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Mart́ınez-Fernández

Received: date / Accepted: date

Abstract The comparison of investments is a key research topic in mathemat-
ical finance. Financial derivatives are popular tools for economic investments.
A common financial derivative is the so-called condor derivative. A new math-
ematical framework for the comparison of investments in condor derivatives is
introduced in this manuscript. That model is based on the theory of stochastic
orders. Namely, a new family of stochastic orders to approach such comparison
problems is introduced. That family is analyzed in detail providing character-
izations of the new orders, properties and connections with other stochastic
orderings. Results which permit to compare condor derivatives, when the prices
of the underlying assets follow Brownian movements, or geometric Brownian
movements, are developed. Moreover, an analysis with the DOWJONES and
EUROSTOXX indexes shows how to use the new stochastic orders to compare
investments in condor derivatives based on those indexes. On the other hand,
it is shown how well-known stochastic orders can be applied to compare invest-
ments in other financial derivatives, like future derivatives, bull call spreads,
call options or long straddle derivatives.
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1 Introduction

Modern economy cannot be understood without the concept of financial deriva-
tive. A financial derivative is a financial contract between (at least) two parties
having a value which is derived from an underlying asset (like an index, an
interest rate, a commodity, a stock, bonds, currencies, other derivatives, etc.)
The value of a derivative is based on the future price of the underlying as-
set. Derivatives can be used for multiple purposes like insuring against price
movements, fluctuations in stock, changes in foreign exchange rates, changes
in interest rates, increasing exposure to price movements for speculation, or
for instance, getting access to other assets or markets. An investor purchases
a financial derivative when he believes that the future price of the asset will
be substantially different from the expected price held by the other party of
the contract, and tries to benefit from that. For an introduction to the field of
financial derivatives, the reader is referred for instance to the books by Dixit
and Pindyck (1994), Kolb and Overdahl (2002), Hunt and Kennedy (2004),
Cohen (2005), Jarrow and Chatterjea (2013) and Hull (2015).

One of the most commonly used derivatives is the so-called option, which
plays an essential role in finance. An option derivative gives to its buyer the
right, but not the obligation, to buy (call option) or sell (put option) an asset
at an agreed-upon price (strike or exercise price) on a specific date (exercise
date or expiration date) or during a certain period of time, paying for this right
a premium. Throughout the paper we will consider options with an expiration
date (European options) instead of options which can be exercised at any time
of a period (American options). The purchaser profits from a call option when
the underlying asset increases in price at the expiration date. The purchaser
of a put option believes that the underlying asset will drop below the exercise
price before the expiration date, and so he profits from a put option when the
price of the asset decreases. If x is the unit price of the underlying asset at the
exercise date, p is the unit exercise price considered in the contract and k is
the unit premium, the profit per unit of the underlying asset of the purchaser
of the call option is (x−p)+−k, where the subscript + stands for the positive
part of a real number. Namely, if x > p, the purchaser of the call option will
exercise the right of the option, and so his unit benefit will be (x− p)− k. On
the contrary, if x < p, the purchaser will not exercise the right, his unit loss
being the unit premium k. The unit profit of the seller of the call option is
k − (x− p)+. In the same way, the profits per unit of the underlying asset of
the purchaser and the seller of a put option, are (p−x)+− k and k− (p−x)+
respectively.

Some derivatives are defined by means of a mixture of other financial
derivatives. That is the case of the condor financial derivative. This can be
designed as follows. Four contracts on the same asset and same expiration
date are bought or sold at four different strike prices. Namely, the condor
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derivative is the result of the purchase of a call option and a put option
with unit exercises prices p3 and p2 and unit premiums k3 and k2 respec-
tively, where p2 < p3, and the sale of a call option and a put option with
unit exercise prices p4 and p1 and unit premiums k4 and k1 respectively,
with p1 < p2 and p3 < p4. If x stands for the unit price of the underly-
ing asset at the expiration date, then the benefit of the condor derivative is
−(p1−x)+ +(p2−x)+ +(x−p3)+−(x−p4)+ +k1−k2−k3 +k4. Observe that
a condor derivative has limited risk. Its maximum loss is reached when x lies
between p2 and p3, that loss given by the corresponding premiums, that is,
k1− k2− k3 + k4. The largest return of a condor derivative is also limited and
it arises when x is at least p4 or at most p1. An investor purchases a condor
derivative when he estimates that the price of the underlying asset will not be
close to the interval [p2, p3] at the expiration date.

Investors frequently have the possibility to choose between two condor
derivatives of different assets under the same contractual conditions, that is,
with same exercise prices, premiums and expiration dates, to make an invest-
ment. That is very common when underlying assets are different kinds of an
agricultural product, for instance, the case of citrus fruits. Some varieties of
oranges have the same prices at the beginning of the season, but their prices
change during the sowing time (depending on the humidity, the land, the rain,
the temperature, stocks, etc.), and so they are different at the end of the
harvest.

The main aim of this manuscript is to introduce a mathematical model to
compare investments in condor derivatives under that framework, and study
and analyze in detail such a model. The paper has the following structure.
Section 2 is devoted to present the concepts, terminology and notations that
we need in the manuscript. In Section 3, motivated by the problem described
above, a new family of stochastic orders is introduced to compare investments
in condor financial derivatives. Main results of the article are included in Sec-
tion 4, characterizations of the stochastic orders, properties and connections
with other orders are developed. In Section 5, we consider a financial appli-
cation of the proposed mathematical model. Namely, we obtain conditions to
order prices of assets in condor stochastic orders, when those prices follow
Brownian motions with drifts or the Black-Scholes model. Section 6 shows an
empirical analysis of condor stochastic orders for the DOWJONES and the
EUROSTOXX indexes. In Section 7, we show how “classic” stochastic orders
can be used to compare investments in other financial derivatives. Section 8
summarizes the main conclusions of the manuscript. An appendix at the end
of the manuscript contains the proofs of the mathematical results.

