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Abstract 

In this paper, a new stepwise benchmarking approach is presented. It is based on the concept 

of efficiency field potential given by a continuous and differentiable function that decreases 

monotonously as the amount of inputs consumed is reduced and the amount of outputs 

produced is increased. A gradient-based stepwise efficiency improvement method is proposed 

and the graphical interpretation of the continuous gradient-based trajectories is shown. A 

minimum potential DEA model is also formulated. The proposed approach is units invariant 

and can take into account preference structure, non-discretionary variables and undesirable 

outputs. The proposed method has been applied to an organic farming dataset. 

Keywords: Data Envelopment Analysis (DEA); stepwise benchmarking; efficiency field 

potential; efficiency field vector; organic farming 

1. Introduction 

Data Envelopment Analysis (DEA) is a well-known non-parametric methodology for 

assessing the relative efficiency of a set of Decision Making Units (DMUs). From the inputs 

consumption and outputs production of the observed DMUs, and using a few axioms such as 

convexity and free disposability, DEA infers a Production Possibility Set (PPS) (a.k.a. DEA 

technology) which contains all the feasible operating points. The corresponding non-

dominated subset is the Efficient Frontier (EF). Conventional DEA models project the 

inefficient DMUs on the EF using an orientation (input, output, directional distance, etc.) and 

a metric (radial, non-radial, slacks-based, etc.) (see, e.g., Zhu 2002, Cooper et al. 2004, 2007). 
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Note, however, that some DEA models (like radial, directional distance, hyperbolic, etc) do 

not necessarily exhaust all input and output slacks and hence may compute targets that are 

only weakly efficient. 

Since conventional DEA models aim at reducing inputs and/or increasing outputs as 

much as possible, they tend to compute efficient targets that are as “far” from the observed 

DMU as possible. This makes those targets harder to achieve since the improvements in terms 

of the corresponding input reductions and output increases may be significant. 

One way to alleviate this distant target problem is to compute the closest efficient 

targets. There is an abundant literature on the subject, dating back to Frei and Harker (1999), 

which used the Euclidean distance to the strongly efficient frontier. A weighted Euclidean 

distance to the strongly efficient frontier has been used by Baek and Lee (2009), 

Amirteimoori and Kordrostami (2010) and Aparicio and Pastor (2014a). Other authors have 

used other ways of measurement the similarity/closeness between the DMU and the potential 

efficient targets (e.g. Cherchye and Van Puyenbroeck 2001, Silva Portela et al. 2003). Other 

approaches include Gonzalez and Alvarez (2001), which propose a modified version of the 

input-oriented Russell efficiency measure, and Aparicio et al. (2007), which use an Enhanced 

Russell Graph Measure (ERGM, a.k.a. Slacks-Based Measure, SBM) together with a 

characterization of the Pareto-efficient frontier based on the set of extreme efficient DMUs. 

Additional papers dealing with least distance target computation are Pastor and Aparicio 

(2010), Ando et al. (2012, 2017), Aparicio and Pastor (2013, 2014b) and Aparicio et al. 

(2014). The reader is referred to Aparicio (2016) and Aparicio et al. (2017a, 2017b) for recent 

developments in the field as well as an up-to-date review of the literature on this topic. 

Another line of research, which is the one followed in this paper, is to compute a 

stepwise improvement path so that a number of Intermediate Benchmark targets (IBTs) are 

computed, leading to an Ultimate Benchmark target (UBT) on the EF. There are two types of 

stepwise efficiency improvement method: those that use the existing DMUs as IBT and UBT 

and those that compute IBT and UBT belonging to the PPS and EF respectively, but not 

necessarily coincident with any of the existing DMUs. The second group is composed of just 

a few approaches, basically Lozano and Villa (2005, 2010), Suzuki and Nijkamp (2011), 

Khodakarami et al. (2014) and Fang (2015). The first group is more numerous and, in most 

cases, uses the stratification approach proposed in the Context-Dependent (CD) DEA 

approach of Seiford and Zhu (2003) which identifies successive layers of DMUs and 

computes so-called attractiveness and progress measures for each DMU with respect to the 

different DMU layers. 



 3 

Table 1 shows a summary of the main characteristics of the different approaches. In 

particular, for each approach the table shows the type of IBT and UBT considered, whether 

stratification is used, whether the benchmarking path is computed over a benchmark network 

(whose nodes are the DMUs and whose edges indicate the possible steps that can be taken to 

form the efficiency improvement path), whether bounds on the stepsizes are considered, 

whether the DMUs are clustered, the similarity criteria considered for selecting each IBT and 

whether the method suffers from zigzagging (i.e. moving in inverse directions in successive 

steps). The final column shows some specific features of the methods. 

==================== Table 1 =================== 

Note that most methods have used stratification to segment the sample and clustering 

to group similar DMUs based mainly on their inputs (although sometimes on inputs and 

outputs or on cross-efficiency scores). Self-Organizing Maps (SOMs) and k-means are the 

clustering algorithms generally used. Those methods that consider only the existing DMUs 

use clustering and other mechanisms (such as directional similarity) to try to compute 

consistent benchmarking paths (so that if an input is reduced in one step it is not increased in 

the next) but in general they cannot prevent zigzagging from happening. 

Note that some (but not all) methods limit the amount of inputs and outputs changes 

allowed in each step. Those methods that build a benchmark network usually compute the 

sequence of targets solving a shortest path problem. In order to select the next IBT along the 

benchmarking path, different criteria have been considered. Thus, they can be required to 

belong to the same cluster as the original DMU being projected or they should not be far (in 

terms of the inter-cluster distance or in terms of SOM distance) from the previous IBT. Using 

the attractiveness and progress measures computed by the CD, DEA stratification has also 

been proposed. The distance between the current IBT and the candidates for the next IBT is 

often taken into account as it is also the change in efficiency between those DMUs. 

Among the specific features of some of the methods, we have the possibility of using a 

preference structure to select the UBT, the consideration of a fixed cost for carrying out each 

benchmarking step or computing a decision tree from the DMU stratification to try to identify 

the differences in inputs and output ranges in two successive layers. The extension of 

stepwise benchmarking to centralized DEA and to systems with two stages in series is also 

remarkable. 
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In this paper, a completely new stepwise benchmarking approach that uses the 

gradient of an efficiency field potential (EFP) is presented. Thus, each feasible operating 

point is assigned a scalar EFP so that the negative gradient of that potential defines an 

efficiency field vector (EFV). The proposed stepwise efficiency improvement path is 

computed by moving a discrete stepsize along the direction of this EFV. Since the negative 

gradient of the EFP always points to the less-input/more-output subspace, a step in that 

direction monotonously reduces the inputs and increases the outputs so that after a finite 

number of steps an EF target is reached. The continuous version of the method corresponds to 

moving along the efficiency field lines perpendicular to the efficiency equipotential surfaces 

and defines rather interesting trajectories, which can be easily visualized in the case of a 

single input as well as in the case of two inputs and a constant output or two outputs and a 

constant input. The proposed approach is units invariant and can accommodate a preference 

structure as well as non-discretionary variables and undesirable outputs. 

The EFP and EFV concepts introduced in this paper are original contributions. The 

closest relatives we have found in the DEA literature are the Geometric Distance Function 

(GDF) used in, for example, Silva Portela and Thanassoulis (2007), the dominance network 

profit potential in Lozano and Calzada-Infante (2017) and the two-dimensional gradient line 

approach in Maital and Vaninsky (1999). The proposed approach is, however, completely 

different, differing from such approaches in its purpose and in the methodology and concepts 

used. Thus, Silva Portela and Thanassoulis (2007) use GDF mainly as way of measuring 

technical efficiency. i.e. measuring the distance from an observed DMU to its target. 

