
Towards the Integration of Metaprogramming Services into Java

Ignacio Lagartos, Jose Manuel Redondo and Francisco Ortin
1Computer Science Department, University of Oviedo, c/Calvo Sotelo s/n, 33007, Oviedo, Spain

{uo196684,redondojose,ortin}@uniovi.es

Keywords: Java, Metaprogramming, Structural Intercession, Dynamic Code Evaluation, Static Typing, Early Type Error
Detection.

Abstract: Dynamic languages are widely used in scenarios where runtime adaptability is a strong requirement. The
metaprogramming features provided by these languages allow the dynamic adaptation of the structure of
classes and objects, together with the evaluation of dynamically generated code. These features are used to
build software capable of adapting to runtime changing environments. However, this flexibility is
counteracted with the lack of static type checking provided by statically typed languages such as Java. Static
type checking supports the earlier detection of type errors, involving a valuable tool in software development.
In this position paper, we describe the steps we are following to add some runtime metaprogramming services
to Java. We intend to provide the runtime flexibility of structural intercession and dynamic code evaluation
provided by most dynamic languages, without losing the robustness of the compile-time type checking of
Java. The metaprogramming services are provided as a library so, unlike other existing systems, any standard
virtual machine and language compiler could be used.

1 INTRODUCTION

Dynamic languages have turned out to be suitable for
specific scenarios such as rapid prototyping, Web
development, interactive programming, dynamic
aspect-oriented programming and runtime adaptive
software (Redondo, 2015). Most dynamic languages
provide metaprogramming services that allow
treating programs like data, and modify them at
runtime (Ortin, 2002). Fields and methods can be
added and removed dynamically from classes and
objects (structural intercession), and new pieces of
code can be generated and evaluated at runtime,
without stopping the application execution (Ortin,
2003). These services make it easier to develop
runtime adaptable software in dynamic languages
(Paulson, 2007).

In order to provide that runtime adaptability,
dynamic languages commonly implement a dynamic
type system, postponing type checking until runtime.
One limitation of this approach is that every type error
is detected at runtime. On the contrary, statically
typed languages such as Java and C# commonly

detect many type errors at compile time, when the
programmer is writing the code. This lack has been
recognized as one of the limitations of dynamically
typed languages (Meijer, 2004). The absence of
compile-time type information also involves fewer
opportunities for compiler optimizations, and the
extra runtime type checking commonly implies
performance costs (Ortin, 2014b).

In previous works, we have inferred type
information at compile time to provide early type
error detection in dynamically typed code (Garcia,
2016; Quiroga, 2016). In this work, we aim at
providing metaprogramming services to the statically
typed Java language. The objective is to increase the
runtime adaptability of Java, without loosing the early
type error detection and runtime performace of its
static type system.

The main contribution of this position paper is the
description of a Java library aimed at providing
metaprogrammning services, maintaining its static
type system. Particularly, we intend to add structural
intercession of classes and its existing objects at
runtime, allowing the dynamic modification of their
structure. We also provide the evaluation of

dynamically generated Java code. This is a work in
progress position paper.

2 LIBRARY INTERFACE

The metaprogramming services are provided as a
library of the Java platform. We modify neither the
Java Virtual Machine (JVM) nor the language
implementation. Thus, unlike other approaches
(Würthinger, 2013; Redondo, 2008), any standard
JVM and Java compiler can be used.

To describe the interface of the library, this
section presents an example that dynamically
modifies the structure of the class shown in Figure 1.

At runtime, the code modifies the structure of the
existing class shown in Figure 1.

Figure 1: Example Java class.

The code in Figure 2 modifies the Dog class at
runtime using structural intercession (read and write
reflection) (Ortin, 2005). We add a name field to
every Dog instance at runtime, evolving the structure
of the class. Besides this new field, we also add two
new getName and setName methods. Moreover, the
implementation of the existing bark and shake
methods are modified, so that they consider the new
name field.