2 Preliminaries

Roughly speaking, a stochastic order tries to order probabilities in accordance
with an appropriate criterion. Formally, a stochastic order is a pre-order rela-
tion on a set of probabilities associated with a measurable space. Stochastic
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orderings has been applied successfully in many fields like genetics, ecology,
biology, medicine, ophthalmology, statistical physics, decision theory, queueing
systems, scheduling problems, control theory, reliability theory, economy, etc.
For a detailed analysis of the theory and applications of stochastic orderings,
the reader is referred for instance to the books by Müller and Stoyan (2002),
Shaked and Shanthikumar (2007) and Belzunce et al. (2016).

In this manuscript we will introduce a family of stochastic orders on the set
of probabilities associated with the measurable space (R,B), where B stands
for the usual Borel σ-algebra on R.

If � denotes a stochastic order on the set of probabilities on (R,B), and
X and Y are two random variables, X � Y will mean that PX � PY , PX and
PY being the distributions induced by X and Y respectively.

Given a random variable X, FX will denote its distribution function, EX
its expected value and V arX its variance. If X is continuous, fX will denote
its probability density function. The integrated survival function of a random
variable with finite mean is the mapping πX : R→ R with πX(t) = E(X− t)+
for any t ∈ R.

The following stochastic orderings will appear throughout the paper. Let
X and Y be two random variables,

i) X is said to be smaller than Y in the usual stochastic ordering if
E(f(X)) ≤ E(f(Y )) for all increasing mappings f : R → R such that the
above expectations exist, equivalently, if FX ≥ FY . It will be denoted by
X �st Y ;

ii) X is said to be smaller than Y in the (increasing) convex order if
E(f(X)) ≤ E(f(Y )) for all (increasing) convex mappings f : R → R such
that the above expectations exist. It will be denoted by (X �icx Y ) X �cx Y ;

iii) X is said to be smaller than Y in the (increasing) concave order if
E(f(X)) ≤ E(f(Y )) for all (increasing) concave mappings f : R → R such
that the above expectations exist. It will be denoted by (X �icv Y ) X �cv Y ;

iv) when X and Y have symmetric distributions with respect to µX and
µY respectively, it is said that X is smaller than Y in the peakness order if
|X−µX | �st |Y −µY |. It will be denoted by X �peak Y (see Birnbaum (1948)
and Bickel and Lehmann (1976));

v) X is said to be less dispersive than Y in the weak dispersion ordering
if |X −X ′| �st |Y − Y ′|, where X ′ and Y ′ are independent copies of X and
Y respectively. This relation will be denoted by X �w Y (see Giovagnoli and
Wynn (1995));

vi) it will be said that X is smaller than Y in the bidirectional ordering,
denoted by X �bd Y , if X+ �st Y+ and X− �st Y− hold simultaneously (see
Müller (1998) and López-Dı́az (2010)).

A stochastic order � on the set of probabilities associated with (R,B) is
said to be integral, if there exists a class of measurable mappings satisfying
that P � Q when

∫
R f dP ≤

∫
R f dQ for all f in that class, such that the

above integrals exist. That class of mappings is said to be a generator of the
order. It is well-known that there could be different generators of the same
stochastic order (see Müller (1997)).
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Given X and Y random variables, X ∼st Y will mean that they are equal
in distribution. If P is a probability on (R,B) and T : R→ R is a measurable
mapping, P◦T−1 will denote the probability given by P◦T−1(B) = P (T−1(B))
for any B ∈ B. If A is a subset of R, IA will stand for the indicator function
of A. Let a ∈ R, a+ will stand for max {a, 0}, and a− for max {−a, 0}. On the
other hand [·] will denote the integer part. Throughout the paper, increasing
will mean non-decreasing and decreasing will mean non-increasing.

3 The new family of stochastic orders

In this section we introduce the new family of stochastic orders which arises
from the analysis of the problem described in the Introduction of the manuscript.

Let k stands for k1 − k2 − k3 + k4. Let p1 < p2 < p3 < p4. Define the
mapping fp1,p2,p3,p4,k : R → R with fp1,p2,p3,p4,k(x) = −(p1 − x)+ + (p2 −
x)+ + (x− p3)+ − (x− p4)+ + k, that is, for any x ∈ R,

fp1,p2,p3,p4,k(x) =


p2 − p1 + k if x ∈ (−∞, p1],
p2 − x+ k if x ∈ (p1, p2],
k if x ∈ (p2, p3],
x− p3 + k if x ∈ (p3, p4],
p4 − p3 + k if x ∈ (p4,∞),

(1)

see Figure 1 for its graphical representation.
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Fig 1 Graphical representation of a return of a condor derivative, p1 unit price of the put
sale, p2 unit price of the put purchase, p3 unit price of the call purchase, p4 unit price of

the call sale, k resulting unit premium

Given p2, p3 ∈ R with p2 < p3, let Fp2,p3 = {fp1,p2,p3,p4,k | p1 < p2, p3 <
p4, k ∈ R}, and let Fp2,p30 stand for the class of mappings {fp1,p2,p3,p4,k ∈
Fp2,p3 | k = 0}. By fp2,p2,p3,p4,k we will denote the mapping resulting from
taking p1 = p2 in formula (1), omitting in its definition the case x ∈ (p1, p2].
In a similar way we define fp1,p2,p3,p3,k and fp2,p2,p3,p3,k.

Let X and Y be the random variables associated with the unit prices at the
expiration date of the underlying assets of two condor derivatives under the
same contractual conditions. How is possible to compare both investments?
That is the main aim of this paper. We introduce the following family of
stochastic orders to approach this question.
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Definition 1 Let X and Y be random variables and let p2, p3 ∈ R with
p2 < p3. It will be said that X is less than Y in the condor stochastic order
for the purchase prices p2 and p3, if E(f(X)) ≤ E(f(Y )) for any f ∈ Fp2,p3 .
Such a condition will be denoted by X �p2,p3con Y .

All the mappings of Fp2,p3 are bounded, and so for any random variables
X and Y and any f ∈ Fp2,p3 , the expected values E(f(X)) and E(f(Y ))
exist.