Although the functional form of GDF is also multiplicative, they use geometric averages and 

they neither define a potential function on the PPS as this paper does, nor do they study 

stepwise efficiency improvements. On the other hand, Lozano and Calzada-Infante (2017) use 

the concept of profit potential to designate the profit associated to each operating point. They 

do that in the context of a dominance network where the nodes represent the DMU and the 

arcs go from lower profit nodes to larger profit nodes. Those dominance networks are then 

studied using complex network analysis tools. Finally, Maital and Vaninsky (1999) compute 

so-called gradient lines on a two-dimensional section of the PPS determined by a 

simultaneous radial input reduction and radial output expansion. With their approach they are 

able to determine locally optimal proportional change in inputs and outputs using the 

information provided by a single DMU. 

The structure of the paper is the following. In Section 2 the efficiency field potential, 

efficiency equipotential surface, efficiency field vector and gradient-based trajectories are 
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presented. In Section 3 the proposed gradient-based stepwise benchmarking approach is 

formulated and illustrated on a simple two-dimensional dataset. Section 4 presents some 

extensions of the proposed approach. Section 5 presents an application of the proposed 

approach while Section 6 summarizes and concludes. 

2. Efficiency field potential and efficiency field vector 

Let us consider that we have a set of n DMUs which consume m inputs and produce s 

outputs. Let I and O represent the set of inputs and outputs, respectively. Let 

 j 1j 2j mjx x , x ,...x  and  j 1j 2j sjy y , y ,...y  the input and output vectors, respectively, of 

DMU j. Using the conventional DEA methodology, the following Variable Returns to Scale 

(VRS) PPS can be inferred from the observations 

 
n n n

VRS m s
j j j ij i j kj k

j 1 j 1 j 1

T x, y : 0 1 x x i y y k

  

  
            
  

    (1) 

Using the average of the different input and output dimensions aver
ix  and aver

ky  

appropriate dimensionless inputs and output vector for the observed DMUs can be computed  

ij kj
ij kjaver aver

i k

x y
ˆ ˆx i j y k j

x y
       (2) 

There is a one to one correspondence between the VRS PPS VRST  and the 

corresponding VRS PPS defined using the dimensionless input and output vectors 

 
n n n

VRS m s
j j j ij i j kj k

j 1 j 1 j 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆT x, y : 0 1 x x i y y k

  

  
            
  

    (3) 

Thus, if i k
i kaver aver

i k

x y
ˆ ˆx i y k

x y
     then    VRS VRSˆˆ ˆx, y T x, y T   . 

For each feasible operating point  ˆ ˆx,y  with x̂ 0  and ŷ 0 we can assign the 

following strictly positive EFP 

 

m

i

i 1
s

k

k 1

x̂

ˆ ˆP x,y

ŷ











 (4) 
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It is clear that the less input an operating point consumes and the more output it 

produces, the lower its EFP. Note also that, since the dimensionless input and output vectors 

of the average DMU have all components equal to one, its associated EFP is also one, i.e. 

   aver averˆ ˆP x , y P , 1 1 1 . In spite of these and other interesting features that will be 

commented below, it must be acknowledged the above definition of the EFP is somewhat 

arbitrary. As it has been discussed in the literature (e.g. Ebert and Welsch 2004, Cherchye et 

al. 2007) other functional forms as well as other ways of normalizing the variables and 

removing their dimensions can be devised, with the different alternatives having different 

properties as regards invariance, strong/weak monotonicity, separability, etc. Hence, although 

the proposed approach uses the EFP definition given in (4), in principle it may be adapted to 

work also with other alternative EFP specifications. The resulting efficiency improvement 

path for other EFP specifications would of course be different, but its main properties (i.e. 

strong monotonicity and efficiency achievement) can be maintained. 

The Efficiency Equipotential Surfaces (EESs) correspond to 

m

i s m
1i 1

k is
k 1 i 1

k

k 1

x̂

ˆ ˆy x

ŷ



 



    


 



 (5) 

More importantly, the EFP has an associated EFV given by the negative EFP gradient 

   
1 2 m 1 2 s

P P P P P P
ˆ ˆ ˆ ˆE x,y P x,y , ,..., , , ,...,

ˆ ˆ ˆ ˆ ˆ ˆx x x y y y

      
         

      
 (6) 

The corresponding partial derivatives can be easily computed and, interestingly, can 

be expressed in terms of the EFP since 

   
i ' i

i ' i i

2
i i k kk

k k '

k k ' k

ˆ ˆx x
ˆ ˆ ˆ ˆP x, y P x, yP P 1

i k
ˆ ˆ ˆ ˆx x y yŷ

ˆ ˆy y





 
       

 

 

 

 (7) 

Note that the components of the EFV 

 
           

1 2 m 1 2 s

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆP x,y P x,y P x,y P x,y P x,y P x,y
ˆ ˆE x,y , ,..., , , ,...,

ˆ ˆ ˆ ˆ ˆ ˆx x x y y y

 
    
 

 (8) 
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always point towards the less input/more output region. It is also clear that at each feasible 

operating point  ˆ ˆx,y ,  ˆ ˆE x,y  is perpendicular to the corresponding EES. Figure 1 shows 

the EFV for three special cases that can be shown in a bidimensional plot. These three cases 

correspond to a single input and a single output (case XY), two inputs and a constant output 

(case XX1) and two outputs and constant input (case 1YY). 

==================== Figure 1 =================== 

In the XY case, the EESs are straight lines that pass through the origin. The Efficiency 

Field Lines (EFLs), which are tangent to the EFV (and hence perpendicular to the EES), 

correspond to circles centred at the origin. 

In the XX1 case the EESs are rectangular hyperboles whose EP decreases as they 

approach the origin. The corresponding EFLs are also hyperboles which are symmetrical 

around the bisector line 1 2ˆ ˆx x . The case 1YY is similar, with the only difference being that 

the EFP of the EES decreases as the hyperboles move away from the origin. 

The mathematical expressions for the EFL correspond to the following differential 

equation, which represents moving along the direction of the negative EFP gradient 

 
ˆ ˆdx dy

ˆ ˆ, P x,y
dt dt

 
  

 
 (9) 

Solving this partial differential equation with boundary condition  0 0ˆ ˆx , y  leads to the 

following three groups of quadratic surfaces 

2 2 2 2
i i ' i0 i '0ˆ ˆ ˆ ˆx x x x i i '       

2 2 2 2
k k' k0 k'0ˆ ˆ ˆ ˆy y y y k k '      (10) 

2 2 2 2
i k i0 k0ˆ ˆ ˆ ˆx y x y i,k      

Of the first group of m (m 1) /2   equations in (10), only m-1 are linearly 

independent. Similarly, only s-1 equations out of the s (s 1) /2   equations in the second 

group are linearly independent. And only 1 equation from the third group is linearly 

independent. This means that the total number of linearly independent equations is m+s-1 

which means that (10) defines a one-dimensional subspace. The EFLs are curves that result 

from the intersection of this equation system. Thus, for example, in the XY case seen above, 

(10) reduces to 
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2 2 2 2
0 0ˆ ˆ ˆ ˆx y x y    (11) 

which corresponds to the circular EFLs that can be noticed in panel a) of Figure 1. Similarly, 

in the XX1 case the EFLs (10) reduce to  

2 2 2 2
1 2 10 20ˆ ˆ ˆ ˆx x x x    (12) 

which for 10 20ˆ ˆx x  are hyperboles and for 10 20ˆ ˆx x  corresponds to the bisector line 

1 2ˆ ˆx x . Finally, in the 1YY case, the EFLs (10) reduce to  

2 2 2 2
1 2 10 20ˆ ˆ ˆ ˆy y y y    (13) 

which, again, are hyperboles for 10 20ˆ ˆy y  and the bisector line 1 2ˆ ˆy y  if 10 20ˆ ˆy y . 

