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Abstract: The pineal neuroindole melatonin exerts an exceptional variety of systemic functions. Some
of them are exerted through its specific membrane receptors type 1 and type 2 (MT1 and MT2) while
others are mediated by receptor-independent mechanisms. A potential transport of melatonin through
facilitative glucose transporters (GLUT/SLC2A) was proposed in prostate cancer cells. The prostate
cells have a particular metabolism that changes during tumor progression. During the first steps of
carcinogenesis, oxidative phosphorylation is reactivated while the switch to the “Warburg effect” only
occurs in advanced tumors and in the metastatic stage. Here, we investigated whether melatonin
might change prostate cancer cell metabolism. To do so, 13C stable isotope-resolved metabolomics in
androgen sensitive LNCaP and insensitive PC-3 prostate cancer cells were employed. In addition to
metabolite 13C-labeling, ATP/AMP levels, and lactate dehydrogenase or pentose phosphate pathway
activity were measured. Melatonin reduces lactate labeling in androgen-sensitive cells and it also
lowers 13C-labeling of tricarboxylic acid cycle metabolites and ATP production. In addition, melatonin
reduces lactate 13C-labeling in androgen insensitive prostate cancer cells. Results demonstrated that
melatonin limits glycolysis as well as the tricarboxylic acid cycle and pentose phosphate pathway in
prostate cancer cells, suggesting that the reduction of glucose uptake is a major target of the indole in
this tumor type.
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1. Introduction

Melatonin (N-acetyl-5-methoxy-tryptamine), the main product of the pineal gland in mammals,
was found present in almost all life forms including bacteria, unicellular organisms, algae, plants,
invertebrates, and vertebrates [1–3]. In addition to being an ancient molecule, in mammals and other
vertebrates melatonin synthesis is not limited to the pineal gland but it has also been found in many
other tissues and organs including retina, Harderian gland, gut mucosa, cerebellum, airway epithelium,
liver, kidney, adrenals, thymus, thyroid, pancreas, ovary, carotid body, placenta, endometrium, mast
cells, natural killer cells, eosinophilic leukocytes, platelets, and endothelial cells [4].
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Classically, melatonin is well known as a neurohormone that regulates seasonal behavior and
sleep in vertebrates. Its circadian synthesis and release make it a chemical signal that entrains the
organism’s physiology into the light:dark period [5]. However, melatonin exerts an exceptional variety
of systemic functions including the ability to regulate the circadian entrainment, sleep promotion,
anti-inflammatory activity or immune enhancement [6,7]. At the cellular level, melatonin reduces
proliferation, decreases cell death and exerts antioxidant properties [8–10].

Some actions exerted by melatonin are mediated through its specific membrane receptors type 1
and type 2 (MT1 and MT2) including anticonvulsant properties, its protective effect against myocardial
infarction and the ability to inhibit the effects of estrogens [11–14]. However, others are mediated by
receptor-independent mechanisms [10]. In this regard, the ability of the indole to scavenge reactive
oxygen and nitrogen species (ROS/RNS) [15,16] or activate antioxidant enzymes has received special
attention [17]. At both physiological and pharmacological concentrations, melatonin attenuates
oxidative stress and regulates cellular metabolism by receptor independent mechanisms [18].

In addition to identify its target tissues, other issues have recently focused the attention about the
indole, including the mechanism(s) by which melatonin is taken up by cells [19]. In fact, it was recently
described that melatonin could cross cell membranes through glucose transporters (GLUT/SLC2A).
A reduction of glucose uptake might be responsible of melatonin’s activity to reduce the growth
and progression of prostate cancer cells [20]. Even though melatonin was found to reduce lactate
production [21], it is still unknown how the indole could affect glycolysis in cancer cells.

Melatonin influences insulin secretion from pancreatic islets via MT1 and MT2 receptors [22].
In fact, melatonin administration to diabetic rats decreases blood glucose and increases fatty acids [23–25].
Furthermore, melatonin has beneficial effects in the prevention of hyperglycemia by modulating
insulin release [26]. Some specific polymorphisms of melatonin receptors have been recently associated
with an increased risk of type 2 diabetes mellitus [27,28].

Prostate cancer is the second leading cause of death of cancer in men in western countries.
Although diagnostic tools such as prostate-specific antigen (PSA) levels have helped early detection of
new cases of prostate cancer (PCa), there is no satisfactory therapy for advanced hormone-refractory
tumors. Since PCa is primarily sensitive to androgens, initial strategies for prostate tumors
include androgen ablation but unfortunately, throughout time (3–5 years), tumors become androgen
independent. The disease clearly correlates with age and the prevalence of PCa is so high among aged
males that it could be considered a normal age-related phenomenon. Melatonin reduces cell growth of
both androgen sensitive and insensitive prostate cancer cells [29], and reduces tumor progression in a
murine model by an insulin like growth factor protein 3 (IGFBP3) mediated mechanism [30].