The proposed library allows performing the five
operations individually. Additionally, it also provides

the execution of all the operations at the same time
with the concept of transaction. Figure 2 creates one
transaction (line 2) with the five operations (lines 4 to
10). Then, the transaction is executed atomically in
line 12. If all the operations can be executed, the
program continues; otherwise, no operation is
performed. For example, if the body of setName has
a type error (line 7) a
CompilationFailedException exception error
will be thrown and none of the five operations will be
executed.

If we want to invoke a newly added method (e.g.,
setName), we should provide a new mechanism,
since that method is added later, when the application
is running. A direct invocation to setName will not
be compiled because that method does not exist at
compilation time. For this purpose, our library
provides the getInvoker method (line 14). It returns
the standard BiConsumer interface added to Java 8
(Oracle, 2017a). Its accept method executes
setName, which was added at runtime. Unlike the
Java reflection API, we generate statically typed code
(at runtime), so we expect to obtain a significant
performance benefit (Ortin, 2014a).

We have just shown how the library provides
structural intercession; we now describe how to
obtain dynamic code evaluation (i.e., the eval
function in Lisp, Python and JavaScript languages).
Figure 3 shows this capability.

Line 21 first adds another implementation of the
bark method. This line shows how to perform a
single intercesive operation without using a
transaction. It also shows that methods could be
overloaded at runtime, without breaking the rules of
the type system. The following statements in Figure 3
(lines 23 to 26) perform the dynamic evaluation of the
string “dog.bark(nTimes)”. It is important to
notice that the code is represented as a string, and

1. public class Dog {
2. public void bark(){
3. System.out.println("Woof!!");
4. }
5. public void shake(){
6. System.out.println("Shakes");
7. }
8. }

Figure 2: Example adaptation of the Dog class using a transaction collecting 5 intercesive operations.

1. // Create transaction
2. IntercessorTransaction transaction = new IntercessorTransaction();
3. // Add field name
4. transaction.addField(Dog.class, String.class, "name");
5. // Add get/set
6. transaction.addMethod(Dog.class, "getName", MethodType.methodType(String.class),"return name;");
7. transaction.addMethod(Dog.class, "setName", MethodType.methodType(void.class, String.class),"name = value;", "value");
8. // Modify existing methods
9. transaction.replaceImplementation(Dog.class, "bark", "System.out.println(this.name + \": Woof!!\");");
10. transaction.replaceImplementation(Dog.class, "shake", "System.out.println(this.name + \": Shakes\");");
11. // Execute transaction
12. transaction.commit();
13. // Get invoker for ‘setName’
14. BiConsumer<Dog, String> setName = Intercessor.getInvoker(Dog.class, "setName", BiConsumer.class, Dog.class, String.class);
15. // Check name field
16. String name = readLine("Name: ");
17. Dog dog = new Dog();
18. setName.accept(dog, name);
19. dog.bark();

Name: Rufus
Buddy: Woof!!

hence it can be built dynamically, depending on the
runtime environment. That is to say, the code is
evaluated dynamically (dog refers to the dynamic
state of the dog object created in line 19, the same as
nTimes).

Figure 3: Dynamic evaluation of a single expression.

We have just seen how to evaluate an expression
dynamically. The proposed library also provides the
evaluation of multiple statements, and even the
creation of a whole class. Figure 4 shows an example
of that. A new TrainedDog class is added at runtime
(line 29). This class extends the existing Dog class,
which was modified at runtime (Figures 2 and 3).

Line 28 in Figure 4 asks for the code to be
evaluated. The user dynamically writes the code with
gray background color, which generates the new
TrainedDog class. This class implements the train
method that receives a function as a parameter (the
standard Consumer Java 8 interface allows passing
lambda expressions as arguments). Those functions
can later be asked to the trained dog with the order
method.

Line 36 creates an instance of a trained dog, trains
it with the “shake” order (line 42) and orders it to
shake (line 43). The output in Figure 4 shows how the
actions of the dog depend on its training. It also shows
how a newly added class can extend another class
defined statically, which in turn was modified
dynamically.

All the metaprogramming operations are
statically typed. If the code has a type error, the
library dynamically throws a
CompilationFailedException describing the
compiler error. Besides, the dynamically generated
code does not use reflection, so we avoid its runtime
performance cost (Conde, 2014).