3. Proposed gradient-based stepwise benchmarking approach 

3.1. Stepwise efficiency improvement path 

As shown in the previous section, the EFV always points towards less input and more 

output. Following such direction leads to a strictly increasing efficiency. The trajectories 

defined by the EFL (10) correspond to the continuous path that results from following the 

EFV as per (9). However, changing the inputs in a continuous fashion is not practical and may 

not even be implementable. That is why we propose a stepwise benchmarking approach 

which is a discrete version of that continuous efficiency improvement trajectory. 

Assume that a stepwise efficiency improvement path from DMU 0 is to be computed. 

DMU 0 will the starting point, i.e. the step t=0, of efficiency improvement path 

   0 0
0 0ˆ ˆ ˆ ˆx , y x , y . Assuming that tx̂ 0  and tŷ 0 , the corresponding EFP and EFV 

t tˆ ˆP(x , y ) and t tˆ ˆE(x , y ) , respectively, can easily be computed. In each iteration two DEA 

models are solved. The first one is labelled the Improvement Dimensions (ID) DEA model 

and determines the input and output dimensions that can be improved in that step. Let 

Data 

 t tˆ ˆx ,y  Current (i.e. step t) IBT 

 t tˆ ˆE x , y  EFV at current IBT 
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  Small value stepsize along EFV from current IBT 

Decision variables 

j  linear combination variables used to compute a feasible operating point  

iu  binary variable indicating whether input dimension i  can be improved moving in the 

EFV direction 

kv  binary variable indicating whether output dimension k  can be improved moving in the 

EFV direction  

ID DEA model (iteration t) 

m s

i k
i 1 k 1

Max u v

 

   (14) 

s.t.  

 
 

t t
n it

j ij i i
t t

j 1

ˆ ˆE x , y
ˆ ˆx x u i

ˆ ˆE x , y

        (15) 

 
 

t t
n kt

j kj k k
t t

j 1

ˆ ˆE x , y
ˆ ˆy y v k

ˆ ˆE x , y

        (16) 

n

j

j 1

1



   (17) 

   j i k0 j 1,2,...,n u 0,1 i v 0,1 k        (18) 

This easy-to-solve Mixed Integer Linear Programming (MILP) model identifies all the 

input and output dimensions that can be improved in step t along the EFV direction. Note that 

the above model is feasible. Thus, the current IBT  t tˆ ˆx ,y  corresponds to a feasible solution 

with i ku 0 i v 0 k    . The model is also bounded as it is the sum of a finite number of 

binary variables. 

As regards parameter  , its purpose is to detect whether we have reached the efficient 

frontier and, if not, which input and output dimensions can be improved. The stepwise 

benchmarking path computed does not depend on the exact value chosen, provided it is small 

enough. In principle, assuming that the current intermediate benchmark target (IBT) is not too 
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close to the weak efficiency frontier any small positive value amount 0   can be used. Only 

if the IBT is very close to the weak efficiency frontier, i.e. one or more inputs or amounts may 

improve but just by a very small amount, precaution has to be taken to choose   small 

enough to detect that improvement in those dimensions is possible. Using a value equal to the 

precision level of the most precise of the input and output variables should be safe as, in that 

case, even if the possibility of improving a certain input or output dimension would go 

undetected, the magnitude of such improvement would be negligible and, for all practical 

purposes, the weak efficiency frontier had been reached. For example, if the border of the PPS 

along a certain output dimension corresponds to a value of 10.0 and the current IBT has 

reached a value very close to that, let us say 9.9, then the question is how to be able to detect 

that there is still a small margin to continue improving that output. Let us assume that the 

precision with which that variable is measured (in the observed data) is 0.1, i.e. one decimal 

position. If 0.1   then the model would not detect that this output dimension can be 

improved because there is no feasible operating point with an output equal to 9.9 10.0  . 

Hence it should be 0.1  . If, instead, the output precision of the variable were two decimal 

positions and the current IBT had an output value of 9.92 then 0.1   would not detect that 

there is still some small margin for improvement as 9.92 10.00   would get us out of the 

PPS. In this second case it would have to be 0.01   if we want to detect potential 

improvements of that size. In the above reasoning we have not taken into account the fact that 

in the ID DEA model (14)-(18)   multiplies the size of the normalized gradient component, 

which is lower than one, which means that a value of   somewhat larger than the precision 

value could be used, but it is better to be on the safe side and that is why we suggest   equal 

to the precision level. Note that, in any case, the value of   can be an issue only if the IBT is 

very close to the border of the PPS, something which occurs infrequently. Much more 

frequent is that the IBT exactly reaches the border of the PPS in a given step. 

Given the optimal solution of the above model, the improvement dimensions sets tI  

and tO  can be determined as follows 

   t i t kI i : u 1 O k : v 1      (19) 

If t tI O   , then  t tˆ ˆx , y  is technically efficient and therefore there is no need to solve 

the corresponding gradient stepsize (GSS) DEA model. Otherwise, we would solve a GSS 

DEA model that computes the next IBT along the negative gradient direction. To control the 

stepsize, the unit vector in the direction pointed by the EFV is used. The model follows the 
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negative EFP gradient direction and, if advancing the given stepsize   is feasible, then that 

would be the next IBT. Otherwise, the model advances as much as possible. Let 

Data 

tI  Input dimensions that can be improved in step t 

tO  Output dimensions that can be improved in step t 

 t tˆ ˆx ,y  Current (i.e. step t) IBT 

 t tˆ ˆE x , y  EFV at current IBT 

  Desired stepsize value 

Decision variables 

j  linear combination variables used to compute a feasible operating point  

 t 1 t 1ˆ ˆx , y   Next (i.e. step t+1) IBT 

  Computed stepsize value 

,    Negative and positive deviations, respectively, from the desired stepsize value 

GSS DEA model (iteration t) 

Min      (20) 

s.t.  

 
 

t t
n it 1 t

j ij i i t
t t

j 1

ˆ ˆE x , y
ˆ ˆ ˆx x x i I

ˆ ˆE x , y

 



       (21) 

n
t 1 t

j ij i i t
j 1

ˆ ˆ ˆx x x i I 



      (22) 

 
 

t t
n kt 1 t

j kj k k t
t t

j 1

ˆ ˆE x , y
ˆ ˆ ˆy y y k O

ˆ ˆE x , y

 



       (23) 



 12 

n
t 1 t

j kj k k t
j 1

ˆ ˆ ˆy y y k O 



      (24) 

n

j

j 1

1



   (25) 

        (26) 

j 0 j 1,2,...,n 0 0 0           (27) 

This linear programming (LP) model moves along the direction of the unit EFV 

 
 

t t

t t

ˆ ˆE x , y

ˆ ˆE x , y
 (ignoring those components corresponding to input and output dimensions that 

cannot be improved if moving in that direction) from the current IBT  t tˆ ˆx ,y . In principle, 

the model tries to move the given stepsize  . However, if that is not feasible then the next 

IBT  t 1 t 1ˆ ˆx ,y   corresponds to moving as much as possible along the EFV direction until 

any of the dimensions in the sets tI  and tO  cannot improve more. Note that this is a simple 

Goal Programming model where the goal is the desired stepsize   and   and   are the 

negative and positive deviations respectively. The achievement function (20) penalizes both 

types of deviation. Note also that the above model is always feasible and bounded. This can 

be seen taking into account that the current IBT  t tˆ ˆx ,y  is a feasible solution with an 

associated objective function value of   (corresponding to a value of 0     and 

   ). Therefore, if giving the whole   step size keeps us within the PPS then it is 

feasible. Otherwise some input and/or output dimensions reach their PPS limit and no further 

improvement in those dimensions can be pursued. In other words, some input and/or output 

dimensions may limit the advancement along the negative gradient direction and prevent the 

step size from reaching its desired value  , thus determining the maximum feasible step size. 

