge theory which, in 3d N ¼ 2 language,
contains a Uð2kÞ vector multiplet as well as one chiral
multiplet ~S in the symmetric two-index tensor representa-
tion of the gauge group and three chiral multiplets A1, A2, ~A
in the antisymmetric two-index tensor representation of the
gauge group. The corresponding quiver is shown in Fig. 20.
Note that the total flavor rank corresponds to N, while the
gauge ranks—as well as the relative configurations of the

FIG. 19. Relation between the CP2=Z4 quiver gauge theory in
the NVS case and the corresponding C2=Z4 quiver gauge theory,
where D1, ~D2 are two fields in the symmetric representation of
the gauge group UðK1Þ, while L1, ~L2 are two fields in the
symmetric representation of the gauge group UðK2Þ (however,
see [31] for more details regarding the C2=Z4 theory).

FIG. 20. Quiver diagram for SOðNÞ instantons on CP2.
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flavor ranks—correspond to instanton number and other
data specifying the instanton.
In turn, the superpotential reads

W ¼ ϵαβðAαÞab ~AbcðAβÞcd ~Sda þ ~SabQi
aQj

bMij; ð73Þ

being M given by

MSOð2NÞ ¼
�

0 1N×N

1N×N 0

�
;

MSOð2Nþ1Þ ¼

0B@ 0 1N×N 0

1N×N 0 0

0 0 1

1CA: ð74Þ

As shown in [15], the construction of orthogonal instantons
on CP2 can be embedded into that of a parent orthogonal
instanton on C2. As a consequence, the Hilbert series of the
instanton on CP2=Zn matches that of its counterpart on C2.

A. Resolved moduli space for orthogonal instantons

The gauge group in the ADHM construction of orthogo-
nal instantons onCP2 isUð2kÞ. However, as shown in [15],
k can be a half-integer while the Hilbert series is only
sensitive to ⌊k⌋, that is, the largest integer which is smaller
or equal to k. In fact, it was conjectured that the instantons are
distinguished by their second Stiefel-Whitney class written
as 2ðk − ⌊k⌋Þ. From this perspective, it is also natural to
expect a notion of “resolved moduli space”—resolved, as in
the unitary case, in the sense that these extra directions
associate to other quantum numbers are discerned.
In order to explore the possibility of such resolvedmoduli

space, following the example set by the unitary case, let us
consider the simplest case where such extra directions are
present. The instanton number was conjectured to be ⌊k⌋.
Then the analogous, for orthogonal instantons, to the case of
a unitary instantonwith kL ¼ 0 (as discussed in Sec. III A) is
k ¼ 1

2
, corresponding to a Uð1Þ gauge theory. Such theory

does not have the antisymmetric matter, and on the instanton
branch, ~S ¼ 0. Therefore, the theory only contains the Q’s
out of which no gauge invariant can be constructed. Hence,
very much like the Grassmanian, we find a extra compact
manifold associated to the extra directions labeled in this
case by the Stiefel-Whitney class. Just like in the unitary
case, we can imagine resolving these directions by ungaug-
ing the Uð1Þ global symmetry. It is then straightforward to
compute the instanton branch Hilbert series, which, upon
unrefining the SOðNÞ labels, reads

HS ¼ 1þ t
ð1 − tÞN−1 : ð75Þ

Interestingly, this can be written as

HS ¼ 2

ð1 − tÞN−1 −
1

ð1 − tÞN−2 ; ð76Þ

which is the Hilbert series for two CN−1 meeting at a CN−2.
This is a dimension N − 1 manifold analogous to the cone
over the Grassmanian in the unitary case. Note that the
dimension of the resolved moduli space is 2kðN − 2Þ, while
that seen by the Hilbert series is 2⌊k⌋ðN − 2Þ [15]. Hence,
the difference is 2ðN − 2Þðk − ⌊k⌋Þ. Particularizing to the
case k ¼ 1

2
, this is an (N − 2)-dimensional compact mani-

fold. Then, the complex cone over it is a N − 1 complex
dimensional manifold, just as we have found.
Note that the case of symplectic instantons does not

admit a similar construction. For example, in the quiver in
Fig. 9, the instanton branch appears upon setting to zero an
antisymmetric field while keeping the symmetric fields.
Hence, the theory is never empty of gauge-invariant
operators, as it happens in the case of unitary and
orthogonal instantons, therefore, suggesting that no com-
pact directions exist in that case.

B. Constructing SOðNÞ instantons on CP2=Zn

Let us now turn to the construction of orthogonal
instantons upon orbifolding the base space. In view of
the ALE case, and following the symplectic instanton case
in Sec. V, we construct the theories whose instanton branch
describes orthogonal instantons on CP2=Zn by first orbi-
folding and then orientifolding the unitary instanton case
following the rules in [42,43]. As for symplectic instantons,
we have qualitatively different situations depending on
whether n is even or odd:

(i) If n is odd, we have only one type of quiver diagram
corresponding to the fact that we have only one
inequivalent way to cut the quiver diagramwith a line.

(ii) If n is even, we have two types of quiver gauge
theories corresponding to two possible inequivalent
ways in which we can cut the quiver diagram with a
line. Inspired by the ALE case, we will refer to them
as the VS case and the NVS case, respectively.

Also, in this case, there can be hybrid configurations
associated with one choice for the values of the signs
implementing the orientifold prescription. As above, we
restrict our analysis to the configuration of signs correspond-
ing to the quantum field theory whose instanton branch
describes orthogonal instantons on CP2=Zn which, for the
case of even n, are either VS or NVS. Just as in the other
cases, the rank of the SOðNÞ bundle corresponds to the sum
of flavor ranks in the ADHM quiver. The rest of the ADHM
data correspond to other data specifying the instanton.

1. SOðNÞ instantons on CP2=Z2: VS

Starting from the CP2=Z2 and applying the rules in [42],
we obtain the theory for SOðNÞ instantons onCP2=Z2. The
corresponding quiver diagram is reported in Fig. 21, while
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we summarize the transformations of the fields under the
different groups in Table IX.
The branch of the moduli space that can be identified

with SOðNÞ instantons on CP2=Z2 is the one on which

~S1 ¼ 0 and S2 ¼ 0. The Hilbert series of the instanton
branch corresponding to the VS theory with flavor sym-
metry SOðN1Þ × SOðN2Þ and gauge ranks k ¼ ðk1; k2Þ is

H½k; F;CP2=Z2�ðt; x; y;dÞ

¼
Z

dμUð2k1ÞðzÞ
Z

dμUð2k2ÞðpÞPE½χA2
t2 þ χ ~A1

t2 þ χBj
t

þ χQ1
t2 þ χQ2

t2 − χF1
t4 − χF2

t4�; ð77Þ

where z and p are the fugacities of the Uð2k1Þ and
Uð2k2Þ gauge groups, respectively, while y and d denote
the fugacities of the SOðN1Þ and SOðN2Þ flavor groups.
Finally, x is the fugacity of the SUð2Þ symmetry acting
on the Bj doublet. The contribution of each field is
given by

χF1
¼

X
1≤a≤b≤2k1

zazb; χF2
¼

X
1≤a≤b≤2k2

p−1
a p−1

b ;

χA2
¼

X
1≤a<b≤2k2

papb; χ ~A1
¼

X
1≤a<b≤2k1

z−1a z−1b ; χBj ¼
�
xþ 1

x

�X2k1
a¼1

X2k2
b¼1

zap−1
b ;

χQ1
¼

�X2k1
a¼1

za

�
×

8<:
PN1=2

i¼1

�
yi þ 1

yi

�
N1 even;

1þPðN1−1Þ=2
i¼1

�
yi þ 1

yi

�
N1 odd;

χQ2
¼

�X2k2
b¼1

p−1
b

�
×

8><>:
PN2=2

i¼1

�
di þ 1

di

�
N2 even;

1þPðN2−1Þ=2
i¼1

�
di þ 1

di

�
N2 odd:

Explicitly computing the Hilbert series with gauge
group G ¼ Uð2k1Þ ×Uð2k2Þ and flavor group SOðN1Þ ×
SOðN2Þ for the moduli space of instantons on
CP2=Z2 shows that it is equal to the Hilbert series for
SpðNÞ instantons on C2=Z2 with gauge group G ¼
SpðK1Þ × SpðK2Þ (see [31] for more details) upon
identifying

K1 ¼ k1; K2 ¼ k2: ð78Þ

Let us show a few explicit examples. SOð5Þ instanton:
k ¼ ð1; 1Þ and N ¼ ð2; 3Þ. Using Eq. (77) and unrefin-
ing, we find that

H½k ¼ ð1; 1Þ; SOð2Þ × SOð3Þ;CP2=Z2�ðt; 1; 1; 1Þ

¼ 1 − t3 þ 5t6 þ 4t9 þ 4t12 þ 4t15 þ 5t18 − t21 þ t24

ð1 − t3Þ6ð1þ t3Þ2ð1þ t3 þ t6Þ3 ;

which is the Hilbert series for the SOð5Þ instanton on
C2=Z2 with K ¼ ð1; 1Þ and N ¼ ð2; 3Þ. SOð6Þ instanton:

TABLE IX. Transformations of the fields for VS orthogonal instantons on CP2=Z2.

Fields Uð2k1Þ Uð2k2Þ SOðN1Þ SOðN2Þ SUð2Þ Uð1Þ
~A1

½0; 1; 0; 0�−2 ½0� ½0� ½0� ½0� 1=2
~S1 ½2; 0;…; 0�−2 ½0� ½0� ½0� ½0� 1=2
A2 ½0� ½0; 1; 0;…; 0�þ2 ½0� ½0� ½0� 1=2
S2 ½0� ½2; 0;…; 0�þ2 ½0� ½0� ½0� 1=2
Bj ½1; 0;…; 0�þ1 ½0;…; 0; 1�þ1 ½0� ½0� [1] 1=4
Q1 ½1; 0;…; 0�þ1 ½0� ½1; 0;…; 0� ½0� ½0� 1=2
Q2 ½0� ½0;…; 0; 1�þ1 ½0� ½1; 0;…; 0� ½0� 1=2
F1 ½2; 0;…; 0�þ2 ½0� ½0� ½0� ½0� 1
F2 ½0� ½2; 0;…; 0�−2 ½0� ½0� ½0� 1

FIG. 21. Quiver diagram for VS orthogonal instantons on
CP2=Z2.
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k ¼ ð1; 1Þ and N ¼ ð3; 3Þ. Using Eq. (77) and unrefin-
ing, we find that

H½k¼ð1;1Þ;SOð3Þ×SOð3Þ;CP2=Z2�ðt;1;1;1Þ

¼ 1−2t3þ8t6þ5t12þ12t15þ5t18þ8t24−2t27þ t30

ð1− t3Þ8ð1þ t3Þ2ð1þ t3þ t6Þ4 ;

which is the Hilbert series for the SOð6Þ instanton on
C2=Z2 with K ¼ ð1; 1Þ and N ¼ ð3; 3Þ.

2. SOðNÞ instantons on CP2=Z2: NVS

Let us now consider the case of orthogonal NVS
instantons on CP2=Z2 upon choosing the other nonequiva-
lent way to cut the quiver diagram. The quiver diagram of
the corresponding theory is reported in Fig. 22, while the
transformations of the fields and of the F term are
summarized in Table X.

The branch of the moduli space that can be identified
with SOðNÞ instantons on CP2=Z2 is the one on which
A1
11 ¼ 0. The Hilbert series of the instanton branch corre-

sponding to the NVS theory with flavor symmetry UðNÞ
and ranks k ¼ ðk1; k2Þ is

H½k;F;CP2=Z2�ðt; x;yÞ

¼
Z

dμUð2k1ÞðzÞ
Z

dμUð2k2ÞðpÞ

×PE½χAi
tþ χ ~Aj

tþ χA2
11
t2 þ χQt2 þ χqt2 − χFt4�; ð79Þ

where z and p are the fugacities of the Uð2k1Þ and Uð2k2Þ
gauge groups, respectively, while y denotes the fugacity of
the UðNÞ flavor group. Finally, x is the fugacity of the
SUð2Þ acting on the Aβ and ~Aα doublets. The contribution
of each field is given by

χAj
¼

�
xþ 1

x

� X
1≤a<b≤2k2

papb; χ ~Ai
¼

�
xþ 1

x

� X
1≤a<b≤2k1

z−1a z−1b ;

χA2
11
¼

X2k1
a¼1

X2k2
b¼1

zap−1
b ; χQ ¼

XN
i¼1

X2k1
a¼1

z−1a yi; χq ¼
XN
j¼1

X2k2
b¼1

pby−1j ; χF ¼
X2k1
a¼1

X2k2
b¼1

z−1a pb:

The explicit computation of the instanton branch Hilbert series with gauge group G ¼ Uð2k1Þ ×Uð2k2Þ and flavor group
UðNÞ shows that it coincides with the Hilbert series for SOðNÞ instantons on C2=Z2 with gauge group G ¼ Uð2K1Þ (see
[31] for more details regarding the C2=Z2 Hilbert series) upon setting

FIG. 22. Quiver diagram for NVS orthogonal
instantons on CP2=Z2.

TABLE X. Transformations of the fields for NVS orthogonal instantons on CP2=Z2.

Fields Uð2k1Þ Uð2k2Þ UðNÞ SUð2Þ Uð1Þ
~A1; ~A2

½0; 1; 0…; 0�−2 ½0� ½0� [1] 1=4
A1; A2 ½0� ½0; 1; 0;…; 0�þ2 ½0� [1] 1=4
A2
11

½1; 0;…; 0�þ1 ½0; 0;…; 1�þ1 ½0� ½0� 1=2
q ½0� ½1; 0;…; 0�þ1 ½0; 0;…; 1� ½0� 1=2
Q ½0;…; 0; 1�þ1 ½0� ½1; 0;…; 0� ½0� 1=2
F ½0;…; 0; 1�þ1 ½1; 0;…; 0�þ1 ½0� ½0� 1
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K1 ¼ minðk1; k2Þ: ð80Þ

Let us show explicit examples supporting our claim. SOð6Þ instanton: k ¼ ð1; 1Þ and N ¼ 3. Using Eq. (79) and
unrefining, we find that

H½k ¼ ð1; 1Þ; Uð3Þ;CP2=Z2�ðt; 1; 1; 1; 1Þ

¼ 1þ 2t3 þ 9t6 þ 24t9 þ 50t12 þ 76t15 þ 108t18 þ 120t21 þ 108t24 þ palindromeþ � � � þ t42

ð1 − t3Þ8ð1þ t3Þ6ð1þ t3 þ t6Þ12 ;

which is the Hilbert series for the SOð6Þ instanton onC2=Z2

with K¼ð1;1Þ and N¼3. SOð8Þ instanton: k¼ð1;1Þ and
N ¼ 4. Using Eq. (79) and unrefining, we find that

H½k ¼ ð1; 1Þ; Uð4Þ;CP2=Z2�ðt; 1; 1; 1; 1; 1Þ

¼ 1

ð1 − t3Þ12ð1þ t3Þ8ð1þ t3 þ t6Þ18 ð1þ 2t3 þ 14t6

þ 44t9 þ 123t12 þ 272t15 þ 546t18 þ 886t21

þ 1259t24 þ 1544t27 þ 1678t30

þ palindromeþ � � � þ t60Þ;

which is the Hilbert series for the SOð8Þ instanton onC2=Z2

with K ¼ ð1; 1Þ and N ¼ 4.

We graphically summarize in Fig. 23 the relation
between the NVS orthogonal instanton on CP2=Z2 and
its cousin on C2=Z2.

3. SOðNÞ instantons on CP2=Z3

In this case, there is only one inequivalent choice of the
orientifold action. We report in Fig. 24 the quiver diagram
of the corresponding field theory, while we summarize the
fields and F-term transformations in Table XI.
The branch of the moduli space that can be identified

with SOðNÞ instantons on CP2=Z3 is the one on which
A1
22 ¼ 0 and ~S1 ¼ 0. The Hilbert series of the instanton

branch corresponding to a theory with flavor symmetry
SOðN1Þ ×UðN2Þ and gauge ranks k ¼ ðk1; k2; k3Þ is

H½k;F;CP2=Z3�ðt;x;y;dÞ

¼
Z

dμUð2k1ÞðzÞ
Z

dμUð2k2ÞðpÞ
Z

dμUð2k3ÞðwÞ

×PE½χq1t2þ χq2t
2þχq3t

2þχB2
12
tþχA2

22
t2

þχB1
13
tþχ ~A1

t2þχ ~A2
tþχA3

t−χF1
t4−χF2

t4�; ð81Þ

where z, p, and w are the fugacities of the Uð2k1Þ, Uð2k2Þ,
and Uð2k3Þ gauge groups, respectively, while y denotes the
fugacity of the SOðN1Þ flavor group and d the fugacity of
the UðN2Þ gauge group. Finally, x is the fugacity of the
Uð1Þx symmetry acting on ~A2 and A3. The contribution of
each field and of the F terms are

FIG. 24. Quiver diagram for
SOðNÞ instantons on CP2=Z3.

FIG. 23. Relation between the CP2=Z2 quiver gauge theory in
the NVS case (on the left) and the corresponding C2=Z2 quiver
gauge theory (on the right), where ~Lβ are two fields in the
antisymmetric conjugate representation of the gauge group
Uð2K1Þ, while Lα are two fields in the antisymmetric represen-
tation of the gauge group Uð2K1Þ (see [31] for more details).
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χB2
12
¼

X2k1
a¼1

X2k2
b¼1

zap−1
b ; χA2

22
¼

X2k2
a¼1

X2k3
b¼1

paw−1
b ; χB1

13
¼

X2k1
a¼1

X2k3
b¼1

zawb; χF1
¼

X
1≤a≤b≤2k1

zazb;

χq1 ¼
X2k1
a¼1

za ×

8><>:
PN1=2

i¼1

�
yi þ 1

yi

�
N1 even;

1þPðN1−1Þ=2
i¼1

�
yi þ 1

yi

�
N1 odd;

χq2 ¼
X2k3
b¼1

XN2

j¼1

wbd−1j ; χq3 ¼
X2k2
a¼1

XN2

j¼1

p−1
a dj;

χ ~A1
¼

X
1≤a<b≤2k1

z−1a z−1b ; χ ~A2
¼

X
1≤a<b≤2k2

p−1
a p−1

b x−1; χA3
¼

X
1≤a<b≤2k3

wawbx; χF2
¼

X2k2
a¼1

X2k3
b¼1

p−1
a wb:

By explicitly evaluating the Hilbert series with gauge
group G ¼ Uð2k1Þ × Uð2k2Þ ×Uð2k3Þ and flavor group
SOðN1Þ ×UðN2Þ for the moduli space of instantons on
CP2=Z3, we find it to be equal to the Hilbert series for
SOðNÞ instantons on C2=Z3 with gauge group G ¼
SpðK1Þ ×Uð2K2Þ and flavor group SOðN1Þ ×UðN2Þ
(see [31] for more details) with the identification

K1 ¼ k1; K2 ¼ minðk2; k3Þ: ð82Þ

Supporting our claim, we show a few explicit examples.
SOð5Þ instanton: k ¼ ð1; 1; 1Þ and N ¼ ð3; 1Þ. Using
Eq. (81) and unrefining, we find that

H½k¼ ð1;1;1Þ; SOð3Þ×Uð1Þ;CP2=Z3�ðt;1;1;1Þ

¼ 1

ð1− t3Þ6ð1þ t3Þ4ð1þ t6Þ2ð1þ t3 þ t6Þ3 ð1þ t3 þ 4t6

þ 9t9 þ 18t12 þ 25t15 þ 33t18

þ 30t21 þ 33t24 þ palindromeþ � � � þ t42Þ;

TABLE XI. Transformations of the fields for SOðNÞ instantons on CP2=Z3.

