
UNIVERSIDAD DE OVIEDO

ESCUELA DE INGENIERÍA INFORMÁTICA

TRABAJO FIN DE MÁSTER

“Extracción de un diagrama de clases UML a partir de requisitos en

Esperanto utilizando Lenguaje de Dominio Específico y técnicas de

Procesamiento del Lenguaje Natural”

Vº Bº del Director del

Proyecto

 DIRECTOR: Dr. Vicente García Díaz

 AUTOR: Alberto Otero Márquez

Resumen

El análisis de requisitos es la etapa más importante de cualquier proceso de
desarrollo software, ya que una recopilación incompleta de requisitos es la
causa de que muchos proyectos de IT (Tecnología de la información) fraca-
sen. Para mejorar el proceso de análisis de requisitos hemos desarrollado un
sistema capaz de extraer un diagrama de clases UML (Lenguaje uni�cado
de modelado) utilizando un documento de requisitos escrito en Esperanto.
Hemos decidido emplear Esperanto,un lenguaje arti�cial que a efectos prác-
ticas puede considerarse como lenguaje natural. A pesar de que la gramática
del Esperanto es compleja y extensa, también es menos complicada, ya que
no tiene excepciones. Debido a que su morfología es concisa y regular su pro-
cesamiento será más fácil. Distintas reglas heurísticas han sido empleadas
para extraer los elementos del diagrama. Nuestro sistema ha generado con
éxito un diagrama de clases con todas las clases relevantes relacionadas y
muchas de las relaciones de asociación entre ellas, incluyendo relaciones de
herencia y composición. Además, nuestro sistema es capaz de extraer rela-
ciones de dependencia. Nuestro sistema ha sido validado utilizando dos casos
de estudio, en el primero se ha comparado nuestro sistema con cinco diagra-
mas obtenidos por expertos y con un diagrama generado por la herramienta
RACE, y en el segundo, se ha comparado nuestro sistema con el diagrama
creado por un experto con amplios conocimientos del dominio, demostrando
que nuestro sistema es una verdadera alternativa.

Palabras clave: Técnicas de procesamiento del lenguaje; NLP, Ingeniería
dirigida por Modelos; MDE, Lenguaje de Dominio Especí�co; DSL, Análisis
de requisitos.

ii

Abstract

Abstract Requirement analysis is the most important stage of any software
development cycle, as incomplete requirement elicitation is often the reason
many IT (Information technology) projects fail. In order to improve the re-
quirement analysis process we have created a system that can extract a UML
(Uni�ed Modeling Language) class diagram using a requirements speci�ca-
tion written in Esperanto. We opted to use Esperanto, an arti�cial language
that may be considered as a natural language. Even though Esperanto's
grammar is complex and extensive, it is also less di�cult as it has no excep-
tions. Because its morphology is concise and highly regular it will facilitate
its processing. Di�erent heuristic rules have been used to extract the ele-
ments of the class diagram. Our system has successfully generated a class
diagram with all the relevant classes implied and many of the association
relationships between them, including also generalization relationships and
composition relationships. In addition, dependency relationships have also
been identi�ed, and our system has been validated in two case studies, one by
comparison with �ve experts' diagram and a diagram created by RACE, and
the other by comparison with one expert's diagram with extensive domain
knowledge showing that our system is a real alternative.

Keywords: Natural language processing; NLP, Model Driven Engineering;
MDE, Domain Speci�c Language; DSL, Requirements processing

ii

Table of Contents

Resumen . ii

Abstract . ii

Table of Contents . iii

List of Figures . v

List of Tables . vii

Acknowledgments . viii

1 Introduction . 1

2 Motivation . 4

3 Contribution . 5

4 Objectives . 6

5 State of the Art . 7
5.1 Natural Language Processing to extract some Uni�ed Model-

ing Language (UML) diagram 7
5.2 Why Esperanto? . 10
5.3 Putting it all together: MDE, MDA and DSL 11

5.3.1 Model Driven Engineering 11
5.3.2 Model Driven Architecture 12
5.3.3 Eclipse Modeling Framework 14
5.3.4 Domain Speci�c Languages 15

5.3.4.1 Sirius . 16
5.3.4.2 Xtext . 17

6 Domain Speci�c Language . 21

7 Extraction of UML Class Diagram 29
7.1 Concept Identi�cation . 29
7.2 Class Identi�cation . 29
7.3 Attribute Identi�cation . 30
7.4 Relationship Identi�cation 30

iii

Table of Contents

8 Implementation . 31

9 Evaluation and discussion . 46
9.1 System vs system . 46
9.2 System vs experts . 49
9.3 Other evaluation . 55

10 Conclusions and future work 60

11 Project Planning and Budget 61
11.1 Initial Planning . 61
11.2 Final Planning . 68

12 Dissemination of results . 70

Appendices

A Article . 73

B Acronyms . 90

Bibliography . 92

iv

List of Figures

5.1 Model Driven Development. MaheshH.Dodani [2006] 14
5.2 Sirius Modeling Perspective Foundation [2007a] 17

6.1 Metamodel that implements the Esperanto grammar. 22
6.2 De�nition of the main structures in Xtext 23
6.3 Terminal rules de�nition in Xtext 26
6.4 Parser rules de�nition in Xtext 28

8.1 Con�guration �le . 32
8.2 Mapping to Objects . 33
8.3 Interface of VerbAsAdjective 34
8.4 Implementation of VerbAsAdjective 34
8.5 Text generator . 35
8.6 Initial processing of VerbAsAdjective 36
8.7 Method used to include words in their category list 37
8.8 Fragment of code to obtain the word frequency. 38
8.9 Fragment of code for association determination 38
8.10 Code for the highlighting in the editor (I). 39
8.11 Code for the highlighting in the editor (II). 40
8.12 Fragment of code for the desired outline view of VerbAsAd-

jective elements . 41
8.13 Sample of the customized editor view with some Esperanto text 41
8.14 Outline view customization 42
8.15 UML2 package installation . 42
8.16 Dependencies added to manifest.mf to work with UML 2.0 . . 42
8.17 Class to create a UML class diagram 43
8.18 Code to generate the UML class diagram 44
8.19 UML model editor view of the generated class diagram 45

9.1 Class diagram extracted by our system 47
9.2 Class diagram extracted by expert 1 (E1) 49
9.3 Class diagram extracted by expert 2 (E2) 50
9.4 Class diagram extracted by expert 3 (E3) 51
9.5 Class diagram extracted by expert 4 (E4) 52
9.6 Class diagram extracted by expert 5 (E5) 53
9.7 Class diagram extracted by an expert for the online shopping

case. Created by Fakhroutdinov [2013] 56

v

List of Figures

9.8 Class diagram extracted by our system 57

11.1 Overview of the main tasks 61
11.2 Gantt chart of the project's planning 62

12.1 International Journal on Software and Systems Modeling (SoSyM) 70
12.2 International Journal on Software and Systems Modeling (SoSyM) 71
12.3 Proof of submission I . 72
12.4 Proof of submission II . 72

A.1 Metamodel that implements the Esperanto grammar. 78
A.2 Sample of the customized editor view with some Esperanto text 79
A.3 Outline view customization 79
A.4 Fragment of the grammar de�nition in Xtext 82
A.5 Class diagram extracted by our system 84
A.6 Class diagram extracted by an expert 86

vi

List of Tables

6.1 Examples of the main structures in our model 24

9.1 Class diagram extraction comparison between expert with
wide domain knowledge and our system 58

11.1 Description of initial planning tasks. 62
11.2 Salaries by pro�le. 67
11.3 Time and cost by each worker. 67
11.4 Hardware costs. 67
11.5 Fixed monthly expenses . 68
11.6 Time and cost by each worker. 69

A.1 Class diagram extraction comparison between RACE and our
system. 85

A.2 Class diagram extraction comparison between experts and our
system. 87

vii

Acknowledgments

I would like to thank my tutor at the University of Oviedo, Vicente Garcia,
for the adecuate guidance and for being very patient and helpful.

Also, I would like to thank my friends for their participation in the test-
ing, Javi, Pablo, Markitos and Diego.

Last but not least, thanks to my brother for his constant corrections and
advice, and for always putting up with me.

viii

1. Introduction

Natural language is the most frequently used language for expressing require-
ments, as it is common to customers, users and requirements engineers. Due
to the ambiguity of natural language, which is liable for di�erent interpre-
tations in�uenced by geographical, psychological and sociological factors, a
good requirement gathering process in natural language is usually di�cult
to perform Resnik et al. [1999]. To exemplarize the ambiguity consider the
expression: "I saw a man on a hill with a telescope". Although it appears to
be a simple statement, it may have many di�erent meanings, like the follow-
ing: (1) There is a man on a hill and I am watching him with my telescope.
(2) There is a man on a hill, who I am seeing, and he has a telescope. (3)
There is a man, he is on a hill that also has a telescope on it. (4) I am on
a hill and I saw a man using a telescope. (5) There is a man on a hill, and
I am sawing him with a telescope. Byrd [2009] An incomplete requirement
elicitation is often the main reason that leads IT projects to failure. Projects
with missing requirements will cause dissatisfaction to the customer, and in-
complete products will require more time and resources to be �nished than
if originally planned Bergey et al. [1999]. A poor requirements analysis may
produce the following e�ects Matsugu [2017]:

� Late product delivery: requirements are the draft that every member of
a project works from. Poor requirements lead to poor designs and tests,
and depending on when are these issues resolved, extra development
and testing rework may need to be done. These issues, in addition
with requirements revisions contribute to a late product delivery.

� Poor product quality: testing must be focused on the important parts
of the project and must be as e�cient as possible to perform the maxi-
mum amount of testing. The rework and the resulting wasted test runs
reduce the overall amount and quality of testing that can be done. De-
pending on the quality of the requirements and wrong prioritization,
the result can be poor product quality.

� Degraded design and documentation integrity: a series of changes take
place as the �aws of dreadful requirements are discovered. This can
degrade the design, lessen its integrity with each change. This a�ects
not only the design itself, but it can spread to related assets like doc-
umentation.

1

1. Introduction

� Invalid features delivered: for requirements �aws that are not uncov-
ered or discovered become invalid features being delivered. These could
be either features that are outside the scope of the project or incorrect
features that will have to be handled by ad hoc solutions.

� Business impact: poor product quality, degraded design and documen-
tation integrity and invalid features will have direct business impacts.
The severity will vary depending on each given situation, but none of
it will add value and they may be very serious. These elements impact
customers, end users, business results, e.g. marketshare or pro�tability,
and business aspects of aplication development and operation, includ-
ing development costs, maintenance costs, administration costs, and it
can ultimately lead to project failure or cancellation.

The importance of performing an exhaustive and complete requirement list
on the early stages of a project is critical. Therefore, a support tool to
automatize these tasks would be highly valuable and desirable. In recent
years, Object-Oriented (O-O) Analysis and Design has become the main-
stream trend for software development. A class is an abstraction of repre-
sentative real-world objects. A class models the behavior of objects that are
constrained by the same rules Starr and Stephen [2001] and share attributes
and behaviors. Classes are arranged into a class diagram. A class diagram in
the Uni�ed Modeling Language (UML) represents the classes used and their
relationships in the system. Those classes act as the vocabulary for O-O
system, model simple collaborations and are the foundation for the logical
database design Booch et al. [1999]. UML class diagrams are at the core of
O-O analysis and identifying the classes that model the requirements seems
crucial. In fact, it is considered by some authors as the most important skill
in developing a O-O system Grady [1994]. Hence, the automated generation
of class diagrams will save time and e�ort to a system analyst, specially for
beginners. Nevertheless, the automation of class generation from a written
text in natural language is extremely challenging due to the following reasons
Richter [1999] Maciaszek [2001]:

� Natural languages are ambiguous and full of exceptions. Hence, rig-
urous and precise analysis proves quite di�cult.

� Any given semantic can be represented in many di�erent ways.

� Concepts that are not explictly expressed in the written source are
often di�cult to identify. It requires an expert domain knowledge to
�nd the hidden classes.

2

1. Introduction

Our approach in this paper tries to address the problem presented but it
does not try to resolve it completely. We believe that by using Esperanto,
an arti�cially made language with no grammatical exceptions, most part
of the ambiguity would be suppresed. A Domain Speci�c Language (DSL)
has been developed to model the most common behavior of the Esperanto
language and act as a textual editor for the language. Natural Language
Processing (NLP) techniques will be applied to the requirements document
in Esperanto and di�erent heuristic rules will be used to extract a UML
Class diagram, which will contain the structure of a suggested system that
satis�es the requirements. We have used NLP techniques and heuristic rules
to address the following research questions: (1) How to identify concepts,
(2) how to discern between candidate classes and attributes for each concept
and (3) how to extract relationships between classes, such as generalization,
dependency, associations and compositions.

3

2. Motivation

Several factors encouraged us to tackle a project based in Natural Language
Processing (NLP) and Modeling:

� To improve the requirement analysis step, as it is the most important
stage in any software development cycle. An incomplete or shallow
elicitation requirements will lead to project failure, delays in the de-
livery date, increments in the project's budget or software that does
not satisfy the expectations and needs of the customer. This has been
an ongoing issue over the years, with not many research and solutions
carried out to address it.

� General approach: Our project could be a potential help to any soft-
ware project. Considering that every single project has some require-
ments to satisfy, our work could have a signi�cant impact in the soft-
ware development industry.