If the next IBT  t 1 t 1ˆ ˆx ,y   has been computed, a new iteration (step t+1) is carried 

out. If the new IBT is technically efficient, the ID DEA model will not find any feasible 

improvement dimensions and that IBT is the UBT. Conversely, if the new IBT is not 

technically efficient, then it is still possible to continue improving efficiency along certain 

input and output dimensions that the corresponding ID DEA model will determine. 
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Note that there does not exist an optimal value for the   parameter. That parameter 

controls the stepsize, i.e. the amount of input and output changes in each step of the stepwise 

efficiency improvement program. That depends on the DMU, and specifically on how fast it 

wishes to achieve efficiency. A high value of the  parameter allows larger input and output 

changes in each step, which means that the efficient frontier can be reached in few steps. On 

the contrary, a small value of the  parameter means that smaller input and output changes are 

allowed in each step and therefore more steps will be required to achieve efficiency. 

It should be emphasized that the computed stepwise benchmarking path and, hence the 

UBT, depends on the value of  chosen. However, we see this parameter dependence more as 

a plus than as a con. Thus, the proposed approach has the flexibility/degree of freedom to 

allow the analyst, together with the DMU, try several values of the  parameter and select the 

efficiency improvement path that best suits its interests and its capacities. In other words, 

when designing a stepwise benchmarking approach, having the possibility of choosing among 

different UBT may be advantageous, provided they are all efficient. In any case, it is more 

important to correctly determine the amount of change, i.e. the effort and likelihood of 

success, involved in each step of the efficiency improvement path than the exact final UBT to 

aim for. 

A possibility, kindly indicated by one reviewer, consists in using a different value of 

  for each DMU. Also, the value of   could be modified (e.g. reduced) from one step to the 

next, which can be justified as at first large efficiency improvements may be easier to carry 

out while at latter stages additional improvements may be harder to achieve. 

Finally, note that the proposed efficiency improvement path follows the direction of 

the gradient (actually the negative gradient) and hence always points to reducing inputs and 

increasing outputs. This means that the UBT of a given DMU 0 will always dominate it. The 

minimum EFP (MEFP) model formulated below computes the feasible operating point with 

minimum EFP. That operating point does not generally dominate a given DMU 0. In other 

words, although the UBT of the efficiency improvement path has lower EFP than the starting 

DMU 0, it is not normally a MEFP operating point. Moving to such MEFP operating point 

once the UBT has been reached can be conceived (as a continuation of the proposed 

efficiency improvement path) but then, unlike what occurs along the efficiency improvement 

path, in this case the changes required will necessarily involve either input increases or output 

reductions. This is because we are talking about moving from one Pareto efficient point to 

another. In any case, the final efficient, minimum EFP target can be computed by solving the 

following non-linear optimization model 
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MEFP DEA model 

   
m s

i k

i 1 k 1

ˆ ˆMin log x log y

 

   (28) 

s.t.  

n

j ij i
j 1

ˆ ˆx x i I



     (29) 

n

j kj k
j 1

ˆ ˆy y k O



     (30) 

n

j

j 1

1



   (31) 

j 0 j 1,2,...,n    (32) 

An LP version of the above model cannot be formulated as long as the non-linear 

definition of the EFP given in (4) is considered. Although this is a drawback, note that this 

MEFP DEA model plays a minor role in the proposed path approach. Moreover, it is possible 

to use an additive-type definition for the EFP which would render the corresponding MEFP 

DEA model a linear program. In any case, the MEFP model is not actually used in the 

computation of the stepwise efficiency improvement path. It has been formulated so that the 

corresponding minimum efficiency potential can be used as a reference value for the 

efficiency potentials of the observed DMUs and of the computed IBT. What is important is 

that, of the two main models used in the iterative process for computing the stepwise 

benchmarking path, the ID DEA model (14)-(18) is MILP and the GSS DEA model (20)-(27) 

is LP, both of which can be easily solved using any common optimization package (e.g. 

LINGO or CPLEX). 

3.2. Illustrative example 

In this section the seven DMUs, two outputs/constant input dataset in Cooper et al. 

(2007, Chapter 1) shown in Table 2, is considered. DMUs B, E, F and G are efficient. Table 2 

also shows the corresponding dimensionless input and output vectors (computed using 

averx 1 , aver
1y 3.5714  and aver

2y 4.5714 ) as well as the associated efficiency potentials. 
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==================== Table 2 =================== 

Table 3 shows the ten-step efficiency improvement path for DMU A computed using 

the iterative approach described in section 3.1 using stepsizes 0.0001   and 0.1  . For 

each step the current operating point  t tˆ ˆx ,y , the improvement dimensions tI  and tO , the 

EFP  t tˆ ˆP x ,y  and its gradient, are shown. Also, for reference, the radial output efficiency 

score of each operating point is shown. Table 4 shows the alternative shorter (five-step) 

efficiency improvement path computed for the same DMU but using a stepsize 0.2  . Note 

that every step moving along the EFV direction leads to increasing both outputs while the 

input stays constant. Hence, the efficiency potential decreases in each step and the radial 

efficiency BCC O  increases. The end of the efficiency improvement paths is found when 

t tI O    which indicates a technically efficient operating point. As expected, in the case 

of 0.2  , the improvements are larger than in the case 0.1  . Also, rather interestingly, 

the UBT is different in both cases, with the 0.2   UBT having a slightly lower potential 

(0.7699 versus 0.7794). 

==================== Table 3 =================== 

==================== Table 4 =================== 

Table 5 shows the efficiency improvement paths for the three inefficient DMUs (using 

0.2  ) expressed in the original units of measurement. Figure 2 shows these stepwise 

efficiency improvement paths. In all cases, the two outputs and the radial BCC O  efficiency 

increase monotonously and the final UBT lies on the technical efficiency frontier. Note that 

for DMUs C and D it only takes six steps to reach the EF. None of these UBTs, however, 

corresponds to the MEFP operating point. For this dataset, the MEFP operating point 

corresponds to DMU F, which is the feasible operating point at which the efficiency 

equipotential surface of minimum potential is tangent to the PPS.  

==================== Table 5 =================== 

==================== Figure 2 =================== 
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4. Extensions of the proposed approach 

In this section some possible extensions of the proposed approach are presented. 

Although, in order to simplify exposition they are treated independently, the corresponding 

features can be present simultaneously. 