Let us clarify the meaning of the new family of stochastic orders. Investors
frequently have the opportunity to design condor derivatives where prices p2
and p3 are fixed because of previous purchases, playing adequately with the
sale prices p1 and p4 to try to maximize their benefits. Under this framework
and if they have the possibility to buy two condor derivatives under the same
contractual conditions, which one is preferred for an investment? Let X and
Y denote the unit prices of the underlying assets at the expiration date in the
above condor derivatives. The relation X �p2,p3con Y means that the expected
benefit of the condor derivative formed with the second asset, is greater than
or equal to the expected benefit of the condor derivative with the former,
whatever prices p1 and p4 of the call and put option sales respectively. Under
those conditions, the investment in the second condor derivative is preferable
to the investment in the first derivative. Anyway, in case of an investor wants
to invest in a condor derivative with the first asset (that associated with X),
the relation X �p2,p3con Y shows that the premium paid for that must be lower
than the premium of the condor derivative associated with Y .

Condor stochastic orders permit to compare investments in condor deriva-
tives under the above framework. It is worth mentioning that it is possible to
compare investments in common financial derivatives by means of well-known
stochastic orders, as we prove in Section 7 of the manuscript.

4 Main results on the order

In this section we develop the main results on the new stochastic orders.
Namely, we state characterization results for the orders, derive consequences
and properties, and analyze connections with other stochastic orders.

4.1 Characterizations

In this subsection different characterizations results of the new family of stochas-
tic orders are proved.

We state some technical results which will be applied afterwards.
It is clear that the order �p2,p3con is integral, and the class Fp2,p3 is a

generator of that order. The following result provides a simpler generator of
the stochastic order.

Lemma 1 The class of mappings Fp2,p30 is a generator of the order �p2,p3con .
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The following lemma will be useful to prove characterization results of the
new family of stochastic orders.

Lemma 2 Let X and Y be random variables with X �p2,p3con Y . Then

i) E(fp2,p2,p3,p4,k(X)) ≤ E(fp2,p2,p3,p4,k(Y )),
ii) E(fp1,p2,p3,p3,k(X)) ≤ E(fp1,p2,p3,p3,k(Y )) and
iii) E(fp2,p2,p3,p3,k(X)) ≤ E(fp2,p2,p3,p3,k(Y )),

for any p1, p2, p3, p4, k ∈ R with p1 < p2 < p3 < p4.

Next result reads that the theoretical study of the condor stochastic order
can be reduced to the analysis of the order �−δ,δcon with δ > 0 in most of the
cases.

Proposition 1 Let X and Y be random variables, let p2, p3 ∈ R with p2 < p3
and µ = p3 − p2. Then X �p2,p3con Y if and only if X − (p2 + p3)/2 �−µ/2,µ/2con

Y − (p2 + p3)/2.

We state some characterizations results of the stochastic order �−δ,δcon for
any δ > 0. Characterizations of �p2,p3con with p2 < p3 can be deduced by means
of Proposition 1.

The first characterization will be key to derive simpler characterizations.

Proposition 2 Let X and Y be random variables and let δ > 0. Then X �−δ,δcon

Y if and only if

i) E(XI(δ,δ+t](X)) − δ(FX(δ + t) − FX(δ)) + t(1 − FX(δ + t)) ≤
E(Y I(δ,δ+t](Y )) − δ(FY (δ + t) − FY (δ)) + t(1 − FY (δ + t)) for any t > 0,
and

ii) |t|FX(−δ + t) − δ(FX(−δ) − FX(−δ + t)) + E(|X|I(−δ+t,−δ](X)) ≤
|t|FY (−δ + t) − δ(FY (−δ) − FY (−δ + t)) + E(|Y |I(−δ+t,−δ](Y )) for any
t < 0.

The above result permits to obtain another characterization of the order
�−δ,δcon by means of distribution functions.

Proposition 3 Let X and Y be random variables and let δ > 0. Then X �−δ,δcon

Y if and only if

i)
∫ δ+t
δ

FX(x) dx ≥
∫ δ+t
δ

FY (x) dx for any t > 0, and

ii)
∫ −δ
−δ+t FX(x) dx ≤

∫ −δ
−δ+t FY (x) dx for any t < 0.

Another characterization of condor stochastic orders by means of the in-
creasing concave stochastic order is proved now.

Proposition 4 Let X and Y be random variables and let δ > 0. Then X �−δ,δcon

Y if and only if (X − δ)+ �icv (Y − δ)+ and (X + δ)− �icv (Y + δ)−.

Corollary 1 Let X and Y be random variables and let δ > 0 such that
X �−δ,δcon Y . Then E(X − δ)+ ≤ E(Y − δ)+ and E(X + δ)− ≤ E(Y + δ)−.
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Proposition 5 Let X and Y be random variables. Let p2, p3 ∈ R with p2 < p3.
Then X �p2,p3con Y if and only if −X �−p3,−p2con −Y.

Corollary 2 Let X and Y be random variables and let δ > 0. Then X �−δ,δcon

Y if and only if −X �−δ,δcon −Y .

In spite of the above result, it is clear that the order �−δ,δcon is not sign-free.

The following results analyze characterizations of condor stochastic orders
for symmetric distributions.

Proposition 6 Let X and Y be random variables with symmetric distribu-
tions with respect to 0, and let δ > 0. Then X �−δ,δcon Y if and only if
|X| �−δ,δcon |Y |.

Corollary 3 Let X and Y be random variables with symmetric distributions
with respect to 0, and let δ > 0. Then X �−δ,δcon Y if and only if (|X|−δ)+ �icv
(|Y | − δ)+.

4.2 Relevant properties

This subsection is devoted to the study of important properties of condor
stochastic orders.

It can be seen that condor stochastic orders are not antisymmetric. How-
ever, the following result shows that two random variables equal in a condor
stochastic order have the same distribution in their tails.

Proposition 7 Let X and Y be random variables such that X �−δ,δcon Y and
Y �−δ,δcon X with δ > 0. Then FX(t) = FY (t) for any t ∈ (−∞,−δ] ∪ [δ,+∞).