Changes in cell metabolism along with cancer progression, have been recently considered a new
hallmark of cancer cells [31,32]. The prostate has a particular metabolism that changes with tumor
progression. In differentiated epithelial cells, citrate is the final product of glucose metabolism and
prostate cells show very low levels of oxidative phosphorylation (OXPHOS) and an increase glycolytic
rate [33]. However, during the first steps of carcinogenesis, OXPHOS is reactivated and cancer cells
switch to the “Warburg effect” only during the metastatic or castration resistant stages.

Since melatonin reduces the growth of prostate tumors and it has been proposed that it influences
glucose uptake by prostate cancer cells [19], we hypothesize that melatonin, by altering the uptake of
glucose in prostate cancer cells, might change its metabolic switch between oxidative or glycolytic.
In order to study this, we used a novel and sensitive methodology based on 13C stable isotope-resolved
metabolomics as an experimental approach to evaluate the enrichment of metabolites in 13C in
androgen sensitive LNCaP and insensitive PC-3 prostate cancer cells after melatonin incubation.
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2. Results

2.1. Melatonin Decreases Glucose Uptake in Prostate Cancer Cells

The role of melatonin on the glucose uptake was studied in both, androgen dependent LNCaP
and independent PC-3 prostate cancer cells. First, a dose–response study was performed. Melatonin
reduced significantly the levels of glucose uptake at all concentrations tested in LNCaP cells (Figure 1A).
In addition, under normal (2 g/L) or high glucose (4 g/L) (HG) concentrations in the culture media,
melatonin significantly reduced the uptake of glucose. As expected, HG favored a higher glucose
uptake in LNCaP cells, suggesting a positive regulation and melatonin reduced it (Figure 1B). On the
other hand, melatonin reduced the uptake of glucose at the highest concentration tested (Figure 1C).
Curiously, a higher glucose concentration in culture media did not increase the glucose uptake in PC-3
cells (Figure 1D), contrary to what was observed in LNCaP, but melatonin significantly reduced the
uptake when HG media was employed.
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Figure 1. Melatonin reduces glucose uptake in prostate cancer cells. Labeled 2-deoxy-D-[1-3H]glucose
uptake was performed in LNCaP cells (A); and PC-3 cells (C) after 10 min of incubation in the presence
of increasing concentrations of melatonin. 2-deoxy-D-glucose (2-DG) uptake was performed in: LNCaP
(B); and PC-3 cells (D) grown in media supplemented with 2 g/L glucose (CON) or 4 g/L glucose
(HG) with or without 1 mM melatonin (MEL) for 24 h. Arbitrary 1.0 was given to CON groups.
A representative of three independent experiments is shown. Results are represented as mean ± SEM
(n = 3). * p < 0.05 vs. CON, ** p < 0.01 vs. CON, *** p < 0.001 vs. CON, # p < 0.05 vs. HG, ## p < 0.01 vs. HG.

2.2. Melatonin Reduces ATP/AMP Ratio in Prostate Cancer Cells

In order to evaluate whether the reduction of glucose uptake altered oxidative phosphorylation
(OXPHOS) or glycolysis in prostate cancer cells, ATP levels were evaluated after melatonin incubation.
For this purpose, ATP and AMP levels were quantified by HPLC after culturing cells with or without
melatonin in normal or HG media. First, it was observed that, as expected, prostate cancer cells
cultured in high glucose media (HG) produced higher levels of ATP (Figure 2), being this increase
more significant in LNCaP than in androgen insensitive PC-3 cells. Melatonin significantly decreased
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ATP/AMP ratio by 10% when cells were cultured in normal glucose concentration but it was higher
(roughly 20%) when cells were cultured in HG media in both cell types.
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Figure 2. Melatonin decreases ATP/AMP balance in prostate cancer cells. ATP and AMP were
measured by HPLC in: LNCaP (A); and PC-3 cells (B) grown in media supplemented with 2 g/L
glucose (CON) or 4 g/L glucose (HG) with or without 1 mM melatonin (MEL) for 24 h. A representative
experiment of three is shown. Results are represented as mean ± SEM (n = 3). * p < 0.05 vs. CON,
** p < 0.01 vs. CON, *** p < 0.001 vs. CON, ### p < 0.001 vs. HG.

These results correlated with a lower glucose uptake in both cell lines and prompted us to study
whether these changes could also be related to a reduction of tricarboxylic acid cycle (TCA) in both
androgen sensitive and insensitive prostate cancer cells.

2.3. Increase Glucose Concentration Rise CO2 Released in Androgen Sensitive Prostate Cancer Cells

Several steps of glucose utilization are associated with the production of CO2. Then, it is expected
that, if glucose uptake and ATP generation are reduced by melatonin in prostate cancer cells, CO2

released could also be affected. Thus, by using U-13C-D-glucose as the source of glucose and after
measuring the 13CO2/12CO2 ratio produced by 13C isotopic enrichment with a GC-IRMS instrument,
labeled CO2 that was produced and released in the presence or absence of melatonin was measured.
As shown in Figure 3, there is an increase in 13CO2/12CO2 release when cells were cultured in HG
medium, concomitant with the higher glucose uptake previously observed. Melatonin only limited the
increase in 13CO2/12CO2 ratio when LNCaP cells were incubated in HG media. The decrease in CO2

production was lower than expected from differences found in glucose uptake or in ATP production.