4.1. Preference structure 

If there is a preference structure or value judgment on the importance of the different 

inputs and outputs, this can be taken into account in the proposed approach. Thus, let x
i  and 

y
k  be the weights that reflect such relative importance and let us assume that 

yx
i k

i I k O

1

 

     . In this case the EFP can be defined as  

 

 

 

m x
i

i

i 1
s y

k
k

k 1

x̂

ˆ ˆP x,y

ŷ















 (33) 

whose gradient is  

   

 

 

x x1x i i '
i i i ' x

ii ' i

y
i i

k
k

k O

ˆ ˆx x
ˆ ˆP x,yP

i
ˆ ˆx x

ŷ

  







  
 

  






 (34) 

   

 

 

y x1y k i
k i yk

i I k

y
k k

k '
k '

k ' k

ˆ ˆy x
ˆ ˆP x, yP

k
ˆ ˆy y

ŷ

  







 
 

    






 (35) 

Compared with (7) it can be seen that the basic change is that the components of the 

EFP gradient have to be multiplied by the preference weights x
i  and 

y
k . This has to be 

taken into account in constraints (21) and (23) of the GSS DEA model. The ID DEA model is 

unaffected, while the objective function of MEFP DEA model also changes to 
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   
m s

yx
i i kk

i 1 k 1

ˆ ˆMin log x log y

 

       (36) 

4.2. Non-discretionary variables 

Let NDI  and NDO  be the sets of non-discretionary inputs and outputs, respectively. 

Let D NDI I \ I  and D NDO O \ O  and Dm' I  and Ds' O  be the number of 

discretionary inputs and discretionary outputs, respectively. 

The ID DEA model changes slightly as the non-discretionary dimensions are not 

considered as candidates for improvement. Hence 

Modified ID DEA model (iteration t) 

i k
D Di I k O

Max u v

 

   (37) 

s.t.  

 
 

t t
n it D

j ij i i
t t

j 1

ˆ ˆE x , y
ˆ ˆx x u i I

ˆ ˆE x , y

         (38) 

n
t ND

j ij i
j 1

ˆ ˆx x i I



     (39) 

 
 

t t
n kt D

j kj k k
t t

j 1

ˆ ˆE x , y
ˆ ˆy y v k O

ˆ ˆE x , y

         (40) 

n
t ND

j kj k
j 1

ˆ ˆy y k O



     (41) 

n

j

j 1

1



 
 

(42) 

   D D
j i k0 j 1,2,...,n u 0,1 i I v 0,1 k O          (43) 
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The improvement dimensions sets are now defined as 

   D D
t i t kI i I : u 1 O k O : v 1        (44) 

With respect to the GSS DEA model, there is no change in the formulation. The 

MEFP DEA model also requires some minor changes as shown below. In particular, since the 

MEFP operating target of a DMU is constrained by the corresponding values of the non-

discretionary inputs and outputs, that MEFP depends on the DMU being projected. 

Modified MEFP DEA model 

   i k
D Di I k O

ˆ ˆMin log x log y

 

   

(45) 

s.t. 

n
D

j ij i
j 1

ˆ ˆx x i I



     

n
ND

j ij i0
j 1

ˆ ˆx x i I



     

n
D

j kj k
j 1

ˆ ˆy y k O



     

n
ND

j kj k0
j 1

ˆ ˆy y k O



     

n

j

j 1

1



   

j 0 j 1,2,...,n    

4.3. Undesirable outputs 

Let B be the set of undesirable outputs and p B  the number of undesirable outputs. 

Let bjz  be the amount of undesirable output b produced by DMU j and 
bj

bj aver
b

z
ẑ

z
  the 

corresponding dimensionless value. The EFP can then be defined as 
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 

pm

i b

i 1 b 1
s

k

k 1

ˆ ˆx z

ˆ ˆ ˆP x,y,z

ŷ

 







 



 (46) 

which means that the components of the EFV are 

   

           

1 m 1 s 1 p

ˆ ˆ ˆ ˆ ˆ ˆE x,y,z P x,y,z

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆP x,y,z P x,y,z P x,y,z P x,y,z P x,y,z P x,y,z
,..., , ,..., , ,...,

ˆ ˆ ˆ ˆ ˆ ˆx x y y z z

  

 
     
 
 

 (47) 

Assuming weak disposability of the undesirable outputs and using the approach in 

Kuosmanen (2005), the corresponding modified models are 

Modified ID DEA model (iteration t) 

pm s

i k b
i 1 k 1 b 1

Max u v w

  

      

s.t.  

 
 
 

t t t
n it

j j ij i i
t t t

j 1

ˆ ˆ ˆE x , y ,z
ˆ ˆx x u i

ˆ ˆ ˆE x ,y ,z

           

 
 

t t t
n kt

j kj k k
t t t

j 1

ˆ ˆ ˆE x , y ,z
ˆ ˆy y v k

ˆ ˆ ˆE x , y ,z

        (48) 

 
 

t t t
n kt

jr bj b b
t t t

j 1

ˆ ˆ ˆE x , y ,z
ˆ ˆz z w b

ˆ ˆ ˆE x , y ,z

         

 
n

j j
j 1

1



     

     j j i k b0 0 j u 0,1 i v 0,1 k w 0,1 b             

     t i t k t bI i : u 1 O k : v 1 B b: w 1         (49) 
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Modified GSS DEA model (iteration t) 

Min       

s.t.  

 
 
 

t t t
n it 1 t

j j ij i i t
t t t

j 1

ˆ ˆ ˆE x ,y ,z
ˆ ˆ ˆx x x i I

ˆ ˆ ˆE x ,y ,z

 



           

 
n

t 1 t
j j ij i i t

j 1

ˆ ˆ ˆx x x i I 



         

 
 

t t t
n kt 1 t

j kj k k t
t t t

j 1

ˆ ˆ ˆE x ,y ,z
ˆ ˆ ˆy y y k O

ˆ ˆ ˆE x , y ,z

 



         

n
t 1 t

j kj k k t
j 1

ˆ ˆ ˆy y y k O 



      (50) 

 
 

t t t
n bt 1 t

j bj b b t
t t t

j 1

ˆ ˆ ˆE x , y ,z
ˆ ˆ ˆz z z b B

ˆ ˆ ˆE x ,y ,z

 



         

n
t 1 t

j bj b b t
j 1

ˆ ˆ ˆz z z b B 



       

 
n

j j

j 1

1



     

         

j j0 0 j 1,2,...,n 0 0 0              

Modified MEFP DEA model 

     
pm s

i k b

i 1 k 1 b 1

ˆ ˆ ˆMin log x log y log z

  

      

s.t.  
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 
n

j j ij i
j 1

ˆ ˆx x i I



        

n

j kj k
j 1

ˆ ˆy y k O



     (51) 

n

j bj b
j 1

ˆ ˆz z b B



      

 
n

j j

j 1

1



     

j j0 0 j 1,2,...,n       

5. Application to organic farming benchmarking 

The proposed approach has been applied to a dataset consisting of 26 organic farms in 

Southern Spain. The unit of analysis is 1 ha. of land of each of the 26 farms. Using a slacks-

based inefficiency measure (SBI), an efficiency assessment of the DMUs has been carried out 

in Gutiérrez et al. (2017), which found that 12 DMUs were technically efficient. In this 

section we will compute, for each inefficient DMU, a stepwise benchmarking path using the 

proposed gradient-based approach. Note that the dataset has three inputs, namely Fuel 

consumption (in litres/ha), Total Carbon input (in kg C/ha) and Total Nitrogen input (in kg 

N/ha), of which the Total C input is considered non-discretionary. There are also three 

outputs, namely Yield fresh matter (in Mg/ha), Net Primary Production (excl. fresh matter 

yield) (NPP) (in Mg dry matter/ha) and CO2 emissions (in kg CO2eq/ha), the latter being an 

undesirable output. 