3 ELEMENTS OF THE LIBRARY

3.1 Metaprogramming Services

After presenting an example, we detail the
functionalities of the proposed library. Regarding
structural intercession, we provide:
§ Adding, deleting and updating fields of classes

and, thus, of all their running instances. The
update action means changing the field type.

§ Replacing method implementations. Without
modifying their signature, the body of methods
(their code) is replaced with a new one.

§ Adding, deleting and updating methods
(including their implementations). As with
fields, updating means changing the method
signature. Adding methods include
overloading their implementation (as in Figure
3).

§ Additional methods to provide the access to
new fields and methods. It is similar to the
reflection API, but aimed at accessing the
members added at runtime.

These metaprogramming services are applied to
classes. Evolving a class implies the dynamic
adaptation of its instances. Since Java is a class-based
language (Redondo, 2013), we do not provide the
dynamic adaptation of a single object. That
possibility is not included in the Java type system and,
as mentioned, we want to take advantage of the
benefits of its static type system.

Regarding dynamic code evaluation, our library
provides the following services:
§ Dynamic evaluation of expressions. This is the

traditional eval functionality provided by
most dynamic languages. Only one single
expression is evaluated, and its value is
returned. The expression may access any
element of the running application.

§ Dynamic execution of Java code. We provide
the execution of either a sequence of statements
or the contents of a Java file. As before, the
code may depend on the runtime environment.

3.2 Runtime Adaptation

To describe the elements of the library, we explain
how the system behaves at runtime, when the
example in Section 2 is executed. Figure 5 shows the
runtime steps of our example.

One of the issues when implementing the
proposed library is that the JVM does not allow
reloading classes dynamically (Pukall, 2008). Once a
class is loaded into memory, its code cannot be

20. // Overload ‘bark’ method
21. Intercessor.addMethod(Dog.class, "bark",

MethodType.methodType(void.class, int.class),
"for (int i = 0; i < times; i++) bark();", "times");

22. // Evaluate the call to overloaded method
23. BiConsumer<Dog, Integer> barkN =

Evaluator.generateEvalInvoker("dog.bark(nTimes)",
BiConsumer.class, new String[] {"dog", "nTimes" },
Dog.class, int.class);

24. // Invoke overloaded method
25. int nTimes = readNumber("Times: ");
26. barkN.accept(dog, nTimes);

Times: 3
Buddy: Woof!!
Buddy: Woof!!
Buddy: Woof!!

changed. The only exception is the capability of
modifying method implementations, added in Java 5
with the instrument package (HotSwap). For this
reason, we propose a system based on creating new
class versions at runtime.

Every time a class is modified with our library, a
new class version is created and loaded at runtime.
The new class version holds all the changes made to
the previous version. If those changes are collected in
one transaction, only one new version is created
regardless the number of class modifications.

Every class should provide a link to its last
updated version, so we add a _newVersion private
field to all the classes (Figure 5). To perform this field
addition transparently to the user, we implement a
new Java ClassLoader and modify all the classes,
using the Java Agents API added to Java 5 (Oracle,
2017b). This process is done at load time, so there is
no runtime performance penalty when the JVM
reaches a steady state (Georges, 2007).

Figure 5: Runtime steps for adapting the Dog class.

The first prototype of our library requires the
source code of the applications (once it is mature
enough, we will work at the JVM binary code level).
Figure 5 shows how the source code of every class
version is stored. Using this source code storage,

changes to the classes are implemented by changing
the source code, recompiling and loading them into
memory.

When the user modifies the Dog class, a new
version Dog_NewVersion_1 is generated. This new
class holds the last version of the original Dog class.
The _newVersion field of Dog instances will be
updated at runtime. This field update is performed
lazily, when the object is first accessed after class
adaptation. In that moment, the _newVersion
reference is updated, and the object state is transferred
to the new class version (Dog_NewVersion_1). This
process consumes extra execution time, but it is
performed only once per instance.

