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Abstract: Dynamic languages are widely used in scenarios where runtime adaptability is a strong requirement. The 
metaprogramming features provided by these languages allow the dynamic adaptation of the structure of 
classes and objects, together with the evaluation of dynamically generated code. These features are used to 
build software capable of adapting to runtime changing environments. However, this flexibility is 
counteracted with the lack of static type checking provided by statically typed languages such as Java. Static 
type checking supports the earlier detection of type errors, involving a valuable tool in software development. 
In this position paper, we describe the steps we are following to add some runtime metaprogramming services 
to Java. We intend to provide the runtime flexibility of structural intercession and dynamic code evaluation 
provided by most dynamic languages, without losing the robustness of the compile-time type checking of 
Java. The metaprogramming services are provided as a library so, unlike other existing systems, any standard 
virtual machine and language compiler could be used. 

 

1 INTRODUCTION 

Dynamic languages have turned out to be suitable for 
specific scenarios such as rapid prototyping, Web 
development, interactive programming, dynamic 
aspect-oriented programming and runtime adaptive 
software (Redondo, 2015). Most dynamic languages 
provide metaprogramming services that allow 
treating programs like data, and modify them at 
runtime (Ortin, 2002). Fields and methods can be 
added and removed dynamically from classes and 
objects (structural intercession), and new pieces of 
code can be generated and evaluated at runtime, 
without stopping the application execution (Ortin, 
2003). These services make it easier to develop 
runtime adaptable software in dynamic languages 
(Paulson, 2007). 

In order to provide that runtime adaptability, 
dynamic languages commonly implement a dynamic 
type system, postponing type checking until runtime. 
One limitation of this approach is that every type error 
is detected at runtime. On the contrary, statically 
typed languages such as Java and C# commonly 

detect many type errors at compile time, when the 
programmer is writing the code. This lack has been 
recognized as one of the limitations of dynamically 
typed languages (Meijer, 2004). The absence of 
compile-time type information also involves fewer 
opportunities for compiler optimizations, and the 
extra runtime type checking commonly implies 
performance costs (Ortin, 2014b). 

In previous works, we have inferred type 
information at compile time to provide early type 
error detection in dynamically typed code (Garcia, 
2016; Quiroga, 2016). In this work, we aim at 
providing metaprogramming services to the statically 
typed Java language. The objective is to increase the 
runtime adaptability of Java, without loosing the early 
type error detection and runtime performace of its 
static type system. 

The main contribution of this position paper is the 
description of a Java library aimed at providing 
metaprogrammning services, maintaining its static 
type system. Particularly, we intend to add structural 
intercession of classes and its existing objects at 
runtime, allowing the dynamic modification of their 
structure. We also provide the evaluation of 



 

dynamically generated Java code. This is a work in 
progress position paper. 

2 LIBRARY INTERFACE 

The metaprogramming services are provided as a 
library of the Java platform. We modify neither the 
Java Virtual Machine (JVM) nor the language 
implementation. Thus, unlike other approaches 
(Würthinger, 2013; Redondo, 2008), any standard 
JVM and Java compiler can be used. 

To describe the interface of the library, this 
section presents an example that dynamically 
modifies the structure of the class shown in Figure 1. 

At runtime, the code modifies the structure of the 
existing class shown in Figure 1. 

 

 
Figure 1: Example Java class. 

The code in Figure 2 modifies the Dog class at 
runtime using structural intercession (read and write 
reflection) (Ortin, 2005). We add a name field to 
every Dog instance at runtime, evolving the structure 
of the class. Besides this new field, we also add two 
new getName and setName methods. Moreover, the 
implementation of the existing bark and shake 
methods are modified, so that they consider the new 
name field. 

The proposed library allows performing the five 
operations individually. Additionally, it also provides 

the execution of all the operations at the same time 
with the concept of transaction. Figure 2 creates one 
transaction (line 2) with the five operations (lines 4 to 
10). Then, the transaction is executed atomically in 
line 12. If all the operations can be executed, the 
program continues; otherwise, no operation is 
performed. For example, if the body of setName has 
a type error (line 7) a 
CompilationFailedException exception error 
will be thrown and none of the five operations will be 
executed. 