Table 6 shows the inputs and outputs of the 12 efficient DMUs. In addition to these 

observed DMUs, the virtual average DMU is shown. For each operating point, its EFP is 

shown in the last column. Note that, since the efficient DMUs occupy different positions in 

the input/output space, their associated EFP values also differ, although they are low in 

general (often much lower than the EFP value of the average DMU, which, by definition, is 

equal to unity). This is so because, on the one hand, EFP is lower the lower the input 

consumption, the lower the undesirable output production and the higher the desirable output 

production and, on the other hand, efficient DMUs tend to consume fewer input, produce 

more desirable output and less undesirable output. Hence, their EFP is expected to be low. 
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Their EFP might be possibly reduced a bit but not through technical efficiency improvement, 

as they are already technical efficient. In other words, their outputs can be increased but only 

if their inputs consumption and CO2 emissions also increase. Similarly, their input 

consumption and or their CO2 emissions can be decreased, but only if their outputs also 

decrease. 

==================== Table 6 =================== 

Table 7 shows, the inputs and outputs for each of the 14 inefficient DMUs, as well as 

those of the UBT of the proposed stepwise efficiency improvement path computed using 

0.0001   and 0.2  . The number of steps required, the EFP of both operating points and 

their efficiency score computed using the SBI DEA model of Gutiérrez et al. (2017) are also 

shown. Note that the number of steps of the efficiency improvement paths varies from 3 to 9, 

and depends on how far the initial DMU is from the EF. Although, as indicated above, the 

same value of   has been used for all DMUs, that is not compulsory. The value of   used 

can vary from one DMU to another so that the computation of the stepwise benchmarking 

path can be adapted to the circumstances and wishes of each DMU. In particular, the amount 

of input and output changes a DMU may be willing to implement may depend on their 

inefficiency level and on the speed with which it wishes to reach technical efficiency. 

==================== Table 7 =================== 

Note that in all cases the UBT of the efficiency improvement paths as well as the 

MEFP target are technical efficient. The UBT has a lower potential than the initial DMU, 

although higher than the MEFP target. Note also that the change in the inputs, outputs and 

undesirable output along the efficiency improvement path is monotonous, while moving from 

the UBT to the MEFP generally involves increasing some inputs (and possible also some 

outputs) or decreasing some outputs (generally decreasing the inputs and the undesirable 

output as well). The changes from the UBT to the MEFP may also involve input substitution 

effects (i.e. increasing some inputs while reducing others) or some output substitution (i.e. 

increasing some outputs at the expense of others). In the absence of information about input 

and output prices, the advantages of such changes cannot be assessed. That is unlike the 

changes computed by the efficiency improvement path, which never lead to increasing the 

inputs or the undesirable output nor to decreasing the desirable outputs and thus are always 

guaranteed not only to increase efficiency but also to increase profit. 
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Figure 3 shows the SBI score of the DMUs versus their corresponding EFP. The 

efficient DMUs have SBI equal to zero and therefore lie on the horizontal axis. As mentioned 

before, these efficient DMUs have different EFP values but, in general, they are lower than 

those of the inefficient DMUs. For the latter, there is a positive correlation between their SBI 

and EFP values. 

==================== Figure 3 =================== 

Panel a) of Figure 4 shows the amount of EFP and SBI reduction from the observed 

DMU to the UBT of its efficiency improvement path. Recall that those UBT are efficient (i.e. 

have SBI equal zero) which means that the SBI reduction of each DMU is equal to its 

corresponding SBI score. Note that the DMUs that have large SBI reductions (like O14, O7, 

O23, O3 or O4) are also the ones that also achieve the largest EFP reduction. This positive 

correlation between SBI and EFP reductions is more noticeable in panel b). 

==================== Figure 4 =================== 

6. Conclusions 

In this paper, a new stepwise benchmarking approach is presented. It is based on 

innovative concepts such as efficiency field potential, efficiency equipotential surfaces and 

efficiency field vector. The idea is to associate an EFP to each feasible operating point so that 

the smaller the inputs consumption and the larger the outputs production, the smaller the EFP. 

Moreover, the negative EFP gradient represents the direction of maximum efficiency 

improvement and always leads to input reductions and outputs increases. Such an EFP 

gradient is easy to compute and changes from one operating point to another. A stepwise 

gradual efficiency improvement approach is proposed by moving a bounded stepsize along 

the negative EFP gradient direction. Care has to be taken not to step out of the PPS. The 

computed stepwise benchmarking path depends on the amount of input and output changes 

allowed in each step. This allows the proposed approach to adapt to situations in which a 

DMU is close to (or far from) the efficient frontier and is willing to achieve small (or large) 

input and output improvements in each step. A different bound on the amount of inputs and 

output changes can be used for each DMU or for the different steps of the efficiency 

improvement programs. All this adds flexibility to the proposed approach, thus increasing its 

applicability. 
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The proposed approach can also incorporate a preference structure reflecting the 

relative importance of the different inputs and outputs. With the appropriate modifications, it 

can also handle non-discretionary variables and undesirable outputs. Actually, the proposed 

approach has been applied to an organic farming dataset with non-discretionary inputs and 

undesirable outputs. The usefulness of the proposed approach for computing bounded 

stepwise efficiency improvements that end at an efficient operating point has been shown. 

The length of the stepwise benchmarking paths depends on the distance to the EF from which 

they start and on the stepsize bound. Different stepsize bounds generally lead to different 

UBTs. 

Although the proposed approach is rather intuitive and effective, it has some 

limitations. Thus, it cannot handle integer inputs or outputs. Also, the EFP is undefined for 

those operating points which have zero consumption of a certain input or zero production of a 

certain output. Dealing with these zero data occurrences is a topic for further research. One 

possible solution, kindly pointed out by one of the reviewers, is to consider a linear (i.e. 

additive) definition of the EFP. That would lead to EES that are hyperplanes and EFL that are 

straight lines (with negative slope for inputs and positive for outputs). In principle it seems 

possible, and it is a topic for further research, to reformulate the proposed approach for this 

type of additive EFP. Actually, an additive EFP would be very appropriate in case that the 

input and output prices were known since then the EFP would be equivalent to the profit 

function. Such type of profit potential was already considered in Lozano and Calzada-Infante 

(2017) in the context of dominance networks and using it to compute profit improvement 

paths would be possible. Alternatively, instead of the local information provided by the 

efficiency potential gradient, the profit improvement direction proposed in Zofio et al. (2013) 

can be used to determine a stepwise profit improvement path. 
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Reference IBT UBT Stratification 
Benchmark 

network 

Stepsize 

constraints 
Clustering Similarity criteria Zigzagging Other features 

Hong et al. 

(1999) 

Existing 

DMUs 

Existing 

DMUs 
Yes (Tiers) No No 

SOM (inputs 

only) 
Same cluster Yes 

Decision tree for 

tier classification 

Lozano and 

Villa (2005) 

Feasible 

operating 

points 

Efficient 

operating 

points 

No No 

Yes (on the 

change of each 

variable) 

No 
Efficiency 

improvement 
No CRS 

Estrada et al. 

(2009) 

Existing 

DMUs 

Existing 

DMUs 
No No 

Yes (on 

efficiency 

change) 

SOM (inputs 

only) 
SOM distance Yes 

Reinforcement 

Learning 

Sharma and 

Yu (2009) 

Existing 

DMUs 

Existing 

DMUs 
Yes (Tiers) No No 

SOM (inputs 

only) 
Same cluster Yes  

Sharma and 

Yu (2010) 

Existing 

DMUs 

Existing 

DMUs 

Yes (Context 

dependent 

DEA) 

No No No 
Attractiveness and 

progress 
Yes 

Decision tree for 

attribute 

prioritization 

Lozano and 

Villa (2010) 

Feasible 

operating 

points 

MPSS 

efficient 

operating 

points 

No No 

Yes (on the 

change of each 

variable) 

No 
Efficiency 

improvement 
No VRS 

Park et al. 