2.4. Melatonin Decreases the Tricarboxylic Acid Cycle (TCA) in Androgen Dependent Prostate Cancer Cells
and 13C-Lactate Labeling in Both Cell Types

Previous results pointed out that melatonin was able to decrease glucose metabolism in prostate
cancer cells. Melatonin is well-known as an antioxidant and its role in mitochondria is reported
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elsewhere [34]. These encouraged us to study, by using a 13C-metabolomic approach, the molar
fractions of 11 mitochondrial metabolites derived from glucose in LNCaP and PC-3 grown in the
presence of 13C-labeled glucose. Metabolites heat map is represented in Figure 4. LNCaP cells showed
a significant change of metabolic signature when grown in normal or HG culture media. Moreover,
remarkable differences were noticed when androgen-dependent cells were cultured in the presence of
melatonin, under either normal or HG conditions, when compared to parental, non-treated cells.
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Figure 3. Changes CO2 production by prostate cancer cells. Cells were grown in the presence of
13CO2. 13CO2/12CO2 ratio was calculated in: LNCaP (A); and PC-3 (B) cells after treatment with or
without 1 mM MEL after 6 h of culture media supplemented with 2 g/L of U-13C-glucose (CON) or
4 g/L of U-13C-glucose (HG). 13CO2 production was measured at the beginning of the experiment
(Time = 0) and at the end of the experiment (Time = 6 h). Results are shown as the increment vs. T0.
A representative experiment of three is shown. Data are represented as mean ± SEM (n = 3). ** p < 0.01
vs. CON, *** p < 0.001 vs. CON.

A complete 13C incorporation diagram (m, m + 1, and m + 6) in lactate, citrate, glutamate,
succinate, fumarate or malate is shown in Figure 5. Melatonin decreased levels for all those 13C-labeled
TCA metabolites when cultured in both normal and HG conditions. As it could be deduced, an inverse
situation occurs when the non-labeled metabolites are analyzed in melatonin-incubated cells, since
these metabolites are expressed as a percentage of the total amount of the compound. Among the
metabolites studied, the highest difference among experimental groups was found in labeled lactate.
Since all D-glucose carbons were 13C labeled, lactate production was dramatically reduced (close to
50%) in melatonin-treated cells. The effect was even higher than those found in other TCA metabolites
(roughly 15% decrease) after 24 h of culture. The decrease caused by the indole was also found in HG
media conditions, but the reduction was lower.

In the case of androgen-independent PC-3 cells, melatonin did not change any TCA metabolite
studied, even when cells were culture in HG media (Figure 6). However, it reduced lactate 13C-labeling
in these cells (Figure 7).
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Figure 4. Effect of melatonin on the metabolic profile of LNCaP cells grown in normal or high glucose media. Heat map of log2 fold changes of tricarboxylic acid cycle
(TCA) cycle metabolites after 24 h of culture with 2 g/L of U-13C-glucose (CON) or 4 g/L of U-13C-glucose (HG) in the presence or absence of melatonin (MEL) 1 mM.
Values of labeled metabolites were normalized to CON group. A color scale from 0.4 (red) to 1.6 (green) was employed to represent the amount of each compound.
Red compounds are metabolites with lower levels than CON and green compounds are metabolites with higher levels than CON. Annotations included on left side of
the heat map show the clustering of the glucose metabolites studied.
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Figure 6. Effect of melatonin on the metabolic profile of PC-3 cells grown in normal or high glucose media. Heat map of log2 fold changes of tricarboxylic acid cycle
(TCA) metabolites after 24 h of culture with 2 g/L of U-13C-glucose (CON) or 4 g/L of U-13C-glucose (HG) in the presence or absence of melatonin (MEL) 1 mM.
Values of labeled metabolites were normalized to CON group. A color scale from 0.4 (red) to 1.6 (green) was employed to represent the amount of each compound.
Red compounds are metabolites with lower levels than CON and green compounds are metabolites with higher levels than CON Annotations included on left side of
the heat map show the clustering of the glucose metabolites studied.
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Figure 7. Schematic representation of tricarboxylic acid cycle (TCA). Black circles represent the number of labeled carbons of each compound. Graphs represented
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2.5. Melatonin Decreases LDH Activity

In order to corroborate the decrease of 13C-labeled lactate shown above, our next approach was to
study LDH activity in melatonin-incubated cells. When LNCaP cells were incubated with melatonin
in normal glucose conditions, only a slight non-significant decrease in LDH activity was found. On the
other hand, LDH activity dramatically increased under HG culture conditions, but this increment was
significantly reduced by melatonin (Figure 8).
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Figure 8. Melatonin decreases lactate dehydrogenase (LDH) activity in LNCaP cells. LDH activity was
measured in LNCaP cells after grown in media supplemented with 2 g/L glucose (CON) or 4 g/L
glucose (HG) with or without 1 mM melatonin (MEL) for 24 h. Results are shown as the percentage
vs. CON group and a representative of three independent experiments is shown. Data are shown as
mean ± SEM (n = 3). *** p < 0.001 vs. CON, ### p < 0.01 vs. HG.