Fields Uð2k1Þ Uð2k2Þ Uð2k3Þ SOðN1Þ UðN2Þ Uð1Þx Uð1Þ
q1 ½1; 0;…; 0�þ1 ½0� ½0� ½1; 0;…; 0� ½0� ½0� 1=2
q3 ½0� ½0� ½1; 0;…0�þ1 ½0� ½0;…; 0; 1�þ1 ½0� 1=2
q2 ½0� ½0;…; 0; 1�þ1 ½0� ½0� ½1; 0;…; 0�þ1 ½0� 1=2
B2
12

½1; 0;…; 0�þ1 ½0;…; 0; 1�þ1 ½0� ½0� ½0� ½0� 1=4
A2
22

½0� ½1; 0;…; 0�þ1 ½0;…; 0; 1�þ1 ½0� ½0� ½0� 1=2
B1
13

½1; 0;…; 0�þ1 ½0� ½1; 0;…; 0�þ1 ½0� ½0� ½0� 1=4
~A1

½0; 1; 0;…; 0�−2 ½0� ½0� ½0� ½0� ½0� 1=2
~A2

½0� ½0; 1; 0;…; 0�−2 ½0� ½0� ½0� 1=x 1=4
A3 ½0� ½0� ½0; 1; 0;…; 0�þ2 ½0� ½0� x 1=4
F1 ½2; 0;…; 0�þ2 ½0� ½0� ½0� ½0� ½0� 1
F2 ½0� ½0;…; 0; 1�þ1 ½1; 0;…; 0�þ1 ½0� ½0� ½0� 1

FIG. 25. Relation between the quiver
diagram for SOðNÞ instantons on
CP2=Z3 and the quiver diagram for
SOðNÞ instantons on C2=Z3, being Dα

two fields transforming in the antisym-
metric representation of Uð2K2Þ gauge
group (see [31] for more details).
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which is the Hilbert series for the SOð5Þ instantons on
C2=Z3 with N ¼ ð3; 1Þ and K ¼ ð1; 1Þ. SOð5Þ instanton:
k ¼ ð1; 1; 1Þ and N ¼ ð1; 2Þ. Using Eq. (81) and unrefin-
ing, we find that

H½k ¼ ðt; 1; 1; 1Þ; SOð2Þ × Uð1Þ;CP2=Z3�ðt; 1; 1; 1Þ

¼ 1 − 2t3 þ 5t6 − 2t9 þ 6t12 − 2t15 þ 5t18 − 2t21 þ t24

ð1 − t3Þ6ð1þ t6Þð1þ 2t3 þ 2t6 þ t9Þ2 ;

which is the Hilbert series for the SOð5Þ instantons on
C2=Z3 with N ¼ ð1; 2Þ and K ¼ ð1; 1Þ. We can, as well,
graphically summarize the relation between the orthogonal
instanton on CP2=Z3 and its cousin on C2=Z3 as in Fig. 25.

4. SOðNÞ instantons on CP2=Z4: VS

Starting from the theory for unitary instantons on
CP2=Z4 and applying the rules in [42,43], we obtain the
theory for SOðNÞ instantons on CP2=Z4 in the VS case.
The corresponding quiver diagram is reported in Fig. 26,
while we summarize the transformations of the fields under
the different groups in Table XII.

The branch of the moduli space that can be identified
with SpðNÞ instantons on CP2=Z4 is the one on which
A1
22 ¼ 0, ~A1 ¼ 0, and A3 ¼ 0. The Hilbert series of the

instanton branch corresponding to the VS theory with
flavor symmetry SOðN1Þ ×UðN2Þ × SOðN3Þ and gauge
ranks k ¼ ðk1; k2; k3; k4Þ is
H½k; F;CP2=Z4�ðt; x; y;d;uÞ

¼
Z

dμUð2k1ÞðzÞ
Z

dμUð2k2ÞðpÞ
Z

dμUð2k3ÞðwÞ

×
Z

dμUð2k4ÞðvÞ × PE½χq1t2 þ χq2t
2 þ χq3t

2

þ χq4t
2 þ χB2

12
tþ χA2

22
t2 þ χB2

23
tþ χB1

24
tþ χB1

32
t

þ χ ~A2
t2 þ χA4

t2 − χF1
t4 − χF2

t4 − χF3
t4�; ð83Þ

where z, p, w, and v are the fugacities of the Uð2k1Þ,
Uð2k2Þ, Uð2k3Þ, and Uð2k4Þ gauge groups, respectively,
while y and d denote the fugacities of the SOðN1Þ flavor
group of the UðN2Þ flavor group and of the SOðN3Þ flavor
group, respectively. The contributions of the various
fields are

FIG. 26. Quiver diagram for VS
orthogonal instantons on CP2=Z4.

TABLE XII. Transformation of the fields for VS orthogonal instantons on CP2=Z4.

Fields Uð2k1Þ Uð2k2Þ Uð2k3Þ Uð2k4Þ SOðN1Þ UðN2Þ SOðN3Þ Uð1Þ
B2
12

½1; 0;…; 0�þ1 ½0;…; 0; 1�þ1 ½0� ½0� ½0� ½0� ½0� 1=4
A2
22

½0� ½1; 0; 0�þ1 ½0;…; 0; 1�þ1 ½0� ½0� ½0� ½0� 1=2
B2
23

½0� ½0� ½1; 0…; 0�þ1 ½0;…; 0; 1�þ1 ½0� ½0� ½0� 1=4
~A2

½0; 1; 0…; 0�−2 ½0� ½0� ½0� ½0� ½0� ½0� 1=2
A4 ½0� ½0� ½0� ½0; 1; 0…; 0�þ2 ½0� ½0� ½0� 1=2
B1
24

½1; 0;…; 0�þ1 ½0� ½1; 0;…; 0�þ1 ½0� ½0� ½0� ½0� 1=4
B1
32

½0� ½0;…; 0; 1�þ1 ½0� ½0;…; 0; 1�þ1 ½0� ½0� ½0� 1=4
q1 ½1; 0;…; 0�þ1 ½0� ½0� ½0� ½1; 0;…:; 0� ½0� ½0� 1=2
q3 ½0� ½0;…; 0; 1�þ1 ½0� ½0� ½0� ½1; 0;…; 0�þ1 ½0� 1=2
q2 ½0� ½0� ½1; 0;…; 0�þ1 ½0� ½0� ½0;…; 0; 1�þ1 ½0� 1=2
q4 ½0� ½0� ½0� ½0;…; 0; 1�þ1 ½0� ½0� ½1; 0;…; 0� 1=2
F1 ½2; 0…; 0�þ2 ½0� ½0� ½0� ½0� ½0� ½0� 1
F2 ½0� ½0;…; 0; 1�þ1 ½1; 0;…; 0�þ1 ½0� ½0� ½0� ½0� 1
F3 ½0� ½0� ½0� ½2; 0;…; ; 0�−2 ½0� ½0� ½0� 1
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χB2
12
¼

X2k1
a¼1

X2k2
b¼1

zap−1
b ; χA2

22
¼

X2k2
a¼1

X2k3
b¼1

paw−1
b ; χB2

23
¼

X2k3
a¼1

X2k4
b¼1

wav−1b ; χ ~A2
¼

X
1≤a<b≤2k1

z−1a z−1b ;

χq1 ¼
X2k1
a¼1

za ×

8<:
PN1=2

i¼1 ðyi þ 1
yi
Þ N1 even;

1þPðN1−1Þ=2
i¼1 ðyi þ 1

yi
Þ N1 odd;

χq3 ¼
XN2

j¼1

X2k2
b¼1

djp−1
b ; χB1

32
¼

X2k2
a¼1

X2k4
b¼1

p−1
a v−1b ;

χB1
24
¼

X2k1
a¼1

X2k3
b¼1

zawb; χq2 ¼
X2k3
a¼1

XN2

i¼1

wad−1i ; χq4 ¼
X2k4
a¼1

v−1a ×

8<:
PN3=2

i¼1 ðyi þ 1
yi
Þ N3 even;

1þPðN3−1Þ=2
i¼1 ðyi þ 1

yi
Þ N3 odd;

χA4
¼

X
1≤a<b≤2k4

vavb; χF1
¼

X
1≤a≤b≤2k1

zazb; χF2
¼

X2k2
a¼1

X2k3
b¼1

p−1
a wb; χF3

¼
X

1≤a≤b≤2k4

v−1a v−1b :

By computing the Hilbert series with gauge group G ¼ Uð2k1Þ ×Uð2k2Þ ×Uð2k3Þ ×Uð2k4Þ and flavor group
SOðN1Þ ×UðN2Þ × SOðN3Þ, we find that it turns out to be equal to the Hilbert series for SOðNÞ instantons on
C2=Z4 with gauge group G ¼ SpðK1Þ × Uð2K2Þ × SpðK3Þ and flavor group SOðN1Þ × UðN2Þ × SOðN3Þ (see [31] for
more details) with the identification

K1 ¼ k1; K2 ¼ minðk2; k3Þ; K3 ¼ k4: ð84Þ

Let us now show a few explicit examples. SOð6Þ instanton: k ¼ ð1; 1; 1; 1Þ and N ¼ ð2; 0; 4Þ. Using Eq. (83) and
unrefining, we find that

H½k ¼ ð1; 1; 1; 1Þ; SOð2Þ × SOð4Þ;CP2=Z4�ðt; 1; 1Þ ¼
1þ 4t6 þ 22t12 þ 36t18 þ 54t24 þ 36t30 þ 22t36 þ 4t42 þ t48

ð1 − t3Þ8ð1þ t3Þ8ð1þ t6Þ4 ;

which is the Hilbert series for the SOð6Þ instantons on C2=Z4 with N ¼ ð2; 0; 4Þ and K ¼ ð1; 1; 1Þ. SOð6Þ instanton:
k ¼ ð1; 1; 1; 1Þ and N ¼ ð2; 1; 2Þ. Using Eq. (83) and unrefining, we find that

H½k ¼ ð1; 1; 1; 1Þ; SOð2Þ ×Uð1Þ × SOð2Þ;CP2=Z4�ðt; 1; 1; 1Þ

¼ 1

ð1 − t3Þ8ð1þ t3Þ4ð1þ t6Þ2ð1þ t3 þ t6Þ12ð1þ t3 þ t6 þ t9 þ t12Þ ð1þ t3 þ 3t6 þ 7t9 þ 18t12 þ 33t15

þ 51t18 þ 69t21 þ 93t24 þ 110t27 þ 120t30 þ 110t33 þ palindromeþ � � � þ t60Þ;

which is the Hilbert series for SOð6Þ instantons on C2=Z4

with N ¼ ð2; 1; 2Þ and K ¼ ð1; 1; 1Þ. Finally, we summa-
rize in Fig. 27 the relation between the theory describing
VS orthogonal instantons on CP2=Z4 and its cousin on
C2=Z4.

5. SOðNÞ instantons on CP2=Z4: NVS

Let us now consider the second possibility leading
to the NVS case. The quiver diagram of the corresponding
theory is reported in Fig. 28, while the transformations
of the fields and of the F terms are summarized in
Table XIII.
The branch of the moduli space that can be identified

with SOðNÞ instantons on CP2=Z4 is the one on which
A1
11 ¼ 0 and A1

33 ¼ 0. The Hilbert series of the instanton
branch corresponding to the NVS theory with flavor

symmetry UðN1Þ ×UðN2Þ and gauge ranks k ¼
ðk1; k2; k3; k4Þ is
H½k; F;CP2=Z4�ðt; x; y;dÞ

¼
Z

dμUð2k1ÞðzÞ
Z

dμUð2k2ÞðpÞ
Z

dμUð2k3ÞðwÞ

×
Z

dμUð2k4ÞðvÞ × PE½χq1t2 þ χq2t
2 þ χq3t

2

þ χq4t
2 þ χB2

23
tþ χA2

11
t2 þ χA2

33
t2 þ χB1

32
tþ χ ~A1

t

þ χA2
tþþχ ~A3

tþ χA4
t − χF1

t4 − χF2
t4�; ð85Þ

where z, p, w, and v are the fugacities of the Uð2k1Þ,
Uð2k2Þ, Uð2k3Þ, and Uð2k4Þ gauge groups, respectively,
while y and d denote the fugacities of the UðN1Þ flavor
group and the UðN2Þ flavor group, respectively. The
contributions of the various fields are given by
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χ ~A3
¼

X
1≤a<b≤2k3

w−1
a w−1

b ; χA4
¼

X
1≤a<b≤2k4

vavb; χq1 ¼
X2k2
a¼1

XN1

i¼1

pay−1i ;

χB1
32
¼

X2k1
a¼1

X2k4
b¼1

vbz−1a ; χ ~A1
¼

X
1≤a<b≤2k1

z−1a z−1b ; χA2
¼

X
1≤a<b≤2k2

papb;

χq2 ¼
X2k1
a¼1

XN1

i¼1

z−1a yi; χq3 ¼
X2k4
a¼1

XN2

j¼1

vad−1j ; χq4 ¼
X2k3
a¼1

XN2

j¼1

w−1
a dj; χF1

¼
X2k1
a¼1

X2k2
b¼1

pbz−1a ;

χA2
11
¼

X2k1
a¼1

X2k2
b¼1

zap−1
b ; χB2

23
¼

X2k2
a¼1

X2k3
b¼1

paw−1
b ; χA2

33
¼

X2k3
a¼1

X2k4
b¼1

wav−1b ; χF2
¼

X2k3
a¼1

X2k4
b¼1

w−1
a vb:

Performing the computation of the Hilbert series with gauge group G ¼ Uð2k1Þ ×Uð2k2Þ ×Uð2k3Þ × Uð2k4Þ and
flavor group UðN1Þ ×UðN2Þ, we find that it coincides with the Hilbert series for SOðNÞ instantons on C2=Z4 with gauge
group G ¼ Uð2K1Þ × Uð2K2Þ and flavor group UðN1Þ ×UðN2Þ (see [31] for more details) with the identification

FIG. 27. Relation between the
CP2=Z4 quiver gauge theory in the
VS case and its relation with the
corresponding C2=Z4 quiver gauge
theory.

FIG. 28. Quiver diagram for NVS
orthogonal instantons on CP2=Z4.
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K1 ¼ minðk1; k2Þ; K2 ¼ minðk3; k4Þ: ð86Þ

Let us show an explicit example of our claim. SOð6Þ instanton: k ¼ ð1; 1; 1; 1Þ and N ¼ ð2; 1Þ. Using Eq. (85) and
unrefining, we obtain

H½k ¼ ð1; 1; 1; 1Þ; Uð2Þ ×Uð1Þ;CP2=Z4�ðt; 1; 1; 1Þ ¼
1

ð1 − t3Þ8ð1þ t3Þ6ð1þ t6Þ3ð1þ t3 þ t6Þ3ð1þ t3 þ t6 þ t9 þ t12Þ2
× ð1þ 3t3 þ 9t6 þ 22t9 þ 54t12 þ 114t15 þ 219t18 þ 371t21

þ 582t24 þ 827t27 þ 1092t30 þ 1323t33 þ 1493t36

þ 1548t39 þ 1493t42 þ palindromeþ t72Þ;

which is the Hilbert series for SOð6Þ instantons on C2=Z4

with N ¼ ð2; 1Þ and K ¼ ð1; 1Þ. Finally, we graphically
summarize the relation between the theory describing the
NVS orthogonal instantons on CP2=Z4 and its cousin on
C2=Z4 in Fig. 29.

TABLE XIII. Transformation of the fields for NVS orthogonal instantons on CP2=Z4.

Fields Uð2k1Þ Uð2k2Þ Uð2k3Þ Uð2k4Þ UðN1Þ UðN2Þ Uð1Þ
A2
11

½1; 0;…; 0�þ1 ½0;…; 0; 1�þ1 ½0� ½0� ½0� ½0� 1=2
B2
23

½0� ½1; 0;…; 0�þ1 ½0;…; 0; 1�þ1 ½0� ½0� ½0� 1=4
A2
33

½0� ½0� ½1; 0;…; 0�þ1 ½0;…; 0; 1�þ1 ½0� ½0� 1=2
B1
32

½0;…; 0; 1�þ1 ½0� ½0� ½1; 0;…; 0�þ1 ½0� ½0� 1=4
~A1

½0; 1; 0;…; 0�−2 ½0� ½0� ½0� ½0� ½0� 1=4
A2 ½0� ½0; 1; 0;…; 0�þ2 ½0� ½0� ½0� ½0� 1=4
~A3

½0� ½0� ½0; 1; 0;…; 0�−2 ½0� ½0� ½0� 1=4
A4 ½0� ½0� ½0� ½0; 1; 0;…; 0�þ2 ½0� ½0� 1=4
q1 ½0� ½1; 0;…; 0�þ1 ½0� ½0� ½0;…; 0; 1�þ1 ½0� 1=2
q2 ½0;…; 0; 1�þ1 ½0� ½0� ½0� ½1; 0;…; 0�þ1 ½0� 1=2
q3 ½0� ½0� ½0� ½1; 0;…; 0�þ1 ½0� ½0;…; 0; 1�þ1 1=2
q4 ½0� ½0� ½0;…; 0; 1�þ1 ½0� ½0� ½1; 0;…; 0�þ1 1=2
F1 ½0;…; 0; 1�þ1 ½1; 0;…; 0�þ1 ½0� ½0� ½0� ½0� 1
F2 ½0� ½0� ½0;…; 0; 1�þ1 ½1; 0;…; 0�þ1 ½0� ½0� 1

FIG. 29. Relation between the CP2=Z4 quiver gauge theory in
the NVS case and the corresponding C2=Z4 quiver gauge theory,
where D1, ~D2 are two fields in the antisymmetric representation
of the gauge group Uð2K1Þ, while L1, ~L2 are two fields in the
antisymmetric representation of the gauge group Uð2K2Þ.