We recall the definition of the number of sign changes of a function.
Let g : R → R be a mapping. The number of sign changes of g is given
by S−(g) = sup{ x1<x2<···<xn, xi∈R, n∈N } S

−(g(x1), g(x2), . . . , g(xn)), where

S−(y1, . . . , yn) is the number of sign changes of the tuple (y1, . . . , yn) ∈ Rn,
where zero values are discarded. By means of that concept, we can state con-
ditions which lead to the condor stochastic order.

Proposition 8 Let X and Y be continuous random variables with symmetric
distributions with respect to 0. Let δ > 0. If S−(fY − fX) = 2 and the sign
sequence is +,−,+, then X �−δ,δcon Y .

Given X1, X2, . . . , Xn a random sample drawn from X, X(1) will stand for
the random variable min {X1, X2, . . . , Xn }, andX(n) for max {X1, X2, . . . , Xn }.

Next result provides conditions to conclude the order �−δ,δcon for random
variables, and for the maximum and the minimum of random samples of those
variables.
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Proposition 9 Let X and Y be random variables. Let X1, X2, . . . , Xn and
Y1, Y2, . . . , Yn be random samples drawn from X and Y respectively. If S−(FY−
FX) ≤ 1, and the sequence of signs is −,+ when S−(FY − FX) = 1, we have
that:

i) if E(X− δ)+ ≤ E(Y − δ)+ and E(X+ δ)− ≤ E(Y + δ)−, then X �−δ,δcon Y,
ii) if E(X(n) − δ)+ ≤ E(Y(n) − δ)+ and E(X(n) + δ)− ≤ E(Y(n) + δ)−, then

X(n) �−δ,δcon Y(n),
iii) if E(X(1) − δ)+ ≤ E(Y(1) − δ)+ and E(X(1) + δ)− ≤ E(Y(1) + δ)−, then

X(1) �−δ,δcon Y(1).

Proposition 10 Let X be a random variable and let h1, h2 : R→ R be mea-
surable mappings such that 0 ≤ h1(x) ≤ h2(x) for any x ∈ [0,∞), and 0 ≥
h1(x) ≥ h2(x) when x ∈ (−∞, 0). For any δ > 0, we have that h1(X) �−δ,δcon

h2(X).

Roughly speaking, the following corollary reads that a larger “spreading”
of the variable leads to a larger variable in the order �−δ,δcon .

Corollary 4 Let X be a random variable. If α ∈ (0, 1], we have that αX �−δ,δcon

X. If α ∈ [1,∞), then X �−δ,δcon αX.

Some other properties of condor stochastic orders are analyzed in the fol-
lowing results.

Proposition 11 Let X and Y be random variables such that X �p2,p3con Y .
Let α ∈ R. Then αX �αp2,αp3con αY if α ≥ 0, and αX �αp3,αp2con αY when
α ≤ 0.

Proposition 12 The order �p2,p3con is closed under weak convergence.

Proposition 13 The order �p2,p3con is closed under mixtures.

The following results reinforce the idea that an investor purchases a condor
derivative when he believes that the price of the underlying asset will not be
close to the interval of central prices.

Proposition 14 Let X be a random variable and let δ > 0 with X ≥ δ a.s.
We have that X �−δ,δcon X + a for any a ≥ 0.

Proposition 15 Let X be a random variable and let δ > 0 with X ≤ −δ a.s.
We have that X �−δ,δcon X + b for any b ≤ 0.

4.3 Connections with other stochastic orders and examples

Next we approach the existence of possible connections of condor stochastic
orders with other orders. Some examples of condor orders for some parametric
families of distributions are also developed.
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Proposition 16 Let X and Y be random variables such that X �bd Y . Let
δ > 0. Then it holds that X �−δ,δcon Y .

The following example shows that given δ > 0, the condor stochastic order
�−δ,δcon is weaker than the bidirectional order.

Example 1 Let X and Y be discrete random variables with P (X = 0) = 0.5,
P (X = 1) = 0.4, P (X = 3) = 0.1, P (Y = 0) = 0.6 and P (Y = 3) = 0.4. It
can be proved that X �bd Y is false. Observe that X �bd Y is satisfied if and
only if FX − FY pivots at 0 (see Proposition 1 in López-Dı́az (2010)), that is,
if and only if (FX − FY )(x) ≤ 0 when x < 0 and (FX − FY )(x) ≥ 0 when
x ≥ 0. This condition is not fulfilled. On the other hand, it is not hard to see
that X �−2,2con Y .

The following result states an important connection between the bidirec-
tional order and the family of condor stochastic orders.

Proposition 17 Let X and Y be random variables. Then X �bd Y if and
only if X �−δ,δcon Y for any δ > 0.

Proposition 16 allows to derive other relations of condor orders with well-
known stochastic orders.

Proposition 18 Let X and Y be random variables with symmetric distribu-
tions with respect to their expected values EX and EY respectively. Let δ > 0.
If X �peak Y , then X − EX �−δ,δcon Y − EY .

Proposition 19 Let X and Y be random variables such that X �w Y . Let
δ > 0. Then X −X ′ �−δ,δcon Y − Y ′.

The following result relates condor orders with the increasing concave order
and the increasing convex order.

Proposition 20 Let X and Y be random variables such that there exists ε > 0
with X �−δ,δcon Y for all 0 < δ < ε. If X and Y are negative a.s., then
Y �icx X. If X and Y are positive a.s., then X �icv Y.

Corollary 5 Let X and Y be random variables with EX = EY , such that
there exists ε > 0 with X �−δ,δcon Y for all 0 < δ < ε. If X and Y are negative
a.s., or X and Y are positive a.s., we have that Y �cx X.

Note that if X and Y are a.s. positive random variables with X �st Y ,
then X �p2,p3con Y for any values of p2 and p3 with p2 < p3 and p2 ≤ 0 ≤ p3,
since the mappings of Fp2,p30 are increasing in (0,∞). As a consequence of
Proposition 20 ii), this family of condor stochastic orders is between the usual
stochastic order and the increasing concave order.