2.6. Melatonin Reduces Glucose-6-Phosphate Dehydrogenase (G6PDH)

Given that TCA did not change after HG culturing or after melatonin treatment in
androgen-independent PC-3 cells, our next goal was to consider whether a potential glycolysis
deviation toward the pentose phosphate pathway (PPP) could occur. To this aim, the levels of
glucose-6-phosphate dehydrogenase (G6PDH), which is activated upon a higher demand of this
biosynthetic pathway, was evaluated. Under normal glucose conditions, incubation with melatonin
caused a dramatic reduction in the PPP activity in LNCaP cells (Figure 9). HG media induced a
remarkable increase in G6PDH levels in both cell types. More importantly, melatonin totally limited
the rise in PPP activity caused by HG in androgen-dependent cells, while there was no significant
reduction in G6PDH in PC-3 cells.
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(6PGD) activity in LNCaP (A); and PC-3 cells (B) grown in media supplemented with 2 g/L glucose 
(CON) or 4 g/L glucose (HG) with or without 1 mM melatonin (MEL) for 24 h. Arbitrary 1.0 was given 
to CON groups. Results are shown as mean ± SEM (n = 3).* p < 0.05 vs. CON, *** p < 0.001 vs. CON, ### 
p < 0.01 vs. HG. 

3. Discussion 

Melatonin has multiple activities in target cells. Some of them are mediated by its binding to its 
membrane receptors while others are receptor-independent or mediated by intracellular targets [35]. 
For years, we have wondered why melatonin needs pharmacologic concentrations to exert some of 
its biological functions, particularly when it is assayed in vitro. Several reports have proposed that 
melatonin easily crosses cell membranes, mainly due to its lipophilic nature and small size. However, 
it has been suggested that this fact does not properly explain the necessity of such a high 
concentration of the indole, specifically in cell culture studies. In this way, we have recently proved 
that melatonin crosses prostate cancer cells membranes, but using an active or facilitative transport 
[19]. This led us to discover facilitative glucose transporter 1 (GLUT1) as a potential carrier for 
melatonin in prostate cancer cells [22]. Melatonin uptake using GLUT1 transporter seemed to 
compete with glucose uptake itself, which could explain its antitumor properties. However, it has 
not been demonstrated yet melatonin’s role on oxidative phosphorylation (OXPHOS) or glycolysis 
in androgen dependent or independent prostate cancer cells. 

The prostate is a particular gland from the metabolic point of view. Contrary to other tumors 
that highly increase glucose uptake early during transformation, prostate cancer cells depend on 
OXPHOS at the initial stages of the disease and glycolysis is only remarkable in the final steps of the 
illness. This metabolic phenomenon actually limits the use of diagnostic procedures such as PDG-
PET scan for the detection of tumors at those early stages [36]. For this reason, we evaluate here the 
isotopic enrichment of mitochondrial metabolites after culturing cells with 13C-glucose labeled when 
melatonin is present in the culture media. In order to evaluate the role of the indole on glucose 
metabolism, the experimental approach followed included both normal (2 g/L) and high (4 g/L) 
glucose concentration scenarios. Interestingly, we found that melatonin reduces glucose uptake as 
previously demonstrated, but also reduces ATP production. In addition, the ATP/AMP ratio is higher 
in androgen sensitive LNCaP than in androgen insensitive PC-3 cells, which implies that PC-3 also 
represents a better model for an advanced stage of the disease from the metabolic point of view. In 
both cell types, melatonin reduces glucose uptake and the rise in ATP levels, thus indicating that it 
does not affect particularly at any stage, androgen sensitive or castration resistant phenotype. 
Interestingly, regarding CO2 production, significant differences were only detected when androgen 
sensitive prostate cancer cells were cultured in high-glucose concentration media. These results 
should be taken cautiously, due to the technical limitations. Thus, 13CO2 measurement, which requires 
a tight capping of culture flasks, cannot be performed in long-term experiments (more than 6 h). 
Otherwise, this would limit O2 concentration within the tissue culture flask and therefore 

Figure 9. Melatonin reduces pentose phosphate pathway (PPP) in LNCaP and PC-3 cells. PPP activity
measured as glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase
(6PGD) activity in LNCaP (A); and PC-3 cells (B) grown in media supplemented with 2 g/L glucose
(CON) or 4 g/L glucose (HG) with or without 1 mM melatonin (MEL) for 24 h. Arbitrary 1.0 was given
to CON groups. Results are shown as mean ± SEM (n = 3).* p < 0.05 vs. CON, *** p < 0.001 vs. CON,
### p < 0.01 vs. HG.