FIG. 30. Quiver diagram for instantons of the hybrid configu-
ration on CP2=Z2.
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6. SOðNÞ instantons on CP2=Zn with n > 4

Let us now consider the generic case of instantons on Zn

orbifolds of CP2 with n > 4. Based on the previous
examples above, we can extract the generic pattern of both

the quiver as well as the relation between the orthogonal

instanton on CP2=Zn with its relative on C2=Zn.
Recall that N is the sum of the ranks of the flavor groups

in the ADHM quiver, while the ranks of the gauge groups

FIG. 31. Relation between the quiver diagram for SpðNÞ instantons on CP2=Z2nþ1 (on the left) and the quiver diagram for SpðNÞ
instantons on C2=Z2nþ1 (on the right), where ~D1 and D2 are two fields in the symmetric representation of the gauge group UðKnþ1Þ.
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FIG. 32. Relation between the quiver diagram for VS SpðNÞ instantons on CP2=Z2n (on the left) and the quiver diagram for VS
SpðNÞ instantons on C2=Z2n (on the right).
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are related to instanton number and, together with
the relative flavor ranks, to other possible quantum
numbers labeling the instanton. Unfortunately, also in this
case, the precise identification between quiver data and
instanton data is not known. SOðNÞ instantons on
CP2=Z2nþ1. Elaborating on the previous examples,
we conjecture that the theory describing orthogonal instan-
tons on CP2=Z2nþ1 is related to its counterpart on
C2=Z2nþ1 as in Fig. 34. Moreover, the gauge ranks are
related by

K1 ¼ k1; K2 ¼ minðk2; k3Þ;
K3 ¼ minðk4; k5Þ;…Knþ1 ¼ minðk2n; k2nþ1Þ: ð87Þ

SOðNÞ instantons on CP2=Z2n: VS. In this case, based
on the lowest n examples, the relation between the theory
describing VS instantons on CP2=Z2n and their VS
counterparts on C2=Z2n is summarized in Fig. 35. In
addition, we find the gauge rank identification

FIG. 33. Relation between the quiver diagram for NVS SpðNÞ instantons on CP2=Z2n (on the left) and the quiver diagram for NVS
SpðNÞ instantons on C2=Z2n (on the right), where ~D1 and D2 are two fields in the symmetric representation of the gauge group UðK1Þ,
while D3 and ~D4 are two fields in the symmetric representation of the gauge group UðKnÞ.
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K1 ¼ k1; K2 ¼ minðk2; k3Þ;…Kn−1 ¼ minðk2n−2; k2n−1Þ;
Kn ¼ k2n: ð88Þ

SOðNÞ instantons onCP2=Z2n: NVS. Elaborating on the
previous examples, we conjecture that the theory describ-
ing NVS orthogonal instantons on CP2=Z2nþ1 is related to
its NVS counterpart on C2=Z2nþ1 as in Fig. 36. In addition,
the gauge rank assignation is

FIG. 34. Relationbetween thequiverdiagramforSOðNÞ instantonsonCP2=Z2nþ1 (on the left) and thequiverdiagramforSOðNÞ instantons
on C2=Z2nþ1 (on the right), where ~L1 and L2 are two fields in the antisymmetric representation of the gauge group Uð2Knþ1Þ.
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FIG. 35. Relation between the quiver diagram for VS SOðNÞ instantons on CP2=Z2n (on the left) and the quiver diagram for VS
SOðNÞ instantons on C2=Z2n (on the right).
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K1 ¼ minðk1; k2Þ; K2 ¼ minðk3; k4Þ;…
Kn ¼ minðk2n−1; k2nÞ: ð89Þ

Note that, as in the symplectic case, the merging nodes are
those going over to unitary nodes in the parent C2=Zn
theory. It would be very interesting to understand this
feature deeper, as well as the topological data classifying
orthogonal instantons.

VII. CONCLUSIONS

In this paper, we analyzed and clarified several aspects of
the moduli space of instantons on CP2. First, we explicitly
spelled in which context the instanton configurations
arising from the ADHM-like construction on CP2 are
relevant. Then, by using master space techniques, we
explored from a physical perspective the topological
properties of the instanton moduli space to which the
Hilbert series alone is blind. In the particular case of unitary

FIG. 36. Relation between the quiver diagram for NVS SOðNÞ instantons on CP2=Z2n (on the left) and the quiver diagram for NVS
SOðNÞ instantons on C2=Z2n (on the right), where ~L1 and L2 are two fields in the antisymmetric representation of the gauge group
Uð2K1Þ, while L3 and ~L4 are two fields in the antisymmetric representation of the gauge group Uð2KnÞ.
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instantons, an AdS=CFT approach is feasible, finding
perfect agreement between gauge theory and gravity
computations. Moreover, this can be regarded as a non-
trivial check of the alluded AdS=CFT pair, as it is sensible,
in particular, to nonprotected scaling dimensions of oper-
ators in N ¼ 2 theories. We also provided the construction
of instantons on orbifolds of CP2. While their topological
classification is not fully understood, by using our master
space approach, we are able to provide conjectures on the
identification of quantum numbers and quiver data.
Since CP2 is a Kähler manifold, its Kähler form

naturally induces an orientation which, in particular,
intrinsically distinguishes ASD and SD 2-forms. This is
very relevant for the construction of gauge bundles whose
curvature has definite duality properties, as such construc-
tion will be different depending on whether we are
interested in the SD or ASD case. In this paper, we were
interested in SD connections, whose physical relevance in a
suitably constructed gauge theory we have shown. In turn,
these are the ones which admit an ADHM-like construction
recently embedded into a 3d N ¼ 2 gauge theory arising
from a brane construction in [15].
Since CP2 is a topologically nontrivial manifold, the

gauge bundles of interest are classified by more than simply
the instanton number. Indeed, they admit a nonzero first
Chern class. As a consequence, the moduli space of
instantons on CP2 typically has compact submanifolds
associated to these extra directions. In turn, the Hilbert
series of the moduli space—that is, the generating function
of holomorphic functions on the instanton moduli space or,
equivalently, the generating function of gauge-invariant
operators in the ADHM description of the instanton moduli
space—which coincides with the Nekrasov instanton par-
tition function, and it is, therefore, a very interesting
quantity, is not sensible to these compact directions.
Hence, in retrospect, it is natural to expect that it would
coincide with the Hilbert series for a parent instanton onC2,
as it was explicitly shown in [15]. In this paper, we
provided evidence of this picture by probing the compact
directions upon using a novel approach. Focusing on the
simplest case admitting such directions, and following [23],
we considered the master space of the gauge theory
describing these instantons. This amounts to ungauging
a Uð1Þ, which allows us to construct extra gauge invariants
otherwise not present. These precisely reproduce a moduli
space, which is a complex cone over the noncompact
directions. By using this strategy, we were able to under-
stand the extra directions in the unitary and orthogonal
cases. In turn, the case of symplectic instantons does not
admit a similar construction, consistent with the observa-
tion in [15] that it does not involve quantum numbers other
than the instanton number. Note, however, that we explic-
itly checked this picture for the lowest instanton numbers. It
would be worth exploring this new approach further to all
instanton numbers, including studying the geometry of the

moduli space with extra directions, which is not simply a
direct product of the noncompact times the compact
directions (this can be easily checked already in the
simplest cases by studying the relations among operators
in the moduli space).
The case of unitary instantons is particularly interesting,

as its AHDM construction is in terms of the gauge theory
dual to M2 branes probing a certain CY4 cone [28]. Hence,
it is natural to guess that, at least partially, the instanton
moduli space can be read from the AdS=CFT duality.
Typically, fundamental degrees of freedom—that is, open
stringlike—are not captured by the geometry alone in
AdS=CFT. Hence, it is natural to expect that the back-
grounds in [28] can capture only the part of the instanton
moduli space which does not involve fundamental fields.
We explicitly checked this proposal, finding complete
agreement between field theory results and gravity com-
putations. Turning things around, we can think of our
results as a nontrivial check of the proposed AdS4=CFT3

duality in [28], where we explicitly match charges in field
theory with geometrical data in AdS.
The ambient manifold where our instantons live is CP2,

which is, in particular, a toric manifold. Being acted by a
T2, it is natural to consider quotienting by a discrete
subgroup—that is, orbifolding. In turn, by means of the
standard methods, we can orbifold the CP2 ADHM
construction as a field theory to find the ADHM con-
struction of instantons on CP2=Zn. This way, we con-
structed the ADHM construction for unitary, symplectic,
and orthogonal instantons on CP2=Zn. Note that the
orbifolded space has a nontrivial topology containing
2-cycles of a somewhat different origin. On one hand,
we originally had a 2-cycle in the CP2 which gets mirrored
by the orbifold. On the other hand, the orbifold introduces
extra (vanishing) 2-cycles at the orbifold fixed point. It is
natural to expect that the cycles originating from the
original one in CP2 are invisible to the Hilbert series—
just as the original one was—while the others introduced by
the orbifold are, indeed, visible. In fact, it is natural to guess
that the Hilbert series for instantons on CP2=Zn coincides
with the Hilbert series of a parent instanton on C2=Zn just
as in the unorbifolded case. Note that, consistently, the
Hilbert series of instantons on C2=Zn is, indeed, sensible to
the 2-cycles associated to the orbifold fixed point [31].10 In
this paper, we, indeed, confirmed this picture, in particular,
by explicitly showing the matching of the CP2=Zn Hilbert
series with that of a parent C2=Zn one. As shown in the
text, the process suggests a certain “folding” of theCP2=Zn

quiver by “node merging” into that of C2=Zn. In fact, since
at least for unitary instantons on C2=Zn, the matching

10Strictly speaking, this applies to unitary instantons. The case
of orthogonal and symplectic instantons is more involved, as the
ADHM construction does not allow for enough FI parameters so
as to blow up all cycles (see [44] for related discussions).
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between quiver data and instanton data is known, this
naturally suggests, at least partially, an identification of the
quiver data with the instanton data in the CP2=Zn case.
Unfortunately, the full identification with the ADHM
quiver data of the relevant quantum numbers specifying
instantons on the orbifolded CP2 space is not known.
Nevertheless, we provided—at least for the case of unitary
instantons—certain conjectures based on the mapping into
C2=Zn based, in particular, on our approach via the master
space to all directions in the moduli space. As a check, the
expected compact directions can be recovered upon appro-
priate ungaugings of Uð1Þ’s. Of course, a more compre-
hensive study of these aspects would be very interesting.
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APPENDIX A: HYBRID CONFIGURATION
(AN EXAMPLE)

In this appendix, we study an example of a hybrid
configuration, making the following choice for the charges
of the orientifolds plane in Fig. 10 ðI; II; III; IVÞ ¼
ðþ;−;þ;−Þ. The corresponding quiver is reported in
Fig. 30, while the transformations of the fields are
summarized in Table XIV.
The Hilbert series of the hybrid configuration is given by

H½k; F;CP2=Z2�ðt; a; s; yÞ

¼
Z

dμUðk1ÞðzÞ
Z

dμUðk2ÞðpÞPE½χ ~S1
tþ χS2tþ χ ~A1

t

þ χA2
tþ χA2

11
t2 þ χQt2 þ χqt2 − χFt4�; ðA1Þ

where z and p are the fugacities of the Uðk1Þ and Uðk2Þ
gauge groups, respectively, y denotes the fugacity of the
UðNÞ flavor group, s denotes the fugacity of the global
Uð1Þs symmetry acting ~S1 and S2, while a denotes the
fugacity of the globalUð1Þa symmetry acting on ~A1 and A2.
The contribution of each field is given by

χA2
11
¼

Xk1
a¼1

Xk2
b¼1

zap−1
b ; χQ ¼

XN
i¼1

Xk1
a¼1

z−1a yi;

χq ¼
XN
j¼1

Xk2
b¼1

pby−1j ; χF ¼
Xk1
a¼1

Xk2
b¼1

z−1a pb;

χS2 ¼ s
X

1≤a≤b≤k2

papb; χ ~S1
¼ 1

s

X
1≤a≤b≤k1

z−1a z−1b ;

χA2
¼ a

X
1≤a<b≤k2

papb; χ ~A1
¼ 1

a

X
1<a<b≤k1

z−1a z−1b :

In this case, by explicit computation of the Hilbert series
for the hybrid configuration with gauge group G ¼
Uðk1Þ ×Uðk2Þ and flavor group UðNÞ, we find it to be
equal to the Hilbert series for the SA hybrid configuration
on C2=Z2 with gauge group G ¼ UðK1Þ (see [31] for more
details). The two theories share the same flavor group, and
the gauge groups are related in the following way:

K1 ¼ minðk1; k2Þ: ðA2Þ

Let us explicitly show a few examples supporting our
claim. k ¼ ð1; 1Þ and N ¼ 1. Using Eq. (A1) and unrefin-
ing, we find that

H½k ¼ ð1; 1Þ; Uð1Þ;CP2=Z2�ðt; 1; 1Þ ¼
1 − t18

ð1 − t6Þð1 − t9Þ2 ;

which is the Hilbert series for the SA hybrid configuration
on C2=Z2 with N ¼ 1 and K1 ¼ 1. k ¼ ð1; 1Þ and N ¼ 2.
Using Eq. (A1) and unrefining, we find that

TABLE XIV. Transformations of the fields for instantons of the hybrid configuration on CP2=Z2.

Fields Uðk1Þ Uðk2Þ UðNÞ Uð1Þs Uð1Þa Uð1Þ
~S1 ½2; 0;…; 0�−2 ½0� ½0� 1=s [0] 1=4
S2 ½0� ½2; 0;…; 0�þ2 ½0� s ½0� 1=4
~A1

½0; 1; 0…; 0�−1 ½0� ½0� ½0� 1=a 1=4
A2 ½0� ½0; 1; 0;…; 0�þ1 ½0� ½0� a 1=4
A2
11

½1; 0;…; 0�þ1 ½0; 0;…; 1�þ1 ½0� ½0� ½0� 1=2
q ½0� ½1; 0;…; 0�þ1 ½0;…; 0; 1�þ1 ½0� ½0� 1=2
Q ½0;…; 0; 1�þ1 ½0� ½1; 0;…; 0�þ1 ½0� ½0� 1=2
F ½0;…; 0; 1�þ1 ½1; 0;…; 0�þ1 ½0� ½0� [0] 1
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H½k ¼ ð1; 1Þ; Uð2Þ;CP2=Z2�ðt; 1; 1Þ ¼
1þ 2t6 þ 4t9 þ 2t12 þ t18

ð1 − t3Þ4ð1þ 2t3 þ 2t6 þ t9Þ2 ;

which is the Hilbert series for the SA hybrid configuration on C2=Z2 with N ¼ 2 and K1 ¼ 1. k ¼ ð1; 2Þ and N ¼ 2. Using
Eq. (A1) and unrefining, we find that

H½k ¼ ð1; 2Þ; Uð2Þ;CP2=Z2�ðt; 1; 1Þ ¼
1þ 2t6 þ 4t9 þ 2t12 þ t18

ð1 − t3Þ4ð1þ 2t3 þ 2t6 þ t9Þ2 ;

which is again the Hilbert series for the SA hybrid configuration on C2=Z2 with N ¼ 2 and K1 ¼ 1. k ¼ ð1; 1Þ and N ¼ 3.
Using Eq. (A1) and unrefining, we find that

H½k ¼ ð1; 1Þ; Uð3Þ;CP2=Z2�ðt; 1; 1Þ ¼
1þ t3 þ 6t6 þ 15t9 þ 21t12 þ 18t15 þ 21t18 þ 15t21 þ 6t24 þ t27 þ t30

ð1 − t3Þ6ð1þ t3Þ4ð1þ t3 þ t6Þ3 ;

which is the Hilbert series for the SA hybrid configuration on C2=Z2 with N ¼ 3 and K1 ¼ 1. k ¼ ð1; 2Þ and N ¼ 3. Using
Eq. (A1) and unrefining, we find that

H½k ¼ ð1; 1Þ; Uð3Þ;CP2=Z2�ðt; 1; 1Þ ¼
1þ t3 þ 6t6 þ 15t9 þ 21t12 þ 18t15 þ 21t18 þ 15t21 þ 6t24 þ t27 þ t30

ð1 − t3Þ6ð1þ t3Þ4ð1þ t3 þ t6Þ3 ;

which is again the Hilbert series for the SA hybrid configuration on C2=Z2 with N ¼ 3 and K1 ¼ 1. k ¼ ð1; 1Þ and N ¼ 4.
Using Eq. (A1) and unrefining, we find that

H½k ¼ ð1; 1Þ; Uð4Þ;CP2=Z2�ðt; 1; 1Þ

¼ 1þ 2t3 þ 13t6 þ 40t9 þ 86t12 þ 132t15 þ 194t18 þ 220t21 þ 194t24 þ palindromeþ t42

ð1 − t3Þ8ð1þ t3Þ6ð1þ t3 þ t6Þ4 ;

which is the Hilbert series for the SA hybrid configuration
on C2=Z2 with N ¼ 4 and K1 ¼ 1. k ¼ ð2; 2Þ and N ¼ 1.
Using Eq. (A1) and unrefining, we find that

H½k ¼ ð2; 2Þ; Uð1Þ;CP2=Z2�ðt; 1; 1; 1Þ

¼ 1 − t3 þ 2t9 − t15 þ t18

ð1 − t3Þ4ð1þ t3Þ2ð1þ t3 þ t6 þ t9 þ t12Þ ;

which is the Hilbert series for the SA hybrid configuration
on C2=Z2 with N ¼ 1 and K1 ¼ 2.

APPENDIX B: QUIVERS AND RELATIONS
FOR SpðNÞ AND SOðNÞ INSTANTONS ON

CP2=Zn WITH n > 4

In this appendix, we collect the quiver diagrams for
SpðNÞ and SOðNÞ instantons on CP2=Zn (with n > 4)
showing their relations with the corresponding quiver
diagrams of the corresponding C2=Zn theory.
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6.3 Rigid supersymmetry from conformal su-

pergravity in 5d
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1 Introduction

Over the very recent past much effort has been devoted to the study of supersymmetric

gauge theories on general spaces. Part of this interest has been triggered by the devel-

opment of computational methods allowing to exactly compute certain (supersymmetric)

observables, such as the supersymmetric partition function (starting with the seminal pa-

per [1]), indices or Wilson loops. This program has been very successfully applied to the

cases of 4d and 3d gauge theories, and it is only very recently that the 5d case has been

considered (e.g. [2–7]). On the other hand, it has become clear that the dynamics of 5d

gauge theories is in fact very interesting, as, contrary to the naive intuition, at least for

the case of supersymmetric theories, they can be at fixed points exhibiting rather amusing
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behavior as pioneered in [8]. In particular, these theories often show enhanced global sym-

metries which can be both flavor-like or spacetime-like. The key observation is that vector

multiplets in 5d come with an automatically conserved topological current j ∼ ⋆F ∧F un-

der which instanton particles are electrically charged. These particles provide extra states

needed to enhance perturbative symmetries, both flavor or spacetime — such as what it

is expected to happen in the maximally supersymmetric case, where the theory grows one

extra dimension and becomes the (2, 0) 6d theory. In fact, very recently the underlying

mechanism for these enhancements has been considered from various points of view [9–12].

Five-dimensional gauge theories have a dimensionful Yang-Mills coupling constant

which is irrelevant in the IR. Hence they are non-renormalizable and thus a priori naively

uninteresting. However, as raised above, at least for supersymmetric theories the situation

is, on the contrary, very interesting as, by appropriately choosing gauge group and matter

content, the gYM coulpling which plays the role of UV cut-off can be removed in such a way

that one is left with an isolated fixed point theory [8]. From this perspective, it is natural to

start with the fixed point theory and think of the standard gauge theory as a deformation

whereby one adds a g−2
YMF 2 term. In fact, the g−2

YM can be thought as the VEV for a scalar

in a background vector multiplet. Hence, for any gauge theory arising from a UV fixed

point1 we can imagine starting with the conformal theory including a background vector

multiplet such that, upon giving a non-zero VEV to the background scalar, it flows to the

desired 5d gauge theory. This approach singles out 5d conformally coupled multiplets as

the interesting objects to construct.

As described above, on general grounds considering the theory on arbitrary manifolds

is very useful, as for example, new techniques allow for exact computation of supersym-

metric observables. The first step in this program is of course the construction of the

supersymmetric theory on the given (generically curved) space, which is per se quite non-

trivial. However, the approach put forward by [13] greatly simplifies the task. The key

idea is to consider the combined system of the field theory of interest coupled to a suitable

supergravity, which, by definition, preserves supersymmetry in curved space. Then, upon

taking a suitable rigid limit freezing the gravity dynamics, we can think of the solutions to

the gravity sector as providing the background for the dynamical field theory of interest.