When X and Y are a.s. negative random variables with X �st Y , then
−Y �st −X. By the above paragraph, we obtain that X �icx Y . Thus, under
the a.s. negative assumption of random variables, the above family of condor
orders is between the usual stochastic order and the increasing convex order.
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Now we analyze some parametric distributions in relation to condor orders.
Using Example 1, 2 and 3 in López-Dı́az (2010), we obtain conditions for some
parametric families to be ordered in condor stochastic orders since they are
ordered in the bidirectional stochastic ordering.

Example 2 Let X ∼st exp(λ1) and Y ∼st exp(λ2). Let δ > 0. If λ1 ≥ λ2 then
X − EX �−δ,δcon Y − EY .

Example 3 Given m ∈ {1, 2, . . .} and θ ∈ (0,m], let X(m,θ) be a random
variable having a binomial distribution with parameters m and θ/m. For θ ∈
(0,+∞), let Y (θ) be a random variable with Poisson distribution, θ being its
parameter. Let δ > 0. Then X(m,θ) − [θ] �−δ,δcon X(m+1,θ) − [θ] and X(m,θ) −
[θ] �−δ,δcon Y (θ) − [θ].

Example 4 Let Z(t,θ) be a random variable having a negative binomial dis-
tribution with parameters t and θ/t, where t ∈ {1, 2, . . .} and θ ∈ (0, t].
Let δ > 0. Let r > t > 0, then there exists an integer j ≥ 1 such that
Z(r,θ) − j �−δ,δcon Z(t,θ) − j, and there exists an integer j ≥ 1 such that
Y (θ) − j �−δ,δcon Z(t,θ) − j.

Example 5 Let X ∼st N(µX , σX) and Y ∼st N(µY , σY ). Let δ > 0. Then
X − µX �−δ,δcon Y − µY if and only if σX ≤ σY .

Example 6 Let X ∼st tn and Y ∼st tm with m < n. Let δ > 0. Then X �−δ,δcon

Y .

Example 7 Let X ∼st N(0, 1), Y ∼st tm and δ > 0. Then X �−δ,δcon Y .

5 Financial applications

In economy, prices of assets are sometimes assumed to follow Brownian move-
ments (also known as Brownian motions with drifts) or geometric Brownian
movements (also known as Black-Scholes models) (see for instance Dixit and
Pindyck (1994), Billingsley (1999), Klebaner (2012), Tretyakov (2013) and
Hull (2015)). Let us analyze conditions to order those prices with the condor
stochastic orders.

Let (Xt)t∈[0,T ] and (Yt)t∈[0,T ] be Brownian movements such that EXt =
rXt, EYt = rY t, V arXt = σ2

Xt and V ar Yt = σ2
Y t for any t ∈ [0, T ], with

rX , rY ∈ R and σX , σY > 0.

Random variables Xt and Yt will represent the prices of two assets at the
instant t ∈ [0, T ]. We will consider that t = 0 is the start time of two condor
derivatives with the above assets, and t = T stands for the expiration date.

The following results show conditions under which Brownian processes and
geometric Brownian processes are ordered in condor stochastic orders at any
instant.
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Proposition 21 Let (Xt)t∈[0,T ] and (Yt)t∈[0,T ] be Brownian movements under

the above conditions. Then Xt−rXt �−δ,δcon Yt−rY t for any t ∈ [0, T ] and any
δ > 0, if and only if σY ≥ σX .

By means of this result, we obtain the following proposition for Brownian
movements which do not start at zero.

Proposition 22 Let (Xt)t∈[0,T ] and (Yt)t∈[0,T ] be Brownian movements under

the above conditions. Then Xt−rXt+k �k−δ,k+δcon Yt−rY t+k for any t ∈ [0, T ],
any k ∈ R and any δ > 0, if and only if σY ≥ σX .

The above result means that if prices of assets follow Brownian movements,
the centered prices plus any constant k, are ordered in the condor stochastic
order for the put option purchase unit price k− δ and the call option purchase
unit price k + δ, whatever unit prices of the call and put sales.

The following results are in relation to the case in which prices of as-
sets follow the Black-Scholes model. Let (Xt)t∈[0,T ] and (Yt)t∈[0,T ] be ge-

ometric Brownian movements given by Xt = c(ert−
1
2σ

2
Xt+σXBt) and Yt =

c(ert−
1
2σ

2
Y t+σY B̃t), where (Bt)t∈[0,T ] and (B̃t)t∈[0,T ] are Brownian movements

satisfying that Bt ∼st N(0,
√
t) and B̃t ∼st N(0,

√
t) for any t ∈ [0, T ], and

σX , σY , c, r > 0. Note that EXt = cert = EYt for any t ∈ [0, T ].

Proposition 23 Under the above conditions, consider the processes (X ′t)t∈[0,T ]

and (Y ′t )t∈[0,T ], given by X ′t = Xt − cert and Y ′t = Yt − cert for any t ∈ [0, T ].

Let δ > 0 and t ∈ (0, T ]. Then X ′t �−δ,δcon Y ′t if and only if σY ≥ σX and
δ ≥ cert(e t

2σXσY − 1).

Proposition 24 Let (X ′t)t∈[0,T ] and (Y ′t )t∈[0,T ] be the above processes. Let

δ > 0, p2 ∈ R and t ∈ (0, T ]. Then X ′t + k �k−δ,k+δcon Y ′t + k if and only if
σY ≥ σX and δ ≥ cert(e t

2σXσY − 1).

6 An empirical analysis of the condor stochastic order for the
DOWJONES and EUROSTOXX indexes

Next we show how to obtain evidence of a condor stochastic order from an
empirical point of view, by means of the results developed in the manuscript.