3. Discussion

Melatonin has multiple activities in target cells. Some of them are mediated by its binding to its
membrane receptors while others are receptor-independent or mediated by intracellular targets [35].
For years, we have wondered why melatonin needs pharmacologic concentrations to exert some of
its biological functions, particularly when it is assayed in vitro. Several reports have proposed that
melatonin easily crosses cell membranes, mainly due to its lipophilic nature and small size. However,
it has been suggested that this fact does not properly explain the necessity of such a high concentration
of the indole, specifically in cell culture studies. In this way, we have recently proved that melatonin
crosses prostate cancer cells membranes, but using an active or facilitative transport [19]. This led us
to discover facilitative glucose transporter 1 (GLUT1) as a potential carrier for melatonin in prostate
cancer cells [22]. Melatonin uptake using GLUT1 transporter seemed to compete with glucose uptake
itself, which could explain its antitumor properties. However, it has not been demonstrated yet
melatonin’s role on oxidative phosphorylation (OXPHOS) or glycolysis in androgen dependent or
independent prostate cancer cells.

The prostate is a particular gland from the metabolic point of view. Contrary to other tumors
that highly increase glucose uptake early during transformation, prostate cancer cells depend on
OXPHOS at the initial stages of the disease and glycolysis is only remarkable in the final steps of
the illness. This metabolic phenomenon actually limits the use of diagnostic procedures such as
PDG-PET scan for the detection of tumors at those early stages [36]. For this reason, we evaluate here
the isotopic enrichment of mitochondrial metabolites after culturing cells with 13C-glucose labeled
when melatonin is present in the culture media. In order to evaluate the role of the indole on glucose
metabolism, the experimental approach followed included both normal (2 g/L) and high (4 g/L)
glucose concentration scenarios. Interestingly, we found that melatonin reduces glucose uptake as
previously demonstrated, but also reduces ATP production. In addition, the ATP/AMP ratio is higher
in androgen sensitive LNCaP than in androgen insensitive PC-3 cells, which implies that PC-3 also
represents a better model for an advanced stage of the disease from the metabolic point of view. In both
cell types, melatonin reduces glucose uptake and the rise in ATP levels, thus indicating that it does
not affect particularly at any stage, androgen sensitive or castration resistant phenotype. Interestingly,
regarding CO2 production, differences were only detected when androgen sensitive prostate cancer
cells were cultured in high-glucose concentration media. These results should be taken cautiously,
due to the technical limitations. Thus, 13CO2 measurement, which requires a tight capping of culture
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flasks, cannot be performed in long-term experiments (more than 6 h). Otherwise, this would limit O2

concentration within the tissue culture flask and therefore compromise cell metabolism and survival.
Clearly, the glucose increase caused a parallel rise in 13C-labeled CO2 but no significant differences
were observed in melatonin treated cells.

In vitro androgen-sensitive cells represent the first stages of prostate cancer progression, which
should imply that they favor glucose metabolism through OXPHOS. However, it was recently reported
that androgens increase glycolytic metabolism in LNCaP cells based on an increment in glucose uptake,
fosfofructokinase 1 activity, and lactate production [37]. From metabolomic studies showed here,
we concluded that the enrichment in lactate decreased significantly in LNCaP cells after melatonin
treatment, which it is in agreement with LDH activity, and it implies that melatonin decreases aerobic
glycolysis. However, melatonin also reduces the isotopic enrichment of citrate, succinate, fumarate and
malate, therefore indicating a slow-down in the tricarboxylic acid cycle (TCA) in androgen dependent
prostate cancer cells. Finally, in our model melatonin also reduces the pentose phosphate pathway
(PPP), represented by the increment of glucose-6-phosphate dehydrogenase (G6PDH). Altogether,
these data clearly demonstrate that melatonin reduces all the major pathways of glucose metabolism
and this can only be explained in terms of a general reduction in the glucose uptake in these cells.

According to the classic Warburg effect theory, differentiated cells obtain their energy from ATP
through mitochondrial respiration and oxidative phosphorylation [38]. However, cancer cells are
characterized by a high rate of glycolysis even under aerobic condition [39]. In one way, a high
glycolysis rate in cancer cells satisfies a higher ATP demand and contributes to cell proliferation,
survival and enhanced production of macromolecules such as lipids, proteins, and nucleic acids [40,41].
For this reason, glycolysis has been recently suggested as a major hallmark of invasive cancers [42]
because in cancer cells, glycolysis contributes to metastasis. Nevertheless, this situation seems to be
particularly different in prostate cancer cells [33,43]. In mitochondria from prostate epithelial cells,
citrate oxidation is impaired and citrate is the final product of the glucose metabolism. However
in cancer cells, citrate represents an efficient source of energy and they manage to restore oxidation
through the Krebs cycle [44]. In reference to that, melatonin reduces citrate oxidation through TCA
because glutamate and succinate showed significant differences in 13C labeling, not only when cultured
in high glucose media but also when cells were cultured under low glucose conditions.