Note that, since the combined supergravity+field theory is considered off-shell, both sec-

tors can be analyzed as independent blocks in the rigid limit, that is, one can first solve for

the supergravity multiplet and then regard such solution as a frozen background for the

field theory, where the supergravity background fields act as supersymmetric couplings.

Of course, the supergravity theory to use must preserve the symmetries of the field theory

which, at the end of the day, we are interested in. Hence, in the case of 5d theories, it

is natural to consider conformal supergravity coupled to the conformal matter multiplets

described above.

Following this approach, in this paper we will consider 5d conformal supergrav-

ity [14–16] coupled to 5d conformal matter consisting of both vector and hyper multiplets.

1Note that the theories outside of this class do require a (presumably stringy) UV completion. Hence the

class of theories which we are considering is in fact the most generic class of 5d supersymmetric quantum

field theories.
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As remarked above, the Yang-Mills coupling constant is dimensionful. Hence, the action

for the vector multiplets is not the standard quadratic one with a Maxwell kinetic term

but rather a cubic action which can be thought as the supersymmetric completion of 5d

Chern-Simons. As anticipated, in the rigid limit we can separate the analysis of the gravity

multiplet as providing the supersymmetric background for the field theory. One is thus

prompted to study the most generic backgrounds where 5d gauge theories with N = 1 su-

persymmetry can be constructed by analyzing generic solutions of the 5d N = 2 conformal

supergravity. Solutions to various 5d supergravities on (pseudo-) Riemannian manifolds

have been studied in different approaches in [17–23]. For N = 1 Poincaré supergravity,

the necessary and sufficient condition for the existence of a global solution is the existence

of a non-vanishing Killing vector. If one considers conformal supergravity this condition

becomes the existence of a conformal Killing vector (CKV).2 In this paper we analyze

Euclidean solutions of 5d conformal supergravity in terms of component fields. Our anal-

ysis proceeds along the lines of [24]. Interestingly, by studying the conditions under which

a VEV for the scalar in the background vector multiplets paying the role of g−2
YM can be

given in a supersymmetric way, we find that such vector must be in fact Killing. Hence in

this case we simply recover the results obtained using Poincaré supergravity.

Our results rely on some reality conditions satisfied by the supersymmetry spinors. In

the Lorentzian theory, the spinors generally satisfy a symplectic Majorana condition (A.3).

If one imposes the same condition in the Euclidean case, there are immediate implication

for the spinor bilinears (3.1) that play an important role in the analysis. Namely, the scalar

bilinear s is real and vanishes if and only if the spinor vanishes, while the vector bilinear

v — the aforementioned CKV — is real. One should note however that the symplectic

Majorana condition is not equivalent to these conditions for s and v. Instead, (A.3) is

slightly stronger, while our results only depend on the milder assumptions on the bilinears.

While the existence of the CKV is a necessary and sufficient condition many of the

backgrounds exhibit a more interesting geometric structure — that of a transversally holo-

morphic foliation (THF). These appeared already in the context of rigid supersymmetry in

three dimensions [25] and one can think of it as an almost complex structure on the space

transverse to the CKV that satisfies a certain integrability condition. A simple example of

a five manifold endowed with a THF is given by Sasakian manifolds. Here, the existence of

the THF was exploited in [26] in order to show that the perturbative partition function can

be calculated by counting holomorphic functions on the associated Kähler cone. Similar

considerations were used in [21] to solve the BPS equations on the Higgs branch. This

gives rise to the question whether such simplifications occur in localization calculations on

more generic five manifolds admitting rigid supersymmetry. This was addressed in [23] in

2This statement assumes the spinor — and thus the vector — to be non-vanishing. In the case of

Poincaré supergravity, this is always the case if the manifold is connected. After all, the relevant KSE is of

the form ∂µǫ
i = O(ǫi). If the spinor vanishes at a point, it vanishes on the whole manifold. For conformal

supergravity however, the KSE takes the form of a twistor equation, ∂µǫ
i − 1

4
γµν∂

νǫi = O(ǫi), which has

non-trivial solutions even if the right hand side vanishes. The simplest example of this is given by the

superconformal supersymmetry in R
5. See section 6.1. Here ǫi|xµ=0 = v|xµ=0 = 0, yet the global solution

is non-trivial. In such cases a more careful analysis is necessary.
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the context of 5d N = 1 Poincaré supergravity. Here it was shown that a necessary and

sufficient condition for such manifolds to admit a supersymmetric background is the exis-

tence of a Killing vector. If an su(2)-valued scalar in the Weyl multiplet is non-vanishing

and covarinatly constant along the four-dimensional leaves of the foliation it follows fur-

thermore that the solution defines a THF. Subsequently it was argued that the existence of

a THF (or that of an integrable Cauchy-Riemann structure) is sufficient to lead to similar

simplifications in the context of localization as in [21, 26].

With this motivation in mind we will address the question under which circumstances

generic backgrounds of the conformal supergravity in question admit THFs. Our results

are to be seen in the context of the very recent paper [22]. We will find that the necessary

and sufficient condition for the solution to support a THF is the existence of a global

section of an su(2)/R bundle that is covariantly constant with respect to a connection DQ

that arises from the intrinsic torsions parametrizing the spinor.

The outline of the rest of the paper is as follows. In section 2 we offer a lightning review

of the relevant aspects of superconformal 5d supergravity, with our conventions compiled

in appendix A and further details described in appendix B. In section 3 we turn to the

analysis of the general solutions of the supergravity, showing that the necessary condition

for supersymmetry is the presence of a conformal Killing vector. Moreover, we will see

that given a Killing spinor and the related CKV the general solution depends only on an

su(2)-valued ∆ij and a vector W that is orthogonal to the CKV. Both are determined

by solving simple ODEs that become trivial if one goes to a frame where the CKV is

Killing. In section 4 we study under which conditions it is possible to turn on a VEV for

scalars in background vector multiplets thus flowing to a standard gauge theory, finding

that the requirement is that the vector is not only conformal Killing but actually Killing.

In section 5 we derive the conditions for the existence of a THF. In section 6 we show how

some particular examples fit into our general structure, describing in particular the cases

of R × S4 relevant for the index computation of [5] and the S5 relevant for the partition

function computation of [2, 3]. We finish with some conclusions in section 7.

Note added. While this work was in its final stages we received [22], which has a sub-

stantial overlap with our results.

2 Five-dimensional conformal supergravity

Let us begin by reviewing the five-dimensional, N = 2 conformal supergravity of [15, 16].3

The theory has SU(2)R R-symmetry. The Weyl multiplet contains the vielbein eaµ, the

SU(2)R connection V
(ij)
µ , an antisymmetric tensor Tµν , a scalar D, the gravitino ψi

µ and

the dilatino χi. Our conventions are summarised in appendix A.

3A word on notation is in order here. We stress that we are discussing minimal supersymmetry in five

dimensions.

– 4 –
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The supersymmetry variations of the gravitino and dilatino are

δψi
µ = Dµǫ

i + ıγ · Tγµǫi − ıγµη
i, (2.1)

δχi =
1

4
ǫiD − 1

64
γ · R̂ij(V )ǫj +

ı

8
γµν /∇Tµνǫ

i − ı

8
γµ∇νTµνǫ

i − 1

4
γκλµνTκλTµνǫ

i

+
1

6
T 2ǫi +

1

4
γ · Tηi. (2.2)

Up to terms O(ψµ, χ
i),

Dµǫ
i = ∂µǫ

i +
1

4
ωab
µ γabǫ

i +
1

2
bµǫ

i − V ij
µ ǫj , (2.3)

R̂ij
µν(V ) = dV ij

µν − 2V
k(i
[µ V

j)
ν]k . (2.4)

In what follows we will set the Dilation gauge field bµ to zero.

As usual, taking the γ-trace of the gravitino equation allows to solve for the supercon-

formal parameters as ηi = − ı
5
/Dǫi + 1

5T · γǫi. Hence, we can rewrite the equations arising

from the gravitino and dilatino as

0 = Dµǫ
i − 1

4
γµνDνǫi + ıγµκλT

κλǫi − 3ıTµνγ
νǫi, (2.5)

0 =
1

128
ǫi(32D +R) +

1

15
TµνT

µνǫi +
1

8
DµDµǫ

i +
3ı

40
γκλµT

κλDµǫi +
11ı

40
γµTµνDνǫi

+
ı

4
γµκλ∇µT κλǫi +

ı

2
γµ∇νTµνǫ

i − 1

5
γκλµνTκλTµνǫ

i. (2.6)

Here, R is the Ricci scalar and the rewriting of the dilatino equation uses the gravitino

equation. One could also rewrite the latter using /D2
as in [24], yet we found the above

formulation to be more economical in this case.

3 General solutions of N = 2 conformal supergravity

General solutions to five-dimensional conformal supergravity have been constructed in [20]

using superspace techniques. In this section we will provide an alternative derivation of

the most general solutions to N = 2 conformal supergravity in euclidean signature using

component field considerations along the lines of [24]. Before turning to the details, let

us recall a counting argument from [24] regarding these solutions: in general the gravitino

yields 40 scalar equations. Eliminating the superconformal spinor ηi removes 8. As we will

see, the gravitino equation then also fixes the 10 components of the antisymmetric tensor

and 8 of the components of the SU(2) connection. This leaves us with 14, which is exactly

enough to remove the traceless, symmetric part of a two-tensor P which will appear in

the intrinsic torsion. Since the trace is undetermined we will find a CKV; the vector is

Killing if the trace vanishes. The remaining 7 components of the SU(2) connection and the

scalar in the Weyl multiplet will then be determined by the eight equations arising from

the dilatino variation.

– 5 –
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In order to study solutions of (2.5) and (2.6), we introduce the bispinors

s = ǫiCǫi,

v = (ǫiCγµǫi)dx
µ,

Θij = (ǫiCγµνǫ
j)dxµ ⊗ dxν ,

(3.1)

In what follows, we will assume the scalar s to be non-zero and the one-form v to be

real. These assumptions are implied if one imposes a symplectic Majorana condition such

as (A.3). Furthermore, note that v2 = s2.

The one-form then decomposes the tangent bundle into a horizontal and a vertical

part, with the former being defined as TMH = {X ∈ TM |v(X) = 0} and TMV as its

orthogonal complement. Due to the existence of a metric we use v to refer both to the

one-form and the correspoding vector and an analogous decomposition into horizontal and

vertical forms extends to the entire exterior algebra. In turn, the two-forms Θij are fully

horizontal and anti self-dual4 with respect to the automorphism ιs−1v⋆ : Λ2
H → Λ2

H :

ιvΘ
ij = 0, ιs−1v ⋆Θ

ij = −Θij . (3.2)

One finds that the spinor is chiral with respect to the vector s−1v,

s−1vµγµǫ
i = ǫi. (3.3)

Note that the sign here is mainly a question of convention. Had we defined v with an

additional minus sign, we would find the spinor to be anti-chiral and Θij to be self-dual.

One can see this by considering the transformation v 7→ −v. In addition, we define the

operator Πµ
ν = δµν − s−2vµvν which projects onto the horizontal space. A number of

additional useful identities involving Θij are given in appendix A.

Next, we parametrize the covariant derivative of the supersymmetry spinor using in-

trinsic torsions as in [19],

∇µǫ
i ≡ Pµνγ

νǫi +Qij
µ ǫj . (3.4)

Here, Pµν is a two-tensor while Qij
µ is symmetric in its SU(2)R indices. Rewriting the

torsions in terms of the supersymmetry spinor one finds

sPµν = ǫiγν∇µǫi =
1

2
∇µvν , sQij

µ = 2ǫ(i∇µǫ
j). (3.5)

3.1 The gravitino equation

We now turn to the study of generic solutions of (2.5) and (2.6) using the intrinsic torsions.

The reader interested in intermediate results and some technical details might want to

4Explicitly, the self-duality condition is

Θij
µν = −

1

2
s
−1

ǫµνκλρΘ
ijκλ

v
ρ
, ǫλµνστΘ

ijστ = −3!s−1Θij

[λµvν].

– 6 –
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consult appendix B. To begin, substituting (3.4) and contracting with ǫiγκ as well as ǫj

and symmetrizing in i, j one finds that (2.5) is equivalent to

0 =
5

4
s

(

P(µν) −
1

5
gµνP

λ
λ

)

+
3

4
s
(

P[µν] − 4ıTµν

)

+
1

4
ǫµνκλρ(P

[κλ] − 4ıT κλ)vρ

+
1

8
ǫµνρστ (Q− V )ρijΘστ

ij , (3.6)

0 =
1

2
s(Q− V )ijµ +

1

4
(Q− V )

ν(j
kΘ

i)k
µν +

1

8
ǫµκλστ (P − 4ıT )κλΘijστ . (3.7)

Clearly, the symmetric part in (3.6) has to vanish independently; so we find

P(µν) =
1

5
gµνP

λ
λ. (3.8)

This implies that v is a conformal Killing vector as can be seen using (3.5).

By contracting the two remaining equations with vµ, one finds

0 = 3svµ(P − 4ıT )[µν] − sΘij
νµ(Q− V )µij , (3.9)

0 = 2svµ(Q− V )ijµ − sΘij
µν(P − 4ıT )µν . (3.10)

Projecting (3.6) on the horizontal space, we find that Π(P − 4ıT ) is anti self-dual.

0 = (P − 4ıT )+. (3.11)

Contracting (3.10) with Θijκλ and using (A.5) gives us the horizontal, self-dual part.

(P − 4ıT )− = s−2Θijıv(Q− V )ij . (3.12)

By now we have equations for the self-dual, anti self-dual and vertical components of

(P − 4ıT )[µν], which means that all components of this two-form are determined. Putting

everything together, we find

s2(P − 4ıT )[µν] =
1

3

[

(v ∧Θij)µνρ + 2Θij
µνvρ

]

(Q− V )ρij . (3.13)

The only equation we have not considered so far is the horizontal projection of (3.7).

After using (A.6), (3.9) and (3.10) this simplifies to

sΠ ν
µ (Q− V ) i

ν j = −1

2
[(Q− V )ν ,Θµν ]

i
j . (3.14)

In summary, the gravitino is solved by (3.13) and (3.14).

Note that one can solve (3.14) by brute force after picking explicit Dirac matrices.

One finds that the equation leaves seven components of (Q − V ) unconstrained. Three

of these have to be parallel to v as they do not enter in (3.14). This suggests that it is

possible to package the seven missing components into a triplet ∆ij (three components)

and a horizontal vector Wµ (four) and parametrize a generic solution of the gravitino

equation as

(Q− V )ijµ = s−1
(

vµ∆
ij +W λΘij

λµ

)

s.t. v(W ) = 0,∆ij = ∆ji. (3.15)

Using (A.6) one can verify that (3.15) satisfies (3.14). The above implies that

Tµν =
ı

4

(

s−1Θij
µν∆

ij + s−1v[µWν] − P[µν]

)

. (3.16)

– 7 –
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3.2 The dilatino equation

We finally turn to the dilatino equation (2.6). To begin, we note that between ∆ij ,Wµ, D

there are eight unconstrained functions remaining while the dilatino equation provides

eight constraints. We can thus expect that there will be no further constraints on the

geometry. In this respect, similarly to [24], supersymmetry is preserved as long as the

manifold supports a conformal Killing vector v.

In what follows we will need to deal with terms involving derivatives of the spinor

bilinears (3.1). To do so we use the identities

∇µs = 2Pµνv
ν , (3.17)

∇µvν = 2sPµν , (3.18)

∇µΘ
ij
κλ = 3!s−1Θij

[κλvρ]P
ρ

µ − 2Θ
k(i
κλQ

j)
µk, (3.19)

∇[λPµν] = −s−1P[µν∇λ]s. (3.20)

Contracting (2.6) with ǫj and symmetrizing over the SU(2)R indices i, j one finds

0 =
1

8
ǫ(iDµDµǫ

j) +
3ı

40
ǫ(iγκλµT

κλDµǫj) +
11ı

40
ǫ(iγµTµνDνǫj)

+
ı

4
ǫ(iγκλµǫ

j)∇µT κλ. (3.21)

Substituting (3.15) and (3.16) one finds after a lengthy calculation5

£v∆
i
j = −2

5
sPµ

µ∆
i
j − [ιvQ+ P [µν]Θµν ,∆]ij . (3.22)

Contracting (2.6) with −ǫiγµ one obtains

0 = vµ

(

32D +R

128
+

1

15
TµνT

µν

)

+
1

8
ǫiγµDνDνǫi +

3ı

40
ǫiγµγκλνT

κλDνǫi

+
11ı

40
ǫiγµγ

κTκλDλǫi +
ı

4
ǫ νκλσ
µ vσ∇νTκλ +

ıs

2
∇νTµν −

s

5
ǫ κλστ
µ TκλTστ . (3.23)

The vertical component of this fixes the scalar D.

0 = 480sD + 15sR+ 48s(Pµ
µ)

2 − 130sW 2 + 60ǫκλµνρP
[κλ]P [µν]vρ − 160s∆ij∆ij

+100P[µν](sP
[µν] − 2vµW ν)− 200P [µν]Θij

µν∆ij + 48vµ∇µP
ρ
ρ − 120s∇µWµ. (3.24)

The horizontal part of (3.23) yields a differential equation for W

£vWκ =
1

50
Π λ

κ ( 3s2Pµ
µWλ − 34P ρ

ρP[λµ]v
µ − 20s∇λP

ρ
ρ). (3.25)

Note that the left hand side is horizontal since ιv£vW = ιvιvdW = 0.

Similar to the discussion in [24], we note that one can always solve (3.22) and (3.25)

locally. Moreover, after a Weyl transformation to a frame where v is not only conformal

Killing yet actually Killing, that is, setting Pµ
µ = 0, both equations simplify considerably.

5We found the Mathematica package xAct [27, 28] very useful.
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All the source terms in the latter vanish which is now solved by W = 0 while the former

becomes purely algebraic,

0 = [ιvQ+ P [µν]Θµν ,∆]ij , (3.26)

and is solved by ∆ = s−1f(ιvQ + P [µν]Θµν) for a generic, possibly vanishing, function f

as long as £vf = 0. The factor s−1 is simply included here to render ∆ invariant under

ǫi → λǫi for λ ∈ C.

An alternative way to see that (3.22) and (3.25) can be solved globally is by direct

construction of the solution following the approach of section 5 in [23]. Thus, the existence

of a non-vanishing CKV is not only necessary, but also sufficient. See also footnote 2.

4 Yang-Mills theories from conformal supergravity

The solutions described above provide the most general backgrounds admitting a five-

dimensional, minimally supersymmetric quantum field theory arising in the rigid limit of

conformal supergravity. In the maximally supersymmetric case a more general class of

solutions is possible, since the R-symmetry of maximal supergravity is SO(5), one can

define supersymmetric field theories on generic five manifolds by twisting with the whole

SO(5). Such field theories were considered in [29]. An embedding in supergravity should

be possible starting from [30].

Of course, in the case at hand our starting point is conformal supergravity, so only

conformal multiplets can be consistently coupled to the theory. While the hypermultiplet is

conformally invariant per se, the vector multiplet with the standard Maxwell kinetic term

breaks conformal invariance as the Yang-Mills coupling has negative mass dimensions.