� There is an academic purpose besides helping in software developing.
It can be a helping tool for new students to gain experience with re-
quirements elicitation and UML class diagrams.

� The automatic generation of a class diagram containing the model
that satis�es the requirements of a project could save both time and
money. By making a complete and detailed requirement analysis we
ensure that we have all the required information about: what we need
to build, which type of users will use our product and other relevant
details. Therefore, we could set up a good planning and optimize our
resources. Furthermore, the �nal product should have a higher quality,
as all the requirements should have been met, resulting a satis�ed
customer.

� The project presents many challenges and because the employed tech-
nologies have been barely or not seen at all during my Masters's studies,
I believe it would complement well my education.

4

3. Contribution

This research intends to facilitate the whole software development process,
specially in the requirement analysis stage. We intend to prove that a Model
Driven Approach (MDA) can be applied in conjunction with NLP techniques
to address this issue. We have provided the following advantages:

� Domain Speci�c Language (DSL) that contains the behavior of the
Esperanto language, which will be the language used for the user to
de�ne the requirements that our system will process to generate a
UML class diagram. This was the selected approach as it is the most
bene�cial both for the users, providing them with a textual editor,
detailed feedback through syntax highlighting and an outline view,
and for the system due to an automatically mapping process from the
words that compose the requirements document provided by the users
to Objects processed by our system.

� Ease of use for the users: As a language is possibly the most expressive
communication tool that we have as a species, considering that the
users simply have to write using a language (Esperanto) the di�erent
requirements for their project, we believe it will simplify the process.

� Transparency for the users: our system will automatically generate a
UML class diagram as soon as the user saves the requirements using
the provided editor. The users will not become aware of the underlying
technology that processes and generates said diagrams.

� Automatic generation of a UML class diagram by processing a require-
ments document written using an (arti�cial) language (Esperanto).
The diagram generated will be composed by the di�erent classes, at-
tributes and relationships (association, composition, generalization and
dependency relationships) between the classes that represent a possible
solution to the given problem.

5

4. Objectives

The main objectives of this project are:

� Develop an interdisciplinary project combining di�erent �elds such
as Model Driven Architecture (MDA), Natural Language Processing
(NLP), Modeling and Uni�ed Modeling Language (UML).

� Model the most common type of grammatical structures and vocabu-
lary in Esperanto by developing a Domain Speci�c Language (DSL).

� Apply di�erent NLP techniques and heuristic rules to extract the ele-
ments of a UML class diagram from a written requirements document.

� Generate a valid UML class diagram by processing a requirements
document.

� Provide the users with a customized text editor that would be used to
enter the requirements of their project.

� Develop a system easily extendable and maintainable by using MDE.

6

5. State of the Art

In this section we have gathered the most recent advances in three di�erent
areas. First, we will discuss di�erent approaches employed in natural lan-
guage processing (NLP). Then, we will present the possible advantages of
using an intermediate language in place of widely extended languages, such
as English. Finally, we will explore the existing technologies employed when
dealing with Model Driven Architecture (MDA).

5.1 Natural Language Processing to extract some
Uni�ed Modeling Language (UML) diagram

We have identi�ed two di�erent type of solutions when using natural lan-
guage processing to generate Uni�ed Modeling Language (UML) diagrams
(use case diagram, class diagram and so on) : (1) those which employ heuris-
tic rules or guidelines to perform NLP, and (2) those with machine learning
algorithms or deep learning with NLP.

Next, there is a list of the di�erent approaches and achievements made
by di�erent authors using heuristic rules and guidelines:

� Ibrahim and Ahmad [2010] proposed the Requirements Analysis and
Class diagram Extraction (RACE) method, which combines the use of
NLP techniques and domain ontologies to extract a class diagram from
a given set of informal requirements. The components used in this sys-
tem are: (1) OpenNLP as a parser, (2) a Stemming Algorithm; respon-
sible of abbreviating words by removing a�xes and su�xes, (3) Word-
Net; in charge of providing semantic validation during the process, (4)
domain speci�c Ontology Library; to enhance the concept's identi�ca-
tion process and (5) Class Extraction Engine, which uses heuristic rules
to extract the class diagram. The results obtained in their case study
are promising. The system was able to �nd concepts based on nouns,
verbs and noun phrases as well as identifying four di�erent types of
relationships: Generalization, Association, Composition, and Aggre-
gation. Nevertheless, it failed to identify one to one, one to many, and
many to many relationships.

� Deeptimahanti and Babar [2009] developed UML Model Generator
from Analysis of Requirements (UMGAR), a tool capable of generating
Use-case diagrams, analysis and design class model and collaboration

7

5.1. Natural Language Processing to extract some Uni�ed Modeling Language (UML) diagram

diagrams by processing requirements expressed in natural language,
doing it in an automatized way. The key components of this sys-
tem are: (1) Stanford Parser; used to extract information from each
requirement, avoiding the use of di�erent single components for tasks
such as stemming and tagging tools, (2) WordNet; which provides mor-
phological analysis and plural to singular conversion and (3) JavaRAP;
which provides pronoun's treatment. Ultimately, UMGAR is a domain
independent tool capable of generating di�erent UML models from re-
quirements expressed in natural language, o�ering also XML support
for the visualization of the diagrams created.

� Letsholo et al. [2013] designed Textual Requirements into Analysis
Models (TRAM), a tool able to assist in the automatic creation of
analysis models from requirements expressed in natural languages. It
o�ers three advantages over similar existing tools, (1) it closes the gap
between unstructured natural language requirements and its analysis
models by providing a series of conceptual patterns, named Semantic
Object Models (SOMs), (2) it o�ers requirements traceability to as-
sist analysts and developers to locate errors and (3) it validates and
improves the quality of the model generated by the domain expert or
software analyst by using a question and answer method.

� Zhou and Zhou [2004] proposed to use NLP techniques to handle the
written requirements and domain knowledge through ontologies to im-
prove the performance of class identi�cation. Their designed system
used two inputs: (1) text functional speci�cations and (2) structured
domain ontologies. Its output is a class diagram, which includes at-
tributes of each class and inter-class relationships. They were able
to identify the following relationships; generalization, aggregation and
association. Furthermore, they classi�ed the association relationships
into one-to-one, one-to-many and many-to-many. The core compo-
nents of the system are: (1) Transformation Tagger for part-of-speech
tagging, (2) Link Grammar as the sentence parser and (3) WordNet
for semantic validation. They outlined a possible improvement in the
diagrams generated by employing ontologies.

� Song et al. [2004] proposed a Taxonomic Class Modeling (TCM) method-
ology. It was able to apply noun analysis, class categorization, sentence
structure rules, checklists and heuristic rules for modeling. In their ap-
proach, they were able to identify: (1) classes from concepts stated as
noun phrases in the requirements statement, (2) classes stated as a verb

8

5.1. Natural Language Processing to extract some Uni�ed Modeling Language (UML) diagram

phrase in the requirements statement and (3) hidden classes that were
not explicitly stated in the requirements statement by applying do-
main knowledge to the class categories. They also employed WordNet
as many of the works previously presented. They found that the TCM
methodology is e�ective to identify domain classes for object-oriented
applications in di�erent domain �elds. They state that their solution is
practical as it can be easily and e�ectively applied to di�erent project
domains.

We have also analyzed relevant works made using machine or deep learning
in conjunction with NLP:

� Collobert et al. [2011] developed a uni�ed neural network architecture
and learning algorithm to be applied to NLP tasks, such as part-of-
speech tagging, chunking, entity recognition and semantic role label-
ing. They used the entire English Wikipedia, containing about 631
million words, to train their algorithm. They developed SENNA (Se-
mantic/syntactic Extraction using a Neural Network Architecture), a
standalone version of their architecture written in C. Based on their
benchmarks against state of the art systems, they managed to build a
tagging system with a good performance and minimum computational
requirements.

� Morwal and Chopra [2013] developed Name Entity Recognition using
Hidden Markov Model (NERHMM), which is able to perform name
entity recognition in natural languages. This system takes pre-labeled
data as input and generates a Start Probability, a Transition Probabil-
ity and an Emission Probability. They also implemented the Viterbi
algorithm that returns the optimal state sequence. Their results show
that with a lot of training they can obtain high accuracy, up to more
than 90% accuracy .

� dos Santos and Zadrozny [2014] proposed a Deep Neural Network
(DNN) architecture to join word-level and character-level representa-
tions to perform part-of-speech (POS) tagging. They developed two
POS taggers, one for English and one for Portuguese, with accuracies
of 97.32 % and 97.47% respectively.

� Gillick [2009] proved the feasibility of using support vector machines
for Sentence Boundary Detection (SBD). They obtained inspiring re-
sults in more than 26000 examples in English, with a 0.24% error rate.

9

5.2. Why Esperanto?

Despite this low error rate, their work is not complete, as there are
remaining cases that require further work, like abbreviations.

5.2 Why Esperanto?

Originally, English was considered for our project, but it implied the use
of multiple systems to perform parsing, stemming, semantic validation and
more,which are not available for Esperanto. By using Esperanto external
components are not required, as the parsing and other related tasks will be
performed by ourselves.

Besides, there are a couple more reasons that make Esperanto the most
preferable choice as the language to work in this project:

1. To apply traditional parsing a complete formal grammar of the lan-
guage is required, being context-free and unambiguous. Natural lan-
guages, like English or Spanish, do not meet those requirements. These
languages are complex and full of exceptions. Esperanto can be consid-
ered as a natural language for our purposes, as it includes all the com-
mon word types and grammatical features. Even though Esperanto's
grammar is complex and extensive, it is also less complicated due to
a complete lack of exceptions. Its morphology is concise and highly
regular, which will facilitate its parsing Aasgaard [2006].

2. The basics of the Esperanto grammar are covered by 16 rules, which
simplify and speed up the learning and processing of the language
Forster [1982].

There are also some disadvantages by using Esperanto, namely:

1. Esperanto is not widely extended, being spoken or understood by a
few millions of people.

2. Only users with knowledge of Esperanto would be able to use our
system.

In addition, some parsers have been already developed for Esperanto. They
take advantage of the highly regular morphology of Esperanto, its design to
avoid ambiguity and the total lack of exceptions. These parsers are EspGam
Bick [2007] and EOParser GermaneSoftware [2006].

EspGam is a Constraint Grammar parser for Esperanto. It is a rule
based system that applies contextual rules to tackle morphological disam-
biguation and perform syntactic analysis. The system contains a lexicon of

10

5.3. Putting it all together: MDE, MDA and DSL

28.000 lexemes built from data of a bilingual Esperanto-Danish dictionary
and a Danish-Esperanto machine translation system. The disambiguation
and syntactic rules are formulated by removing, selecting or mapping cate-
gory tags, based on sentence-wide context conditions. They measured the
performance of their parser against a hand-annotated standard corpus of
news text produced in Esperanto. The parser accuracy rates are of 99.5%
for POS and 92,1% for syntactic dependency.

EOParser is a morphology parser written in Ruby for Esperanto. EOP-
arser o�ers a text-based User Interface for querying, and it can also be used
as a library. The parser accepts Esperanto sentences and returns the trans-
lation as a string based output and the morphological properties as long as
it understands the semantic meaning of the query.

5.3 Putting it all together: MDE, MDA and DSL

5.3.1 Model Driven Engineering

Model Driven Engineering (MDE) is a bright approach to address platform
complexity and to provide the means to express domain concepts adequately
by the developers. MDE technologies aim to merge domain-speci�c modeling
languages with transformation engines and generators. The domain-speci�c
modeling languages let developers de�ne the relationships among concepts
in a domain, de�ning the semantics and constraints associated with these
domain concepts in a proper way. Then, the transformation engines and gen-
erators would synthesize di�erent artifacts, such as source code, deployment
descriptors or alternate model representations, which will ensure consistency
between application implementation and analysis information related with
functionality and requirements.

In addition, the learning curve is �attened due to the presence of graphic
elements that relate to familiar domains, helping system engineers and soft-
ware architects to ensure their software meet the user needs. Furthermore,
MDE tools enforce domain-speci�c constraints and perform model checking
that can detect and prevent many errors in the early life cycle of the software
Schmidt [2006].

MDE is supposed to increase productivity by maximizing compatibility
between systems (by reusing standardized models), simplifying the design
process (models with recurring design patterns in the domain) and improv-
ing communication between teams working on the system (by terminology
standardization and best practices used in the application domain).

Two of the most relevant MDE initiatives are:

11

5.3. Putting it all together: MDE, MDA and DSL

� Model Driven Architecture (MDA): provides a set of guidelines for
model-driven development using Object Management Group (OMG)
technologies.

� Eclipse Modeling Framework (EMF): supports the key MDA concept
of using models as the input for development and integration tools.

5.3.2 Model Driven Architecture

Model Driven Architecture (MDA) is a software design approach based on
the Uni�ed Modeling Language (UML) and other standards for storing, vi-
sualizing and exchanging software designs and models. MDA encourages
the creation of machine-readable, highly abstract models developed indepen-
dently of the implementation technology and stored in standardized reposi-
tories, where they can be accessed repeatedly and automatically transformed
into schemes, code skeletons, test cases and deployment scripts for di�erent
platforms Kleppe et al. [2003].

MDA has three main objectives: (1) portability (2) interoperability and
(3) reusability. MDA promises to overcome the challenges in highly intercon-
nected and changing systems, regarding business rules as well as technology,
o�ering a framework that provides the following:

� Portability: increasing the reutilization of existing applications and
reducing the cost and complexity of the development and maintenance
of applications.