If we want to invoke a newly added method (e.g., 
setName), we should provide a new mechanism, 
since that method is added later, when the application 
is running. A direct invocation to setName will not 
be compiled because that method does not exist at 
compilation time. For this purpose, our library 
provides the getInvoker method (line 14). It returns 
the standard BiConsumer interface added to Java 8 
(Oracle, 2017a). Its accept method executes 
setName, which was added at runtime. Unlike the 
Java reflection API, we generate statically typed code 
(at runtime), so we expect to obtain a significant 
performance benefit (Ortin, 2014a). 

We have just shown how the library provides 
structural intercession; we now describe how to 
obtain dynamic code evaluation (i.e., the eval 
function in Lisp, Python and JavaScript languages). 
Figure 3 shows this capability. 

Line 21 first adds another implementation of the 
bark method. This line shows how to perform a 
single intercesive operation without using a 
transaction. It also shows that methods could be 
overloaded at runtime, without breaking the rules of 
the type system. The following statements in Figure 3 
(lines 23 to 26) perform the dynamic evaluation of the 
string “dog.bark(nTimes)”. It is important to 
notice that the code is represented as a string, and 

1. public class Dog {
2. public void bark(){
3. System.out.println("Woof!!");
4. }
5. public void shake(){
6. System.out.println("Shakes");
7. }
8. }

 
Figure 2: Example adaptation of the Dog class using a transaction collecting 5 intercesive operations. 

 

1. // Create transaction
2. IntercessorTransaction transaction = new IntercessorTransaction();
3. // Add field name
4. transaction.addField(Dog.class, String.class, "name");
5. // Add get/set
6. transaction.addMethod(Dog.class, "getName", MethodType.methodType(String.class),"return name;");
7. transaction.addMethod(Dog.class, "setName", MethodType.methodType(void.class, String.class),"name = value;", "value");
8. // Modify existing methods
9. transaction.replaceImplementation(Dog.class, "bark", "System.out.println(this.name + \": Woof!!\");");
10. transaction.replaceImplementation(Dog.class, "shake", "System.out.println(this.name + \": Shakes\");");
11. // Execute transaction
12. transaction.commit();
13. // Get invoker for ‘setName’
14. BiConsumer<Dog, String> setName = Intercessor.getInvoker(Dog.class, "setName", BiConsumer.class, Dog.class, String.class);
15. // Check name field
16. String name = readLine("Name: ");
17. Dog dog = new Dog();
18. setName.accept(dog, name);
19. dog.bark();

Name: Rufus
Buddy: Woof!!



 

hence it can be built dynamically, depending on the 
runtime environment. That is to say, the code is 
evaluated dynamically (dog refers to the dynamic 
state of the dog object created in line 19, the same as 
nTimes). 

 

 
Figure 3: Dynamic evaluation of a single expression. 

We have just seen how to evaluate an expression 
dynamically. The proposed library also provides the 
evaluation of multiple statements, and even the 
creation of a whole class. Figure 4 shows an example 
of that. A new TrainedDog class is added at runtime 
(line 29). This class extends the existing Dog class, 
which was modified at runtime (Figures 2 and 3). 

Line 28 in Figure 4 asks for the code to be 
evaluated. The user dynamically writes the code with 
gray background color, which generates the new 
TrainedDog class. This class implements the train 
method that receives a function as a parameter (the 
standard Consumer Java 8 interface allows passing 
lambda expressions as arguments). Those functions 
can later be asked to the trained dog with the order 
method. 

Line 36 creates an instance of a trained dog, trains 
it with the “shake” order (line 42) and orders it to 
shake (line 43). The output in Figure 4 shows how the 
actions of the dog depend on its training. It also shows 
how a newly added class can extend another class 
defined statically, which in turn was modified 
dynamically. 

All the metaprogramming operations are 
statically typed. If the code has a type error, the 
library dynamically throws a 
CompilationFailedException describing the 
compiler error. Besides, the dynamically generated 
code does not use reflection, so we avoid its runtime 
performance cost (Conde, 2014). 

3 ELEMENTS OF THE LIBRARY 

3.1 Metaprogramming Services 

After presenting an example, we detail the 
functionalities of the proposed library. Regarding 
structural intercession, we provide: 
§ Adding, deleting and updating fields of classes 

and, thus, of all their running instances. The 
update action means changing the field type. 