Therefore the action for the conformally coupled vector multiplet is a non-standard cubic

action which can be thought as the supersymmetric completion of 5d Chern-Simons. Such

action contains in particular a coupling of the form CIJK σI F J FK , where F I is the field

strength of the I-th vector multiplet, σI its corresponding real scalar and CIJK a suitable

matrix encoding the couplings among all vector multiplets (we refer to [15, 16] for further

explanations). Thus we can imagine constructing a standard gauge theory by starting

with a conformal theory and giving suitable VEVs to scalars in background abelian vector

multiplets. Of course, such VEVs must preserve supersymmetry. To that end, let us

consider the SUSY variation of a background vector multiplet. As usual, only the gaugino

variation is relevant, which, in the conventions of [16], reads

δΩi
B = − ı

2
/∇σB ǫi + Y i

B j ǫ
j + σB γ · Tǫi + σB ηi , (4.1)

where we have set to zero the background gauge field. The Y i
B j are a triplet of auxiliary

scalars in the vector multiplet. Contracting with ǫi it is straightforward to see that, in

order to have a supersymmetric VEV, we must have

£vσB +
2 s

5
Pµ

µσB = 0 , (4.2)
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while the other contractions fix the value of Y i
B j . The VEV of σB is g−2

YM, and as such one

would like it to be a constant. Therefore, equation (4.2) gives us an obstruction for the

existence of a Maxwell kinetic term; namely, that v is Killing and not only conformal Killing.

It then follows that all backgrounds admitting standard — i.e. quadratic — supersymmetric

Yang-Mills theories, involve a v which is a genuine Killing vector. They are thus solutions of

the N = 1 Poincaré supergravity — see e.g. [18, 19, 21, 23]. In particular, the case of R×S4

is of special interest as the partition function on this space in the absence of additional

background fields gives the superconformal index [5]. The relevant supersymmetry spinors

appearing in the calculation define a vector v which is conformal Killing; and therefore the

background is only a solution of conformal supergravity. As we will explicitly see below,

it is easy to check that such a solution, which can be easily obtained by a simple change

of coordinates in the spinors in [12], nicely fits in our general discussion above. If, on the

other hand, one studies supersymmetric backgrounds on S5 without additional background

fields, one finds v to be Killing (see below as well). Thus such backgrounds can be regarded

as a solution to conformal supergravity that are not obstructed by (4.2) and do thus admit

a constant σB. In fact, it is easy to check this nicely reproduces the results of [2].

Eq. (4.2) shows that backgrounds admitting only a conformal Killing vector cannot

support a standard gauge theory with a constant Maxwell kinetic term. As anticipated

above, and explicitly described below, this is precisely the case of R × S4, relevant for

the computation of the index. Of course it is possible to solve (4.2) if one accepts that

the Yang-Mills coupling is now position dependent. This way we can still think of the

standard Yang-Mills action as a regulator to the index computation.6 While this goes

beyond the scope of this paper, one might imagine starting with the Yang-Mills theory

on R
5 where (4.2) can be satisfied for a constant σB. Upon conformally mapping R

5 into

R × S4 the otherwise constant σB = g−2
YM becomes σB = g−2

YM eτ , being τ the coordinate

parametrizing R. In the limit g−2
YM → 0 we recover the conformal theory of [5]. One

can imagine computing the supersymmetric partition function in this background. As

the preserved spinors are just the same as in the g−2
YM → 0 limit, the localization action,

localization locus and one-loop fluctuations will be just the same as in the conformal case.

While we leave the computation of the classical action for future work, it is clear that the

limit g−2
YM → 0 will reproduce the result in [5].

5 Existence of transversally holomorphic foliations

We will now discuss under which circumstances solutions to equations (2.1) and (2.2) define

transversally holomorphic foliations (THF). Since we assumed s 6= 0 and v real, it follows

that the CKV v is non-vanishing and thus that v defines a foliation on M . Using (A.6)

one can show then that Θij defines a triplet of almost complex structures on the four-

6One might wonder that the cubic lagrangian theory is enough. However, in some cases such as e.g. Sp

gauge theories, such cubic lagrangian is identically zero.
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dimensional horizontal space TMH . Thus, given a non-vanishing section7 of the su(2)R Lie

algebra mij we can define an endomorphism on TM

(Φ[m])µν ≡ (detm)−1/2mij(Θ
ij)µν . (5.1)

This satisfies Φ[m]2 = −Π and thus induces a decomposition of the complexified tangent

bundle

TCM = T 1,0 ⊕ T 0,1 ⊕ Cv. (5.2)

Any such decomposition is referred to as an almost Cauchy-Riemann (CR) structure. If

an almost CR structure satisfies the integrability condition

[T 1,0 ⊕ Cv, T 1,0 ⊕ Cv] ⊆ T 1,0 ⊕ Cv, (5.3)

one speaks of a THF.8 Intuitively, mij determines how Φ is imbedded in Θij and thus how

T 1,0 is embedded in TMH . If one forgets about the vertical direction v for a moment,

the question of integrability of Φ is similar to the question under which circumstances a

quaternion Kähler structure on a four-manifold admits an integrable complex structure.

To address the question of the existence of an mij satisfying (5.3) we follow the con-

struction of [23] and define the projection operator

H i
j = (detm)−1/2mi

j − ıδij . (5.4)

One can then show that

X ∈ T 1,0 ⊕ Cv ⇔ XµH i
jΠ

ν
µγνǫ

j = 0, (5.5)

if the supersymmetry spinor ǫi satisfies a reality condition such as (A.3). Acting from the

left with DY for Y ∈ T 1,0 ⊕ Cv and antisymmetrizing over X,Y , one derives the spinorial

integrability condition

[X,Y ] ∈ T 1,0 ⊕ Cv ⇔ X [µY ν]Dµ(H
i
jΠ

ρ
νγρǫ

j) = 0. (5.6)

Note that H i
j satisfies H2 = −2ıH and has eigenvalues 0 and −2ı. Thus, H i

jǫ
j projects

the doublet ǫi to a single spinor that is a linear combination of the two. It is this spinor

that will define the THF.

To proceed, we first consider X,Y ∈ T 1,0. After substituting (3.4) and making repeat-

edly use of (5.5), one finds that the condition (5.6) reduces to the vanishing of

X [µY ν](∂µH
i
j + [Qµ, H]ij)γnǫ

j . (5.7)

7Since Φ is invariant under mij 7→ fmij for any non-vanishing function f : M → R it might be more

appropriate to think of mij as a ray in the three-dimensional su(2) vector space. From this point of view,

mij is a map

m : M → S
2 ⊂ su(2).

8The similar integrability condition [T 1,0, T 1,0] ⊆ T 1,0 defines a CR manifold.
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Similarly, the case X ∈ T 1,0, Y = v leads to the condition that

Xm(∂vH
i
j + [ιvQ,H]ij)γmǫj (5.8)

must be identically zero. Contracting both expressions with ǫj and symmetrizing over

SU(2) indices, we conclude that the integrability condition (5.3) can only be satisfied if

and only if

DQ
µ H

i
j ≡ ∂µH

i
j + [Qµ, H]ij = 0, (5.9)

i.e. iff the projectionH i
j is covariantly constant with respect to the connection defined byQ.

From the condition that H i
j be covariantly constant we derive the necessary condition

that it is also annihilated by the action of the corresponding curvature tensor:

[RQ
µν , H]ij = 0, (5.10)

where RQ
µν = [DQ

µ ,DQ
ν ]. Now, one can only solve (5.10) if the SU(2) curvature RQ lies in

a U(1) inside SU(2)R. Note that since the curvature RQ arises from the intrinsic torsions,

we can relate it to the Riemann tensor and Pµν using (3.4). The resulting expression is

not too illuminating however.

To conclude we will relate the integrability condition (5.9) to the findings of [23]. There

it was found that solutions of the N = 1 Poincaré supergravity of [31–33] define THFs if

mij = tij and ∀X ∈ TMH ,DXtij = 0. In other words, the unique choice for mij is the

field tij appearing in the Weyl multiplet of that theory and the latter has to be covariantly

constant (with respect to the usual SU(2)R connection V ij
µ ) along the horizontal leaves of

the foliation. To relate our results to this, consider the case where v is actually Killing. It

follows that we can assume £vH
i
j = 0 and thus the vertical part of (5.9) takes the form

of the first condition of [23], namely

[ιvQ,H]ij = 0. (5.11)

Moreover, our general solutions (3.22) and (3.25) are solved by W = 0; while this solution

is not unique, it makes the connection to [23] very eveident as it follows now that Π(Q)ij =

Π(V )ij and so the horizontal part of (5.9) reproduces the second condition from [23]:

∀X ∈ T 1,0 DXH i
j = Xµ(∂µH

i
j + [Vµ, H]ij) = 0. (5.12)

6 Examples

Let us now discuss some specific examples illustrating the general results from the previous

sections.

6.1 Flat R
5

Flat space admits constant spinors generating the Poincaré supersymmetries. In addition,

we can consider the spinor generating superconformal supersymmetries ǫi = xµγ
µǫi0, where

– 12 –
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ǫi0 is constant. Let us see how these fit into our general set-up. For the Poincaré supersym-

metries, it is clear that we just have Q = P = V = T = 0. For the superconformal spinors

on the other hand, the gravitino and dilatino equations are solved by

ηi = −ıǫi0, Tµν = V ij
µ = D = 0. (6.1)

The intrinsic torsions are

Qij
µ = − 2

sx2
xκΘ

ijκ
µ, P[µν] =

1

sx2
(x ∧ v)µν , P(µν) = s−1xκv

κδµν . (6.2)

Note that Θij
νρQ

ρ
ij = − 3s

x2Π
σ
νxσ and thus

2

3
2v[µΘ

ij
ν]ρQ

ρ
ij =

s

x2
(Πρ

µvν −Πρ
νvµ)xρ =

s

x2
(x ∧ v)µν = s2P[µν]. (6.3)

We don’t only see that (3.13) is satisfied, yet also that the only contribution to the right

hand side of that equation comes from 2
32v[µΘ

ij
ν]ρQ

ρ
ij while it is exactly the term that van-

ishes, Θij
µνvρQ

ρ
ij , that contributes in the in the Sasaki-Einstein case to be discussed below.

Note that the superconformal supersymmetries involve non-zero trace of P . Hence,

these supersymmetries are broken by the background scalar VEV corresponding to g−2
YM.

This just reflects the general wisdom that the 5d YM coupling, being dimensionful, breaks

conformal invariance.

6.2 R× S4

Consider now R × S4, with R parametrized by x5 = τ and v not along ∂
∂τ . As described

in [5] — where the explicit spinor solutions are written as well, the spinors satisfy

∇µǫ
q = −1

2
γµ γ5ǫ

q , ∇µǫ
s =

1

2
γµ γ5ǫ

s. (6.4)

Here ǫq, s generate Poincaré and superconformal supersymmetries respectively. It is

straightforward to see that these solutions fit in our general scheme with

Qij
µ = ± 1

2s
wκΘ

ijκ
µ, P[µν] = ∓ 1

2s
(w ∧ v)µν , P(µν) = ∓ 1

2s
wκv

κ gµν , (6.5)

where upper signs correspond to the ǫq while lower signs correspond to the ǫs. In addition

we have defined w = dτ . Note that the trace of P does not vanish, implying that v is

conformal Killing. Thus this is a genuine solution of superconformal supergravity that

cannot be embedded in N = 1 Poincaré supergravity. Moreover, as discussed above,

this implies that no (constant) Yang-Mills coupling can be turned on on this background

(see [34] for a further discussion in the maximally supersymmetric case).

6.3 Topological twist on R×M4

Manifolds of the form R × M4 can be regarded as supersymmetric backgrounds at the

expense of turning on a non-zero V such that the spinors are gauge-covariantly constant

Dµǫ
i = 0. (6.6)
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To show that we consider v = ∂τ , being τ the coordinate parametrizing R. Then, from (3.5),

it follows that Pµν = 0. Furthermore, by choosing V = Q — which translates into Wµ = 0,

∆ij = 0 and implies Tµν = 0 — all the remaining constraints are automatically solved.

This is nothing but the topological twist discussed in [12] (see also [35] for the maximally

supersymmetric case; twisted theories on five manifolds were also considered in [29]). Note

that since P = 0, in these backgrounds the Yang-Mills coupling can indeed be turned on.

6.4 SU(2)R twist on M5

If M5 is not a direct product, one can still perform an SU(2)R twist. For v Killing, the

details of this can be found in [23]. One can perform an identical calculation for the

conformal supergravity in question. In the case of a R or U(1) bundle over some M4 for

example, one finds T to be the curvature of fibration.

6.5 Sasaki-Einstein manifolds

For a generic Sasaki-Einstein manifold the spinor satisfies

∇µǫi = − ı

2
γµ(σ

3) j
i ǫj . (6.7)

It follows that

Pµν = − ı

2
s−1(σ3

ijΘ
ij)µν , Qij

µ = − ı

2
s−1vµ(σ

3)ij . (6.8)

Clearly

s2P[µν] = − ı

2
s(σ3

ijΘ
ij)µν = Θij

µνQ
ρ
ijvρ. (6.9)

Hence, upon taking V ij
µ = 0 = Tµν , we indeed have a solution of (3.13) and (3.14).

Note that the trace of P is vanishing, and hence in these backgrounds the Yang-Mills

coupling can be turned on. This holds also for Sasakian manifolds. Super Yang-Mills

theories on these were considered in e.g. [4].

6.6 S5

The S5 case is paticularly interesting as well, as it leads to the supersymmetric partition

function [2, 3]. Not surprisingly, since S5 can be conformally mapped into R
5, the solution

fits into our general discussion including two sets of spinors, one corresponding to the

Poincaré supercharges and the other corresponding to the superconformal supercharges.

Writing the S5 metric as that of conformally S5 as

ds2 =
4

(1 + ~x2)2
d~x2, (6.10)

we find for the Poincare supersymmetries

Qij
µ =

1

2s
xκΘ

ijκ
µ, P[µν] = − 1

2s
(x ∧ v)µν , P(µν) = − 1

2s
xκv

κ gµν . (6.11)

For the superconformal supercharges on the other hand, we find

Qij
µ = − 1

2sx2
xκΘ

ijκ
µ, P[µν] =

1

2sx2
(x ∧ v)µν , P(µν) =

1

2sx2
xκv

κ gµν . (6.12)
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Note that in both these cases the trace of P is non-zero, so neither of these spinors are

preserved if we deform the theory with a Yang-Mills coupling. Nevertheless it is possible to

find a combination of supercharges which does allow for that. This can be easily understood

by looking at the explicit form of the spinors, which in these coordinates is simply

ǫiq =
1√

1 + ~x2
ǫi0, ǫis =

1√
1 + ~x2

/xηi0, (6.13)

being ǫi0 and ηi0 constant spinors. Considering for instance /∇ǫiq ⊃ P[µν]γ
µγνǫiq + Pµ

µǫiq, we

see that the term with P[µν] involves a contraction /xǫiq which is basically ǫis. This suggests

that one might consider a certain combination of ǫq and ǫs for which the effective P -trace

is a combination of P[µν] and Pµ
µ which might vanish. Indeed one can check that this is

the case. Choosing for instance the Majorana doublet ξi constructed as

ξ1 = ǫ1q + ǫ2s, ξ2 = ǫ2q − ǫ1s, (6.14)

it is easy to see that it satisfies

∇µǫi = − ı

2
γµ(σ

2) j
i ǫj ; (6.15)

that is, the same equation as that for the Sasaki-Einstein case. Therefore, borrowing

our discussion above, it is clear that it admitts a Yang-Mills kinetic term. Indeed, this is

corresponds, up to conventions, to the choice made in [2, 3] to compute the supersymmetric

partition function.

7 Conclusions

In this paper we have studied general solutions to N = 2 conformal supergravity. In

the spirit of [13], these provide backgrounds admitting five-dimensional supersymmetric

quantum field theories. The starting point of our analysis, being conformal supergravity,

requires that such quantum field theories must exhibit conformal invariance. In particular,

the action for vector multiplets must be the cubic completion of 5d Chern-Simons term

instead of the standard quadratic Maxwell one. However, since the Yang-Mills coupling

can be thought as a VEV for the scalar in a background vector multiplet, we can regard

gauge theories as conformal theories conformally coupled to background vector multiplets

whose VEVs spontaneously break conformal invariance. From this perspective it is very

natural to consider superconformal supergravity as the starting point to construct the

desired supersymmetric backgrounds.

We have described the most generic solution to N = 2 five-dimensional conformal

supergravity (see also [20]). By expanding spinor covariant derivatives in intrinsic torsions

we have been able to find a set of algebraic equations (3.8), (3.15), (3.16), (3.24) together

with a set of differential constraints (3.22), (3.25) characterizing the most general solu-

tion. Interestingly, the solutions admit transverse holomorphic foliations if the SU(2)R
connection RQ “abelianizes” by lying along a U(1) inside SU(2)R, in agreement with the

discussion in [22].
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On general grounds, the only obstruction to the existence of supersymmetric back-

grounds is the requirement of a conformal Killing vector. On the other hand we have

showed that only when the vector becomes actually Killing a constant VEV for background

vector multiplet scalars can be turned on. This shows that all cases where a Yang-Mills

theory with standard Maxwell kinetic term can be supersymmetrically constructed are in

fact captured by Poincaré supergravity. On the other hand, on backgrounds admitting

only a conformal Killing vector we can still turn on a Yang-Mills coupling at the expense of

being position-dependent. While this is certainly non-standard, in particular this allows to

think of the quadratic part of the Yang-Mills action as the regulator in index computations.

Having constructed all supersymmetric backgrounds of N = 2 superconformal su-

pergravity, the natural next step would be the computation of supersymmetric partition

functions. In particular, it is natural to study on what data they would depend along the

lines of e.g. [36]. For initial progress in this direction see [19, 23]. We postpone such study

for future work.
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A Conventions

We use the standard NE-SW conventions for SU(2)R indices {i, j, k, l} with ǫ12 = ǫ12 = 1.

The charge conjugation matrix C is antisymmetric, hermitian and orthogonal, i.e. C∗ =

CT = −C = C−1. Its action on gamma matrices is given by (γa)∗ = (γa)T = CγaC−1.

In general we choose not to write the charge conjugation matrix explicitly; thus ǫiηj =

(ǫi)TCηj . Antisymmetrised products of gamma matrices are defined with weight one,

γa1...ap =
1

p!
γ[a1 . . . γap], (A.1)

yet contractions between tensors and gamma matrices are not weighted.

γ · T = γµνTµν . (A.2)

In general, symmetrization T(µ1...µp) and antisymmetrization T[µ1...µp] are with weight one

however.
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One can impose a symplectic Majorana condition

ǫij(ǫj)∗ = Cǫi, (A.3)

yet as we mentioned in the main body of this paper it is generally sufficient for us to assume

s to be non-vanishing and v to be real.

Using Fierz identities, one finds the following identities involving the spinor bilin-

ear Θij :

Θij
µνΘ

klµν = s2(ǫikǫjl + ǫilǫjk), (A.4)

Θij
κλΘ

µν
ij =

s2

2
(Πµ

κΠ
ν
λ −Πν

κΠ
µ
λ)−

s

2
ǫ µνρ
κλ vρ (A.5)

Θij
µρΘ

klρν = −s2

4
(ǫikǫjl + ǫilǫjk)Π ν

µ +
s

4
(ǫjkΘil + ǫikΘjl + ǫjlΘik + ǫilΘjk) ν

µ . (A.6)

B Details of the computation

In this appendix we summarize the most relevant details of the computation that lead us

to the two equations (3.13) and (3.14) and to the three differential equations (3.22), (3.24)

and (3.25), that allow to determine ∆ij , the scalar D and the vector Wκ.