One issue is how we manage to replace the
existing code accessing Dog fields with code that
accesses the corresponding fields in the last class
version. This is done by using the invokedynamic
bytecode added to Java 7 (oracle, 2017c). Our
ClassLoader replaces all the field access bytecodes
with invokedynamic. Therefore, we can change the
functionality of field access with Java 7
MutableCallSites. We use the JINDY API to
utilize invokedynamic from the Java language,
getting rid of writing JVM assembly code (Conde,
2014).

Another issue is how we manage to replace
method invocations with invocations to the new class
version (recall that the last version holds the actual
state of the objects, i.e. the appropriate this). We
first modify the implementation of every method in
Dog, using the instrument Java 5 package. The new
code will simply invoke another method in
Dog_NewVersion_1: bark calls _bark_invoker,
shake calls _shake_invoker, and so on (see Figure
6). The purpose of those invoker methods is to
implement the lazy object state transfer and
_newVersion update described above. After doing

Load Time

Ex
ec

ut
io

n
Ti

m
e

Java Agent
Class load Instrumentation

Dog
+ bark
+ shake

Dog
+ _newVersion

…

AddField(name)
AddMethod(getName)
AddMethod(setName)
…

Dog.java

Source Code Store Library JavaParser + Polyglot Java Compiler

Dog_NewVersion_1.class

AddMethod(bark)Dog_NewVersion_1.java Dog_NewVersion_2.class

Exec(TrainedDog)Dog_NewVersion_2.java TrainedDog.class

Dog_NewVersion_2.java

TrainedDog.java

Dog_NewVersion_1.java

Dog_NewVersion_2.java

TrainedDog.java

Figure 4: Dynamic evaluation of a Java file.

27. // Add a subclass
28. String sourceClass = readLine("Code: ");
29. Class<?> TrainedDog = Evaluator.exec(sourceClass);
30. // Obtain invokers for subclass methods
31. TriConsumer<Dog, String, Consumer> train = Intercessor.getInvoker(TrainedDog,

"train", TriConsumer.class, TrainedDog, String.class, Consumer.class);
32. BiConsumer<Dog, String> order = Intercessor.getInvoker(TrainedDog, "order",

BiConsumer.class, TrainedDog, String.class);
33. // New order to train
34. Consumer<Dog> shake = Evaluator.generateEvalInvoker("dog.shake()", Consumer.class,

new String[] { "dog" }, Dog.class);
35. // Create a TrainedDog instance
36. Dog trainedDog = (Dog)

TrainedDog.newInstance();
37. // Set dog name
38. name = readLine("Name: ");
39. setName.accept(trainedDog, name);
40. // Test new functionality
41. order.accept(trainedDog, "shake");
42. train.accept(trainedDog, "shake", shake);
43. order.accept(trainedDog, "shake");

1. package example;
2.
3. import java.util.Map;
4. import java.util.HashMap;
5. import java.util.function.Consumer;
6.
7. public class TrainedDog extends Dog {
8.
9. private Map<String, Consumer<Dog>> trainedOrders =

new HashMap<String, Consumer<Dog>>();
10.
11. public void train(String order,

Consumer<Dog> action){
12. trainedOrders.put(order, action);
13. System.out.println(this.name + " learned "

+ order + " order");
14. }
15. public void order(String order){
16. Consumer<Dog> action = trainedOrders.get(order);
17. if(action != null) action.accept(this);
18. else System.out.println(this.name + " does nothing");
19. }
20. }

Code:
Name: Toby
Toby does nothing
Toby learned shake order
Toby: Shakes

this update (only once per instance), the last method
version (e.g., bark and shake) is called in
Dog_NewVersion_1. In this way, if a method in an
updated class is called, it will call the corresponding
invoker in the last class version; if necessary, object
state is transferred; and then the last method version
is called.

When the programmer adapts an already adapted
class (e.g., Figure 3) a new Dog_NewVersion_2 is
created, compiled and loaded (Figure 5). The
_newVersion of both the original Dog and
Dog_NewVersion_1 will be lazily updated to the last
class version. Similarly, all the method bodies will be
replaced with direct invocations to the invokers in the
last class version. The purpose is that, once instance
states have been transferred, the runtime performance
cost does not depend on the number of class versions.
Figure 6 shows the runtime structure of classes after
performing the two class modifications in Figures 2
and 3. After updating all the instances of the first
version, Dog_NewVersion_1 is useless –that is why
it is now shown in Figure 6.