Interestingly, in PC-3 cells melatonin reduces the uptake of glucose and ATP production, being
the levels of ATP in PC-3 cells even lower than in LNCaP. However, Krebs cycle did not change
significantly after culturing cells in high glucose media nor after melatonin treatment, which points
that TCA does not change in androgen independent prostate cancer cells. On the other hand, melatonin
reduces lactate labeling suggesting that the indole should be able to reduce glycolysis also in these cells.

It has been shown that melatonin inhibits hypoxia-inducible factor 1α (HIF-1α) in vivo and
in vitro [45]. The role of HIF-1α in cancer cells metabolism has been extensively demonstrated [46,47].
Among others, HIF-1α activates SLC2A1 and SLC2A3, which encode the glucose transporters GLUT1
and GLUT3, respectively [48]. It would be feasible to think that melatonin through HIF-1α could
modify GLUT1 expression, reducing the levels of the transporter and then the uptake of glucose.
Although in another experimental models, the role of melatonin in glycolysis has been attributed to
HIF-1α [45], this is not the case in our model. First, the reduced availability of O2 found in many solid
tumors activates HIF-1α and its down-regulated pathways. Under normoxy conditions, HIF-1α has a
short-life and it is stabilized when O2 concentrations are below 5%. The standard culture conditions,
i.e., 5% CO2:95% air, assure a partial pressure of O2 of 150 mmHg or an equivalent of 20% O2. Then,
HIF-1α was undetectable in LNCaP and PC-3 cells (data not shown). In prostate cancer, the principal
regulator of GLUT1 expression is the AMP-activated protein kinase (AMPK) by an indirect mechanism
that is further control by androgens [49]. In addition, HIF-1 sustains glycolytic metabolism, but LNCaP
cells, as an example of initial stages of prostate cancer, shows a metabolism more oxidative than
glycolytic, which is the principal target of melatonin.
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Collectively, the effects of melatonin on glucose metabolism might mediate its role as an antitumor
agent in prostate cancer cells. In fact, androgens increase lactate production and release through an
increment in MCT4 transporter [37]. High LDH serum levels are associated with a poor survival
in prostate cancer patients [50] and, consequently, the enzyme has been proposed target for future
therapies in cancer [51].

Melatonin displays significant beneficial effects against hyperglycemia-induced cellular
toxicity [52] and exerts different effects on glucose uptake by cells. In one hand, the indoleamine is able
to restore insulin-induced glucose uptake in skeletal muscle cells [53] or increase the uptake in 3T3-L1
adipocytes [54] while on the other hand, it reduces glucose uptake in cancer cells [22]. A decrease in
LDH activity has also been observed when cells were treated with melatonin and lipopolisaccaride
(LPS) [55].

In general, melatonin reduces glucose uptake likely through the blocking of facilitative glucose
transporters as it has been previously demonstrated [22,56]. GLUT1 is expressed in human prostate
carcinoma cells [57] and it is upregulated by androgens in androgen sensitive prostate cancer cells [39,58].
In addition, the molecular characterization of Gleason 3 + 3 or 4 + 3 human prostate cancers, which
greatly differ in patients outcome, might be related to reverse Warburg effect-associated genes,
including GLUT1 [59]. An increase in GLUT1 and the resulting increase in lactate production has been
related to the role of microRNA-132 knockdown of in prostate cancer progression [60].

4. Materials and Methods

4.1. Cell Culture

The human androgen-sensitive LNCaP prostate cell line was obtained from “European Collection
of Cell Cultures” (cat# 89110211 ECACC, Wiltshire, UK). Human androgen-insensitive PC-3 cells
were obtained from “American Type Culture Collection” (cat# CRL-1435 ATCC, Rockville, MD, USA).
LNCaP cells were maintained in RPMI 1640 medium supplemented with 10% Fetal Bovine Serum
(FBS), 2 mM L-glutamine (Gln), 15 mM HEPES and an antibiotic-antimycotic cocktail containing
100 U/mL penicillin, 10 µg/mL streptomycin and 0.25 µg/mL amphotericin B. PC-3 cells were grown
in DMEM/F12 medium supplemented with 10% FBS, 2 mM L-Gln and the antibiotic-antimycotic
cocktail described above. Both cell lines were grown at 37 ◦C in a humidified 5% CO2 atmosphere.
The medium was changed every 2 days and cultures were split at least once a week. Melatonin was
always freshly prepared in a DMSO stock solution 1000× and diluted to 1 mM concentration directly
in the culture medium. DMSO 0.001% was always added to control groups. Toxicity of 0.001–0.01% of
DMSO was tested in PCa cells prior our experiments.