For that purpose, we use the well-known DOWJONES and EUROSTOXX
indexes. Recall that those indexes are the main American and European stock
market indexes. The prices of them during the period 2014-2016 were taken
from INVERTIA (http://www.invertia.com/).1

In order to reduce the position influence, our data consist of the first differ-
ences of the indexes. Let us denote the corresponding variables by DOWJONES-
VAR and EUROSTOXXVAR. The economic interpretation of condors based

1 See the web addresses http://www.invertia.com/mercados/bolsa/indices/eurostoxx-
50/historico-ib020stoxx50 and http://www.invertia.com/mercados/bolsa/indices/dow-
jones/historico-ib016indu for DOWJONES and EUROSTOXX indexes respectively.
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on those differences is the following. Consider (Xt) the stochastic process
given by an index, and the first differences DXt = Xt − Xt−1. It holds that
E(fp1,−δ,δ,p4,0(DXt)) = E(fp1+Xt−1,−δ+Xt−1,δ+Xt−1,p4+Xt−1,0(Xt)). Therefore
condors based on DXt are the same as condors based on Xt “centered” in
Xt−1. Figure 2 shows the evolution of those variables.

 

Fig 2 Evolution of the variables EUROSTOXXVAR (red color) and DOWJONESVAR
(grey color). Period 2014-2016 in the horizontal axis, values of the variables in the

vertical axis

We have used Proposition 3 for our empirical analysis. Note that under the
hypothesis of efficient markets, the variations should be independent observa-
tions (the first partial autocorrelations are not significative). Normality and
non-stationarity of the differences were rejected with Kolmogorov-Smirnov test
and Dickey-Fuller test, respectively. The value of δ was 50, that is, we consider
condor derivatives in which the difference of the strike prices of the call and
put purchases is 100 (other differences could be considered). We have depicted
the integrals involved in such a result for the corresponding empirical distri-

butions. Namely, we have calculated
∫ 50+t

50
F̃ (x) dx for different values of t,

which ranges from 0 to 950, with a step of 5 (the value 1000 is a bound from

above of the samples), and
∫ −50
−50+t F̃ (x) dx, where t ranges from -950 to 0, with

a step of 5 (-1000 is a bound from below of the samples), and F̃ stands for an
empirical distribution function. The graphical representation was depicted by
linear interpolation. The representations are given in Figure 3 and Figure 4.

Figure 3 contains the representation of
∫ 50+t

50
F̃ (x) dx for the different values of

t, Figure 4 includes the representation of
∫ −50
−50+t F̃ (x) dx for the corresponding

values of t.

The graphical representations show a reasonable evidence that the variable
EUROSTOXXVAR is less than DOWJONESVAR in the considered condor
order. Therefore the price of a condor derivative based on DOWJONESVAR
should be higher (at least the same) than the price of a condor derivative
associated with EUROSTOXXVAR, when the difference of strike prices of
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Fig 3 Graphical representation of
∫ 50+t
50 F̃ (x) dx. Values of t + 50 in the horizontal axis,

values of the integral in the vertical axis. Red color for EUROSTOXXVAR and grey color
for DOWJONESVAR

 

Fig 4 Graphical representation of
∫−50
−50+t F̃ (x) dx. Values of −50 + t in the horizontal

axis, values of the integral in the vertical axis. Red color for EUROSTOXXVAR and grey
color for DOWJONESVAR

the put and call purchases is 100, whatever unit prices of the put and call
sales. Our empirical analysis suggests that a condor derivative based on EU-
ROSTOXXVAR has less expected value than a condor derivative based on the
other variable.

7 Connections between financial derivatives and stochastic orders

In this manuscript we have introduced and studied in detail a stochastic order
to compare investments in condor financial derivatives. Next we show how well-
known stochastic orders are of use to compare investments in other common
financial derivatives. We include the definition of those derivatives.

Let x stand for the unit price of an asset of a financial derivative at the
expiration date.
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Futures are financial derivatives obligating the buyer to purchase an asset
(or the seller to sell an asset) at a predetermined future date and price. The
unit benefit of the purchaser of a future derivative is x−p, where p is the unit
exercise price considered in the contract. Let us denote such a benefit by F xp .

A bull call spread is a financial derivative which is constructed by buying
a call option with unit strike price p1, and selling another call option with
unit strike price p2, of the same underlying asset and the same expiration
date, where p1 ≤ p2. The unit benefit of the buyer of a bull call spread is
(x− p1)+ − k1 − (x− p2)+ + k2, where k1 and k2 are the corresponding unit
premiums. We will denote that benefit by Sxp1,p2,k1,k2 .

A long straddle is a derivative which involves purchasing both a call option
and a put option of the same underlying asset, with the same unit exercise
price p, and the same expiration date. The unit benefit of the purchaser of a
long straddle is (x− p)+ − k1 + (p− x)+ − k2. It will be denoted by ST xp,k1,k2 .

Recall that the unit benefit of the buyer of a call option is (x − p)+ − k.
Let Cxp,k denote that value.

The following result connects those financial derivatives with well-known
stochastic orders like the usual stochastic order, the convex order and the
increasing convex order. As in the preceding sections, we will assume the pos-
sibility of constructing two derivatives of the same kind with different assets.

Proposition 25 Let X and Y be random variables with finite means, which
stand for the unit prices of assets at the expiration date in the above financial
derivatives. Then

i) EX ≤ EY if and only if EFXp ≤ EFYp for all p ∈ R (comparison of
investments in future derivatives),

ii) X �st Y if and only if ESXp1,p2,k1,k2 ≤ ES
Y
p1,p2,k1,k2

for all p1, p2, k1, k2 ∈
R with p1 ≤ p2 (comparison of investments in bull call spreads),

iii) X �icx Y if and only if ECXp,k ≤ ECYp,k for all p, k ∈ R (comparison
of investments in call options),

iv) X �cx Y if and only if ESTXp,k1,k2 ≤ ESTYp,k1,k2 for all p, k1, k2 ∈ R
(comparison of investments in long straddles).

8 Summary section

This manuscript shows how the theory of stochastic orders can be used for
the comparison of investments in financial derivatives. It is worth noting that
some analysts estimate the derivatives market at more than ten times the size
of the total world gross domestic product. In this manuscript, a new family
of stochastic orders has been introduced to compare investments in condor
derivatives. Those orders are useful to reach a decision on how to invest in
such derivatives. Characterizations results of the orders have been developed,
as well as different properties. By means of those results, conditions to order
Brownian processes and geometric Brownian processes in condor stochastic
orders have been stated. Theoretical results on the orders have permitted to
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show how to order condor derivatives based on important market indexes from
an empirical point of view. In order to reinforce the importance of stochastic
orders to compare derivatives, we have shown how other orderings, like the
usual stochastic order, the convex order and the increasing convex order, can
be used to compare investments in other financial derivatives.