B.1 Gravitino equation

In this subsection we furnish further details for the derivation of the equations (3.13)

and (3.14). As explained in section 3 we rewrite the covariant derivative acting on the

spinor ǫi as

Dµǫ
i = ∇µǫ

i − V ij
µ ǫj = Pµνγ

νǫi + (Q− V )ijµ ǫj . (B.1)

Inserting this expression for the covariant derivative in the gravitino equation (2.5) we

obtain

0 =
3

4
P[µν]γ

νǫi +
1

8
ǫµκλστP

[κλ]γστ ǫi +
5

4
P(µν)γ

νǫi − 1

4
γµP

ν
νǫ

i

+(Qij
µ − V ij

µ )ǫj −
1

4
γµν(Q

νij − V νij)ǫj −
ı

2
ǫµκλστT

κλγστ ǫi − 3ıTµνγ
νǫi

=
5

4

(

P(µν) −
1

5
gµνP

λ
λ

)

γνǫi + (Q− V )ijµ ǫj −
1

4
γµν(Q− V )νijǫj

+
3

4
(P[µν] − 4ıTµν)γ

νǫi +
1

8
ǫµκλστ (P

[κλ] − 4ıT κλ)γστ ǫi. (B.2)

We manipulate the previous expression, as discussed in section 3, multiplying it from the

left by ǫiγκ. In this way we obtain the equation (3.6). While we obtain the equation (3.7)

multiplying the equation (B.2) by ǫj and symmetrizing in the indices i and j.

In order to recover the equation (3.13) we have to determine (P−4ıT )+ and (P−4ıT )−.

Therefore we project the equation (3.6) on the horizontal space using the projector operator

Πµ
ν = δµν − s2vµvν . We find

0 =
5

8
Πκ

µΠ
λ
ν

[

(P − 4ıT )[κλ] +
1

2
ǫκλστρ(P − 4ıT )στvρ

]

=
5

4
(P − 4ıT )+. (B.3)
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This means that Π(P − 4iT ) is anti-self dual. On the other hand contracting the equa-

tion (3.10) with Θijκλ and using the identity (A.5) we get

0 = s3
(

ΠκµΠλν −
1

2
s−1ǫκλµνρv

ρ

)

(P − 4ıT )[κλ] − 2sΘijκλ(Q− V )ijρ v
ρ. (B.4)

Solving the previous expression we obtain (P − 4ıT )− = s−2Θijıv(Q − V )ij . Therefore

we know all the components of (P − 4iT ), since we have an equation for (P − 4iT )+, an

equation for (P −4iT )− and finally an equation for ıv(P −4ıT ). Putting these information

together we recover the equation (3.13).

In order to determine the equation (3.14) we evaluate the projection of the equa-

tion (3.7), using the identities (3.9) and (3.10) we get

0 =
1

2
sΠν

µ(Q− V )ijν +
1

4
(Q− V )

ν(j
kΘ

i)k
µν +

1

6
s−1Θij

µνΘ
νρ
kl (Q− V )klρ . (B.5)

Using the identity (A.6) the previous expression becomes

0 = sΠ ν
µ (Q− V ) i

ν j +
1

2
[(Q− V )ν ,Θµν ]

i
j . (B.6)

Obtaining in this way the equation (3.14).

B.2 Dilatino equation

In this subsection we furnish further details regarding the derivation of the equa-

tions (3.22), (3.24) and (3.25). The most involved terms that appear in the equa-

tion (2.6) are

DµDµǫ
i =

1

5
/∇Pµ

µǫ
i − γµ∇νP[µν]ǫ

i +
1

5
(Pµ

µ)
2ǫi + P[µν]P

[µν]ǫi

−∇µ(Q− V ) i
µ jǫ

j − V i
µ j(Q− V )µjkǫ

k + (Q− V ) i
µ jQ

µj
kǫ

k

+
2

5
P κ

κγ
µ(Q− V )ijµ ǫj − 2γµP[µν](Q− V )νijǫj (B.7)

and

γκλµT
κλDµǫi = γκλµνT

κλP [µν]ǫi +
3

5
P κ

κTµνγ
µνǫi − 2P[µκ]T

κ
νγ

µνǫi

+γκλµT
κλ(Q− V )µijǫj , (B.8)

γµTµνDνǫi = −P[µν]T
µνǫi − P[µκ]T

κ
νγ

µνǫi +
1

5
P κ

κTµνγ
µνǫi + γµTµν(Q− V )νijǫj . (B.9)

The symmetric contraction. Multiplying the equation (2.6) by ǫj and symmetrizing

in i and j we obtain

0 =
1

8
ǫ(iDµDµǫ

j) +
3ı

40
ǫ(iγκλµT

κλDµǫj) +
11ı

40
ǫ(iγµTµνDνǫj)

+
ı

4
ǫ(iγκλµǫ

j)∇µT κλ. (B.10)

– 18 –
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The individual components are

ǫ(iDµDµǫ
j) =

s

2

[

∇µ(Q− V )ijµ + (Q+ V )
(i

µ k(Q− V )µj)k
]

+
1

5
P κ

κvµ(Q− V )µij − vµP[µν](Q− V )νij , (B.11)

ǫ(iγκλµT
κλDµǫj) =

3

5
P κ

κT
µνΘij

µν − 2P[µκ]T
κ
νΘ

ijµν +
1

2
ǫ νρ
κλµ T κλΘk(i

νρ (Q− V )
µj)

k, (B.12)

ǫ(iγµTµνDνǫj) = −P[µκ]T
κ
νΘ

ijµν +
1

5
Pµ

µT
κλΘij

κλ +
1

2
vµT

µν(Q− V )ijν , (B.13)

ǫ(iγκλµǫ
j)∇µT κλ = −1

2
ǫ νρ
κλµ Θij

νρ∇µT κλ. (B.14)

Putting the various terms together we recover the expression (3.22).

The vector contraction. Multiplying the equation (2.6) with ǫiγµ and contracting we

obtain

0 = vµ

(

32D +R

128
+

1

15
TµνT

µν

)

+
1

8
ǫiγµDνDνǫi +

3ı

40
ǫiγµγκλνT

κλDνǫi

+
11ı

40
ǫiγµγ

κTκλDλǫi +
ı

4
ǫ νκλσ
µ vσ∇νTκλ +

ıs

2
∇νTµν −

s

5
ǫ κλστ
µ TκλTστ . (B.15)

The most involved terms are given by

ǫiγµDνDνǫi =
s

5
∇µP

κ
κ − s∇νP[µν] −

2

5
P κ

κΘ
ij
µν(Q− V )νij + 2Θij

µνP
[νρ](Q− V )ρij

+vµ

[

1

5
(P κ

κ)
2 + P[µν]P

[µν] − 1

2
(Q− V )ijν (Q− V )νij

]

, (B.16)

ǫiγµγκλνT
κλDνǫi = sǫµκλστT

κλP [στ ] +
6

5
P κ

κTµνv
ν − 2(P[µρ]T

ρ
ν − P[νρ]T

ρ
µ)v

ν

−(Q− V )µijΘ
ij
κλT

κλ − 2TµνΘ
ijνρ(Q− V )ρij , (B.17)

ǫiγµγ
κTκλDλǫi = −vµP[κλ]T

κλ − (P[µρ]T
ρ
ν − P[νρ]T

ρ
µ)v

ν +
2

5
P κ

κTµνv
ν

−Θij
µκT

κλ(Q− V )λij . (B.18)

Finally putting the various terms together and projecting on the vertical component we

recover the equation (3.24). While projecting on the horizontal component we recover the

equation (3.25).
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We consider the Nekrasov-Shatashvili limit of the five-dimensional (5D) superconformal index and
propose a novel prescription for selecting the finite contributions. Applying the latter to various examples
of U(1) theories, we find that the 5D Nekrasov-Shatashvili index can be reproduced using recent techniques
of Córdova and Shao, who related the 4D Schur index to the Bogomol'nyi-Prasad-Sommerfield (BPS)
spectrum of the theory on the Coulomb branch. In this picture, the 5D instanton solitons are interpreted as
additional flavor nodes in an associated 5D BPS quiver.

DOI: 10.1103/PhysRevD.94.045007

I. INTRODUCTION AND SUMMARY

The superconformal index has proven to be an important
tool in the study of superconformal field theories (SCFTs)
in diverse dimensions [1,2]. In some cases, interesting
limits of the index have been devised, which isolate
contributions from particular subsets of operators and
provide information about its different phases; see e.g
Ref. [3]. Limits of the index also help in identifying
algebraic structures hidden within special subsectors of
the theory, a fact which has been put to remarkable effect in
four and six dimensions [4].
In a closely related direction, recent work [5] established a

connection between the so-called Schur limit of the four-
dimensional (4D) index on the one hand1 and a certain
algebraic quantity associated with the BPS spectrum of
particles on the Coulomb branch on the other—the trace of
the Kontsevich–Soibelman (KS) operator—for a convincing
number of 4D N ¼ 2 SCFTs2; see also Ref. [8] for gene-
ralizations. In this fashion, one demonstrates that, for specific
BPS subsectors, the operator spectrum of an SCFT is directly
related to the particle spectrum of the same theory in a phase
where the conformal symmetry has been broken.
In this paper, we would like to import some of

these results to five-dimensional SCFTs [9–12]. Our first
objective will be to define a limit of the five-dimensional
(5D) superconformal index by turning off one of the two
Ω-deformation parameters3; this is the limit first considered
by Nekrasov and Shatashvili (NS) in a four-dimensional

context [13]. Its naive implementation leads to a singular
index, which calls for a prescription on how to extract the
finite parts. This problem can in principle be addressed in a
way similar to the original NS limit of [13]. However, the
direct 5D extension of that recipe leads to a function ofwhich
the fugacity expansion does not necessarily involve integer
coefficients. In turn, we propose a different 5D regulariza-
tion which results in a fugacity expansion with integer
coefficients for arbitrary gauge groups. In the Abelian
case, our regularization clearly isolates contributions from
states localized on a four-dimensional subspace of the
Euclideanized spacetime. Moreover, it reproduces, at least
for the perturbative sector, the large-orbifold limit of the
gauge theory index ofRef. [14]. The latter effectively reduces
the space down to a 4D geometry—of the form M3 × S1—
where the contributions of vector and hypermultiplets
become identical to the 4D Schur index and may hint toward
an interesting connection with Ref. [4]. Although our limit
does not lead to a counting of states preserving a larger
fraction of supersymmetry,4 it does lead to a factorization of
the index into a “holomorphic” and “antiholomorphic”
part for general 5D SCFTs. This factorization is reminiscent
of the work of Iqbal and Vafa [15], where it also appeared
as the starting point for connecting the 5D BPS-
particle degeneracy5 to the index, using the topological
string.
With this last point in mind, our second objective will be

to relate the NS limit of the 5D index to the work of
Ref. [5]. For a number of Abelian examples, we will show
that the NS index can be reproduced by the trace of the KS
operator for a “5D BPS quiver.” This quiver can be
constructed straightforwardly by assigning a node for each
“partonic BPS state.”6; This involves a node corresponding
to the instanton-soliton parton of the 5D theory, as well as a

*c.papageorgakis@qmul.ac.uk
†pinialessandro@uniovi.es
‡d.rodriguez.gomez@uniovi.es
1Recent exact results on the 4D Schur index include Ref. [6].
2For an alternative calculation of the Schur index for Argyres-

Douglas theories, see Ref. [7].
3Since the precise operator spectrum of the interacting 5D UV

theories is unknown, one usually works with the realization of the
index as a supersymmetric partition function on S4 × S1 with
twisted boundary conditions for the various fields.

4Interesting limits of the 4D index with additional super-
ymmetry were originally considered in Ref. [3].

5Note that in 5D there also exist BPS strings.
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node for each of the possible Nf hypermultiplets of the
theory. The construction and study of the 5D BPS quiver for
non-Abelian theories, and their possible connection to theNS
index, is a question that we will leave open for future
investigation. However, our Abelian results can already be
thought of as a check of the proposal of Ref. [15], for a
particular subsector of five-dimensional theories.
The rest of this article is organized as follows. In Sec. II,

we will present the details of the NS limit for the 5D index,
after briefly reviewing some background material neces-
sary for our discussion. Then, in Sec. III, we will introduce
the algebraic tools of Ref. [5] and use them to recover our
index for U(1) theories with different matter content and
values of the Chern-Simons coefficient. We will also
discuss some directions for generalizing these results to
non-Abelian gauge groups.

II. NEKRASOV-SHATASHVILI LIMIT
OF THE 5D INDEX

A. Generalities

The superconformal index in five dimensions was first
defined in Ref. [2] and computed using supersymmetric
localization [16] for a variety of N ¼ 1 theories in
Ref. [17]. Recall that, using a Verma module construction,
one can obtain all irreducible representations of the 5D
superconformal algebra (SCA) Fð4Þ from irreducible
representations of the maximal compact subalgebra
soð2ÞE ⊕ soð5Þ ⊕ suð2ÞR. The latter are labelled by
strings of quantum numbers denoting the highest weight
state fϵ0; R; h1; h2g, where h1, h2 are the Cartan generators
of soð5Þ,7 while ϵ0 is the scaling dimension measured by
the charge under soð2ÞE. Finally, the suð2ÞR Cartan
generator is denoted by R.8

In the radial quantization of the theory, where
S ¼ Q†, and for a particular choice of supercharge,9 one
can define

δ ≔ fQ; Sg ¼ ϵ0 − h1 − h2 − 3R; ð2:1Þ
which is a positive-definite quantity. The index is a partition
function counting operators transforming in irreducible
representations of the subalgebra of the SCA that (anti)
commute with the above Q, S (these are 1

8
-BPS) and hence

also δ—or equivalently, Irreducible representations of the
commutant of ðQ; S; δÞ of the 5D SCA. It is straightforward
to see that h1 þ R and h2 þ R commute with the above

choice of δ, and as a result the most general, or “refined,”
index with respect to the supercharge Q is given by
[2,17,18]

I ¼ TrHδ¼0
ð−1ÞFph1þRqh2þR

Y
a

wQa
a qk: ð2:2Þ

Here, the trace is taken over the Hilbert space of δ ¼ 0
operators, F ¼ 2h1 is the fermion number operator, p and q
are fugacities keeping track of the elements of the com-
mutant, and the wa are additional fugacities for commuting
charges Qa, corresponding to possible global/gauge sym-
metries. One such commuting charge corresponds to a
topological U(1) symmetry which is always present in the
examples we are interested in: 5D gauge theories possess a
conserved current, �J ¼ 1

8π2
trðF ∧ FÞ, and their spectrum

contains instanton solitons, charged under the associated
symmetry. This global symmetry plays an important role in
five dimensions, where SCFTs with very interesting prop-
erties exist [9]; in many cases, it can combine with and
enhance other symmetries (flavor, Lorentz); see e.g.
Refs. [17,19,20]. Indeed, one can also include a fugacity
q in the index (2.2), which keeps track of the instanton
charge k, where jqj ¼ 1.
Via the state-operator map, the 5D index can alterna-

tively be evaluated by a Euclidean path integral on S4 × S1

with twisted boundary conditions for the various fields
according to their charges [2,17,21]. The index then counts
1
8
-BPS states for the theory on the sphere. This functional
integral can be evaluated in the IR theory10 using locali-
zation [17], and the answer reduces to a gauge-group
integral over the product of perturbative and nonperturba-
tive contributions, schematically

I ¼
Z

½dU�ZS4
pertZnonpert; ð2:3Þ

with ½dU� the unit-normalized Haar measure. The non-
perturbative factor can be written as

Znonpert ¼ jZNekj2; ð2:4Þ
where ZNek is the Nekrasov instanton partition
function [24]. The perturbative contribution is a modular
quantity built out of the weak-coupling multiplets.
The vector-multiplet and hypermultiplet contributions are
given by

IV;H ¼ PE½fV;H�; ð2:5Þ

where PE refers to the plethystic exponential. The so-called
single-letter indices appearing above in turn read11

6By this, we mean states with the lowest possible charges, i.e.
ones that cannot be written as bound states of any other states.

7These are related to the Ω-deformation parameters ϵ1, ϵ2 in a
simple way.

8As is common in the literature, we will use the same symbols
for the Cartan generators and the corresponding charges, depend-
ing on the context.

9We follow the conventions and choices of Ref. [17].

10For a generic SCFT on R × S4, it is possible to turn on
supersymmetrically a position-dependent Yang-Mills coupling,
interpolating between the SCFT and the IR gauge theory [22,23].

11For definiteness, we will assume that the hypermultiplet is in
the fundamental of the gauge group.
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fV ¼ −
pþ q

ð1 − pÞð1 − qÞ χAdj;

fH ¼
ffiffiffiffiffiffi
pq

p
ð1 − pÞð1 − qÞ ðχ□ þ χ

□̄
Þ; ð2:6Þ

with χR denoting the character of a given representationR.

B. NS index

Having set the stage, we would like to investigate
whether there exist limits of the index (2.2) which only
receive contributions from certain sectors of the theory, as
e.g. is the case in 4D [3]. Note that, as opposed to other
dimensions, the 5D index only depends on two fugacities.
Moreover, these correspond to Cartans of SU(2) sym-
metries, a fact which underlies the ðp; qÞ ↔ ðq−1; p−1Þ and
ðp; qÞ ↔ ðq; pÞ invariance of the index; cf. Eq. (2.6). Thus,
it is hard to imagine nontrivial regular limits as in Ref. [3].
Yet, this does not exclude interesting singular limits. In
particular, following [13], we will focus on the NS limit of
the index. Generically, the NS limit involves sending one of
the two Ω-deformation parameters to zero, ϵ1 → 0 while
keeping the other one, ϵ2, fixed. These parameters are
chemical potentials for rotations in two real planes,
SOð2Þϵ1 × SOð2Þϵ2 ⊂ SOð5Þ, and related to our choice of
fugacities through p ¼ e−ϵ1 and q ¼ e−ϵ2 . Hence, one can
naively implement the NS limit directly at the level of the
index, by considering

p → 1 and q → fixed: ð2:7Þ

Although this definition is natural, it leads to divergences as
can be immediately seen by applying it to the perturbative
contributions (2.6). We therefore need to put forward a
modified definition for taking the NS limit of the 5D index,
which leads to finite contributions.
Toward that end, we follow Ref. [18] and rewrite the

index of the full theory on S4 × S1 in terms of two
“hemisphere indices” on D4 × S1 with Dirichlet boundary
conditions, where D4 ⊂ S4 is half the sphere. The hemi-
sphere index is in turn defined by

II ¼ ZD4

pertZNek: ð2:8Þ

For the example of a single vector multiplet and a hyper-
multiplet in the fundamental representation, the perturba-
tive piece reads

ZD4

pert ¼ PE

�
−

pþ q
ð1 − pÞð1 − qÞ χAdj þ

ffiffiffiffiffiffi
pq

p
ð1 − pÞð1 − qÞ χ□

�
;

ð2:9Þ

where the gauge symmetry of the full index on S4 × S1 is to
be understood as a global boundary symmetry.