(2011) 

Existing 

DMUs 

Existing 

DMUs 

Yes (Context 

dependent 

DEA) 

No No k-means Inter-cluster distance Yes  

Lim et al. 

(2011) 

Existing 

DMUs 

Existing 

DMUs 

Yes (Context 

dependent 

DEA) 

No 

Yes (joint 

linear 

constraints) 

No 

Attractiveness, 

progress and 

Infeasibility 

Yes  

Suzuki and 

Nijkamp 

(2011) 

Feasible 

operating 

points 

Efficient 

operating 

points 

Yes (Context 

dependent 

DEA) 

No No No 
Distance friction 

minimization 
Yes  

Table 1. Summary of existing stepwise efficiency improvement approaches 
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Reference IBT UBT Stratification 
Benchmark 

network 

Stepsize 

constraints 
Clustering 

IBT selection 

criteria 
Zigzagging Other features 

Park et al. 

(2012a) 

Existing 

DMUs 

Existing 

DMUs 

Yes (Context 

dependent 

DEA) 

Yes No No 

Resource 

improvement, 

directional proximity 

(inputs) 

Yes Shortest Path 

Park et al. 

(2012b) 

Existing 

DMUs 

Existing 

DMUs 

Yes (Context 

dependent 

DEA) 

No No 
SOM (inputs 

only) 

SOM distance, 

directional proximity 

(inputs) 

Yes 
Preference 

structure 

Park et al. 

(2012c) 

Existing 

DMUs 

Existing 

DMU 

Yes (Context 

dependent 

DEA) 

No No No 
Least distance 

measure 
Yes 

Resource priority 

analysis 

Khodakarami 

et al. (2014) 

Feasible 

operating 

points 

MPSS 

efficient 

operating 

points 

No No 

Yes (on the 

change of each 

variable) 

No 
Ray average 

productivity 
Yes 

Extension to two 

stage systems 

Park et al. 

(2014) 

Existing 

DMUs 

Existing 

DMUs 

Yes (Context 

dependent 

DEA) 

Yes No 
k-means (XE 

matrix) 

Same cluster, Least 

distance measure 
Yes Shortest Path 

Fang (2015) 

Feasible 

operating 

points 

Efficient 

operating 

points 

No No 

Yes (on 

efficiency 

change) 

No 
Efficiency 

improvement 
No Centralized DEA 

Park and 

Sung (2016) 

Existing 

DMUs 

Existing 

DMUs 

Yes (Context 

dependent 

DEA) 

Yes No 
k-means (XE 

matrix) 
Same cluster Yes  

Ghahraman & 

Prior (2016) 

Existing 

DMUs 

Existing 

DMUs 
No Yes 

Yes (on the 

change of each 

variable) 

Network 

components 

Euclidean distance 

(normalized inputs), 

efficiency change 

Yes 
Shortest Path, 

Fixed cost 

Notes: IBT=Intermediate Benchmark Targets, UBT=Ultimate Benchmark Targets, CRS=Constant Returns to Scale, VRS=Variable Returns to Scale, MPSS=Most Productive 

Scale Size, SOM=Self-Organizing Map, XE=Cross-efficiency 

Table 1. Summary of existing stepwise efficiency improvement approaches (cont.) 
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DMU j A B C D E F G 

jx  1 1 1 1 1 1 1 

1jy  1 2 3 4 4 5 6 

2 jy  5 7 4 3 6 5 2 

jx̂  1 1 1 1 1 1 1 

1jŷ  0.2800 0.5600 0.8400 1.1200 1.1200 1.4000 1.6800 

2 jŷ  1.0938 1.5313 0.8750 0.6563 1.3125 1.0938 0.4375 

j 1j 2jˆ ˆ ˆP(x ,y ,y )  3.2653 1.1662 1.3605 1.3605 0.6803 0.6531 1.3605 

Table 2. Two output/constant input dataset from Cooper et al. (2007, Chapter 1) 
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Step t tx̂  
t
1ŷ  t

2ŷ  tI  tO  
t t t

1 2ˆ ˆ ˆP(x ,y ,y )  
P

x̂




 

1

P

ŷ




 

2

P

ŷ




 BCC O  

0 1 0.2800 1.0938    1,2  3.2653 3.2653 -11.6618 -2.9854 0.714 

1 1 0.3735 1.1177    1,2  2.395 2.3955 -6.4137 -2.1433 0.730 

2 1 0.4629 1.1476    1,2  1.8825 1.8825 -4.0668 -1.6405 0.759 

3 1 0.5481 1.1819    1,2  1.5436 1.5436 -2.8162 -1.3060 0.798 

4 1 0.6293 1.2196    1,2  1.3028 1.3028 -2.0701 -1.0682 0.837 

5 1 0.7069 1.2596    1,2  1.1230 1.1230 -1.5887 -0.8916 0.878 

6 1 0.7811 1.3013    1,2  0.9838 0.9838 -1.2594 -0.7560 0.918 

7 1 0.8524 1.3441    1,2  0.8729 0.8729 -1.0240 -0.6494 0.958 

8 1 0.9209 1.3875    1,2  0.7826 0.7826 -0.8498 -0.5640 0.998 

9 1 0.9235 1.3892     0.7794 0.7794 -0.8440 -0.5610 1.000 

Table 3. Gradient-based stepwise efficiency improvement path for DMU A ( 0.1  ) 
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Step t tx̂  
t
1ŷ  t

2ŷ  tI  tO  
t t t

1 2ˆ ˆ ˆP(x ,y ,y )  
P

x̂




 

1

P

ŷ




 

2

P

ŷ




 BCC O  

0 1 0.2800 1.0938    1,2  3.2653 3.2653 -11.6618 -2.9854 0.714 

1 1 0.4670 1.1416    1,2  1.8757 1.8757 -4.0166 -1.6430 0.757 

2 1 0.6369 1.2111    1,2  1.2964 1.2964 -2.0354 -1.0704 0.834 

3 1 0.7911 1.2922    1,2  0.9782 0.9782 -1.2365 -0.7570 0.915 

4 1 0.9325 1.3788    1,2  0.7778 0.7778 -0.8341 -0.5641 0.996 

5 1 0.9390 1.3832     0.7699 0.7699 -0.8199 -0.5566 1.000 

Table 4. Gradient-based stepwise efficiency improvement path for DMU A ( 0.2  ) 

 

 

 

 DMU A DMU C DMU D 

Step t tx  
t
1y  t

2y  BCC O  tx  
t
1y  t

2y  BCC O  tx  
t
1y  t

2y  BCC O  

0 1 1 5 0.714 1 3 4 0.700 1 4 3 0.750 

1 1 1.6678 5.2188 0.757 1 3.4407 4.5415 0.798 1 4.3142 3.6864 0.831 

2 1 2.2747 5.5366 0.834 1 3.8624 5.0650 0.893 1 4.6436 4.3180 0.912 

3 1 2.8254 5.9073 0.915 1 4.2667 5.5700 0.984 1 4.9772 4.9057 0.992 

4 1 3.3304 6.3030 0.996 1 4.3391 5.6609 1.000 1 5.0121 4.9638 1.000 

5 1 3.3537 6.3232 1.000 - - - - - - - - 

Table 5. Efficiency improvement path for DMUs A, C and D ( 0.2  ) in original units of measurement
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DMU 
Fuel 

consumption 
Total C input Total N input 

Yield fresh 

matter 
NPP CO2 emissions 

t t tˆ ˆ ˆP(x ,y ,z )  