Appendix

Proofs of mathematical results are included in this appendix.

Proof of Lemma 1. Observe that fp2,p2,p3,p4,k = fp2,p2,p3,p4,0 + k for any
p1, p2, p3, p4, k ∈ R with p1 < p2 < p3 < p4, which leads to the result. Note
that Fp2,p30 ⊂ Fp2,p3 .

Proof of Lemma 2. Let us see i). Consider {fp2−1/n,p2,p3,p4,k}n ⊂ Fp2,p3 . Con-
dition X �p2,p3con Y implies E(fp2−1/n,p2,p3,p4,k(X)) ≤ E(fp2−1/n,p2,p3,p4,k(Y ))
for all n ∈ N. Note that for any x ∈ R we have that limn fp2−1/n,p2,p3,p4,k(x) =
fp2,p2,p3,p4,k(x), and the above sequence of mappings is uniformly bounded.
The Dominated Convergence Theorem leads to i). In a similar way it is pos-
sible to prove ii) and iii).

Proof of Proposition 1. Let us suppose that X �p2,p3con Y . Let f ∈ F−µ/2,µ/20 .

Note that this class of mapping is a generator of �−µ/2,µ/2con as Lemma 1 reads.
Let T : R → R with T (x) = x − (p2 + p3)/2. Observe that PX ◦ T−1(B) =
PX−(p2+p3)/2(B) for any B ∈ B. By a change of variable (see for instance
Halmos (1950)), we have that∫

R
f(x) dPX−(p2+p3)/2 =

∫
R
f ◦ T (x) dPX =

∫
R
f(x− (p2 + p3)/2) dPX .

It is not hard to prove that the map x→ f(x−(p2+p3)/2) belongs to the class
Fp2,p30 . In fact, if f = fp1,−µ/2,µ/2,p4,0 for some p1 < −µ/2 and p4 > µ/2, then
f(x− (p2 + p2)/2) = fp1+(p2+p3)/2,p2,p3,p4+(p2+p3)/2(x). Since X �p2,p3con Y , we
obtain that∫
R
f(x− (p2 + p3)/2) dPX ≤

∫
R
f(x− (p2 + p3)/2) dPY =

∫
R
f dPY−(p2+p3)/2,

and so X−(p2 +p3)/2 �−µ/2,µ/2con Y −(p2 +p3)/2. The converse can be proved
in a similar way.

Proof of Proposition 2. Assume that the condition X �−δ,δcon Y is satisfied.
Let t > 0. Take the mapping f−δ,−δ,δ,δ+t,0, that is, f−δ,−δ,δ,δ+t,0(x) =

(x− δ)I(δ,δ+t](x) + tI(δ+t,+∞)(x) for any x ∈ R.
By Lemma 2, E(f−δ,−δ,δ,δ+t,0(X)) ≤ E(f−δ,−δ,δ,δ+t,0(Y )) holds. Note that∫
R
f−δ,−δ,δ,δ+t,0(x) dPX =

∫
R

(x− δ)I(δ,δ+t](x) dPX +

∫
R
tI(δ+t,+∞)(x) dPX
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=

∫
R
xI(δ,δ+t](x) dPX − δPX((δ, δ + t]) + tPX((δ + t,+∞))

= E(XI(δ,δ+t](X))− δ(FX(δ + t)− FX(δ)) + t(1− FX(δ + t)), (2)

which implies i).
Let t < 0. Take the mapping f−δ+t,−δ,δ,δ,0. That mapping is given by

f−δ+t,−δ,δ,δ,0(x) = |t|I(−∞,−δ+t](x) + (−δ − x)I(−δ+t,−δ](x) for any x ∈ R.
By Lemma 2, E(f−δ+t,−δ,δ,δ,0(X)) ≤ E(f−δ+t,−δ,δ,δ,0(Y )). Now∫

R
f−δ+t,−δ,δ,δ,0(x) dPX =

∫
R
|t|I(−∞,−δ+t](x) dPX+

∫
R

(−δ−x)I(−δ+t,−δ](x) dPX

= |t|PX((−∞,−δ + t])− δPX((−δ + t,−δ])−
∫
R
xI(−δ+t,−δ](x) dPX

= |t|FX(−δ + t)− δ(FX(−δ)− FX(−δ + t))− E(XI(−δ+t,−δ](X)),

= |t|FX(−δ + t)− δ(FX(−δ)− FX(−δ + t)) + E(|X|I(−δ+t,−δ](X)), (3)

what leads to ii).

Now suppose that i) and ii) hold. Let fp1,−δ,δ,p4,0 ∈ F
−δ,δ
0 (p1 < −δ, p4 >

δ). Note that fp1,−δ,δ,p4,0 = f(p1+δ)−δ,−δ,δ,δ,0 + f−δ,−δ,δ,δ+(p4−δ),0. Conditions
i) and ii), jointly with formulas (2) and (3), imply that E(fp1,−δ,δ,p4,0(X)) ≤
E(fp1,−δ,δ,p4,0(Y )), and so X �−δ,δcon Y .

Proof of Proposition 3. Let t > 0. We have that

E(XI(δ,δ+t](X)) =

∫
(0,+∞)

P (XI(δ,δ+t](X) > x) dx

=

∫
(0,+∞)

P (X ∈ (δ, δ + t], X > x) dx =

∫
(0,δ+t]

P (X ∈ (δ, δ + t], X > x) dx

=

∫
(0,δ]

P (X ∈ (δ, δ + t]) dx+

∫
(δ,δ+t]

P (x < X ≤ δ + t) dx

= δ(FX(δ + t)− FX(δ)) + tFX(δ + t)−
∫
(δ,δ+t]

FX(x) dx

Thus, formula i) of Proposition 2 is equivalently to∫ δ+t

δ

FX(x) dx ≥
∫ δ+t

δ

FY (x) dx

for any t > 0.
On the other hand, if t < 0 then

E(|X|I(−δ+t,−δ](X)) =

∫
(0,+∞)

P (|X|I(−δ+t,−δ](X) ≥ x) dx

=

∫
(0,+∞)

P (X ∈ (−δ + t,−δ], |X| ≥ x) dx



18 M.C. López-Dı́az, M. López-Dı́az, S. Mart́ınez-Fernández

=

∫
(0,δ−t]

P (X ∈ (−δ + t,−δ], X ≤ −x) dx

=

∫
(0,δ]

P (X ∈ (−δ + t,−δ]) dx+

∫
(δ,δ−t]

P (X ∈ (−δ + t,−x]) dx

= δ(FX(−δ)− FX(−δ + t)) +

∫
(δ,δ−t]

FX(−x) dx+ tFX(−δ + t).