� Platform interoperability: using strict methods to ensure that the stan-
dards based in di�erent technology implementations all have the same
business rules.

� Platform independence: reducing the time, cost and complexity asso-
ciated with applications deployed using di�erent technologies.

� Productivity: allowing developers, designers and system administra-
tors to use languages and concepts that are familiar to them, facilitat-
ing the communication and integration between work teams.

MDA speci�es three basic models that compose a system, where each of
them can be considered as a level of abstraction in which di�erent models
can be built.

These models are Miller et al. [2003]:

12

5.3. Putting it all together: MDE, MDA and DSL

1. A Computation Independent Model (CIM) is a view of the system from
the computation independent viewpoint. It does not contain details of
the structure of the systems. Sometimes called a domain model, it
uses a vocabulary familiar to the practitioners of the speci�c domain
used to its speci�cation. The main user of the CIM is the domain
expert or business consultant. It speci�es the functionality of a system
without considering construction details. It plays an important role in
closing the gap between domain experts and experts of the design and
construction of the system.

2. A Platform Independent Model (PIM) is a view of the system from the
platform independent viewpoint. A PIM presents an speci�ed degree of
platform independence in order to be suitable for di�erent platforms of
similar type. It describes the construction of a system from an ontolog-
ical level, specifying the system construction without implementation
details. A ontological model Dietz and Hoogervorst [2007] should have
the following properties: (1) composition: a set of elements of some
category, (2) an environment: a set of elements of the same category,
(3) production: the elements in the composition produce products or
services that are delivered to the elements in the environment and (4)
a structure: a set of interactions between the elements in the compo-
sition, those in the structure and those in the environment.

3. A Platform Speci�c Model (PSM) is a view of the system from the
platform speci�c viewpoint. A PSM combines the speci�cations de-
�ned in the PIM with the details that explain how that system uses a
particular type of platform. A PSM is a more detailed type of PIM,
where platform speci�c elements are included. A target platform is
necessary for the de�nition of a PSM.

13

5.3. Putting it all together: MDE, MDA and DSL

Figure 5.1: Model Driven Development. MaheshH.Dodani [2006]

In �gure 5.1 we can observe how the CIM does not include any system
details as it is de�ned by business requirements. Design experts connect new
technologies with artifacts meeting the domain requirements, which yields a
PIM. Once this PIM is completed, using a transformation process based on
the target implementation platform the PSM is generated.

5.3.3 Eclipse Modeling Framework

Eclipse Modeling Framework (EMF) is a framework and code generation tool
for building Java applications based on simple model de�nitions. EMF uni-
�es three technologies: Java, XML and UML. EMF o�ers a runtime frame-
work that allows modeled data to be easily validated, persisted and edited in
a User Interface (UI). Metadata is useful for enabling generic processing of
any data using a uniform and re�ective API. One of the most relevant aspects
of EMF is its interoperability with other EMF-based tools and applications
Steinberg et al. [2008].

The model used to represent models in EMF is Ecore, which is a simpli�ed
subset of UML. The basic elements of Ecore are:

1. Eclass: used to represent a modeled class. It has a name and can
contain attributes and references.

14

5.3. Putting it all together: MDE, MDA and DSL

2. EAttribute: employed to represent a modeled attribute. It has a name
and a type.

3. EReference: represents one end of an association between classes. It
has a name, a reference type, which is another class, and a boolean
that indicates whether it represents containment or not .

4. EDataType: indicates the type of an attribute. It can be a primitive
type, such as an int or �oat, or an object type like java.util.Date.

EMF helps closing the gap between modelers and Java programmers. Models
can be de�ned using UML by an XML Schema or by using annotations on
Java interfaces. Given a model, EMF allows the user to generate any of the
other artifacts and the implementation classes that represent the model.

5.3.4 Domain Speci�c Languages

A Domain Speci�c Language (DSL) is a programming language or executable
speci�cation language that o�ers expressive power usually restricted to a
particular problem domain through appropiate annotations and abstractions
Van Deursen et al. [2000]. Some relevant and widely known DSL languages
are SQL, BNF and HTML.

Adopting a DSL approach to software engineering involves risks and op-
portunities, some of the later being:

� Problems can be expressed with a precise language and a level of ab-
straction such as the problem domain. Then, domain experts under-
stand, validate, modify or develop DSL programs.

� DSL programs are concise, largely self-documented and can be reused
for di�erent purposes.

� DSLs enhance productivity, reliability, maintainability and portability.

� DSLs express domain knowledge, and thus enable the conservation and
reuse of this knowledge.

� DSLs allow validation and optimization at the domain level.

The disadvantages of the use of a DSL are:

� The costs of designing, implementing and maintaining a DSL as well
as the costs of educating DSL users.

15

5.3. Putting it all together: MDE, MDA and DSL

� The limited availability of DSLs, the di�culty of �nding the proper
scope for a DSL and balance between domain-speci�city and general-
purpose programming language constructs.

� The potential loss of e�ciency with respect to hand-coded software.

There are di�erent kinds of DSLs syntactically, the most used being either
graphical, such as Sirius Foundation [2007a] or textual lik Xtext Founda-
tion [2006].

5.3.4.1 Sirius

Sirius is a framework built on top of a Graphical Modeling Framework(GMF)
that allows to create, visualize and edit models using interactive editors.

Sirius provides di�erent viewpoints to perform analysis and look at the
di�erent roles on the same domain model. Sirius provides a graphical mod-
eler to create a Domain Speci�c Model (DSM), which de�nes concepts and
their relationships within the model. It also allows for an easy transforma-
tion of a DSM to a speci�c representation of the model, o�ering di�erent
representations such as diagrams, tables, cross-tables or trees. The user can
create, modify and validate his designs through these representations Viyovi¢
et al. [2014].

Sirius' strengths are:

� Adaptability to any EMF compatible DSM.

� Strong separation between semantic and representation models.

� Support for di�erent representations of a domain model.

� Based on an open and widely used industry standard, EMF.

� Easy to use and rapid development.

� High level of extensibility.

In �gure 5.2 we can observe an implementation using Sirius's graphical editor
of a system employing cameras, robots and di�erent sensors.

16

5.3. Putting it all together: MDE, MDA and DSL

Figure 5.2: Sirius Modeling Perspective Foundation [2007a]

5.3.4.2 Xtext

Xtext is a framework designed to quickly develop tools for textual languages.
These languages range from small Domain Speci�c Languages (DSL) to Gen-
eral Purpose Languages (GPL), covering textual con�guration �les and re-
quirement documents written in natural languages. The bene�ts of choosing
the appropriate tool are an improvement in readability, writability and un-
derstandability of documents written in those languages.

Xtext �rst de�nes a grammar, then generates a parser, serializer and
a smart editor for that language. Even all the generated artifacts can be
customized through dependency injection. Xtext provides an easy-to-use
API for tasks that need customization, such as validation or linking/scoping.
Xtext relies in the Eclipse Modeling Framework (EMF), with the Abstract
Syntax Tree (AST) generated by Xtext's parser being an Ecore model (refer
to section 5.3.3). The correspondent Ecore model can be either derived
from the grammar or speci�ed explicitly. In consequence, Xtext allows an
easy integration with Eclipse Modeling environment tools, such as Model-
to-Model or Model-to-Text transformation languages Eysholdt and Behrens
[2010].

In the Eclipse environment, the Graphical Modeling Framework (GMF)

17

5.3. Putting it all together: MDE, MDA and DSL

is a tool that allows developers to easily de�ne graphical editors for EMF-
based models. Graphical editors are usually not powerful enough, as many
problems are better described through textual speci�cations.

We will now we present di�erent applications and solutions that have
been accomplished thourgh Xtext:

� Behrens [2010] proposed an implementation of a model-based solution
using a DSL to describe the structure and behavior of mobile appli-
cations. They provided the tools to support static analysis, code nav-
igation, as well as compiler and simulator integration of the iPhone
development platform. They built a textual DSL in conjunction with
a complementary code generator to provide inexperienced developers
in Objective-C and the underlying API provided by the iPhone SDK
(iOS SDK) with tools to support the developers' learning process.
They chose Xtext to develop the DSL and to implement various valida-
tion rules. They bene�ted from Xtext's productivity features, such as
content assist, code templates and version control integration. In top of
that, they contributed with the following additional features: (1) sym-
bolic integration: providing content assist, error markers for unknown
�les and quick �xes in case of typing errors for external resources, (2)
incremental build: through a background service that regenerates ar-
tifacts as needed, so it can transparently trigger other compilers and
builders after code's execution and (3) invocation of the iPhone simula-
tor: the launch of the iPhone simulator from the DSL editor is similar
to launching a Java process from a Java �le. The code generator was
developed with Xpand. The Eclipse platform was used to implement
incremental code generation, compilation of the generated Objective-
C code and invocation of the iPhone simulator provided by the Apple
SDK without the need to manage external tools manually. The devel-
opers were able to implement additional views and test them inside the
Eclipse based development environment. The full development cycle
of creating, testing and changing applications is covered with this tool
chain.

� Heitkötter et al. [2013] proposed md2; an approach for model driven
cross-platform development of apps. Following this approach, devel-
opers de�ne the behavior of an app in a high-level (domain-speci�c)
language designed for describing business apps in a short and brief way.
From the model, native apps for Android and iOS are automatically
generated and are able to access the device's hardware and provide a
native look and feel. Xtext was used to construct the abstract syntax

18

5.3. Putting it all together: MDE, MDA and DSL

and the textual notation of the language. The editor provided by Xtext
o�ers desirable features, such as syntax highlighting, content assistance
and validation, allowing app developers to quickly specify the model
of their app and help them during modeling. The code generation is
automatically run once the developer saves his model. The model is
preprocessed to simplify subsequent generation, then the Android and
iOS code generator generates the apps for each platform translating
the model into source code. Java code is generated for Android, as
well as Objective-C code for iOS. The generator also creates XML �les
to include a graphical user interface (GUI) in Android and to spec-
ify the data model in iOS. Furthermore, project �les and settings are
generated for Eclipse (Android) and Xcode (iOS). md2 proved to be a
suitable model-driven cross-platform app development tool for typical
business applications for mobile devices.

� Conejero et al. [2015] proposed a Model-Driven approach to develop
video-surveillance applications. They proposed this solution to de-
liver very reusable and highly con�gurable systems. They developed
VideoDSL; a DSL to de�ne video-surveillance applications in a high
level of abstraction. These applications can be de�ned using a graph-
ical editor or a textual editor. The models de�ned using their DSL
automatically create the con�guration of the applications. Their ap-
proach provides di�erent versions of the system and a standalone, web
and mobile applications. Xtext is used to de�ne the DSL in a textual
way and perform di�erent validations applied to the grammar de�ned
in Xtext to ensure that certain restrictions are enforced. They also
used Xpand to generate SQL code that stored the needed information
in their database. All these processes occur in model to code transfor-
mations.

� Funk and Rauterberg [2012] developed PULP, a DSL that provides
abstraction from asynchronous JavaScript, state machines and access
to cross-platform media playback, which is generated in a �nal model-
to-text transformation. In addition, the DSL allows tying content such
as images and media �les together by modeling the dynamic behavior,
movements and control �ow. They used Xtext to provide a textual
editor with syntax highlighting, auto completion and validation. The
code generation is performed using Xtend, considered to be the suc-
cessor of Xpand. The PULP generator for HTML5 runs automatically
when a �le is saved in the editor, creating a hierarchy of �les including

19

5.3. Putting it all together: MDE, MDA and DSL

the images and media related. Lastly, JavaScript code is generated
according to the given interaction capabilities and de�ned behavior of
objects. PULP proved to be suitable for rapid prototyping of web-
based games.

20

6. Domain Speci�c Language

We developed a Domain Speci�c Language (DSL) to implement the most
common structures of the language Esperanto. We decided to use Xtext
Foundation [2006] as it is one of the most common tool employed to create
textual DSLs. That way we could bene�t from its features, such as the
generation of a parser, serializer and a smart editor. The DSL that we
developed is actually a textual editor for the Esperanto language, to be more
precise, to a big subset of the Esperanto language. Another reason to use
Xtext is the fact that Xtext uses and integrates with the Eclipse Modeling
Framework Steinberg et al. [2008] (see section 5.3.3) , a framework and code
generation tool for building Java applications based on model de�nitions.
We provided further customization for the smart editor, so the user would
feel more comfortable when typing his requirements. In that way, we have
uni�ed three technologies, Java, XML and UML.

Model Driven Engineering and Domain Speci�c Languages are comple-
mentary and necessary for model-driven approaches. MDE is used to de�ne
the type of models we need to describe a software application. DSLs are
used to de�ne languages for expressing the models. MDE allows to de�ne
in a more precise way the modeling dimensions. This is relevant because
one of the biggest drawbacks of DSL design is that the scope grows out of
proportion, due to changing requirements, and the result is that the DSL
becomes a GPL. den Haan [2009].

In our project, by using MDE and a DSL, changing the underlying tech-
nologies that the system depends on is a more much easier process than for
the majority of traditional systems. We believe this to be a huge advantage
of our system.

21

6. Domain Speci�c Language

Figure 6.1: Metamodel that implements the Esperanto grammar.