§ Replacing method implementations. Without 
modifying their signature, the body of methods 
(their code) is replaced with a new one. 

§ Adding, deleting and updating methods 
(including their implementations). As with 
fields, updating means changing the method 
signature. Adding methods include 
overloading their implementation (as in Figure 
3). 

§ Additional methods to provide the access to 
new fields and methods. It is similar to the 
reflection API, but aimed at accessing the 
members added at runtime. 

These metaprogramming services are applied to 
classes. Evolving a class implies the dynamic 
adaptation of its instances. Since Java is a class-based 
language (Redondo, 2013), we do not provide the 
dynamic adaptation of a single object. That 
possibility is not included in the Java type system and, 
as mentioned, we want to take advantage of the 
benefits of its static type system.  

Regarding dynamic code evaluation, our library 
provides the following services:  
§ Dynamic evaluation of expressions. This is the 

traditional eval functionality provided by 
most dynamic languages. Only one single 
expression is evaluated, and its value is 
returned. The expression may access any 
element of the running application. 

§ Dynamic execution of Java code. We provide 
the execution of either a sequence of statements 
or the contents of a Java file. As before, the 
code may depend on the runtime environment. 

3.2 Runtime Adaptation 

To describe the elements of the library, we explain 
how the system behaves at runtime, when the 
example in Section 2 is executed. Figure 5 shows the 
runtime steps of our example. 

One of the issues when implementing the 
proposed library is that the JVM does not allow 
reloading classes dynamically (Pukall, 2008). Once a 
class is loaded into memory, its code cannot be 

20. // Overload ‘bark’ method
21. Intercessor.addMethod(Dog.class, "bark", 

MethodType.methodType(void.class, int.class), 
"for (int i = 0; i < times; i++) bark();", "times");

22. // Evaluate the call to overloaded method
23. BiConsumer<Dog, Integer> barkN = 

Evaluator.generateEvalInvoker("dog.bark(nTimes)", 
BiConsumer.class, new String[] {"dog", "nTimes" }, 
Dog.class, int.class);

24. // Invoke overloaded method
25. int nTimes = readNumber("Times: ");
26. barkN.accept(dog, nTimes);

Times: 3
Buddy: Woof!!
Buddy: Woof!!
Buddy: Woof!!



 

changed. The only exception is the capability of 
modifying method implementations, added in Java 5 
with the instrument package (HotSwap). For this 
reason, we propose a system based on creating new 
class versions at runtime. 

Every time a class is modified with our library, a 
new class version is created and loaded at runtime. 
The new class version holds all the changes made to 
the previous version. If those changes are collected in 
one transaction, only one new version is created 
regardless the number of class modifications. 

Every class should provide a link to its last 
updated version, so we add a _newVersion private 
field to all the classes (Figure 5). To perform this field 
addition transparently to the user, we implement a 
new Java ClassLoader and modify all the classes, 
using the Java Agents API added to Java 5 (Oracle, 
2017b). This process is done at load time, so there is 
no runtime performance penalty when the JVM 
reaches a steady state (Georges, 2007). 

 

 
Figure 5: Runtime steps for adapting the Dog class. 

The first prototype of our library requires the 
source code of the applications (once it is mature 
enough, we will work at the JVM binary code level). 
Figure 5 shows how the source code of every class 
version is stored. Using this source code storage, 

changes to the classes are implemented by changing 
the source code, recompiling and loading them into 
memory. 

When the user modifies the Dog class, a new 
version Dog_NewVersion_1 is generated. This new 
class holds the last version of the original Dog class. 
The _newVersion field of Dog instances will be 
updated at runtime. This field update is performed 
lazily, when the object is first accessed after class 
adaptation. In that moment, the _newVersion 
reference is updated, and the object state is transferred 
to the new class version (Dog_NewVersion_1). This 
process consumes extra execution time, but it is 
performed only once per instance. 

One issue is how we manage to replace the 
existing code accessing Dog fields with code that 
accesses the corresponding fields in the last class 
version. This is done by using the invokedynamic 
bytecode added to Java 7 (oracle, 2017c). Our 
ClassLoader replaces all the field access bytecodes 
with invokedynamic. Therefore, we can change the 
functionality of field access with Java 7 
MutableCallSites. We use the JINDY API to 
utilize invokedynamic from the Java language, 
getting rid of writing JVM assembly code (Conde, 
2014). 