3.3 Dynamic Code Evaluation

Figures 3 and 4 show how our library provides
dynamic code evaluation. If we just need the dynamic
evaluation of an expression (Figure 3), the library
creates a temporary class, with a method that
implements that expression. We need to provide a
mechanism to execute that dynamically generated
code, following the Java type system. For this
purpose, we make the dynamically generated class to
implement one of the “functional” interfaces added in
Java 8 (function package) (Oracle, 2017a). In this
way, the interface provides the specific type of the
expression to be evaluated.

For evaluating a sequence of statements, we
follow a similar approach: the method body is the
code provided by the user, and void is the returned

type. For a whole class (Figure 4), we just place the
code in a Java source file and compile it.

As mentioned, class adaptation is achieved by
modifying the application source code. However,
code manipulation is not an easy task. To distinguish
the elements in a program, code should be represented
with tree- or graph-based data structures such as AST
(Abstract Syntax Trees) (Ortin, 2007).

To manipulate classes (add, remove or update
fields and methods) we used the JavaParser tool
(Figure 5) (JavaParser, 2017). It allows us to take
Java code, obtain its AST, modify it, and regenerate
the output Java code. Then, we simply call the
JavaCompiler class added in Java 6.

In the dynamic evaluation of code, there is an
important issue that should be considered. When
programmers are writing code to be evaluated
dynamically, they are not aware of the different class
versions. Our library provides programmers the
abstraction that the Dog class is being dynamically
changed. For example, the programmer may be
interesting in running the code
dog.setName("Rufus"). However, if this code is
evaluated, it will prompt a type error since Dog has no
setName method (Dog_NewVersion_1 does).

Therefore, we need to perform some changes in
the code to be evaluated at runtime. Those changes
are related to the types: if the code is accessing a new
member added to a type, its last version must be used
instead. We, thus, need to know the type of every
expression to be evaluated dynamically (e.g., dog in
our example). At the implementation level, we just
replace setName with setName_invoker, since the
latter method always class the last version.

To perform these changes to dynamically
evaluated Java code, we use the Polyglot front end
compiler for building Java language extensions
(Polyglot, 2017). Following the Visitor design pattern
(Gamma, 1994), we traverse the AST and replace the
method invocations which types have evolved.

Figure 6: Runtime structure of the existing class versions.

Dog
+ _newVersion

+ bark()
+ shake()

Dog_NewVersion_1
+ _newVersion
+ name

+ _name_fieldGetter(Dog)
+ _name_fieldSetter(Dog, String)
+ bark()
+ _bark_invoker(Dog)
+ shake()
+ _shake_invoker(Dog)
+ _creator(Dog)

TrainedDog
+ trained

+ train(String, Consumer)
+ order(String)

Dog_NewVersion_2
+ _newVersion
+ name

+ _name_fieldGetter(Dog)
+ _name_fieldSetter(Dog, String)
+ bark()
+ _bark_invoker(Dog)
+ bark(int)
+ _bark_invoker(Dog, int)
+ shake()
+ _shake_invoker(Dog)
+ _creator(Dog)

Finally, we generate the modified code, compile it
and load it into memory.

4 RELATED WORK

There are different works aimed at adding some
metaprogramming features to Java. Most of them are
based on modifying the implementation of the JVM.

Würthinger et al. modify the JVM to allow the
dynamic addition and deletion of class members
(Würthinger, 2010). They also support changing the
class hierarchy at runtime. They ensure the type rules
of the Java type system, and they also verify the
correct state of the program execution. After the
adaptation, runtime performance is penalized by
15%, but this value converges to 3% when the JVM
reaches a steady state (Würthinger, 2013). This is
currently the reference implementation of the Hot
Swap functionality included in JSR 292, which was
not finally included in the standard platform (Oracle,
2011).