The model created has been represented in �gure 6.1. EsperantoModel
contains a series of Statements, where each Statement is composed of dif-
ferent parts, which are of type StatementType. A StatementType can be
of type PrepositionsNouns, Sverb, PrepConjuction, VerbAsAdjective, Arti-
cleNumeral, SpecialCharacter or Questions and so on. This model contains
the behaviour of the most common type of structures in the Esperanto lan-
guage.

We use Xtext's grammar to de�ne our Esperanto DSL (see �gure 6.2,�g-
ure 6.3, �gure 6.4).

22

6. Domain Speci�c Language

Figure 6.2: De�nition of the main structures in Xtext 23

6. Domain Speci�c Language

In �gure 6.2 is shown the main de�nition of the grammar. We start by
creating the EsperantoModel, which will contain a list of Statements.Each
statement will have a list named parts which will contain several Statement-
Types.StatementType can be a PrepositionsNouns, Sverb, PrepConjuction,
VerbAsAdjective, ArticleNumeral, Special character or Questions. In order
to understand why the di�erent structures were included in the model, we
provide some examples of the kind of sentences that each structure would
contain (see table 6.1) .

Structure Esperanto English

PrepositionsNouns por la honoro kaj da gloroj. for honor and glory

ValidPreposition preter nia auto past our car

ValidNoun la bela grandega strando
domo

the beautiful huge beach
house

PrepConjuction trans kaj across and

SVerb lia auto preskau kraso bela
malbone hierau

his car almost crash pretty
badly yesterday

VerbAsAdjective la kuranta auto. the running car

ArticleNumeral dudek du mil sepcent dudek
nau

twenty two thousands, seven
hundreds, two tens and nine

Table 6.1: Examples of the main structures in our model

We believe its important to note that the order of the members in the
syntax is relevant.

PrepositionsNouns has the next structure:

� An optional list of prepositions

� A list of nouns

� A list of conjunctions

� An optional second list of prepositions

� Multiple optional lists of prepositions

ValidPrepositions has the following members:

� An optional adverb

� An optional preposition

� A preposition

ValidNoun has the following structure:

24

6. Domain Speci�c Language

� An optional article

� Multiple optional adjectives

� Multiple optional pronouns

� An optional second article

� A noun

� An optional dash

� An optional second noun

� An optional second adjective

PrepConjuction has the next structure:

� An optional list of prepositions

� A conjunction

Sverb has the following members:

� An optional pronoun

� An optional noun

� An optional adverb

� An optional preposition

� A verb

� An optional colon

� An optional adjective

� An optional second adverb

VerbAsAdjective has the following structure:

� An optional article

� A verb

� A noun

25

6. Domain Speci�c Language

ArticleNumeral has the next structure:

� An optional list of prepositions

� An optional article

� A list of numerals

Figure 6.3: Terminal rules de�nition in Xtext

26

6. Domain Speci�c Language

The �gure 6.3 contains the terminal rules used to identify di�erent types
of words, such as verbs, adjectives,etc.

� The verb identi�cation rule categorizes as verbs words ending in �as,
is, us, anta, ata, inta, ita, onta, ota, u, ante, inte, onte, ate, ite, ote, i�.

� We use two rules to identify adverbs, one that captures words ending
in �e� or �en�, and another for words ending in �au�.

� The noun rule categorizes as nouns words ending in �o� �oj� or �ojn�.

� The adjective rule categorizes as adjectives words ending in �a� �aj� or
�ajn�.

� We use many auxiliary rules to capture special characters, such as �(�,
�)� and �/�, questions, �?�, dashes, �-�, colons �:� and a rule to identify
end of line (WS rule).

27

6. Domain Speci�c Language

Figure 6.4: Parser rules de�nition in Xtext

The �gure 6.4 contains di�erent parser rules to identify pronouns, nu-
merals, conjunctions, articles, adverbs and prepositions.

� We use a list of the most common pronouns in Esperanto.

� We store a list of the most common pre�xes for numerals in Esperanto.

� We use a comma �,�, and (�kaj� and �au� as conjunctions.

� The only de�nite article in esperanto is �la�, alike for all genders, cases
and numbers.

� We use pre�xes for the formation of adverbs.

� We store a list of the most common prepositions in Esperanto.

28

7. Extraction of UML Class

Diagram

In this section, we will present the di�erent heuristic rules employed to ex-
tract the class diagram. These rules were presented in Ibrahim and Ahmad
[2010].

7.1 Concept Identi�cation

The �rst step needed to obtain a class diagram from natural language re-
quirements is to identify the concepts present in it. To identify and extract
concepts we will:

1. Identify the stop words. In our case, we found that typically these are
usually prepositions, articles, pronouns and conjuctions.

2. Calculate the total number of words T in the document without the
stop words, the number of occurrences Ow of each word, and then
calculate the frequency F of each word, according to:

F = Ow/T (7.1)

3. Save the identi�ed proper nouns, noun phrases and verbs as concepts.

7.2 Class Identi�cation

After extracting the concepts, we can process them to extract candidate
classes by applying the following rules:

1. If a concept only appears once in the document and its frequency is
less than 2%, then it will be ignored.

2. If a concept is related to the design elements, then it will be ignored.

3. If a concept is related to Location name or People name, then it will
be ignored.

4. If a concept is an attribute, then it will be ignored.

29

7.3. Attribute Identi�cation

5. If a concept is a noun phrase (noun + noun) and the secound noun is
an attribute, then the �rst noun is a class and the second one is an
attribute of that class.

6. If a concept does not satisfy any of the rules, then it's likely a class.

7.3 Attribute Identi�cation

The following rules assisted us in extracting attributes:

1. If a class is followed by the verb "have/has" and a colon, then the
following enumeration is a list of attributes of the class.

2. If a concept is a noun phrase (noun + noun) and the secound noun is
an attribute, then the �rst noun is a class and the second one is an
attribute of that class.

7.4 Relationship Identi�cation

Performing verb analysis and applying the next rules we have extracted
relationships:

1. If we have a compound name (noun + noun) and the second one is
a class, then the compound name is a generalization to the already
identi�ed class (second noun).

2. If the concept is a verb, and we can �nd a sentence in the from C1-V-
C2, where C1 and C2 are classes, then V is an Association relationship.

3. If the concept is a verb, satis�es Relationship identi�cation Rule 2 and
the verb is one of the following (in Esperanto) ["require", "depends
on", "rely on", "based on", "uses", "follows"] then the relationship
discovered is a Dependency relationship.

4. Given a sentence in the form C1 + R1 + C2 + AND + C3 where C1,
C2 and C3 are classes and R1 is a relationship, then the relationship
R1 applies between the classes C1 and C2 and between C1 and C3.

30

8. Implementation

In this section, we will show the role of the technologies employed in our
system. As previously stated, Xtext has been the tool chosen to develop
our system. Xtext is used to create the DSL that contains the grammar of
the Esperanto language. When creating a new Xtext project, the following
projects are created:

� A project that contains the grammar de�nition and all language-
speci�c components (parser,lexer,linker,validation,etc.)

� A project to run unit tests for the language

� A project to manage platform-independent IDE functionality (e.g. ser-
vices for content assist)

� A project that contains the eclipse editor and other workbench related
functionality

� A project to perform unit test for the editor.

We use Xtext's grammar to de�ne our Esperanto DSL (see section �6).
We also have a "mwe2" extension �le(�gure 8.1)where we can customize
several options about our project, such as if we want to generate a serializer,
a validator, the extension �les for our language, and so on.

31

8. Implementation

Figure 8.1: Con�guration �le

We would like to point out in �gure 8.1 the � �leExtensions � attribute
which will dictate the extension of the �les that the users will have to use,
as we will explain later.

One of the more helpful features of Xtext is the maping to objects
from the elements in the syntax de�nition, Xtext creates Java objects
for the elements used in the grammar (see �gure 8.2) . The package
�com.uniovi.esperanto� contains interfaces that are implemented by the
classes pressent in the package �com.uniovi.esperanto.impl�.

32

8. Implementation

Figure 8.2: Mapping to Objects

33

8. Implementation

Figure 8.3: Interface of VerbAsAdjective

For example, in �gure 8.3 and �gure 8.4 we can see the mapping made for
�VerbAsAdjective�, containing an interface and a class, one of the simplest
structures in our grammar.

Figure 8.4: Implementation of VerbAsAdjective

34

8. Implementation

In our case, we used two generators, one to generate a text �le with the
processed output of a user's requirements and another to generate the UML
Class diagram. We have used Java and Xtend for these generators. The
behaviour of Xtext and its generators is that once the user saves the changes
made in his editor, the generators are automatically executed, generating
the di�erent outputs when the user saves.

The Code 8.5 contains the code used for the text generator, in this case,
we used a Xpand template. The text generator was not developed to contain
all the structures in the grammar, as it was used on the early stages of
development to better understand Xtext's behavior.

Figure 8.5: Text generator

The generator used to create the UML diagram is a long program, with
over 900 lines of code, we will simply show the most interesting parts.

In Code 8.6 is the processing of VerbAsAdjective, in this case, we take
into consideration the present verbs and nouns to the word count, and we
store the words in their respective lists, according to their type.

35

8. Implementation

Figure 8.6: Initial processing of VerbAsAdjective

In Code 8.7 is the method used to add the di�erent type of words.

36

8. Implementation

Figure 8.7: Method used to include words in their category list

In Code 8.8 we can see a fragment of code to calculate the word frequency.
In this case, we have to check if the noun has a capital starting letter.

37

8. Implementation

Figure 8.8: Fragment of code to obtain the word frequency.

Another part of the UML generator that we would like to show is in Code
8.9 , the association analysis is a complex task, in the fragment shown we
can observe how we iterate through the statements, with di�erent approaches
according to the type of the words.

Figure 8.9: Fragment of code for association determination

38

8. Implementation

We also customized the behavior of the editor's syntax highlighting and
the outline view, for the latter, we displayed the simple elements that com-
pose the grammatical structures.

The highlighting in the editor is obtained through the following code (
Code 8.10 and Code 8.11) :

Figure 8.10: Code for the highlighting in the editor (I).

39

8. Implementation

Figure 8.11: Code for the highlighting in the editor (II).

Some of the modi�cations done to the outline view are present in Code
8.12, in this particular case, we de�ne the text and the images that should
be shown in the outline.

40

8. Implementation

Figure 8.12: Fragment of code for the desired outline view of VerbAsAdjec-
tive elements

Code 8.13 and �gure 8.14 illustrate the type of customization that can
be achieved into the graphical editor, where each type of structure has its
own color. In the outline, every member of each structure is categorized
according to their type.

Figure 8.13: Sample of the customized editor view with some Esperanto text

41

8. Implementation

Figure 8.14: Outline view customization

Furthermore, we used the UML2 package to create the diagram and its
di�erent components Kenn.Hussey [2011].

In order to use the UML2 package, we had to install the package, as shown
in �gure 8.15 and modify the �le �MANIFEST.MF� inside the �META-INF�
folder of the main project (see �gure 8.16) :

Figure 8.15: UML2 package installation

Figure 8.16: Dependencies added to manifest.mf to work with UML 2.0

42

8. Implementation

Using the UML2.0 package, we created a class to create the di�erent
elements of a UML class diagram in a clean and straight way, covering the
confusing notations and items that this package o�ers, shown in �gure 8.17.
We believe its a useful utility, that is why we have uploaded it to GitHub,
so anyone can use it.

https://github.com/1bertillo/UML

Figure 8.17: Class to create a UML class diagram

In our UML generator, in Code 8.18 is the code that creates the diagram
when all the processing is completed.

43

https://github.com/1bertillo/UML

8. Implementation

Figure 8.18: Code to generate the UML class diagram

The diagram generated is stored in a �le with the extension �uml�, �g-
ure 8.19 contains a view of that �le.

44

8. Implementation

Figure 8.19: UML model editor view of the generated class diagram

Furthermore, in order to generate a graphical representation of the di-
agram, we have used Papyrus Foundation [2007b], a graphical editing tool
for UML2. In order to obtain a graphical representation, we have to use the
�le generated to create a new papyrus model, and select class diagram as its
type. The graphical representation of the generated model can be seen in
�gure 9.1 .

45

9. Evaluation and discussion

We have used two methods to evaluate our system: we have compared our
system against the approach proposed by Ibrahim and Ahmad [2010] and we
have tested the diagram generated by our system against diagrams extracted
by fellow engineers.

9.1 System vs system

In order to validate our system and obtain a general assessment for accu-
racy and e�ciency of our system, we have tested it against the RACE tool
developed by Ibrahim and Ahmad [2010]. We have used the same input
requirements, a library system, with two changes:

1. We have added the following line (in Esperanto) to provide a depen-
dency example: "The librarian depends on the library".

2. We have added attributes to the requirements. As we have not em-
ployed ontologies, only the attributes present in the text could be ex-
tracted into the diagram.