Another issue is how we manage to replace 
method invocations with invocations to the new class 
version (recall that the last version holds the actual 
state of the objects, i.e. the appropriate this). We 
first modify the implementation of every method in 
Dog, using the instrument Java 5 package. The new 
code will simply invoke another method in 
Dog_NewVersion_1: bark calls _bark_invoker, 
shake calls _shake_invoker, and so on (see Figure 
6). The purpose of those invoker methods is to 
implement the lazy object state transfer and 
_newVersion update described above. After doing 
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Figure 4: Dynamic evaluation of a Java file. 

27. // Add a subclass
28. String sourceClass = readLine("Code: ");
29. Class<?> TrainedDog = Evaluator.exec(sourceClass);
30. // Obtain invokers for subclass methods
31. TriConsumer<Dog, String, Consumer> train = Intercessor.getInvoker(TrainedDog, 

"train", TriConsumer.class, TrainedDog, String.class, Consumer.class);
32. BiConsumer<Dog, String> order = Intercessor.getInvoker(TrainedDog, "order", 

BiConsumer.class, TrainedDog, String.class);
33. // New order to train
34. Consumer<Dog> shake = Evaluator.generateEvalInvoker("dog.shake()", Consumer.class, 

new String[] { "dog" }, Dog.class);
35. // Create a TrainedDog instance
36. Dog trainedDog = (Dog) 

TrainedDog.newInstance();
37. // Set dog name
38. name = readLine("Name: ");
39. setName.accept(trainedDog, name);
40. // Test new functionality
41. order.accept(trainedDog, "shake");
42. train.accept(trainedDog, "shake", shake);
43. order.accept(trainedDog, "shake");

1. package example;
2.
3. import java.util.Map; 
4. import java.util.HashMap; 
5. import java.util.function.Consumer; 
6.
7. public class TrainedDog extends Dog { 
8.
9. private Map<String, Consumer<Dog>> trainedOrders = 

new HashMap<String, Consumer<Dog>>();
10.
11. public void train(String order, 

Consumer<Dog> action){ 
12. trainedOrders.put(order, action); 
13. System.out.println(this.name + " learned "

+ order + " order");
14. }
15. public void order(String order){ 
16. Consumer<Dog> action = trainedOrders.get(order);
17. if(action != null) action.accept(this); 
18. else System.out.println(this.name + " does nothing");
19. }
20. }

Code:  
Name: Toby
Toby does nothing
Toby learned shake order
Toby: Shakes



 

this update (only once per instance), the last method 
version (e.g., bark and shake) is called in 
Dog_NewVersion_1. In this way, if a method in an 
updated class is called, it will call the corresponding 
invoker in the last class version; if necessary, object 
state is transferred; and then the last method version 
is called.  

When the programmer adapts an already adapted 
class (e.g., Figure 3) a new Dog_NewVersion_2 is 
created, compiled and loaded (Figure 5). The 
_newVersion of both the original Dog and 
Dog_NewVersion_1 will be lazily updated to the last 
class version. Similarly, all the method bodies will be 
replaced with direct invocations to the invokers in the 
last class version. The purpose is that, once instance 
states have been transferred, the runtime performance 
cost does not depend on the number of class versions. 
Figure 6 shows the runtime structure of classes after 
performing the two class modifications in Figures 2 
and 3. After updating all the instances of the first 
version, Dog_NewVersion_1 is useless –that is why 
it is now shown in Figure 6. 

3.3 Dynamic Code Evaluation 

Figures 3 and 4 show how our library provides 
dynamic code evaluation. If we just need the dynamic 
evaluation of an expression (Figure 3), the library 
creates a temporary class, with a method that 
implements that expression. We need to provide a 
mechanism to execute that dynamically generated 
code, following the Java type system. For this 
purpose, we make the dynamically generated class to 
implement one of the “functional” interfaces added in 
Java 8 (function package) (Oracle, 2017a). In this 
way, the interface provides the specific type of the 
expression to be evaluated. 