The full index is then computed by combining two such
contributions and gauging the appropriate diagonal sub-
group of said global symmetries to obtain

I ¼ ðI4DV Þr
Z

½dU�IIĪI; ð2:10Þ

where the overline implies that one inverts all gauge/flavour
fugacities. The term

I4DV ¼ PE

�
−

p
1 − p

−
q

1 − q

�
ð2:11Þ

is a purely four-dimensional N ¼ 1 vector-multiplet con-
tribution coming from the boundary, and r ¼ rankðGÞ is
the gauge group rank.
We are now in the position to define the NS index as

follows,

NS index∶ IINSðzi; q; qÞ

≔ PE

�
lim
p→1

ð1 − pÞPE−1½IIðzi; q;p; qÞ�
�
; ð2:12Þ

such that

INSðq; qÞ ≔
Z

½dU�IINSðzi; q; qÞIINSðzi; q; qÞ: ð2:13Þ

Note that we have stripped off the (divergent in this limit)
factors of I4DV . We will come back to this below.
We stress that this definition of the NS limit is different

from other versions where the PE in (2.12) is traded for a
standard exponential and results in a function of which the
fugacity expansion does not necessarily involve integer
coefficients; see Refs. [13,25]. On the other hand,
Eq. (2.13) does admit an expansion with integer coeffi-
cients, due to the use of the PE.
In the above, the zi, i ¼ 1;…; r, are gauge/global

symmetry fugacities, and the plethystic logarithm, PE−1,
is the inverse of the plethystic exponential, defined as

PE−1½gðtÞ� ≔
X∞
n¼1

μðnÞ
n

log½gðtnÞ�; ð2:14Þ

with μðnÞ the Möbius function. This factorization of the
superconformal index in the NS limit is reminiscent of the
discussion in Ref. [15], where the full index was calculated
using the refined topological vertex formalism and related
to the counting of BPS states on the Coulomb branch of the
theory. We will see in the next section that the relationship
to 5D BPS quivers can be quantified for G ¼ Uð1Þ through
the formalism of Ref. [5].
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1. Perturbative NS limit

Since our prescription for the NS limit (2.12) factorizes
over the perturbative and nonperturbative contributions, let
us first look at the former. From (2.9), it is straightforward
to deduce that

ZD4;NS
pert ¼ PE

�
−

q
ð1 − qÞ χAdj þ

ffiffiffi
q

p
ð1 − qÞ χ□

�
; ð2:15Þ

and consequently if we only focus on the perturbative
sector,Z

½dU�ZD4;NS
pert ZD4;NS

pert

¼
Z

½dU�PE
�
−

2q
ð1 − qÞ χAdj þ

ffiffiffi
q

p
ð1 − qÞ ðχ□ þ χ

□̄
Þ
�
:

ð2:16Þ

This is tantamount to projecting out states with a nontrivial
xþþ dependence, as can be seen by taking the NS limit
directly on the full 5D single-letter indices.
This requires an equivalent prescription for which it is

convenient to introduce fugacities x ¼ ffiffiffiffiffiffi
pq

p
, y ¼ ffiffiffiffiffiffiffiffiffi

q=p
p

.
Note that, after performing this substitution in Eq. (2.2), the
exponents of the x and y fugacities are given respectively
by h1 þ h2 þ 2R ¼ 2j1 þ 2R and −h1 þ h2 ¼ −2j2. In
terms of these, the NS index for the hypermultiplet can
be implemented by taking y → x. More precisely,

fNSH ¼ lim
ϵ1→0

ϵ1fHðx; xð1þ ϵ1ÞÞ: ð2:17Þ

In this fashion, the NS index picks out the coefficient of the 1
ϵ1

pole in the naive ϵ1 → 0 limit of fH. Recall that for the free
hypermultiplet the single particle index fH can be under-
stood in terms of letter counting using the state-operator map
[17]. Using Table I, one immediately sees that fH contains
operators made out of letters of the form ∂m

þ�O; here,O is a
scalar or fermionic component of the hypermultiplet, and the
derivatives are responsible for the factor ð1 − pÞð1 − qÞ ¼
ð1 − xyÞð1 − x

yÞ appearing in the denominator of (2.6). In the
limit ϵ1 → 0, one such derivative becomes of zero weight.
This results in a divergence in the limit y → x, originating
from an unrefinement in the index which now counts letters
containing arbitrary powers of ∂þþ with the same weight

(zero). Defining the NS index through selecting the pole in
(2.17) is tantamount to only accounting for the contribution
with no derivatives.
Somewhat surprisingly, the vector-multiplet piece can also

be given an IR-operator interpretation. In such a scenario,
one can understand the single-letter vector-multiplet con-
tribution as arising from components of the gaugino plus a
tower of infinitely many derivatives. In the limit ϵ1 → 1, not
only the weight of a derivative but also one of the
components of the gaugino become zero. These translate
into singularities of the index, and our prescription amounts
to regularizing them by discarding zero-weight letters.
Hence, at the level of implementation, the following

single-letter functions can be used for the perturbative
contributions in the NS limit:

fNSV ¼ −
2q

ð1 − qÞ χAdj; fNSH ¼
ffiffiffi
q

p
ð1 − qÞ ðχ□ þ χ

□̄
Þ:

ð2:18Þ
We highlight that these single-letter terms are precisely the
vector and hypermultiplet single-letter index contributions
for the perturbative sector of N ¼ 2 four-dimensional
theories in the Schur limit [3,6], which may hint at a
connection with the results of Ref. [4]. It is also interesting
to observe that the large-orbifold limit of Ref. [14] also led
to perturbative contributions identical to those of the 4D
Schur index.12

All in all, in the perturbative sector our NS limit discards
states with a dependence on the xþþ direction on D4, along
with the boundary N ¼ 1 vector-multiplet contributions
I4DV . This is equivalent to using the single-letter expressions
(2.18) directly in (2.5). We will next see that this inter-
pretation extends to the nonperturbative sector for Abelian
theories.

2. Nonperturbative NS limit

The result of the prescription (2.12) on the nonpertur-
bative piece is somewhat more involved. This is due to the
fact that, with the exception of the Abelian case, the
Nekrasov partition function cannot be written as a PE of
single-letter contributions but is evaluated as an expansion
in powers of the instanton fugacity q,

ZNek ¼
X∞
k¼0

qkZðkÞ
Nek with Zð0Þ

Nek ¼ 1: ð2:19Þ

We will henceforth assume that the NS limit commutes
with the instanton expansion and then use this along with
(2.12) to get

TABLE I. The letters in the hypermultiplet and their respective
charges.

ϵ0 ðj1; j2Þ R

q 3
2

(0, 0) � 1
2

ψ 2 ð� 1
2
; 0Þ ⊕ ð0;� 1

2
Þ 0

∂ 1 ð� 1
2
;� 1

2
Þ ⊕ ð0; 0Þ 0

12Recall that Ref. [14] considered the 5D theory on S4=Zn ×
S1 in the large-n limit. This effectively dimensionally reduced the
space down to a (singular) 4D geometry.
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ZNS
Nekðzi; q; qÞ ¼ PE

�
lim
p→1

ð1 − pÞPE−1
�X∞
k¼0

qkZðkÞ
Nekðzi;p; qÞ

��
¼ PE

�
lim
p→1

ð1 − pÞPE−1½1þ qZð1Þ
Nekðzi;p; qÞ þ q2Zð2Þ

Nekðzi;p; qÞ þOðq3Þ�
�

¼ PE

�
lim
p→1

ð1 − pÞ
�
qZð1Þ

Nekðzi;p; qÞ

þ q2
�
Zð2Þ
Nekðzi;p; qÞ −

1

2
Zð1Þ
Nekðzi;p; qÞ2 −

1

2
Zð1Þ
Nekðz2i ;p2; q2Þ þOðq3Þ

��
¼ 1þ qlim

p→1
ð1 − pÞZð1Þ

Nekðzi;p; qÞ

þ q2 lim
p→1

�
ð1 − pÞ

�
Zð2Þ
Nekðzi;p; qÞ −

1

2
Zð1Þ
Nekðzi;p; qÞ2 −

1

2
Zð1Þ
Nekðz2i ;p2; q2Þ

�
þ ð1 − pÞ2 Z

ð1Þ
Nekðzi;p; qÞ2

2
þ ð1 − p2ÞZ

ð1Þ
Nekðz2i ;p2; q2Þ

2

�
þOðq3Þ

≕
X∞
k¼0

qkZNS;ðkÞ
Nek ðzi; qÞ: ð2:20Þ

This proposal is obviously applicable to the case of
G ¼ Uð1Þ, where, as we will see shortly, the instanton
expansion can be explicitly resummed into a PE. For
example, for a pure U(1) theory, one has

Znonpert ¼ PE

� ffiffiffiffiffiffi
pq

p
ð1 − pÞð1 − qÞ ðqþ q−1Þ

�
: ð2:21Þ

In that context, the NS limit once again explicitly counts
states which do not have any dependence on the xþþ
direction.13 However, the definition (2.20) also makes sense

for the case of non-Abelian gauge groups, where ZðkÞ
Nek can

be expanded in q to yield terms with integer coefficients, as
expected for an index. We have explicitly checked this to
sufficiently high order for G ¼ SUð2Þ.
As raised above, we should emphasize that a version of

the NS limit for the Nekrasov partition function has already
been considered in Ref. [25], along the lines of Ref. [13].
This is a different limit from the one discussed here, insofar
as it involves replacing plethystic exponentials with expo-
nentials and plethystic logarithms with logarithms. Our
motivation for (2.12) stems from requiring finite coeffi-
cients in the fugacity expansion and mirroring the defi-
nition of the 4D limits of Ref. [3], which act directly on the
single-letter indices.

III. KONTSEVICH–SOIBELMAN OPERATORS
AND BPS QUIVERS

Having provided our definition for the NS index, one can
establish a connection with Ref. [5]. In that reference—see
also Ref. [8]—it was conjectured that the 4D Schur index of
a rank-r theory can be recovered in terms of quantities
associated with the BPS quiver of the theory [26] through

IKS ¼ ðqÞ2r∞Tr½O�; ð3:1Þ

where the Pochhammer symbol is defined as

ðqÞ0 ¼ 1; ðqÞn ¼
Yn
k¼1

ð1 − qkÞ: ð3:2Þ

Here, the quantity O is the KS operator associated with the
BPS quiver of the four-dimensional gauge theory. Such a
theory contains a set of BPS particles on the Coulomb
branch labelled by a vector γ in the charge lattice Γ. Then,
for each γ, one introduces a formal variable Xγ obeying a
quantum torus algebra,

XγXγ0 ¼ q
hγ;γ0i
2 Xγþγ0 ¼ qhγ;γ0iXγ0Xγ; ð3:3Þ

where h·; ·i is the (integer) Dirac pairing of charges in the
lattice Γ, which can be read off from the BPS quiver.
In terms of these Xγ , the KS operator can be explicitly
written as

O ¼
Y
γ

EqðXγÞ; ð3:4Þ
13One can also ascribe an IR-operator interpretation to the

Abelian instanton partition function, as the PE of single-letter
contributions from instanton operators [19,23].
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where Eq is the q-exponential function

EqðzÞ ¼
Y∞
i¼0

ð1þ qiþ1
2zÞ−1 ¼

X∞
n¼0

ð−q1
2zÞn

ðqÞn
: ð3:5Þ

For a theory without flavor, the trace of the quantum
torus algebra is defined by its action on the formal variables
Xγ ,

Tr½Xγ� ¼
�
1 γ ¼ 0

0 otherwise;
ð3:6Þ

and extending linearly. For theories with flavor, there exist
flavor charge vectors γf, which have zero Dirac pairing
with all other γ0 ∈ Γ, hγf; γ0i ¼ 0. Moreover, the definition
of the trace needs to be modified to

Tr½Xγ� ¼
(Q

i
Tr½Xγfi

�fiðγÞ hγ; γ0i ¼ 0 ∀ γ0 ∈ Γ

0 otherwise
; ð3:7Þ

where γfi is an integral basis of flavor charges and fiðγÞ is
the flavor charges of γ. The Tr½Xγfi

� are free quantities that
are to be identified with the flavor fugacities appearing in
the index. Using the above machinery, the 4D Schur index
can be read off from the BPS quiver [5].
In view of the similarities between the NS limit of the 5D

index discussed above and the Schur index for an
N ¼ 2 4D theory with the same number of vector and
hypermultiplets, it is natural to wonder whether a decom-
position in terms of 5D BPS quiver data also exists. In fact,
Iqbal and Vafa have used the topological string [15] to
argue that the 5D BPS-particle spectrum reproduces the
superconformal index.
We will next provide a simple but concrete realization of

this idea, relating the NS index to the trace of the KS
operator for a number of Abelian examples. At this point,
we should make it clear that there exist no nontrivial
Abelian fixed points in five dimensions, and one may be

alarmed that the notion of the superconformal index is ill
defined. However, the quantity Eq. (2.3), and its subsequent
NS limit, is meaningful even for nonconformal theories,
and it is this definition that we will use in the upcoming
discussion.14

We have already seen that the existence of BPS instanton
particles in 5D leads to index contributions with a new
global fugacity, related to the topological charge. It is
therefore natural to suspect that any 5D extension of the
Schur-KS correspondence must involve a BPS quiver
where at least one extra node, corresponding to the BPS
instanton particle, is added.
Unlike four dimensions, the five-dimensional central

charge is real, and the BPS states are divided into CPT-
conjugate pairs. The states with the lowest possible charges
(the “partonic” BPS states) comprise W-bosons and quarks,
instanton solitons and magnetically charged BPS strings;
see e.g. Ref. [12]. The existence of BPS strings makes the
identification of the appropriate five-dimensional non-
Abelian generalization of the BPS quiver subtle.15

However, for Abelian theories with Nf flavors, BPS-string
states are absent, and one can straightforwardly construct a
5D quiver comprising only of an instanton-particle node
and a node for each of the Nf flavors, with no arrows
extending between them.
In the following section, we will show that the Abelian

NS index can be reexpressed to match the trace of the KS
operator for the corresponding 5D BPS quiver. We will also
comment on the possible extension to non-Abelian gauge
groups.

A. Abelian theories

For Abelian theories, the nonperturbative contribution is
particularly simple. This allows for a straightforward
reinterpretation of their NS index in terms of quiver data.
The instanton partition function for the U(1) theory with F
flavors and Chern-Simons (CS) level κ can be borrowed
from Ref. [17]16:

ZðkÞ
Nekrasov ¼

ð2iÞkðF−3Þ
k!

×
Z Yk

I¼1

dϕI

2π

eiκϕIðsin ϕI
2
ÞFQI≠J sin

ϕI−ϕJ
2

Q
I;J sin

ϕI−ϕJ−2iγ1
2Q

N
i¼1 sin

ϕI−αi−iγ1
2

sin −ϕIþαi−iγ1
2

Q
I;J sin

ϕI−ϕJ−iγ1−iγ2
2

sin ϕI−ϕJ−iγ1þiγ2
2

: ð3:8Þ

16Compared to that reference, we have taken the limits of chemical potentials ml → 1 for simplicity.

15For example, the results in Ref. [15] suggest that only BPS particles are important in reproducing the index.

14Having said that, “SU(1) theories” can exist at fixed points, since they correspond to pq brane webs which can be collapsed to an
intersection of five branes at a point. For instance, a pure “SU(1)” theory can be engineered in the NS-D5 intersection and corresponds to
a pure U(1) gauge theory where the perturbative vector multiplet is removed. The leftover instanton sector, behaving as a hypermultiplet,
then still remains. Thus, our Abelian computations can be understood in terms of these SU(1) theories, which often appear in quiver
tails (e.g. Ref. [27]).
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Recall that, as is well known, integrating out a massive
flavor produces a shift to the CS level by a factor of
Δκ ¼ signðmÞ

2
. As a consequence, odd F requires a half-

integer κ. In order to take the NS limit of the index, we shall
rewrite the above expression using the fugacities p and q,
as well as a gauge fugacity u:17

p ¼ e−ðγ1þγ2Þ; q ¼ e−ðγ1−γ2Þ; u ¼ eiα: ð3:9Þ

We will next consider specific cases by fixing the CS level
and the number of flavors.

1. Pure Uð1Þ�1 theory

Let us consider the pure U(1) theory. The bound in
Ref. [11] requires jκj ¼ 0, 1. Setting κ ¼ 1, we find from
Eq. (3.8)

Zð1Þ
Nekrasov ¼

1

u
pq

ð1 − pÞð1 − qÞ : ð3:10Þ

As discussed in Ref. [28], the instanton contributions
should be invariant under a transformation that simulta-
neously sends p → 1=q and q → 1=p; this is a trans-
formation that is part of the superconformal group, under
which the perturbative single-letter indices are invariant.
However, as it stands, Eq. (3.10) is not invariant, and this
presents a problem.
Recall that this issue typically arises whenever the

corresponding brane configuration involves parallel exter-
nal 5-brane legs. Indeed, in the case of SUðNÞN theories,
the brane web includes a pair of external parallel NS5
branes. In the process of computing the instanton contri-
butions by decoupling the U(1) factor from the UðNÞN
theory, one finds that the naive result does not exhibit the
expected p → 1=q and q → 1=p invariance. As first argued
in Ref. [28], this noninvariance can be traced back to extra
states left over from the naive truncation, which in the brane
web description correspond to D-strings stretched between
the parallel external NS5s. These can slide off to infinity
and hence should not be taken into account.
The discarded contribution from Ref. [28] turns out to be

precisely equal to the naive Uð1Þ1 instanton piece (3.10).
As a result, going over the same brane web argument, we
conclude that (3.10) corresponds to states which should not
be counted in the 5D theory. Upon removing them, we are

left with Zð1Þ
Nekrasov ¼ 0, so that the full instanton contribu-

tion in this case is simply unity. Note that, had we chosen
the other sign for the CS level, κ ¼ −1, we would have
found the same function upon taking u → u−1. This is

tantamount to exchanging instantons with anti-instantons,
and the previous discussion goes through unchanged.
All in all, this theory has a trivial instanton sector; the

index is purely perturbative and coincides with the Schur
index of a four-dimensional N ¼ 2 theory with the same
gauge and flavor symmetries. Since there are no BPS
particles in this rank-1 theory, the corresponding 5D BPS
quiver is trivial. One can therefore simply express the
answer in the general form of (3.1) by writing

IKS ¼ ðqÞ2∞: ð3:11Þ

2. Pure Uð1Þ0
In four dimensions, the Schur index of the pure U(1)

theory at zero CS level, κ ¼ 0, simply reads

I4D ¼ PE

�
−

2q
ð1 − qÞ

�
¼

Y∞
n¼1

ð1 − qnÞ2 ¼ ðqÞ2∞: ð3:12Þ

In turn, the BPS quiver in 4D is trivial, and therefore

Tr½O� ¼ 1: ð3:13Þ

This fits the pattern of Ref. [5], since from (3.1) one also
recovers that IKS ¼ ðqÞ2∞.
Let us now go to five dimensions. The exact index of the

pure U(1) theory in 5D was worked out in Ref. [29]. This is

I5DUð1Þ0 ¼ PE

�
−

pþ q
ð1 − pÞð1 − qÞ þ

ffiffiffiffiffiffi
pq

p ðqþ q−1Þ
ð1 − pÞð1 − qÞ

�
: ð3:14Þ

The first term is a free vector multiplet, while the second
looks like a hypermultiplet with the gauge fugacities
replaced by the instanton fugacities, q. We can therefore
use (2.18) to infer the corresponding NS index

I5D;NSUð1Þ0 ¼ PE

�
−

2q
ð1 − qÞ þ

ffiffiffi
q

p ðqþ q−1Þ
ð1 − qÞ

�
: ð3:15Þ

As the instanton contribution is similar to that of a hyper-
multiplet, and in view of the fact that a free hypermultiplet
contributes a flavor node to the BPS quiver [5], it is natural
to suspect that there is a 5D BPS quiver description
containing one node and yielding the correct 5D NS index.
In order to confirm this prediction, let us first pause to

consider the nonperturbative part of the index (3.15).
Concentrating on instantons alone, one can rewrite their
contribution as

PE

� ffiffiffi
q

p
q

ð1 − qÞ
�
¼

X∞
m¼0

ð ffiffiffi
q

p
qÞmQ

m
k¼1ð1 − qkÞ ¼ Eqð−qÞ; ð3:16Þ

where in the last step we used Eq. (3.5). As an aside, it is
interesting to observe that the above expression can be

17The chemical potentials γ1, γ2 appearing here are not related
to the vectors γ of the charge lattice Γ. We hope that this notation,
which is compatible with the literature, will not cause confusion.
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identified with the 5D (“K-theoretic”) vortex partition
function [30].18 In fact, the NS limit of the full 5D index
can be rewritten as

I5D;NSUð1Þ0 ¼
Y∞
n¼1

ð1−qnÞ2
Y∞
n¼0

ð1−qnþ1
2qÞ−1

Y∞
n¼0

ð1−qnþ1
2q−1Þ−1;

ð3:17Þ

which with the help of (3.5) can in turn be massaged into

I5D;NSUð1Þ0 ¼ ðqÞ2∞Eqð−q−1ÞEqð−qÞ
¼ ðqÞ2∞Tr½EqðX−γfÞEqðXγfÞ�: ð3:18Þ

The above expression is consistent with it originating from
a 5D rank-1 theory with a BPS quiver consisting of a single
flavor node. The corresponding quantum torus algebra is
commuting, and the formal variable Xγf can be chosen such
that Tr½Xγf � ¼ −q.