This is the original input used by RACE (English):\\ "The library Sys-
tem is used by the Informatics students and Faculty. The Library contains
Books and Journals. Books can be issued to both the Students and Faculty.
Journals can only be issued to the Faculty. Books and Journals can only be
issued by the Librarian. The deputy-Librarian is in-charge of receiving the
Returned Books and Journals. The Accountant is responsible for receiving
the �ne for over-due books. Fine is charged only to students, and not to the
Faculty."\\ Whereas our input used for the testing (Esperanto) is:\\ "La
biblioteko sistemo estas uzata de la informadiko studentoj kaj fakultato.La
biblioteko enhavas librojn kaj revuoj.Libroj povas esti elsendita al kaj la
studentoj kaj fakultato.Revuoj nur povas esti eldonita al la fakultato.Libroj
kaj revuoj nur povas esti eldonita fare de la bibliotekisto.La deputito bib-
liotekisto estas komandata de ricevi la reiris libroj kaj revuoj.La librotenisto
respondecas pri ricevi la monpuno por posttempa libroj.La monpuno estas
sargita nur al studentoj, kaj ne al la fakultato. La bibliotekisto depen-
das de la biblioteko.Unu libroj havas: nomo, titolo, autoro, eldonisto, is-
bnno, identingo, genro kaj la publikigas dato.La biblioteko havas: nomo,
malferma tempo,proksima tempo kaj legantoj.La studentoj havas: nomo,
sekso kaj membreco nombro.La deputito bibliotekisto havas: nomo, sekso,

46

9.1. System vs system

salajro kaj membreco nombro.La fakultato havas: nomo kaj membreco nom-
bro.Fakultato estas savita fakultato nomo, kaj membreco nombro.La mon-
puno havas: kvanto kaj la ricevi daton.Bibliotekisto estas konservita bib-
liotekisto nomo, bibliotekisto salajro, bibliotekisto sekso kaj bibliotekisto
identingo.Unu revuoj havas: nomo, titolo, eldonisto, isbnno kaj la publiki-
gas dato.Unu librotenisto havas: nomo, salajro, sekso kaj identingo."

They extracted nine classes, identi�ed the following relationships: six
associations, two composites and one generalization, whereas we were able to
extract ten classes, eight associations,two compositions, two generalizations
and one dependency. The diagram that our system extracted is included in
�gure 9.1.

Figure 9.1: Class diagram extracted by our system

Interestingly, the RACE's diagram generated includes several attributes
for the classes, that are not explicitly present in the document, and they

47

9.1. System vs system

authors not very clear as to how they identi�ed them. We believe, it may re-
sult prejudicial due to the addition of unnecessary information. To compare
between the di�erent systems we have taken into the account the number of
valid classes, associations, compositions and generalizations identi�ed. We
do not know how RACE obtained the attributes they included in their di-
agram, so we believe comparison between the two systems regarding the
attribute validation is unrealistic.

Analyzing the results exposed in Table 1 we have observed that our sys-
tem extracted an extra class "informadiko studentoj" (informatics students)
and generalization relationship between that class and the class "studen-
toj" (students) that was ignored by RACE system. We also extracted the
following extra �ve association relationships:

� Between "monpuno" (�ne) and "fakultato" (faculty)

� Between "monpuno" and "librotenisto" (accountant)

� Between "libroj" (books) and "librotenisto"

� Between "biblioteko" (library) and "fakultato"

� Between "biblioteko" and "studentoj"

In the case of the associations identi�ed only by our system, all are valid
except the one between "monpuno" and "fakultato". The reason is that
in the requirements is expressed that the �ne should only to be charged to
students. In summary, we identi�ed an extra class, �ve more association
relationships, which only one of them is amiss, one more generalization rela-
tionship, the same composition relationships and a dependency association
when compared to the RACE system. Overall, we believe that with this
test we proved that it is possible to succesfully apply natural language pro-
cessing techniques with arti�cial languages that are not extended. We eased
the implementation when auxiliary systems are not available. It will impact
on the manteinance and scalability of systems based in languages similar to
Esperanto.

48

9.2. System vs experts

9.2 System vs experts

We gave the requirements document used by RACE, in English, to di�erent
experts and asked them to create a UML class diagram to the best of their
knowledge. One of them is shown in �gure 9.2.

Figure 9.2: Class diagram extracted by expert 1 (E1)

This diagram is a more generic solution, looking at future additions in the
system, like the two generic classes, "Item" and "Employee". Nonetheless,
all the relevant classes and their relationships have been identi�ed. The rest
of the diagrams made by the experts are shown in �gure 9.3, �gure 9.4,
�gure 9.5 and �gure 9.6 :

49

9.2. System vs experts

Figure 9.3: Class diagram extracted by expert 2 (E2)

50

9.2. System vs experts

Figure 9.4: Class diagram extracted by expert 3 (E3)

51

9.2. System vs experts

Figure 9.5: Class diagram extracted by expert 4 (E4)

52

9.2. System vs experts

Figure 9.6: Class diagram extracted by expert 5 (E5)

To compare between the expert's diagram and our system's diagram, the
following parameters will be analyzed:

� Whether all the relevant classes are identi�ed or not. These classes
being: "Fine", "Librarian", "Journals", "Accountant", "Students",
"Deputy Librarian", "Faculty", "Books", "Library".

� Check if the composition relationships "Book-Library" and "Journal-
Library" exist.

53

9.2. System vs experts

� Check if a generalization relationship between "Librarian" and
"Deputy Librarian" exist.

� Check if the following association relationships are present: "Students-
Books","Librarian-Books","Faculty-Books" and "Fine-Students".

The results have been collected in Table 2, showing that all the relevant
classes that our system has identi�ed have also been extracted by the experts,
the composition relationships have been all extracted by our system and
the experts, the generalization have been identi�ed by the majority of both
parties. Nevertheless, there are di�erent results in the identi�cation of the
associations by the experts.

54

9.3. Other evaluation

9.3 Other evaluation

To provide a more complete evaluation, we have tested our system against a
class diagram generated by an expert with wide domain knowledge Fakhrout-
dinov [2013]. The requirements in English are the following:
�Each customer has unique id and is linked to exactly one account. Account
owns shopping cart and orders. Customer could register as a web user to be
able to buy items online. Customer is not required to be a web user because
purchases could also be made by phone or by ordering from catalogues. Web
user has login name which also serves as unique id. Web user could be in
several states - new, active, temporary blocked, or banned, and be linked to
a shopping cart. Shopping cart belongs to account.Account owns customer
orders. Customer may have no orders. Customer orders are sorted and
unique. Each order could refer to several payments, possibly none. Every
payment has unique id and is related to exactly one account. Each order has
current order status. Both order and shopping cart have line items linked
to a speci�c product. Each line item is related to exactly one product. A
product could be associated to many line items or no item at all. �

The Esperanto requirements used to generate a diagram in our system
are:
�Unu kliento havas : unika identigilo. Kliento porti konto. Konto posedas
komercacaro kaj ordonojn. Kliento povis registri kiel retouzanto. Unu re-
touzanto havas : la ensaluta nomo, nova stato, la blokita stato kaj la malper-
mesita stato. retouzanto estas ligita al komercacaro. Konto posedas kliento
ordonojn. Kliento povas ne ordonojn. Ciu ordonojn povus rilati al pluraj
pagoj, eble neniu. Pagoj havas : unika identigilo. Pagoj estas rilatajn al
unu konto. Unu ordonoj havas : la ordon statuso. Ordonoj kaj komercacaro
esti linioerojn ligita al produkto. La linioelemento esti ligita la produkto.
Produkto povus asocii al multaj linioerojn au neniu elemento.�

The diagram extracted (in English) for the online shopping case can be
shown in �gure 9.7. In this case, we can see that many of the attributes and
relationships are included in the diagram using domain knowledge.

55

9.3. Other evaluation

Figure 9.7: Class diagram extracted by an expert for the online shopping
case. Created by Fakhroutdinov [2013]

Because of the huge impact that the expert's domain knowledge has in
the diagram extracted, we consider the following elements for this evaluation:

� Whether all the relevant classes are identi�ed or not. These classes
being: web user, customer, account, payment, order, shopping cart,
lineitem, and product.

� Check if the composition relationships �Customer-Account� , �Account-
Shopping cart� and �Account-Order� exist.

� Check if the following association relationships are present: �Customer-
Web user�, �Payment-Account�, �Payment-Order�, �LineItem-Order�,

56

9.3. Other evaluation

�LineItem-Product�, �Shopping cart-LineItem�.

The diagram extracted by our system is shown in �gure 9.8 .

Figure 9.8: Class diagram extracted by our system

We were able to identify nine classes, three composition relationships,
one generalization and eight association relationships.

57

9.3. Other evaluation

Expert Our system

Classes - -

Web user y y

Customer y y

Account y y

Payment y y

Order y y

Shopping cart y y

Line item y y

Product y y

Composition - -

Customer-Account y y

Account-Shopping cart y y

Account-Order y y

Association - -

Customer-Web user y y

Payment-Account y y

Payment-Order y y

LineItem-Order y y

LineItem-Product y y

Shopping cart-Line item y n

Total 17/17 16/17

Table 9.1: Class diagram extraction comparison between expert with wide
domain knowledge and our system

The results have been collected in table 9.1, showing that all the relevant
classes that our system has identi�ed have also been extracted by the expert,
the composition relationships have been all extracted by our system and the
experts, we have identi�ed a generalization between �ordonoj� (Order) and
�kliento ordonoj� (Client Order). The association relationships have all been
identi�ed by our system, except for the one between �Shopping cart-Line
Item�. Despite this, we have identi�ed association relationships that were not
included by the expert, some of them are between �Ordonoj-Kliento� (Order-
Client), �Retouzanto-komercacaro� (Web user-Shopping cart) and �linieroj-
konto� (LineItem-Account).

We conclude this section by stating that our system has successfully
generated a class diagram with all the relevant classes implied and many
of the association relationships between them, including also generalization

58

9.3. Other evaluation

relationships and composition relationships. In addition, dependency rela-
tionships have also been identi�ed, and our system has been validated by
comparison with two expert's diagram and a diagram created by RACE.

59

10. Conclusions and future

work

UML class diagram generation using a requirements document expressed in
natural language is challenging. It requires a �ne grain approach in design
and implementation. We have employed a domain speci�c language to model
the behaviour of an arti�cial language, Esperanto, in order to facilitate the
natural language processing techniques that need to be applied to extract
such diagram. We have used the most updated heuristic rules to identify
concepts, classes, attributes and relationships. We have developed our pro-
totype using Xtext, as we considered it is the most bene�cial tool available
at the moment which gives an exhaustive and detailed feedback to the user.
We have performed two di�erent evaluations: one comparing our system
against another successful system and another comparing the class diagram
extracted by our system against those made by experts in the �eld. Our
system provides a friendly environment to the user. Due to our approach,
our system is easily extendable and maintainable, making future upgrades
to our system straightforward and e�ortless.

Our system could be improved in a few ways: for example by consid-
ering synonyms, so we don't add those elements that already exist in the
diagram. The use of hyperonyms to better handle generalizations relation-
ships and the heuristic rules used for relationships identi�cation could be
expanded to identify di�erent relationships. The extraction of the methods
of classes could also be included. Finally, other types of diagrams could be
also developed using our system, such as use case or activity diagrams.

60

11. Project Planning and

Budget

In this section the initial planning and its budget will be included, as well
as a later second planning and budget. This allows us to re�ect on the
di�erences between the estimated and actual work carried out.

11.1 Initial Planning

This planning was made before starting the project. It includes the di�erent
tasks and the estimated time for completion. Also, the initial budget for the
planning has been presented.

Figure 11.1: Overview of the main tasks

61

11.1. Initial Planning

Figure 11.2: Gantt chart of the project's planning

Table 11.1: Description of initial planning tasks.

Task Lv. Time Start End Description

1 Master's thesis 1 99
d.

09/01 25/05 Master's thesis

1.1 Preliminary
work

2 3,75
d.

09/01 12/01 Previous work to be
made before starting
the project

1.1.1 Project
feasibility
study

3 6 h. 09/01 09/01 Determine if the
project is viable

1.1.2 Alternative
analysis

3 6 h. 10/01 10/01 Find out the best
alternative

1.1.3 Meeting with
the tutor

3 1 h. 11/01 11/01 Meeting with the
tutor to establish the
de�nitive subject for
the project

1.1.4 Initial drafting
of the
description of
the project

3 6 h. 12/01 12/01 Write the description
of the project

1.2 Previous
formative work

2 6 d. 13/01 20/01 Work to acquire the
knowledge needed to
successfully complete
the project

62

11.1. Initial Planning

1.2.1 Study of DSLs 3 3 d. 13/01 17/01 Getting familiar with
DSL

1.2.2 Getting
familiar with
Xtext

3 3 d. 17/01 19/01 Getting familiar with
Xtext

1.2.3 Initial practice
with Xtext

3 1 d. 20/01 20/01 Make a �rst practice
with Xtext to con�rm
that is a valid tool to
our project

1.2.4 Milestone:
team is
familiar with
project's
subject

3 0 d. 20/01 20/01 The student has the
proper knowledge to
complete the project

1.3 Project's
foundation

2 8 d. 23/01 01/02 Studies that will
constitute the
foundation of the
project

1.3.1 Study and
analysis of
similar
projects

3 2 d. 23/01 24/01 Analyze projects
similar to our

1.3.2 State of the
art

3 5 d- 25/01 31/01 Perform a complete
study of the state of
the art in the �eld

1.3.3 Analysis of the
technologies to
use in the
project

3 1 d. 01/02 01/02 Decide with
technologies are more
suited for our project

1.4 Analysis 2 6 d. 02/02 09/02 Analysis's tasks of the
project

1.4.1 Functional
requirements

3 3 d. 02/02 06/02 Find out the
functional
requirements of the
project

63

11.1. Initial Planning

1.4.2 Non-functional
requirements

3 1 d. 07/02 07/02 Determine the non
functional
requirements of the
project

1.4.3 Use case 3 2 d. 08/02 09/02 Make the main
use-case diagrams for
the project

1.4.4 Milestone:
Project's
Analysis

3 0 d. 09/02 09/02 At this time, the
analysis of the project
is done

1.5 Design 2 6 d. 09/02 16/02 Design tasks of the
project

1.5.1 Modular
division of the
project

3 1 d. 09/02 09/02 Identify the di�erent
modules that will
compose our system

1.5.2 Design the
architecture of
the system

3 1 d. 10/02 10/02 Design the system's
architecture

1.5.3 Create
interactions
diagrams for
the modules

3 2 d. 13/02 14/02 Model the interactions
between the identi�ed
modules

1.5.4 Design and
create the
database

3 1 d. 15/02 05/02 Design a database if
deemed necessary

1.5.5 De�ne the
domain model

3 1 d. 16/02 16/02 Create the domain
model if necessary

1.5.6 Milestone:
Project's
Design

3 0 d. 16/02 16/02 At this point, the
design of the project
is �nished

1.6 Implementation 2 41
d.

17/02 14/04 Implementation tasks
of the project

1.6.1 De�ne the
subset of
Esperanto to
use in the
project

3 3 d. 17/02 21/02 Find out the subset of
Esperanto to use in
the project

64

11.1. Initial Planning

1.6.2 Create the
DSL

3 15
d.