4.2. Glucose Uptake

Glucose uptake was assessed as described previously [60] with minor modifications. Cells were
seeded in 24-well culture plates and grown for 24 h in regular complete media with glucose. After
washing cells twice with RPMI 1640 without glucose, medium containing 2 mM 2-deoxy-D-glucose
(2-DG) was then added and cells were further incubated for 20 min at 37 ◦C in a 5% CO2 atmosphere.
After that, cells were washed twice with KRH buffer (50 mM HEPES, 137 mM NaCl, 4.7 mM KCl,
1.85 mM CaCl2 and 1.3 mM MgSO4, pH 7.4) containing 0.1% of BSA (Cohn fraction V) and finally lysed
in 0.1 M NaOH by heating samples from 60 to 85 ◦C for 60 min. After that, lysates were neutralized
with 0.1 M HCl and the same volume of 200 mM triethanolamine (TEA) was added to each well.
Twenty-five microliters were transferred to 96-well plates and 200 µL of assay solution (50 mM TEA,
50 mM KCl, 0.02% BSA, 0.1 mM NADP+, 0.2 U/mL diaphorase, 6 µM resazurin sodium salt and
20 U/mL glucose-6-phosphate dehydrogenase) were added to each well. Plates were incubated for
45 min at 37 ◦C. Finally, fluorescence was measured in a Sinergy H4 Hybrid Reader (λex = 550 nm,
λem = 605 nm). For standardization, protein concentration was determined using Bradford assay



Int. J. Mol. Sci. 2017, 18, 1620 14 of 19

(BQCkit, Llanera, Spain). Results are presented as mmol 2-DG glucose/µg protein. Results are shown
as the mean of three samples ± SEM.

For radioactive assays, cells were seeded in 6-well plates. After treatment, cells were harvested
by trypsinization and counted using a Neubauer hemocytometer. In total, 25 × 105 LNCaP cells
and 15 × 104 PC3 cells were employed. After centrifuged, cells were resuspended in 30 µL of RPMI
without glucose and incubated for 30 min at 37 ◦C. Then, 2DG uptake was performed. 2DG uptake
was initiated by the addition of labeled 2-deoxy-D-[1-3H]glucose to a final concentration of 0.5 µM
(2 µCi) (1 Ci = 37 GBq). Incubation was prolonged for 10 min at room temperature. Cells were washed
twice in PBS with 2% FBS and then, lysed with 0.5 mL 0.1% SDS. Finally, radioactivity was measured
by liquid scintillation.

4.3. ATP Analysis

LNCaP and PC-3 cells were seeded at a density of 25,000 cell/mL. After 24 h, cells were scraped
and centrifuged at 500× g at 4 ◦C. The cell pellet was dissolved in 0.3 M perchloric acid, gently mixed
and centrifuged at 9000× g at 4 ◦C. Then, supernatants were neutralized with 1 M KOH, centrifuged
at 9000× g and finally HPLC assay was performed. Adenine nucleotides (ATP, ADP and AMP) were
separated on a 15 cm × 4.6 mm, 3 µm SUPELCOSIL LC-18-T column (Supelco, Sigma-Aldrich Quimica
SL, Madrid, Spain) with a mobile phase composed of A mobile phase KH2PO4/tetrabutylammonium
hydrogen sulfate (TBHS), pH 6.0 and B mobile phase MEOH + KH2PO4/TBHS, pH 5.5, at flow rate of
1.2 mL and in gradient mode: 0 min (0% B), 2.5 min (0% B), 7 min (20% B), 14 min (40% B), 19 min
(100% B), 24 min (100% B), and 27 min (0% B). Nucleotides were detected by UV absorption at 260 nm,
identified, and quantified by comparison with the retention time of appropriate standards.

4.4. Measurement of the 13CO2 Production in Cell Culture

LNCaP and PC-3 cells were seeded in a T25 flask at 25,000 cells/mL. After 48 h, media was
changed and U-13C-D-glucose was added. For this set of experiments, flask caps were substituted
by septum caps. The analysis of CO2 generated was performed at the beginning (t = 0) or after 6 h.
A GC-IRMS instrument (Thermo Fisher Scientific, Bremen, Germany) was used for the determination
of the 13C isotopic enrichment. The equipment consisted in a gas chromatograph with split/splitless
injector coupled to an isotope ratio mass spectrometer. The mass analyzer is designed to measure CO2

isotope ratio with the highest precision and includes a magnetic sector to separate the ion beams for
the 12CO2 and 13CO2 masses and an array of Faraday cups that allows the simultaneous measurement
of both ion beam intensities. The Faraday cups have a different amplification in order to obtain
comparable signals for the two CO2 isotopologues. Fifty microliters of the gas phase were withdrawn
using a 1 mL gas-tight syringe and injected directly in the injection port of the chromatograph with a
split ratio of 1:20. Helium, at a flow rate of 1 mL/min, was used as carrier gas. Measurements were
run in triplicates.