3. Uð1Þ−1
2
with one flavor

Our next example is a U(1) theory with one flavor at CS
level κ ¼ − 1

2
. The 5D index reads

I5DUð1Þ−1
2

¼
Z

du
u
ZpertZnonpert; ð3:19Þ

where u is the U(1) gauge fugacity and the perturbative
contribution, after massaging (2.18), is given by

Zpert ¼
Y∞
n¼1

ð1 − qnÞ2
Y∞
n¼0

ð1 − qnþ1
2uÞ−1

Y∞
n¼0

ð1 − qnþ1
2u−1Þ−1:

ð3:20Þ

In order to find the full nonperturbative contribution,
given by the plethystic exponential of the one-instanton
term, let us begin by looking at the latter. This is given by

Zð1Þ
Nek ¼

ffiffiffiffiffiffi
pq

p
ð1 − pÞð1 − qÞ ð1 − u

ffiffiffiffiffiffi
pq

p Þ: ð3:21Þ

As in the jκj ¼ 1 case, the above expression is not invariant
under a transformation which simultaneously sends p →
1=q and q → 1=p. However, following Ref. [28] and
introducing a correction factor,

Δ ¼ qu
ð1 − pÞð1 − qÞ ; ð3:22Þ

we can write a new one-instanton partition function in
terms of

Z0ð1Þ
Nek ¼ Zð1Þ

Nek þ Δ ¼
ffiffiffiffiffiffi
pq

p
ð1 − pÞð1 − qÞ : ð3:23Þ

This would suggest that the correct instanton sector
contribution for F ¼ 1 is the same as for the F ¼ 0 case,

Znonpert ¼ PE

� ffiffiffiffiffiffi
pq

p
ð1 − pÞð1 − qÞ ðqþ q−1Þ

�
: ð3:24Þ

By expanding to arbitrary order in the q fugacity, it is
straightforward to check that the NS index is equivalent to

I5D;NSUð1Þ−1
2

¼ ðqÞ2∞
X∞

k1;k2;r1;r2¼0

×
ð−1Þk1þk2þr1þr2q

k1þk2þr1þr2
2 ð−qÞr2−r1δk1;k2

ðqÞk1ðqÞk2ðqÞr1ðqÞr2
¼ ðqÞ2∞Tr½EqðX−γfÞEqðX−γÞEqðXγfÞEqðXγÞ�:

ð3:25Þ

In complete analogy with our previous discussion, the
interpretation of this result in the language of Ref. [5]
would be that the instanton provides a flavor charge γf, in
addition to the charge lattice vector for the hypermultiplet,
γ. This is consistent with having a 5D BPS quiver involving
two nodes and no adjoining arrows.

4. Maximally SUSY theory

Consider adding to the U(1) vector multiplet a hyper-
multiplet in the adjoint representation. This is the content of
the maximally supersymmetric (SUSY) theory.19 One
might naively think that the adjoint hypermultiplet decou-
ples and as a result that the instanton contribution is simply
that of the pure U(1) theory. This is, however, not the case,
as the noncommutative deformation regulating the
Nekrasov partition function couples zero modes of the
U(1) adjoint hypermultiplet to the instantons. In fact, it
turns out [31] that the instanton contribution is

Zinst ¼ PE

�X∞
k¼1

qkzsp

�
with

zsp ¼ −
pþ q

ð1 − pÞð1 − qÞ þ 2

ffiffiffiffiffiffi
pq

p
ð1 − pÞð1 − qÞ : ð3:26Þ

As stressed in Ref. [31], zsp is equal to the contribution of a
six-dimensional (6D) tensor multiplet. This constitutes a
nontrivial check for the conjectured UV self-completion of
the maximally SUSY 5D theory into the (2, 0) theory [32].
Note that the expression for zsp above is exactly that of an

18The second part of Eq. (3.16) is to be compared with
Eq. (3.16) of Ref. [30] or its generalization Eq. (2.40).

19Although this theory hasN ¼ 2 supersymmetry, we can still
study it using 5D N ¼ 1 tools.
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Abelian vector plus an adjoint hypermultiplet. The latter is
the full perturbative contribution of the 5D maximally
SUSY theory, i.e.

Zpert ¼ PE½zsp�: ð3:27Þ

Moreover, in the NS limit, one can reexpress

PE½qkfH� ¼
�Y∞

m¼0

ð1 − qkqmþ1
2Þ−1

�
2

¼ ðEqð−qkÞÞ2;

ð3:28Þ

while

PE½qkfV � ¼
Y∞
m¼0

ð1 − qkqqmÞ2 ¼ ðqkq; qÞ2; ð3:29Þ

where ða; bÞ stands for the q-Pochhammer symbol.20 The
full index is given by

IMaxSUSY
Uð1Þ ¼ ZpertZinstZ̄inst; ð3:30Þ

where the overline implies an inversion of the instanton
fugacity. This prescription—which we stress is just the
direct implementation of the results of Ref. [17] and
strongly supported by nontrivial checks, including the
emergence of the enhanced flavor symmetries in the case
of ENfþ1 theories—amounts to writing

Z̄inst ¼ PE

�X∞
k¼1

q−kzsp

�
; ð3:31Þ

and Eq. (3.30) can be nicely repackaged into21

IMaxSUSY
Uð1Þ ¼

Y∞
k¼−∞

ðqkq; qÞ2Eqð−q−kÞEqð−qkÞ: ð3:32Þ

This expression does not have a strict 5D BPS quiver
interpretation. However, its form is rather suggestive: the
collection of instantons corresponds to BPS states at
threshold associated with the Kaluza-Klein modes that
uplift the theory to 6D [31]. As such, one may expect that
these would provide an infinite tower of flavor nodes, each
parametrized by integer multiples of a fundamental
charge, qn, which is what we seem to find. However, the
q-Pochhammer symbol, expected to arise from the

vector-multiplet contribution, also depends on qn. It is
tempting to speculate that this is due to the flavor fugacity
combinations qn being remnants of a 6D Lorentz fugacity.

B. Toward non-Abelian theories

It is natural to ask whether there exists a non-Abelian
extension of the correspondence between the NS index of a
5D SCFT and the trace of the KS operator for an associated
BPS quiver, but we have thus far not been successful in
constructing any such examples. Having a closed-form
expression for the nonperturbative part of the non-Abelian
NS index—the perturbative part reduces trivially to the 4D
Schur index—would be helpful in pursuing this direction.
Although the NS limit of the Abelian K-theoretic Nekrasov
partition function coincides with the K-theoretic vortex
partition function—cf. under Eq. (3.16)—explicitly apply-
ing our prescription (2.12) to non-Abelian gauge groups
quickly produces an answer which disagrees with the
q-expansion of any K-theoretic vortex partition function.
However, there may be another way forward using

dualities. The instanton partition function—the 4D limit
of the non-Abelian 5D Nekrasov partition function22—has
a well-defined NS limit, originally discussed in
Refs. [13,25], of which our prescription (2.12) is a natural
generalization. As can be seen by expanding in the
instanton fugacity, and simultaneously for small but non-
zero ϵ1, ϵ2, Eq. (2.20) becomes

ZNS
Nek → 1þ q lim

ϵ2→0
ϵ2Z

ð1Þ
inst

þ lim
ϵ2→0

q2
�
ϵ2ðϵ2 − 1Þ

2
ðZð1Þ

instÞ2 þ ϵ2Z
ð2Þ
inst

�
þOðq3Þ

¼ exp
h
lim
ϵ2→0

ϵ2 logZinstðq; ϵ1; ϵ2Þ
i
; ð3:33Þ

precisely the expression appearing in Ref. [13]. In that
reference, the resultant partition function was identified as
the nonperturbative contribution to the twisted superpo-
tential for some associated two-dimensional theory.
Subsequently, the authors of Ref. [33] also linked the full
2D twisted superpotential—the NS limits of the full
perturbative plus nonperturbative partition functions of
the 4D theory—with the twisted superpotential for a
different, dual 2D theory. Interestingly, the latter theory
can in certain cases—e.g. the Abelian example—be inter-
preted as the world volume description for a 2D defect in
the Higgs branch of the original 4D theory. The partition

20The ða; bÞ q-Pochhammer symbol is defined as
ða; bÞ ≔ Q∞

j¼0ð1 − abjÞ.
21Note that, by taking into account Eqs. (3.26), (3.27), and

(3.31) and naively resumming the instanton expansions, it looks
like the total partition function is PE½0� ¼ 1. However, this
conclusion is incorrect, since for this to happen each series is
implicitly resummed in a different regime, while here jqj ¼ 1.

22This is known as the “homological limit” (see e.g. Ref. [30]
and references therein), and in notation where one has made
explicit the dependence of the fugacities on the Euclideanized
time radius, p ¼ e−βϵ1 , q ¼ e−βϵ2 , corresponds to taking β → 0.
In this limit, the full “K-theoretic” version of the Nekrasov
partition function we have been using thus far reduces to the 4D
instanton partition function.
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function for these defects is the well-known vortex partition
function, which has a natural K-theoretic lift up to 5D.23 It
would be interesting to closely study similar 5D → 4D →
2D → 2D → 4D → 5D chains for more complicated the-
ories. This in turn could lead to identifying closed-form
expressions for the NS limits of non-Abelian instanton
contributions and shed light on how to proceed with the
non-Abelian extension of the NS-KS correspondence
presented in this section.
Another closely related task would be to investigate

whether the 5D NS index we have defined admits an
alternative (and possibly simpler) description associated
with some lower-dimensional structure, along the lines of

Ref. [4]. In this respect, the similarity of our prescription to
the large orbifold limit of Ref. [14] may hint toward such a
connection. We will leave the answers to these questions as
open problems for future research.
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7. Conclusions and outlook

In this thesis work we studied different aspects of five and lower dimensional
quantum field theories. As we reviewed in section 3 5d QFT can be at fixed
point and admit a gravity dual. This allowed us to begin the study of holo-
graphic RG flows in the context of 5d N = 1 using the corresponding gravity
dual geometry. As illustrated in the article 6.1 we did it solving the equations
of motion near the boundary and we classified the operators that are taking
a VEV in the dual QFT according to their conformal dimension and other
quantum numbers. As in the 4d case we found a correlation between the
particular kind of RG flow, that can be triggered by a mesonic or baryonic
operator and the brane configuration. However, differently from the 4d case,
the singularity arising at α = 0 in the metric is necessary in order to fix
the correct boundary conditions and determine the conformal dimensions of
the operators. Moreover in the case of a RG flow triggered by a baryonic
operator we were able to identify the modules of the VEV of the condensate
and to identify the corresponding Goldstone boson. However for simplicity
we considered only a Z2 orbifold of the initial 5d theory.

Moreover 5d supersymmetric QFTs on a curved background play an im-
portant role in the computation of the partition function and other observ-
ables of the theory. Therefore in the article 6.3 we studied the conditions
that must be satisfied to define the above theories on a Riemann manifold.
We performed such analysis following the method illustrated in section 4.3.
This means that we coupled the 5d conformal supergravity with 5d conformal
matter (vector multiplets and hypermultiplets) and then we took the rigid
limit of this configuration. We discovered that the necessary and sufficient
condition is the existence of a conformal Killing vector. Moreover we found
that most of the backgrounds admit a more interesting geometric structure
called transversally holomorphic foliation.

Then we focused on a particular kind of background, namely S1 × S4,
that is relevant for the computation of the 5d superconformal index and we
consider a particular limit of such quantity the so called Nekrasov-Shatashvili
limit in the article 6.4. We found that in general the above limit is ill-defined.
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Therefore we introduced a consistent prescription which ensures that all the
coefficients of the index, once the limit has been taken, are integers. Moreover
we showed that such limit reproduces, at least in the case of abelian gauge
theories, the Schur limit of 4d N = 2 SCI. In terms of the BPS quiver data
the instantons play the role of a further global symmetry node in the quiver
diagram.

Moreover, as we reviewed in section 4.1, the SCI receives non perturbative
contributions due to instanton corrections. For this reason the characteriza-
tion of the moduli space of instantons is of great importance. In the article
reported in section 6.2 we extended such analysis in the context of self-dual
instantons on CP 2. We used the corresponding ADHM-like construction that
is described by a 3d N=2 gauge theory. In particular we began the study,
from a physical point of view, of the further directions that characterize the
resolved moduli space of instantons. Furthermore we clarified the relation
between the Hilbert Series of the moduli space of instantons on CP 2/Zn and
the Hilbert Series of the moduli space of instantons on C2/Zn for unitary,
orthogonal and symplectic gauge groups.

In the future it would be interesting to extend the analysis performed
for a 5d QFT on a curved background also in the context of 6d theories
coupled with the corresponding conformal supergravity and clarify if it holds
a similar condition. Moreover also the characterization of the moduli space of
instantons on different kind of curved manifolds could be very useful due to
the important role played by such spaces in the application of the localization
technique.



8. Conclusiones y pronósticos

En este tesis hemos estudiado diferentes aspectos de teoŕıas cuánticas de cam-
pos en cinco y menos dimensiones. Como hemos revisado en la sección 3 una
teoŕıa cuántica de campos en 5d se puede encontrar en punto fijo y admite
un dual gravitatorio. Esto nos has permitido empezar el estudio del “RG
flows” para teoŕıas de campos en 5d con N = 1 usando la correspondiente
geometŕıa del dual gravitatorio. Como hemos ilustrado en el art́ıculo 6.1 lo
hemos hecho encontrado una solución de las ecuaciones del movimiento cerca
de la frontera y hemos clasificado los operadores que toman un valor esper-
ado en la teoŕıa de campos dual determinado la correspondiente dimensión
conforme y otros números cuánticos. En analoǵıa con el caso en 4d hemos
encontrado una correlación entre la tipoloǵıa de flujo del GR, que puede ser
empezado por un operador mesonico o bariónico y la configuración particular
en términos de branas que describe la teoŕıa. Sin embargo, a diferencia del
caso en 4d, la singularidad de la métrica en α = 0 es necesaria para fijar las
condiciones correctas a la frontera y encontrar la dimensión conforme de los
operadores. Además en el caso de un flujo del GR empezado por un operador
bariónico hemos identificado el modulo del valor esperado del condensado y
el correspondiente bosón de Goldstone. Sin embargo, por simplicidad hemos
considerado solo un orbifold Z2 de la teoŕıa inicial en 5d.

Por otra parte para poder calcular observables como la función de par-
tición es importante construir la teoŕıa de campos en una variedad curva
arbitraria. Por lo tanto en el art́ıculo 6.3 hemos estudiado las condiciones
que tienen que estar satisfechas para definir dichas teoŕıas sobre una var-
iedad de Riemann. Hemos desarrollado dicha análisis siguiendo el proced-
imiento introducido en la sección 4.3. Esto ha sido implementado acoplando
la supergravedad conforme en 5d con materia conforme en 5d (multipletes
vectoriales y hypermultipletes) y luego hemos tomado el rigid limit de dicha
configuración. Hemos descubierto que la condición necesaria y suficiente, que
tiene que ser satisfecha para preservar supersimetŕıa, es la existencia de un
vector de Killing conforme. Además hemos descubierto que la mayoŕıa de
los backgrounds admite una estructura geométrica mas interesante llamada
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transversally holomorphic foliation.
Luego nos hemos concentrados en un tipo particular de background, dado

por S1 × S4, que es relevante para el calculo del ı́ndice superconforme en 5d.
Hemos estudiado y hemos considerado un ĺımite particular de dicha cantidad
llamado ĺımite de Nekrasov-Shatashvili. en el art́ıculo 6.4. Henos descubierto
que dicho limite en general está mal definido. Por lo tanto hemos introducido
una prescripción consistente que asegura que todos los coeficientes del ı́ndice,
una vez que ha sido tomado el ĺımite, son números enteros. Por otra parte,
hemos mostrado que dicho ĺımite reproduce, por los menos en el caso de
teoŕıas de gauge abelianas, el ĺımite de Schur del ı́ndice superconforme de
una teoŕıa en 4d con N = 2. Haciendo uso del correspondiente quiver BPS
los instantones pueden ser interpretados como un nodo extra de simetŕıa
global del diagrama.

Además, como hemos revisado en la sección 4.1, el indice superconforme
recibe correcciónes no perturbativas debidas a instantones. Por esto la carac-
terización del moduli space de los instantones es de gran importancia. En el
art́ıculo reportado en la sección 6.2 hemos analizado diferentes aspectos del
moduli space de los instantones sobre CP 2 usando la correspondiente con-
strucción ADHM descrita por una teoŕıa en 3d con N = 2. En particular
hemos empezado el estudio, usando un punto de vista f́ısico, de las direc-
ciones que caracterizan el resolved moduli space de los instantones. Por otra
parte hemos clarificado la relación entre la Serie de Hilbert del moduli space
de los instantones sobre CP 2/Zn y la Serie de Hilbert del moduli space de los
instantones sobre C2/Zn para grupos de simetŕıa local unitarios, ortogonales
y simplécticos.

En futuro podŕıa ser interesante extender el análisis desarrollado para
una teoŕıa de campos en 5d sobre una variedad curva también en el contexto
de teoŕıas de campos en 6d acopladas con la correspondiente supergravedad
y clarificar si una condición parecida tiene que estar satisfecha. Además la
caracterización del moduli space de los instantones sobre diferentes tipos de
variedades curvas puede ser muy útil debido al importancia que estos espacios
tienen cuando se aplica la técnica de calculo denominada localization.
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