21/02 13/03 De�ne and implement
the DSL to use in the
project

1.6.3 Unit tests of
the DSL

3 2 d. 14/03 15/03 Unit tests on the DSL

1.6.4 Generate code
through the
DSL

3 15
d.

16/03 05/04 Code generation
through the DSL

1.6.5 Generation
code tests

3 2 d. 06/04 07/04 Tests on code
generation

1.6.6 Develop the
user interface

3 5 d. 10/04 14/04 Develop the user
interface to exploit the
project's functionality

1.6.7 Milestone: im-
plementation
�nished

3 0 d. 14/04 14/04 At this point, the
implementation of the
project is completed

1.7 Testing 2 10
d.

17/04 28/04 Series of tests of
di�erent scope

1.7.1 Integration
tests

3 4 d. 17/04 20/04 Integration tests on
the di�erent systems

1.7.2 Compatibility
tests of the
modules

3 1 d. 21/04 21/04 Compatibility tests
between the di�erent
modules

1.7.3 Usability tests 3 3 d. 24/04 26/04 Testing on the user
interface

1.7.4 Performance
tests

3 2 d. 27/04 28/04 Performance testing

1.7.5 Milestone:
Testing
completed

3 0 d. 28/04 28/04 At this point, the
testing of the project
is done

1.8 Documentation 2 96
d.

09/17 22/05 Documentation's tasks
of the project

1.8.1 Project's
report

3 90
d.

09/01 12/05 Elaborating the report
of the project

1.8.2 Technical
documentation

3 90
d.

09/01 12/05 Writing the technical
documentation of the
project

65

11.1. Initial Planning

1.8.3 Technical
documentation
review

3 6 d. 15/05 22/05 Review the
documentation

1.8.4 Milestone:
Documenta-
tion process
�nished

3 0 d. 24/04 05/05 At this point, the
documentation of the
project is �nished

1.8.5 Article for
JRC

3 10
d.

08/05 09/05 Writing the article for
a journal

1.8.6 Review of the
article

3 2 d. 10/05 10/05 Review the article

1.8.7 Milestone:
Article's
submission

3 0 d. 10/05 10/05 At this point, the
article should be
submitted

1.9 End of Project 2 3 d. 23/05 25/05 End of project tasks

1.9.1 Project
submission
with all its
documentation

3 1 d. 23/05 23/05 Deliver the project
and its documentation

1.9.2 Deployment 3 1 d. 24/05 24/05 Deployment the
project

1.9.3 Backup of the
code and the
documentation

3 1 d. 25/05 25/05 Make a backup of the
code and
documentation

1.9.4 Milestone:
End of project

3 0 d. 25/05 25/05 End of project

To elaborate the budged the following factors have been taken into ac-
count: the salary that a professional team would earn, di�erent costs, like
the ones incurred by hardware needs and monthly costs, like maintenance
and renting space for the o�ces.

The table 11.2 contains an estimation of the salary according to each
workers' pro�le.

66

11.1. Initial Planning

Pro�le ¿/hour

Analyst 50

Designer 50

Coder 30

Tester 40

System's administrator 35

Project manager 70

Table 11.2: Salaries by pro�le.

The table 11.3 shows the estimated allotted time for each worker accord-
ing to their pro�le on the project.

Pro�le Allotted time (hours) Cost (¿)

Analyst 308 15400

Designer 96 4800

Coder 248 7440

Tester 112 4480

System's administrator 40 1400

Project manager 21 1700

Total 825 34990 ¿

Table 11.3: Time and cost by each worker.

The shows the di�erent costs dedicated to hardware.

Hardware Price (¿)

Asus computer 950

Web server 400

Total 1350 ¿

Table 11.4: Hardware costs.

In are re�ected the �xed monthly expenses, including costs of Internet
access, electricity and heating.

67

11.2. Final Planning

Cost Duration (months) Price/month Total

Internet access 5 40 200

Electricity 5 150 750

Heating 5 100 1500

Total 1500 ¿

Table 11.5: Fixed monthly expenses

Taking into consideration the di�erent expenses presented, the total
budged of the project is 37.840¿.

11.2 Final Planning

The initial planning has su�ered some changes as the work has been done.
We will explain the changes that have taken place and the reason why.

� 1.5.1 modular division of the project: as we learned the technologies to
employ, we realized that a modular division will not have much sense
in our project.

� 1.5.4 design and create the database: initially, we were not sure if we
would need a database in our project, as we developed our system we
realized that a database would not have any positive impact in our
system.

� 1.6.3 unit tests of the dsl and 1.7 testing: after discussing with the
tutor of the project, it was decided that unit tests and other types of
tests on the DSL would imply a lot of work and a very few valuable
feedback, so we decided not to include them. Instead, we dedicated our
e�orts to test with di�erent inputs analyzing the diagrams generated.

The repercussions of this changes in the budged are shown in table 11.6 :

68

11.2. Final Planning

Pro�le Allotted time (hours) Cost (¿)

Analyst 300 15000

Designer 80 4000

Coder 248 7440

Tester 16 640

System's administrator 32 1120

Project manager 21 1700

Total 825 29000 ¿

Table 11.6: Time and cost by each worker.

The rest of the budged did not change, so the �nal budged ascends to
32750 ¿.

69

12. Dissemination of results

This is the main article of this master's thesis. It contains all the �ndings
and most of the work carried out in the project. In this article we present our
system and we remark the possible applications to extract UML diagrams
by processing an arti�cial language, Esperanto, using natural language pro-
cessing techniques. We provide support to the users through a customized
text editor.

In order to choose the best suited journal to submit our article, we per-
formed an analysis of the existing journals related to our �eld.

Initially we considered two journals inscribed into the Journal Citation
Report (JCR).

International Journal on Software and Systems Modeling (�g-
ure 12.1)

Figure 12.1: International Journal on Software and Systems Modeling
(SoSyM)

� Software and Systems Modeling Website

� Editorial: Springer

� Impact factor: 0.990

� Impact factor (5 years): 1.497

� Main interests: theoretical and practical issues in the development and
application of software and system modeling languages, techniques,
and methods, such as the Uni�ed Modeling Language.

70

http://www.sosym.org/

12. Dissemination of results

IET Software (�gure 12.2)

Figure 12.2: International Journal on Software and Systems Modeling
(SoSyM)

� IET Software Website

� Editorial: Institution of Engineering and Technology (IET)

� Impact factor: 0.473

� Impact factor (5 years): 0.519

� Main interests: all aspects of the software lifecycle, including design,
development, implementation and maintenance, specially the methods
used to develop and maintain software, and their practical application.

Our preferred option was initially the �Software and Systems Modeling� jour-
nal, given their higher impact factors, but after reviewing our article, we
realized that our article was better suited for the �IET Software� journal, as
our solution touched many di�erent �elds, not only the modeling area, so we
went with IET Software, as it included more generic IT solutions.

Our paper was submitted on 24/05/17 to IET Software. its status is
�Under Review�. In �gure 12.3 and �gure 12.4 can be seen the status of the
submission.

71

http://digital-library.theiet.org/content/journals/iet-sen

Figure 12.3: Proof of submission I

Figure 12.4: Proof of submission II

A. Article

1. Introduction

Natural language is the most frequently used language for expressing re-
quirements, as it is common to customers, users and requirements engineers.
Due to the ambiguity of natural language, which is liable for di�erent inter-
pretations in�uenced by geographical, psychological and sociological factors,
a good requirement gathering process in natural language is usually di�-
cult to perform Resnik et al. [1999]. An incomplete requirement elicitation
is often the main reason that leads IT projects to failure. Projects with
missing requirements will cause dissatisfaction to the customer, and incom-
plete products will require more time and resources to be �nished than if
originally planned Bergey et al. [1999]. The importance of performing an
exhaustive and complete requirement list on the early stages of a project is
critical. Therefore, a support tool to automatize these tasks would be highly
valuable and desirable. In recent years, Object-Oriented (O-O) Analysis and
Design has become the mainstream trend for software development. A class
is an abstraction of representative real-world objects. A class models the be-
havior of objects that are constrained by the same rules Starr and Stephen

73

1. Introduction

[2001] and share attributes and behaviors. Classes are arranged into a class
diagram. A class diagram in the Uni�ed Modeling Language (UML) repre-
sents the classes used and their relationships in the system. Those classes act
as the vocabulary for O-O system, model simple collaborations and are the
foundation for the logical database design Booch et al. [1999]. UML class di-
agrams are at the core of O-O analysis and identifying the classes that model
the requirements seems crucial. In fact, it is considered by some authors as
the most important skill in developing a O-O system Grady [1994]. Hence,
the automated generation of class diagrams will save time and e�ort to a sys-
tem analyst, specially for beginners. Nevertheless, the automation of class
generation from a written text in natural language is extremely challenging
due to the following reasons Richter [1999] Maciaszek [2001]:

� Natural languages are ambiguous and full of exceptions. Hence, rig-
urous and precise analysis proves quite di�cult.

� Any given semantic can be represented in many di�erent ways.

� Concepts that are not explictly expressed in the written source are
often di�cult to identify. It requires an expert domain knowledge to
�nd the hidden classes.

Our approach in this paper tries to address the problem presented but it
does not try to resolve it completely. We believe that by using Esperanto,
an arti�cially made language with no grammatical exceptions, most part
of the ambiguity would be suppresed. A Domain Speci�c Language (DSL)
has been developed to model the most common behavior of the Esperanto
language. Natural Language Processing (NLP) techniques will be applied
to the requirements document in Esperanto and di�erent heuristic rules will
be used to extract a UML Class diagram, which will contain the structure
of a suggested system that satis�es the requirements. We have used NLP
techniques and heuristic rules to address the following research questions:
(1) How to identify concepts, (2) how to discern between candidate classes
and attributes for each concept and (3) how to extract relationships between
classes, such as generalization, dependency, associations and compositions.
The rest of the paper is organized as follows: Section 2 will cover the lit-
erature review and related works, Section 3 presents the model developed,
Section 4 brie�y introduces the di�erent heuristic and external tools used to
generate the diagram,Section 5 contains implementation details, Section 6
contains the evaluation and discussion of our system and Section 7 contains
the conclusions of this paper and future works.