O1 39.30 472.18 46.40 1,880.0 3,109.96 414.36 0.8000 

O5 49.91 118.84 25.87 1,500.0 2,657.88 497.30 0.2509 

O6 48.86 104.24 23.34 1,200.0 2,300.97 473.18 0.2671 

O10 55.65 384.70 40.60 3,000.0 4,442.42 494.81 0.4231 

O11 56.52 1,297.82 94.23 3,000.0 4,442.42 88.18 0.5997 

O12 55.49 228.24 32.23 2,500.0 3,847.57 523.94 0.2915 

O15 43.14 141.08 45.24 1,800.0 3,201.68 701.83 0.4396 

O17 43.52 209.54 29.90 2,000.0 3,460.38 480.56 0.2483 

O20 55.85 469.99 43.26 2,600.0 3,541.75 348.11 0.5628 

O21 42.67 372.38 50.23 2,800.0 3,747.01 384.58 0.3835 

O22 48.91 123.70 25.55 1,600.0 2,776.85 557.43 0.2543 

O25 33.90 1,252.08 57.13 1,500.0 2,813.62 50.36 0.3794 

Aver. DMU 48.00 514.21 45.10 1,853.3 3,047.20 386.96 1.0000 

Table 6. Efficient DMUs and average DMU of organic farming dataset 
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 Fuel consump. Total C input Total N input Yield NPP CO2 emissions t t tˆ ˆ ˆP(x ,y ,z )  SBI score 

DMU O2  52.48   36.96  307.35   2,000.00   3,252.72  488.50   0.587  0.117 

UBT (Step 3)  48.00   31.96  307.35   2,151.12   3,503.88  461.00   0.378  0.000 

MEFP O2  50.29   35.87  307.35   2,558.40   4,008.75  488.52   0.346  0.000 

 

DMU O3  49.66   38.98  324.24   1,400.00   2,538.91  457.68   1.060  0.281 

UBT (Step 5)  43.00   31.37  324.24   1,761.77   3,059.96  406.62   0.432  0.000 

MEFP O3  42.92   44.22  324.24   2,563.50   3,662.27  412.95   0.355  0.000 

 

DMU O4  47.75   48.31  526.26   1,200.00   2,104.91  271.49   1.711  0.289 

UBT (Step 4)  42.42   43.67  526.26   1,706.23   2,556.93  208.61   0.611  0.000 

MEFP O4  41.14   51.44  526.26   2,572.60   3,583.74  326.12   0.516  0.000 

 

DMU O7  44.69   40.64  373.53   1,000.00   2,063.03  462.66   1.995  0.471 

UBT (Step 7)  41.40   37.44  373.53   1,734.45   2,968.36  381.77   0.563  0.000 

MEFP O7  42.66   50.24  373.53   2,798.30   3,745.79  384.14   0.385  0.000 

 

DMU O8  45.20   46.60  485.83   2,000.00   3,252.72  444.70   0.917  0.127 

UBT (Step 9)  41.60   43.35  485.83   2,260.84   3,462.53  364.51   0.535  0.000 

MEFP O8  41.54   51.12  485.83   2,632.35   3,626.64  341.48   0.484  0.000 

Table 7. Summary of stepwise efficiency improvement path of the inefficient DMUs 
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 Fuel consump. Total C input Total N input Yield NPP CO2 emissions t t tˆ ˆ ˆP(x ,y ,z )  SBI score 

DMU O9  46.73   45.90  472.98   1,880.00   3,109.96  456.10   1.038  0.166 

UBT (Step 8)  41.68   41.37  472.98   2,188.84   3,442.79  375.41   0.533  0.000 

MEFP O9  41.67   51.02  472.98   2,651.34   3,640.27  346.36   0.473  0.000 

 

DMU O13  51.07   36.26  318.49   2,000.00   3,460.38  498.89   0.557  0.098 

UBT (Step 3)  46.44   32.34  318.49   2,210.26   3,648.11  477.89   0.372  0.000 

MEFP O13  51.06   36.56  318.49   2,622.00   4,071.21  489.42   0.357  0.000 

 

DMU O14  47.27   47.88  516.38   1,000.00   1,899.65  291.75   2.353  0.420 

UBT (Step 5)  40.84   42.31  516.38   1,563.25   2,477.07  222.18   0.671  0.000 

MEFP O14  41.23   51.36  516.38   2,587.20   3,594.22  329.87   0.509  0.000 

 

DMU O16  45.20   46.18  500.09   2,000.00   3,460.38  454.86   0.899  0.114 

UBT (Step 5)  42.76   41.89  500.09   2,400.77   3,588.81  409.74   0.558  0.000 

MEFP O16  41.40   51.23  500.09   2,611.27   3,611.51  336.06   0.496  0.000 

 

DMU O18  56.36   48.44   1,119.50   1,500.00   2,412.81  154.74   1.713  0.121 

UBT (Step 7)  42.85   47.29   1,119.50   1,562.49   2,542.41  128.33   0.961  0.000 

MEFP O18  35.63   53.23   1,119.50   1,326.74   2,488.64   44.54   0.375  0.000 

Table 7. Summary of stepwise efficiency improvement path of the inefficient DMUs (cont.) 
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 Fuel consump. Total C input Total N input Yield NPP CO2 emissions t t tˆ ˆ ˆP(x ,y ,z )  SBI score 

DMU O19  53.11   59.86  477.46   2,500.00   3,439.12  373.85   0.865  0.111 

UBT (Step 5)  44.60   54.73  477.46   2,726.39   3,701.43  334.40   0.506  0.000 

MEFP O19  41.62   51.05  477.46   2,644.72   3,635.52  344.66   0.477  0.000 

 

DMU O23  49.61   39.08  247.59   1,125.00   2,211.74  448.77   1.135  0.345 

UBT (Step 5)  43.04   31.57  247.59   1,655.48   2,858.31  389.34   0.363  0.000 

MEFP O23  46.15   32.22  247.59   2,217.23   3,673.71  483.66   0.287  0.000 

 

DMU O24  43.34   73.89   1,431.67   2,000.00   3,252.72   78.04   0.721  0.066 

UBT (Step 4)  42.91   71.91   1,431.67   2,013.81   3,305.32   62.61   0.545  0.000 

MEFP O24  33.90   57.13   1,431.67   1,500.00   2,813.62   50.36   0.434  0.000 

 

DMU O26  41.79   49.60   1,093.36   1,200.00   2,425.56  164.42   1.678  0.147 

UBT (Step 3)  39.38   47.80   1,093.36   1,462.53   2,593.18  124.54   0.886  0.000 

MEFP O26  35.97   52.46   1,093.36   1,292.58   2,424.56   43.40   0.375  0.000 

Table 7. Summary of stepwise efficiency improvement path of the inefficient DMUs (cont.) 
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a) Case XY 

 

b) Case XX1 

 

c) Case 1YY 

 

Figure 1. Efficiency vector fields for three bidimensional cases 
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Figure 2. Gradient-based stepwise efficiency improvement paths for DMUs A, C and D ( 0.2  ) 
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Figure 3. SBI and EFP of efficient and inefficient DMUs 
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Figure 4. SBI and EFP reductions achieved along the different efficiency improvement paths 

 

 