For evaluating a sequence of statements, we 
follow a similar approach: the method body is the 
code provided by the user, and void is the returned 

type. For a whole class (Figure 4), we just place the 
code in a Java source file and compile it.  

As mentioned, class adaptation is achieved by 
modifying the application source code. However, 
code manipulation is not an easy task. To distinguish 
the elements in a program, code should be represented 
with tree- or graph-based data structures such as AST 
(Abstract Syntax Trees) (Ortin, 2007). 

To manipulate classes (add, remove or update 
fields and methods) we used the JavaParser tool 
(Figure 5) (JavaParser, 2017). It allows us to take 
Java code, obtain its AST, modify it, and regenerate 
the output Java code. Then, we simply call the 
JavaCompiler class added in Java 6. 

In the dynamic evaluation of code, there is an 
important issue that should be considered. When 
programmers are writing code to be evaluated 
dynamically, they are not aware of the different class 
versions. Our library provides programmers the 
abstraction that the Dog class is being dynamically 
changed. For example, the programmer may be 
interesting in running the code 
dog.setName("Rufus"). However, if this code is 
evaluated, it will prompt a type error since Dog has no 
setName method (Dog_NewVersion_1 does).  

Therefore, we need to perform some changes in 
the code to be evaluated at runtime. Those changes 
are related to the types: if the code is accessing a new 
member added to a type, its last version must be used 
instead. We, thus, need to know the type of every 
expression to be evaluated dynamically (e.g., dog in 
our example). At the implementation level, we just 
replace setName with setName_invoker, since the 
latter method always class the last version. 

To perform these changes to dynamically 
evaluated Java code, we use the Polyglot front end 
compiler for building Java language extensions 
(Polyglot, 2017). Following the Visitor design pattern 
(Gamma, 1994), we traverse the AST and replace the 
method invocations which types have evolved. 

 
Figure 6: Runtime structure of the existing class versions. 
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Finally, we generate the modified code, compile it 
and load it into memory. 

4 RELATED WORK 

There are different works aimed at adding some 
metaprogramming features to Java. Most of them are 
based on modifying the implementation of the JVM. 

Würthinger et al. modify the JVM to allow the 
dynamic addition and deletion of class members 
(Würthinger, 2010). They also support changing the 
class hierarchy at runtime. They ensure the type rules 
of the Java type system, and they also verify the 
correct state of the program execution. After the 
adaptation, runtime performance is penalized by 
15%, but this value converges to 3% when the JVM 
reaches a steady state (Würthinger, 2013). This is 
currently the reference implementation of the Hot 
Swap functionality included in JSR 292, which was 
not finally included in the standard platform (Oracle, 
2011). 

JVOLVE is another implementation of the JVM to 
support evolving Java applications to fix bugs and 
add features (Subramanian, 2009). JVOLVE allows 
adding, deleting and replacing fields and methods 
anywhere within the class hierarchy. They modify the 
class loader, JIT compiler and garbage collector of the 
JVM to provide those services. To adapt the running 
applications, JVOLVE stops program execution in a 
safe point and then performs the update. Class 
adaptation is controlled by transformer functions that 
can be customized by the user. 

Iguana/J extends the JVM to provide behavioral 
reflection at runtime (Redmond, 2002). The 
programmer may intercept some Java operations such 
as object creation, method invocation and field 
access. The new behavior is specified by the user, and 
a Meta-Object Protocol (MOP) adapts the application 
execution at runtime. When a MOP is associated to 
an object, it handles the operations against that object 
and provides the services to adapt its execution. Each 
modifiable operation is represented with one MOP 
class that the programmer has to extend to define the 
expected runtime adaptations. The MOP classes and 
objects are compiled following the Java type system. 

Java Distributed Runtime Update Management 
System (JDRUMS) is a client-server system that 
allows changing a runtime program and adding more 
functionality to it (Andersson, 2000a). Servers 
provide the update services to the clients, which run 
in the JDRUMS virtual machine. That virtual machine 
is a JVM extension that provides distributed dynamic 
updates (Andersson, 2000b). Those updates modify 

the existing classes distributed as a deployment kit. 
For each updated class, a new version is created. 
Every time an instance of an old version is used, a 
new instance of the new version is created, its state is 
transferred to the new object, and the reference is 
updated. Object migration is controlled by a class that 
is included in the deployment kit. 