JVOLVE is another implementation of the JVM to
support evolving Java applications to fix bugs and
add features (Subramanian, 2009). JVOLVE allows
adding, deleting and replacing fields and methods
anywhere within the class hierarchy. They modify the
class loader, JIT compiler and garbage collector of the
JVM to provide those services. To adapt the running
applications, JVOLVE stops program execution in a
safe point and then performs the update. Class
adaptation is controlled by transformer functions that
can be customized by the user.

Iguana/J extends the JVM to provide behavioral
reflection at runtime (Redmond, 2002). The
programmer may intercept some Java operations such
as object creation, method invocation and field
access. The new behavior is specified by the user, and
a Meta-Object Protocol (MOP) adapts the application
execution at runtime. When a MOP is associated to
an object, it handles the operations against that object
and provides the services to adapt its execution. Each
modifiable operation is represented with one MOP
class that the programmer has to extend to define the
expected runtime adaptations. The MOP classes and
objects are compiled following the Java type system.

Java Distributed Runtime Update Management
System (JDRUMS) is a client-server system that
allows changing a runtime program and adding more
functionality to it (Andersson, 2000a). Servers
provide the update services to the clients, which run
in the JDRUMS virtual machine. That virtual machine
is a JVM extension that provides distributed dynamic
updates (Andersson, 2000b). Those updates modify

the existing classes distributed as a deployment kit.
For each updated class, a new version is created.
Every time an instance of an old version is used, a
new instance of the new version is created, its state is
transferred to the new object, and the reference is
updated. Object migration is controlled by a class that
is included in the deployment kit.

In (Malabarba, 2000), class structures are
dynamically modified, by changing the
implementation of the JVM and creating a new
ClassLoader. That new class loader provides the
dynamic loading of modified classes, replacing the
existing ones (a functionality that is not included in
the standard JVM). The instances of the adapted
classes can evolve in three different ways: no instance
is modified, some of them are (depending on user-
defined criteria), and all of them are adapted.

The following works provide some runtime
adaptability with frameworks, without modifying the
JVM. Pukall et al. propose unanticipated runtime
adaptation, adapting running programs depending on
unpredictable requirements (Pukall, 2008). They
propose a system based on class wrappers and two
roles: caller (service clients) and callee (service
providers). A callee and class wrapper that provides
runtime adaptation. They provide services to access
the original class. The implementation of those
services are changed using the instrument Java 5
package. The callers are aimed at replacing
invocations to an object with invocations to the
appropriate callee wrapper.

DUSC (Dynamic Updating through Swapping of
Classes) is a technique is based on the use of proxy
classes, requiring no modification of the runtime
system (Orso, 2002). As in the previous paragraph,
the main Java technology used is HotSwap to change
method implementation at runtime. DUSC performs
the static modification of classes to allow its later
adaptation (making them swapping-enabled). They
allow adding and deleting classes, but modified ones
must maintain their interface (private methods and
fields can be modified). Another noteworthy
limitation is that non-public fields cannot be accessed
from outside the class.

Rubah is another framework for the dynamic
adaptation of Java applications (Pina, 2013). When a
new dynamic update is available, they load the new
versions of added or changed classes at runtime, and
perform a full garbage collection (GC) of the program
to modify the running instances. The JVM is not
modified. Instead, they implement an application-
level GC traversal using reflection and some class-
level rewriting. To update an application with Rubah,
the programmer has to specify the update points,

write the control flow migration, and detail the
program state migration.

JRebel is a tool to skip the time-consuming build
and redeploy steps in the Java development process,
allowing programmers to see the result of code
changes instantly, without stopping application
execution (JRebel, 2017). Modified classes are
recompiled and reloaded in the running application.
JRebel allows changes in the structure of classes.
Classes are instrumented with a native Java agent
using the JVM Tool Interface, and a particular class
loader. Each class is changed to a master class and
different support anonymous classes that are
dynamically JIT compiled (Kabanov, 2017). JRebel
does not check that the whole application has no type
errors. Thus, application execution crashes when
changes in a class imply errors in a program (e.g., a
method is removed and it is later invoked).