74

2. State of the Art

2. State of the Art

2.1 Natural Language Processing to extract some Uni�ed
Modeling Language (UML) diagram

Di�erent approaches have been used to analyze natural language require-
ments. Ibrahim and Ahmad [2010] Deeptimahanti and Babar [2009] Letsholo
et al. [2013] Zhou and Zhou [2004] Song et al. [2004] However, a few have
been oriented on class diagram generation. In this section we review the
works that use NLP or domain ontologies to analyze natural language re-
quirements, with emphasis in the ones that focus in class diagram extraction.
Ibrahim, Mohd et al Ibrahim and Ahmad [2010] developed the Requirements
Analysis and Class diagram Extraction (RACE) method, which combines the
use of NLP techniques and domain ontologies to extract a class diagram from
a given set of informal requirements. The components used in this system
are: (1) OpenNLP as a parser, (2) a Stemming Algorithm; responsible of
abbreviating words by removing a�xes and su�xes, (3) WordNet; in charge
of providing semantic validation during the process, (4) domain speci�c On-
tology Library; to enhance the concept's identi�cation process and (5) Class
Extraction Engine, which uses heuristic rules to extract the class diagram.
The results obtained in their case study are promising. The system was
able to �nd concepts based on nouns, verbs and noun phrases as well as
identifying four di�erent types of relationships: Generalization, Association,
Composition, and Aggregation. Nevertheless, it failed to identify one to one,
one to many, and many to many relationships. Deeptimahanti, Deva Ku-
mar et al Deeptimahanti and Babar [2009] developed UML Model Generator
from Analysis of Requirements (UMGAR), a tool capable of generating Use-
case diagrams, analysis and design class model and collaboration diagrams
by processing requirements expressed in natural language, doing it in an au-
tomatized way. The key components of this system are: (1) Stanford Parser;
used to extract information from each requirement, avoiding the use of dif-
ferent single components for tasks such as stemming and tagging tools, (2)
WordNet; which provides morphological analysis and plural to singular con-
version and (3) JavaRAP; which provides pronoun's treatment. Ultimately,
UMGAR is a domain independent tool capable of generating di�erent UML
models from requirements expressed in natural language, o�ering also Exten-
sible Markup Language (XML) support for the visualization of the diagrams
created. Letsholo, Keletso J et al Letsholo et al. [2013] designed Textual
Requirements into Analysis Models (TRAM), a tool able to assist in the au-
tomatic creation of analysis models from requirements expressed in natural

75

2. State of the Art

languages. It o�ers three advantages over similar existing tools, (1) it closes
the gap between unstructured natural language requirements and its analysis
models by providing a series of conceptual patterns, named Semantic Object
Models (SOMs), (2) it o�ers requirements traceability to assist analysts and
developers to locate errors and (3) it validates and improves the quality of
the model generated by the domain expert or software analyst by using a
question and answer method. Zhou, Xiaohua et al Zhou and Zhou [2004] pro-
posed to use NLP techniques to handle the written requirements and domain
knowledge through ontologies to improve the performance of class identi�-
cation. Their designed system used two inputs: (1) text functional speci�-
cations and (2) structured domain ontologies. Its output is a class diagram,
which includes attributes of each class and inter-class relationships. They
were able to identify the following relationships; generalization, aggregation
and association. Furthermore, they classi�ed the association relationships
into one-to-one, one-to-many and many-to-many. The core components of
the system are: (1) Transformation Tagger for part-of-speech tagging, (2)
Link Grammar as the sentence parser and (3) WordNet for semantic vali-
dation. They outlined a possible improvement in the diagrams generated
by employing ontologies. Song, Il-Yeol et al Song et al. [2004] proposed a
Taxonomic Class Modeling (TCM) methodology. It was able to apply noun
analysis, class categorization, sentence structure rules, checklists and heuris-
tic rules for modeling. In their approach, they were able to identify: (1)
classes from concepts stated as noun phrases in the requirements statement,
(2) classes stated as a verb phrase in the requirements statement and (3)
hidden classes that were not explicitly stated in the requirements statement
by applying domain knowledge to the class categories. They also employed
WordNet as many of the works previously presented. They found that the
TCM methodology is e�ective to identify domain classes for object-oriented
applications in di�erent domain �elds. They state that their solution is prac-
tical as it can be easily and e�ectively applied to di�erent project domains.
We recognized the approach in Ibrahim, Mohd et al Ibrahim and Ahmad
[2010] as the most relevant to our work, considering the exhaustive and com-
plete heuristic rules used for concepts, attributes, classes and relationships
identi�cation.

2.2 Why Esperanto?

Originally, English was considered for our system, but it implied the use
of multiple systems to perform parsing, stemming, semantic validation and
more, which are not available for Esperanto. By using Esperanto external

76

2. State of the Art

components are not required, as the parsing and other related tasks will be
performed by ourselves. Besides, there are a couple more reasons that make
Esperanto the most preferable choice as the language to work in this project:

1. To apply traditional parsing a complete formal grammar of the lan-
guage is required, being context-free and unambiguous. Natural lan-
guages, like English or Spanish, do not meet those requirements. These
languages are complex and full of exceptions. Esperanto can be consid-
ered as a natural language for our purposes, as it includes all the com-
mon word types and grammatical features. Even though Esperanto's
grammar is complex and extensive, it is also less complicated due to
a complete lack of exceptions. Its morphology is concise and highly
regular, which will facilitate its parsing Aasgaard [2006].

2. The basics of the Esperanto grammar are covered by 16 rules, which
simplify and speed up the learning and processing of the language
Forster [1982].

There are also some disadvantages by using Esperanto, namely:

1. Esperanto is not widely extended, being spoken or understood by a
few millions of people.

2. Only users with knowledge of Esperanto would be able to use our
system.

In addition, some parsers have been already developed for Esperanto. They
take advantage of the highly regular morphology of Esperanto, its design to
avoid ambiguity and the total lack of exceptions. These parsers are EspGam
Bick [2007] and EOParser GermaneSoftware [2006]. EspGam is a Constraint
Grammar parser for Esperanto. It is a rule based system that applies con-
textual rules to tackle morphological disambiguation and perform syntactic
analysis. The system contains a lexicon of 28.000 lexemes built from data
of a bilingual Esperanto-Danish dictionary and a Danish-Esperanto machine
translation system. The disambiguation and syntactic rules are formulated
by removing, selecting or mapping category tags, based on sentence-wide
context conditions. They measured the performance of their parser against
a hand-annotated standard corpus of news text produced in Esperanto. The
parser accuracy rates are of 99.5% for part-of-speech (POS) and 92,1% for
syntactic dependency. EOParser is a morphology parser written in Ruby for
Esperanto. EOParser o�ers a text-based User Interface for querying, and
it can also be used as a library. The parser accepts Esperanto sentences

77

3. The Model

and returns the translation as a string based output and the morphological
properties as long as it understands the semantic meaning of the query.

3. The Model

We developed a Domain Speci�c Language (DSL) to implement the most
common structures of the language Esperanto. We decided to use Xtext
Foundation [2006] as it is one of the most common tool employed to cre-
ate textual DSLs. That way we could bene�t from its features, such as the
generation of a parser, serializer and a smart editor. The DSL that we de-
veloped is actually a textual editor for the Esperanto language, to be more
precise, to a big subset of the Esperanto language. Another reason to use
Xtext is the fact that Xtext uses and integrates with the Eclipse Modeling
Framework Steinberg et al. [2008], a framework and code generation tool for
building Java applications based on model de�nitions. We provided further
customization for the smart editor, so the user would feel more comfortable
when typing his requirements. In that way, we have uni�ed three technolo-
gies, Java, XML and UML.

Figure A.1: Metamodel that implements the Esperanto grammar.

78

4. Extraction of UML Class Diagram

The model created has been represented in Figure A.1. EsperantoModel
contains a series of Statements, where each Statement is composed of dif-
ferent parts, which are of type StatementType. A StatementType can be
of type PrepositionsNouns, Sverb, PrepConjuction, VerbAsAdjective, Arti-
cleNumeral, SpecialCharacter or Questions and so on. This model contains
the behaviour of the most common type of structures in the Esperanto lan-
guage. Figures A.2 and A.3 illustrate the type of customization that can
be achieved into the graphical editor, where each type of structure has its
own color. In the outline, every member of each structure is categorized
according to their type.

Code. A.2: Sample of the customized editor view with some Esperanto text

Fig. A.3: Outline view customization

4. Extraction of UML Class Diagram

The �rst step needed to obtain a class diagram from natural language re-
quirements is to identify the concepts present in it. To identify and extract
concepts we will:

1. Identify the stop words. In our case, we found that typically these are
usually prepositions, articles, pronouns and conjuctions.

2. Calculate the total number of words T in the document without the
stop words, the number of occurrences Ow of each word, and then

79

4. Extraction of UML Class Diagram

calculate the frequency F of each word, according to:

F = Ow/T (A.1)

3. Save the identi�ed proper nouns, noun phrases and verbs as concepts.

4.1 Class Identi�cation

After extracting the concepts, we can process them to extract candidate
classes by applying the following rules:

1. If a concept only appears once in the document and its frequency is
less than 2%, then it will be ignored.

2. If a concept is related to the design elements, then it will be ignored.

3. If a concept is related to Location name or People name, then it will
be ignored.

4. If a concept is an attribute, then it will be ignored.

5. If a concept is a noun phrase (noun + noun) and the secound noun is
an attribute, then the �rst noun is a class and the second one is an
attribute of that class.

6. If a concept does not satisfy any of the rules, then it's likely a class.

4.2 Attribute Identi�cation

The following rules assisted us in extracting attributes:

1. If a class is followed by the verb "have/has" and a colon, then the
following enumeration is a list of attributes of the class.

2. If a concept is a noun phrase (noun + noun) and the secound noun is
an attribute, then the �rst noun is a class and the second one is an
attribute of that class.

4.3 Relationship Identi�cation

Performing verb analysis and applying the next rules we have extracted
relationships:

80

5. Implementation

1. If we have a compound name (noun + noun) and the second one is
a class, then the compound name is a generalization to the already
identi�ed class (second noun).

2. If the concept is a verb, and we can �nd a sentence in the from C1-V-
C2, where C1 and C2 are classes, then V is an Association relationship.

3. If the concept is a verb, satis�es Relationship identi�cation Rule 2 and
the verb is one of the following (in Esperanto) ["require", "depends
on", "rely on", "based on", "uses", "follows"] then the relationship
discovered is a Dependency relationship.

4. Given a sentence in the form C1 + R1 + C2 + AND + C3 where C1,
C2 and C3 are classes and R1 is a relationship, then the relationship
R1 applies between the classes C1 and C2 and between C1 and C3.

5. Implementation

In this section, we will show the role of the technologies employed in our
system. As previously stated, Xtext has been the tool chosen to develop
our system. Xtext is used to create the DSL that contains the grammar of
the Esperanto language. When creating a new Xtext project, the following
projects are created:

� A project that contains the grammar de�nition and all language-
speci�c components (parser,lexer,linker,validation,etc.)

� A project to run unit tests for the language

� A project to manage platform-independent IDE functionality (e.g. ser-
vices for content assist)

� A project that contains the eclipse editor and other workbench related
functionality

� A project to perform unit test for the editor.

We use Xtext's grammar to de�ne our Esperanto DSL (see Figure A.4). We
also have a "mwe2" extension �le where we can customize several options
about our project, such as if we want to generate a serializer, a validator,
the extension �les for our language, and so on. In our case, we used two
generators, one to generate a text �le with the processed output of a user's
requirements and another to generate the UML Class diagram. We have

81

5. Implementation

used Java and Xtend for these generators. The behaviour of Xtext and its
generators is that once the user saves the changes made in his editor, the
generators are automatically executed, generating the di�erent outputs when
the user saves.

Fig. A.4: Fragment of the grammar de�nition in Xtext

We also customized the behavior of the editor's syntax highlighting and
the outline view, for the latter, we displayed the simple elements that com-
pose the grammatical structures. Furthermore, we used the UML2 package
to create the diagram and its di�erent components Kenn.Hussey [2011].

82

6. Evaluation and discussion

6. Evaluation and discussion

We have used two methods to evaluate our system: we have compared our
system against the approach proposed by Ibrahim, Mohd et al Ibrahim and
Ahmad [2010] and we have tested the diagram generated by our system
against diagrams extracted by fellow engineers.

6.1 System vs system

In order to validate our system and obtain a general assessment for accu-
racy and e�ciency of our system, we have tested it against the RACE tool
developed by Ibrahim and Ahmad [2010]. We have used the same input
requirements, a library system, with two changes:

1. We have added the following line (in Esperanto) to provide a depen-
dency example: "The librarian depends on the library".

2. We have added attributes to the requirements. As we have not em-
ployed ontologies, only the attributes present in the text could be ex-
tracted into the diagram.

This is the original input used by RACE (English):
"The library System is used by the Informatics students and Faculty. The
Library contains Books and Journals. Books can be issued to both the Stu-
dents and Faculty. Journals can only be issued to the Faculty. Books and
Journals can only be issued by the Librarian. The deputy-Librarian is in-
charge of receiving the Returned Books and Journals. The Accountant is
responsible for receiving the �ne for over-due books. Fine is charged only to
students, and not to the Faculty."
Whereas our input used for the testing (Esperanto) is:
"La biblioteko sistemo estas uzata de la informadiko studentoj kaj fakul-
tato.La biblioteko enhavas librojn kaj revuoj.Libroj povas esti elsendita al
kaj la studentoj kaj fakultato.Revuoj nur povas esti eldonita al la fakul-
tato.Libroj kaj revuoj nur povas esti eldonita fare de la bibliotekisto.La
deputito bibliotekisto estas komandata de ricevi la reiris libroj kaj revuoj.La
librotenisto respondecas pri ricevi la monpuno por posttempa libroj.La mon-
puno estas sargita nur al studentoj, kaj ne al la fakultato. La bibliotekisto
dependas de la biblioteko.Unu libroj havas: nomo, titolo, autoro, eldonisto,
isbnno, identingo, genro kaj la publikigas dato.La biblioteko havas: nomo,
malferma tempo,proksima tempo kaj legantoj.La studentoj havas: nomo,
sekso kaj membreco nombro.La deputito bibliotekisto havas: nomo, sekso,

83

6. Evaluation and discussion

salajro kaj membreco nombro.La fakultato havas: nomo kaj membreco nom-
bro.Fakultato estas savita fakultato nomo, kaj membreco nombro.La mon-
puno havas: kvanto kaj la ricevi daton.Bibliotekisto estas konservita bib-
liotekisto nomo, bibliotekisto salajro, bibliotekisto sekso kaj bibliotekisto
identingo.Unu revuoj havas: nomo, titolo, eldonisto, isbnno kaj la publiki-
gas dato.Unu librotenisto havas: nomo, salajro, sekso kaj identingo." They
extracted nine classes, identi�ed the following relationships: six associations,
two composites and one generalization, whereas we were able to extract ten
classes, eight associations,two compositions, two generalizations and one de-
pendency. The diagram that our system extracted is included in Figure A.5.