In (Malabarba, 2000), class structures are 
dynamically modified, by changing the 
implementation of the JVM and creating a new 
ClassLoader. That new class loader provides the 
dynamic loading of modified classes, replacing the 
existing ones (a functionality that is not included in 
the standard JVM). The instances of the adapted 
classes can evolve in three different ways: no instance 
is modified, some of them are (depending on user-
defined criteria), and all of them are adapted. 

The following works provide some runtime 
adaptability with frameworks, without modifying the 
JVM. Pukall et al. propose unanticipated runtime 
adaptation, adapting running programs depending on 
unpredictable requirements (Pukall, 2008). They 
propose a system based on class wrappers and two 
roles: caller (service clients) and callee (service 
providers). A callee and class wrapper that provides 
runtime adaptation. They provide services to access 
the original class. The implementation of those 
services are changed using the instrument Java 5 
package. The callers are aimed at replacing 
invocations to an object with invocations to the 
appropriate callee wrapper. 

DUSC (Dynamic Updating through Swapping of 
Classes) is a technique is based on the use of proxy 
classes, requiring no modification of the runtime 
system (Orso, 2002). As in the previous paragraph, 
the main Java technology used is HotSwap to change 
method implementation at runtime. DUSC performs 
the static modification of classes to allow its later 
adaptation (making them swapping-enabled). They 
allow adding and deleting classes, but modified ones 
must maintain their interface (private methods and 
fields can be modified). Another noteworthy 
limitation is that non-public fields cannot be accessed 
from outside the class. 

Rubah is another framework for the dynamic 
adaptation of Java applications (Pina, 2013). When a 
new dynamic update is available, they load the new 
versions of added or changed classes at runtime, and 
perform a full garbage collection (GC) of the program 
to modify the running instances. The JVM is not 
modified. Instead, they implement an application-
level GC traversal using reflection and some class-
level rewriting. To update an application with Rubah, 
the programmer has to specify the update points, 



 

write the control flow migration, and detail the 
program state migration. 

JRebel is a tool to skip the time-consuming build 
and redeploy steps in the Java development process, 
allowing programmers to see the result of code 
changes instantly, without stopping application 
execution (JRebel, 2017). Modified classes are 
recompiled and reloaded in the running application. 
JRebel allows changes in the structure of classes. 
Classes are instrumented with a native Java agent 
using the JVM Tool Interface, and a particular class 
loader. Each class is changed to a master class and 
different support anonymous classes that are 
dynamically JIT compiled (Kabanov, 2017). JRebel 
does not check that the whole application has no type 
errors. Thus, application execution crashes when 
changes in a class imply errors in a program (e.g., a 
method is removed and it is later invoked). 

MetaML is a statically typed programming 
language that supports program manipulation (Taha, 
2000). It allows the programmer to construct, 
combine and execute code fragments in a type safe 
manner. In this way, dynamically evaluated programs 
do not produce type errors. MetaML does not support 
the manipulation of dynamically evaluated code; i.e., 
evaluation of code represented as a string, unknown 
at compile time. Therefore, its metaprogramming 
features cannot be used to adapt applications to new 
requirements emerged after their execution. 

5 CONCLUSIONS 

The proposed library shows how, with the existing 
standard Java elements, it is possible to include 
structural intercession and dynamic code evaluation 
services in the standard Java platform and language, 
modifying neither of them. Although the runtime 
adaptation mechanism proposed has an execution 
performance penalty, the system has been designed to 
reduce it when the JVM reaches a steady state after 
application adaptation. These metaprogramming 
services bring Java closer to the runtime adaptability 
of dynamic languages, without losing the benefits of 
its static type system. 

We have a running proof-of-concept prototype, 
which successfully executed all the examples shown 
in this article. Currently, it requires the use of Java 
source code, and its runtime performance has not 
been heavily optimized. 

We plan to added services for allowing the 
runtime adaptability of class hierarchies. Then, apply 
heavy optimizations to make its steady state 
execution time close to Java. The last step of the 

project is to allow the dynamic adaptation of running 
applications that have been modified and recompiled. 
The objective of this last step is not only to adapt 
single classes but also whole applications. 
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