MetaML is a statically typed programming
language that supports program manipulation (Taha,
2000). It allows the programmer to construct,
combine and execute code fragments in a type safe
manner. In this way, dynamically evaluated programs
do not produce type errors. MetaML does not support
the manipulation of dynamically evaluated code; i.e.,
evaluation of code represented as a string, unknown
at compile time. Therefore, its metaprogramming
features cannot be used to adapt applications to new
requirements emerged after their execution.

5 CONCLUSIONS

The proposed library shows how, with the existing
standard Java elements, it is possible to include
structural intercession and dynamic code evaluation
services in the standard Java platform and language,
modifying neither of them. Although the runtime
adaptation mechanism proposed has an execution
performance penalty, the system has been designed to
reduce it when the JVM reaches a steady state after
application adaptation. These metaprogramming
services bring Java closer to the runtime adaptability
of dynamic languages, without losing the benefits of
its static type system.

We have a running proof-of-concept prototype,
which successfully executed all the examples shown
in this article. Currently, it requires the use of Java
source code, and its runtime performance has not
been heavily optimized.

We plan to added services for allowing the
runtime adaptability of class hierarchies. Then, apply
heavy optimizations to make its steady state
execution time close to Java. The last step of the

project is to allow the dynamic adaptation of running
applications that have been modified and recompiled.
The objective of this last step is not only to adapt
single classes but also whole applications.

ACKNOWLEDGEMENTS

This work has been funded by the European Union,
through the European Regional Development Funds
(ERDF); and the Principality of Asturias, through its
Science, Technology and Innovation Plan (grant
GRUPIN14-100). We have also received funds from
the Banco Santander through its support to the
Campus of International Excellence.

REFERENCES

Andersson, J., Ritzau, T., 2000. Dynamic code update in
JDrums. In Proceedings of the ICSE’00 Workshop on
Software Engineering for Wearable and Pervasive
Computing.

Andersson, J., 2000. A deployment system for pervasive
computing. In International Conference on Software
Maintenance. Proceedings, pp. 262–270.

Conde, P., Ortin, F., 2014. Jindy: a Java library to support
invokedynamic. Computer Science and Information
Systems 11(1), pp. 47-68.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1994.
Design patterns: elements of reusable object-oriented
software, Addison-Wesley Professional.

Garcia, M., Ortin, F., Quiroga, J., 2016. Design and
implementation of an efficient hybrid dynamic and
static typing language. Software: Practice and
Experience 46(2), pp. 199-226.

Georges, A., Buytaert, D., Eeckhout, L., 2007. Statistically
rigorous Java performance evaluation. In Object-
Oriented Programming Systems and Applications,
OOPSLA ’07, NY, USA, pp. 57–76.

JavaParser, 2017. Process Java code programmatically.
http://javaparser.org

JRebel, 2017. Zero Turnaround JRebel, Reload code
changes instantly.
https://zeroturnaround.com/software/jrebel

Kabanov, J., 2017. Reloading Java Classes 401: HotSwap
and JRebel — Behind the Scenes. Zero Turnaround.
https://zeroturnaround.com/rebellabs/reloading_java_c
lasses_401_hotswap_jrebel

Malabarba, S., Pandey, R., Gragg, J., Barr, E., Barnes, J.F.,
2000. Runtime Support for Type-Safe Dynamic Java
Classes. In Proceedings of the 14th European
Conference on Object-Oriented Programming, London,
UK, pp. 337–361.

Meijer, E., Drayton, P., 2004. Dynamic Typing When
Needed: The End of the Cold War Between
Programming Languages. In Proceedings of the

OOPSLA Workshop on Revival of Dynamic
Languages.

Oracle, 2011. JSR 292, supporting dynamically typed
languages on the Java platform.
https://www.jcp.org/en/jsr/detail?id=292

Oracle, 2017. function package, Java Platform SE 8.
https://docs.oracle.com/javase/8/docs/api/java/util/fun
ction/package-summary.html

Oracle, 2017. instrument package, Java Platform SE 8.
https://docs.oracle.com/javase/8/docs/api/java/lang/ins
trument/package-summary.html

Oracle, 2017. Java Virtual Machine Support for Non-Java
Languages.
http://docs.oracle.com/javase/7/docs/technotes/guides/
vm/multiple-language-support.html

Orso, A., Rao, A., Harrold, M.J., 2002. A technique for
dynamic updating of Java software. In Proceedings of
the International Conference on Software Maintenance,
pp. 649–658.