Fig. A.5: Class diagram extracted by our system

Interestingly, the RACE's diagram generated includes several attributes
for the classes, that are not explicitly present in the document, and they
authors not very clear as to how they identi�ed them. We believe, it may

84

6. Evaluation and discussion

Table A.1: Class diagram extraction comparison between RACE and our
system.

result prejudicial due to the addition of unnecesary information. To compare
between the di�erent systems we have taken into the account the number of
valid classes, associations, compositions and generalizations identi�ed. We
do not know how RACE obtained the attributes they included in their di-
agram, so we believe comparison between the two systems regarding the
attribute validation is unrealistic.

Analyzing the results exposed in Table ?? we have observed that our sys-
tem extracted an extra class "informadiko studentoj" (informatics students)
and generalization relationship between that class and the class "studen-
toj" (students) that was ignored by RACE system. We also extracted the
following extra �ve association relationships:

� Between "monpuno" (�ne) and "fakultato" (faculty)

� Between "monpuno" and "librotenisto" (accountant)

� Between "libroj" (books) and "librotenisto"

� Between "biblioteko" (library) and "fakultato"

� Between "biblioteko" and "studentoj"

In the case of the associations identi�ed only by our system, all are valid
except the one between "monpuno" and "fakultato". The reason is that
in the requirements is expressed that the �ne should only to be charged
to students. In summary, we identi�ed an extra class, �ve more associa-
tion relationships, which only one of them is amiss, one more generalization
relationship, the same composition relationships and a dependency associ-
ation when compared to the RACE system. Overall, we believe that with
this test we proved that it is possible to succesfully apply natural language
processing techniques with languages that are not extended. We eased the
implementation when auxiliary systems are not available. It will impact on

85

6. Evaluation and discussion

the manteinance and scalability of systems based in languages similar to
Esperanto.

6.2 System vs experts

We gave the requirements document used by RACE, in English, to di�erent
experts and asked them to create a UML class diagram to the best of their
knowledge. One of them is shown in Figure A.6.

Fig. A.6: Class diagram extracted by an expert

This diagram is a more generic solution, looking at future additions in the
system, like the two generic classes, "Item" and "Employee". Nonetheless,
all the relevant classes and their relationships have been identi�ed. To com-
pare between the expert's diagram and our system's diagram, the following
parameters will be analyzed:

� Whether all the relevant classes are identi�ed or not. These classes
being: "Fine", "Librarian", "Journals", "Accountant", "Students",
"Deputy Librarian", "Faculty", "Books", "Library".

86

6. Evaluation and discussion

Table A.2: Class diagram extraction comparison between experts and our
system.

� Check if the composition relationships "Book-Library" and "Journal-
Library" exist.

� Check if A generalization relationship between "Librarian" and
"Deputy Librarian" exist.

� Check if the following association relationships are present: "Students-
Books","Librarian-Books","Faculty-Books" and "Fine-Students".

The results have been collected in Table ??, showing that all the relevant
classes that our system has identi�ed have also been extracted by the experts,
the composition relationships have been all extracted by our system and

87

7. Conclusions and future work

the experts, the generalization have been identi�ed by the majority of both
parties. Nevertheless, there are di�erent results in the identi�cation of the
associations by the experts. We conclude this section by stating that our
system has succesfully generated a class diagram with all the relevant classes
implied and many of the association relationships between them, including
also generalization relationships and composition relationships. In addition,
dependency relationships have also been identi�ed, and our system has been
validated by comparison with an expert's diagram and a diagram created by
RACE.

7. Conclusions and future work

UML class diagram generation using a requirements document expressed in
natural language is challenging. It requires a �ne grain approach in design
and implementation. We have employed a domain speci�c language to model
the behaviour of the Esperanto language in order to facilitate the natural
language processing techniques that need to be applied to extract such dia-
gram. We have used the most updated heuristic rules to identify concepts,
classes, attributes and relationships. We have developed our prototype using
Xtext, as we considered it is the most bene�cial tool available at the moment
which gives an exhaustive and detailed feedback to the user. We have per-
formed two di�erent evaluations: one comparing our system against another
succesful system and another comparing the class diagram extracted by our
system against those made by experts in the �eld. Our system could be
improved in a few ways: for example by considering synonyms, so we don't
add those elements that already exist in the diagram. The use of hyper-
onyms to better handle generalizations relationships and the heuristic rules
used for relationships identi�cation could be expanded to identify di�erent
relationships. Finally, other types of diagrams could be also developed using
our system, such as use case or activity diagrams.

88

References

References

89

B. Acronyms

AST: Abstract Syntax Tree

CIM: Computation Independent Model

DNN: Deep Neural Network

DSL: Domain Speci�c Language

EMF: Eclipse Modeling Framework

GMF: Graphical Modeling Framework

GPL: General Purpose Language

GUI: Graphical User Interface

IT: Information Technologies

JCR: Journal Citation Report

MDA: Model Driven Architecture

MDE: Model Driven Engineering

NERHMM: Name Entity Recognition using Hidden Markov Model

NLP: Natural Language Processing

O-O: Object-Oriented

OMG: Object Management Group

PIM: Platform Independent Model

POS: Part Of Speech

PSM: Platform Speci�c Model

RACE: Requirements Analysis and Class diagram Extraction

SBD: Sentence Boundary Detection

90

Appendix B. Acronyms

SENNA: Semantic/syntactic Extraction using a Neural Network
Architecture

SOM: Semantic Object Model

TCM: Taxonomic Class Modeling

TRAM: Textual Requirements into Analysis Models

UI: User Interface

UMGAR: UML Model Generator from Analysis of Requirements

UML: Uni�ed Modeling Language

XML: Extensible Markup Language

91

Bibliography

MaheshH.Dodani. A Picture is Worth a 1000 Words?, 2006. URL http:

//www.jot.fm/issues/issue_2006_03/column4/. Accessed: 2017-04-04.

Eclipse Foundation. Sirius- The easiest way to get your own Modeling Tool,
2007a. URL https://eclipse.org/sirius/. Accessed: 2017-04-17.

Kirill Fakhroutdinov. UML class diagram example for online shopping do-
main, 2013. URL https://goo.gl/1fPkvR. Accessed: 2017-04-25.

Philip Resnik et al. Semantic similarity in a taxonomy: An information-
based measure and its application to problems of ambiguity in natural
language. J. Artif. Intell. Res.(JAIR), 11:95�130, 1999.

Ian Byrd. Ambiguous Sentences, 2009. URL https://goo.gl/GBTjN4. Ac-
cessed: 2017-05-17.

John Bergey, Dennis Smith, Scott Tilley, Nelson Weiderman, and Steven
Woods. Why reengineering projects fail. Technical report, DTIC Docu-
ment, 1999.

Brad Matsugu. Poor Requirements, What impact do they have?, 2017. URL
https://goo.gl/Uze9De. Accessed: 2017-05-17.

Leon Starr and J Stephen. Executable UML: how to build class models.
Prentice Hall PTR, 2001.

Grady Booch, J Rumbaugh, and I Jacobsen. The uni�ed modeling language
user guide addison-wesley. ISBN: 0-201-571684, 1999.

Booch Grady. Object-oriented analysis and design with applications. Ben-
jamin Cummings, 1994.

Charles Richter. Designing �exible object-oriented systems with UML. New
Riders Publishing, 1999.

Leszek A.. Maciaszek. Requirements Analysis and System Design: Develop-
ing Information Systems with UML. Addison-Wesley, 2001.

92

http://www.jot.fm/issues/issue_2006_03/column4/
http://www.jot.fm/issues/issue_2006_03/column4/
https://eclipse.org/sirius/
https://goo.gl/1fPkvR
https://goo.gl/GBTjN4
https://goo.gl/Uze9De

Bibliography

Mohd Ibrahim and Rodina Ahmad. Class diagram extraction from textual
requirements using natural language processing (nlp) techniques. In Com-
puter Research and Development, 2010 Second International Conference
on, pages 200�204. IEEE, 2010.

Deva Kumar Deeptimahanti and Muhammad Ali Babar. An automated tool
for generating uml models from natural language requirements. In Pro-
ceedings of the 2009 IEEE/ACM International Conference on Automated
Software Engineering, pages 680�682. IEEE Computer Society, 2009.

Keletso J Letsholo, Liping Zhao, and Erol-Valeriu Chioasca. Tram: A tool
for transforming textual requirements into analysis models. In Automated
Software Engineering (ASE), 2013 IEEE/ACM 28th International Con-
ference on, pages 738�741. IEEE, 2013.

Xiaohua Zhou and Nan Zhou. Auto-generation of class diagram from free-
text functional speci�cations and domain ontology. Arti�cial Intelligence,
2004.

Il-Yeol Song, Kurt Yano, Juan Trujillo, and Sergio Luján-Mora. A taxo-
nomic class modeling methodology for object-oriented analysis. Informa-
tion Modeling Methods and Methodologies. Advanced Topics in Databases
Series, pages 216�240, 2004.

Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray
Kavukcuoglu, and Pavel Kuksa. Natural language processing (almost)
from scratch. Journal of Machine Learning Research, 12(Aug):2493�2537,
2011.

Sudha Morwal and Deepti Chopra. Nerhmm: A tool for named entity recog-
nition based on hidden markov model. International Journal on Natural
Language Computing (IJNLC), 2:43�49, 2013.

Cícero Nogueira dos Santos and Bianca Zadrozny. Learning character-level
representations for part-of-speech tagging. In ICML, pages 1818�1826,
2014.

Dan Gillick. Sentence boundary detection and the problem with the us. In
Proceedings of Human Language Technologies: The 2009 Annual Confer-
ence of the North American Chapter of the Association for Computational
Linguistics, Companion Volume: Short Papers, pages 241�244. Associa-
tion for Computational Linguistics, 2009.

93

Bibliography

Bente Christine Aasgaard. Parsing of esperanto. Master's thesis, 2006.

Peter G Forster. The Esperanto Movement, volume 32. Walter de Gruyter,
1982.

Eckhard Bick. Tagging and parsing an arti�cial language. proceedings of
Corpus Linguistics 2007, 2007.

GermaneSoftware. Homepage of EOparser, 2006. URL http://

www.germane-software.com/software/Utilities/EOParser. Accessed:
2017-04-04.

Douglas C Schmidt. Model-driven engineering. COMPUTER-IEEE COM-
PUTER SOCIETY-, 39(2):25, 2006.

Anneke G Kleppe, Jos Warmer, Wim Bast, and MDA Explained. The model
driven architecture: practice and promise, 2003.

Joaquin Miller, Jishnu Mukerji, et al. Mda guide version 1.0. 1, 2003.

JLG Dietz and JAP Hoogervorst. Enterprise ontology and enterprise
architecture�how to let them evolve into e�ective complementary notions.
GEAO Journal of Enterprise Architecture, 2(1):121�149, 2007.

Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Paternostro. EMF:
eclipse modeling framework. Pearson Education, 2008.

Arie Van Deursen, Paul Klint, Joost Visser, et al. Domain-speci�c languages:
An annotated bibliography. Sigplan Notices, 35(6):26�36, 2000.

Eclipse Foundation. Xtext- Language Engineering Made Easy, 2006. URL
https://eclipse.org/Xtext/. Accessed: 2017-04-17.

Vladimir Viyovi¢, Mirjam Maksimovi¢, and Branko Perisi¢. Sirius: A rapid
development of dsm graphical editor. In Intelligent Engineering Systems
(INES), 2014 18th International Conference on, pages 233�238. IEEE,
2014.

Moritz Eysholdt and Heiko Behrens. Xtext: implement your language faster
than the quick and dirty way. In Proceedings of the ACM international
conference companion on Object oriented programming systems languages
and applications companion, pages 307�309. ACM, 2010.

94

http://www.germane-software.com/software/Utilities/EOParser
http://www.germane-software.com/software/Utilities/EOParser
https://eclipse.org/Xtext/

Bibliography

Heiko Behrens. Mdsd for the iphone: developing a domain-speci�c language
and ide tooling to produce real world applications for mobile devices. In
Proceedings of the ACM international conference companion on Object ori-
ented programming systems languages and applications companion, pages
123�128. ACM, 2010.

Henning Heitkötter, Tim A Majchrzak, and Herbert Kuchen. Cross-platform
model-driven development of mobile applications with md 2. In Proceed-
ings of the 28th Annual ACM Symposium on Applied Computing, pages
526�533. ACM, 2013.

Jose M Conejero, Juan Hernandez, Pedro J Clemente, Roberto R Echeverria,
Juan C Preciado, and Fernando S Figueroa. Automatic con�guration of
video-surveillance applications: a model-driven experience. IEEE Latin
America Transactions, 13(8):2700�2708, 2015.

Mathias Funk and Matthias Rauterberg. Pulp scription: a dsl for mobile
html5 game applications. In International Conference on Entertainment
Computing, pages 504�510. Springer, 2012.

Johan den Haan. DSL and MDE, necesarry assets for Model-Driven ap-
proaches , 2009. URL https://goo.gl/UKlRaS. Accessed: 2017-04-25.

Kenn.Hussey. Getting Started with UML2, 2011. URL https://goo.gl/

VJyxvy. Accessed: 2017-05-17.

Eclipse Foundation. Papyrus, 2007b. URL http://www.eclipse.org/

papyrus/. Accessed: 2017-04-17.

95

https://goo.gl/UKlRaS
https://goo.gl/VJyxvy
https://goo.gl/VJyxvy
http://www.eclipse.org/papyrus/
http://www.eclipse.org/papyrus/