4.5. Stable Isotope Labeling Experiments

For isotope labeling experiments, cells were cultured in 60 mm plates. When cells reached 70%
confluence, the medium was replaced by glucose-free culture medium and U-13C-D-Glucose was
added instead. After 48 h, cells were scraped and centrifuged at 500× g at 4 ◦C. Then, intracellular
metabolites were obtained from previously pelleted cells after extraction with 100% methanol at
−80 ◦C, following a double extraction with milli-Q water. Cell extracts were suspended in 500 µL
of cold methanol, snap-freeze in liquid nitrogen and thawed in a mixture of liquid nitrogen-acetone.
Later, extracts were vortexed for 30 s and pelleted by centrifugation at 800× g for 1 min. Supernatants
were transferred to a fresh microcentrifuge tube in a liquid nitrogen-acetone mixture. They were
again resuspended in 500 µL of methanol and freeze-thaw cycles were repeated. The supernatant
was transferred and pooled with the previous methanol extraction. Finally, pellets were suspended in
250 µL of milli-Q water and freeze-thaw cycles were repeated for the last time. Cell extracts were then
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vortexed for 30 s and pelleted by centrifugation at 15,000× g for 1 min. Supernatants were removed
and pooled with previous extracts. Pooled supernatant fractions were centrifuged at 15,000× g for
1 min in order to remove any cell debris remaining. Afterwards, supernatants were transferred to
a fresh tube and dry at 30 ◦C in a vacuum centrifuge. Dried intracellular metabolites were kept at
−80 ◦C prior derivatization for GC-MS analysis.

Metabolites extracted were dissolved in 100 µL of 2% methoxyamine hydrochloride in pyridine
and incubated at 40 ◦C for 8 min on a compact thermomixer. Next, 150 µL of N-tert-butyldimethylsilyl-
N-methyltrifluoroacetamide plus 1% tert-butyldimethylchlorosilane (TBDMCS) were added and
samples were incubated for 10 min at 60 ◦C. Derivatized samples were centrifuged at 14,000× g for
2 min to remove debris. Clear samples were transferred into GC vials for GC-MS analysis. A gas
chromatograph Agilent 7890 (Agilent, Santa Clara, CA, USA) coupled to a triple quadrupole mass
spectrometer Agilent 7000 Series Triple Quad GC/MS (Agilent) was employed operating in selected-ion
monitoring (SIM) mode at 70 eV. The GC was fitted with a split/splitless injector and a DB-5 MS
capillary column (cross-linked 5% phenyl-methyl siloxane, 30 m × 0.25 mm i.d., 0.25 µm coating). The
column temperature was initially set at 60 ◦C for 1 min, and then a temperature ramp of 5 ◦C/min
was applied until it reached 320 ◦C for 10 min. The total run time was 68 min. Helium was used as
carrier gas at a flow rate of 2 mL/min. The injector temperature was kept at 250 ◦C while interface
temperature and ion sources were 280 ◦C and 230 ◦C respectively. Two microliters were injected
in splitless with 1 min of purge time. Mass spectra were registered in a SIM mode using a 10 ms
dwell time.

For the measurement of the mass isotopomer distribution of the intracellular metabolites, the
experimental isotopic distribution measured by GC-MS were assumed to be a linear combination of
all possible incorporation of 13C in the molecule (isotopomers). The relative contribution of isotope
patterns in the experimental mass spectra is calculated by multiple linear regression. More details
on this procedure are reported by Fernandez-Fernandez et al. [61]. Heat map and clustering analysis
for data visualization of the identified metabolites were performed by the heatmap3 package in R
project [62].

4.6. GA6PDH Activity

Glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluonate dehydrogenase (6PGDH)
were measured as previously described with minor modifications [63]. Cells were grown in 24-well
plates. After treatment, cells were incubated with 1/3 volume of 1 mM tetranitroblue tetrazolim,
0.5 mM glucose-6-phosphate, and 0.5 mM NADP+ for 4 h. The development of purple color was
measured spectrophotometrically. For standardization, cell number was previously calculated using a
Neubauer hemocytometer counting chamber. Results are shown as the mean of three samples ± SEM.

4.7. LDH Activity

For lactate dehydrogenase (LDH) assay, LNCaP cells were seeded in 6-well plates. After 24 h of
treatment, total LDH activity was performed following manufacture’s specifications ref# KC-04-004
BQCkit (BQC, Llanera, Spain). Absorbance was determined by using an automatic microplate reader
Cary-50 (Agilent Technologies, Santa Clara, CA, USA) at 490 nm

4.8. Statistics

Unless otherwise indicated, all experiments were performed at least three times and each experimental
group in triplicates. An ANOVA, followed by a Student Newman–Keuls t-test was performed and
significant differences were considered when p < 0.05.

5. Conclusions

Metabolomics showed that melatonin decreases aerobic glycolysis in androgen sensitive prostate
cancer cells. However, it also reduces the isotopic enrichment of citrate, succinate, fumarate and
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malate, therefore indicating a slow-down in tricarboxylic acid cycle (TCA) and glucose-6-phosphate
dehydrogenase (G6PDH) activity suggesting a decrease in pentose phosphate pathway (PPP).
Consequently, melatonin reduces all the major pathways of glucose metabolism of prostate cancer
cells which implies that melatonin promotes a general reduction in the glucose uptake by these cells.
Considering these results, it is reasonable to think that glucose transporters are direct targets for
melatonin, which might mediate its antitumor properties not only in prostate cancer cells but also in
other cancer cell types through a general reduction of glucose metabolism.
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