Ortin, F., Cueva, J.M., 2002. Implementing a Real
Computational-Environment Jump in order to Develop
a Runtime-Adaptable Reflective Platform. ACM
SIGPLAN Notices 37(8), pp. 35-44.

Ortin, F., Cueva, J.M., 2003. Non-restrictive computational
reflection. Computer Standards & Interfaces 25(3), pp.
241-251.

Ortin, F., Diez, D., 2005. Designing an Adaptable
Heterogeneous Abstract Machine by means of
Reflection. Information and Software Technology
47(2), pp. 81-94.

Ortin, F., Zapico, D., Cueva, J.M., 2007. Design Patterns
for Teaching Type Checking in a Compiler
Construction Course. IEEE Transactions on Education
50 (3), pp. 273-283.

Ortin, F., Conde, P., Fernandez-Lanvin, D., Izquierdo, R.,
2014. The Runtime Performance of invokedynamic: an
Evaluation with a Java Library. IEEE Software 31 (4),
pp. 82-90.

Ortin, F., Labrador, M.A., Redondo, J.M., 2014. A hybrid
class- and prototype-based object model to support
language-neutral structural intercession. Information
and Software Technology 56(2), pp. 199-219.

Paulson, L.D., 2007. Developers Shift to Dynamic
Programming Languages. IEEE Computer 40(2), pp.
12–15.

Pina L., Hicks, M., 2013. Rubah: Efficient, General-
purpose Dynamic Software Updating for Java. In the
5th Workshop on Hot Topics in Software Upgrades.

Polyglot, 2017. A compiler front end framework for
building Java language extensions.
https://www.cs.cornell.edu/projects/polyglot

Pukall, M., Kästner, C., Saake, G., 2008. Towards
Unanticipated Runtime Adaptation of Java
Applications. In 15th Asia-Pacific Software
Engineering Conference, pp. 85–92.

Quiroga, J., Ortin, F., Llewellyn-Jones, D., Garcia, M.,
2016. Optimizing Runtime Performance of Hybrid
Dynamically and Statically Typed Languages for the
.Net Platform. Journal of Systems and Software 113,
pp. 114-129.

Redmond, B., Cahill, V., 2002. Supporting Unanticipated
Dynamic Adaptation of Application Behaviour. In
Proceedings of the 16th European Conference on
Object-Oriented Programming, London, UK, pp. 205–
230.

Redondo, J.M., Ortin, F., Cueva, J.M., 2008. Optimizing
Reflective Primitives of Dynamic Languages.
International Journal of Software Engineering and
Knowledge Engineering 18(6), pp. 759-783.

Redondo, J.M., Ortin, F., 2013. Efficient support of
dynamic inheritance for class- and prototype-based
languages. Journal of Systems and Software 86(2), pp.
278-301.

Redondo, J.M., Ortin, F., 2015. A Comprehensive
Evaluation of Widespread Python Implementations.
IEEE Software 32(4), pp. 76-84.

Subramanian, S. Hicks, M., McKinley, K.S., 2009.
Dynamic Software Updates: A VM-centric Approach.
In Proceedings of the 30th ACM SIGPLAN Conference
on Programming Language Design and
Implementation, NY, USA, pp. 1–12.

Taha, W., Sheard, T., 2000. MetaML and multi-stage
programming with explicit annotations. Theoretical
Computer Science 248(1-2), pp. 211-242.

Würthinger, T., Wimmer, C., Stadler, L., 2010. Dynamic
Code Evolution for Java. In Proceedings of the 8th
International Conference on the Principles and Practice
of Programming in Java, NY, USA, pp. 10–19.

Würthinger, T., Wimmer, C., Stadler, L., 2013.
Unrestricted and safe dynamic code evolution for Java.
Science in Computer Programming 78(5), pp. 481–498.