As a consequence, condition ii) in Proposition 2 is the same as∫ −δ
−δ+t

FX(x) dx ≤
∫ −δ
−δ+t

FY (x) dx

for any t < 0.

Proof of Proposition 4. Observe that for any random variable W , FW+
(x) =

FW (x)I[0,∞)(x) and FW−(x) = (1− FW (−x−))I[0,∞)(x).
When t > 0 we have that∫ δ+t

δ

FX(x) dx =

∫ t

0

FX(x+ δ) dx =

∫ t

0

FX−δ(x) dx =

∫ t

−∞
F(X−δ)+(x) dx,

and then condition i) of Proposition 3 is the same as∫ t

−∞
F(X−δ)+(x) dx ≥

∫ t

−∞
F(Y−δ)+(x) dx

for any t ∈ R. By means of Theorem 4.A.2 in Shaked and Shanthikumar
(2007), this is equivalent to (X − δ)+ �icv (Y − δ)+.

When t < 0 we have that∫ −δ
−δ+t

FX(x) dx =

∫ 0

t

FX(x− δ) dx.

Therefore condition ii) of Proposition 3 can be re-written as

t+

∫ 0

t

FX(x− δ) dx ≤ t+

∫ 0

t

FY (x− δ) dx, that is,

∫ 0

t

(1− FX+δ(x)) dx ≥
∫ 0

t

(1− FY+δ(x)) dx.

The set of discontinuity points of an increasing map is at most countable, then
the above inequality is the same as∫ 0

t

(1− FX+δ(x
−)) dx ≥

∫ 0

t

(1− FY+δ(x
−)) dx, equivalently,

∫ −t
0

(1− FX+δ(−x−)) dx ≥
∫ −t
0

(1− FY+δ(−x−)) dx, that is,
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0

F(X+δ)−(x) dx ≥
∫ −t
0

F(Y+δ)−(x) dx

for any t < 0, or ∫ t

0

F(X+δ)−(x) dx ≥
∫ t

0

F(Y+δ)−(x) dx

for any t > 0. It is clear that this is the same as∫ t

−∞
F(X+δ)−(x) dx ≥

∫ t

−∞
F(Y+δ)−(x) dx

for any t ∈ R. By Theorem 4.A.2 in Shaked and Shanthikumar (2007), this is
(X + δ)− �icv (Y + δ)−.

Proof of Proposition 5. Assume that X �p2,p3con Y . Let f ∈ F−p3,−p2 . Consider
T : R→ R with T (x) = −x for any x ∈ R. Note that PX ◦ T−1 = P−X . By a
change of variable ∫

R
f(x) dP−X =

∫
R
f(−x) dPX .

It is not hard to prove that if f ∈ F−p3,−p2 , then the mapping x → f(−x)
belongs to Fp2,p3 , and so∫

R
f(−x) dPX ≤

∫
R
f(−x) dPY =

∫
R
f(x) dP−Y ,

which proves that −X �−p3,−p2con −Y . The converse is implied by the proved
part.

Proof of Proposition 6. Let T : R → R with T (x) = |x|. Let f ∈ F−δ,δ0 . A
change of variable, the symmetry of the distribution and f(0) = 0, imply that∫

R
f(x) dP|X| =

∫
R
f(|x|) dPX =

∫
(−∞,0)

f(−x) dPX +

∫
(0,+∞)

f(x) dPX

= 2

∫
(0,+∞)

f(x) dPX .

Assume that X �−δ,δcon Y . Let f ∈ F−δ,δ0 , thus f = fp1,−δ,δ,p4,0 for some
p1 and p4 with p1 < −δ and p4 > δ. Note that fI(0,∞) = f−δ,−δ,δ,p4,0. Then∫

R
f(x) dP|X| = 2

∫
(0,+∞)

f(x) dPX = 2

∫
(0,+∞)

f−δ,−δ,δ,p4,0(x) dPX

= 2

∫
R
f−δ,−δ,δ,p4,0(x) dPX ≤ 2

∫
R
f−δ,−δ,δ,p4,0(x) dPY =

∫
R
f(x) dP|Y |.

Therefore we obtain that |X| �−δ,δcon |Y |.
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Now let us suppose that |X| �−δ,δcon |Y |. Let f ∈ F−δ,δ0 . Note that the

mapping x 7→ f(−x) belongs to F−δ,δ0 . Thus∫
R
f dPX =

∫
(0,+∞)

f(x) dPX +

∫
(0,+∞)

f(−x) dPX =
1

2

∫
R
f(x) dP|X|

+
1

2

∫
R
f(−x) dP|X| ≤

1

2

∫
R
f(x) dP|Y | +

1

2

∫
R
f(−x) dP|Y | =

∫
R
f dPY ,

which concludes the result.

Proof of Corollary 3. It follows from Propositions 6 and 4.

Proof of Proposition 7. By Proposition 3 we have that

i)
∫ δ+t
δ

FX(x) dx =
∫ δ+t
δ

FY (x) dx for any t > 0, and

ii)
∫ −δ
−δ+t FX(x) dx =

∫ −δ
−δ+t FY (x) dx for any t < 0.

By the First Fundamental Theorem of Calculus we obtain that FX(δ + t) =
FY (δ + t) for all t > 0 such that δ + t is a continuity point of FX and FY .
Using the right continuity of distributions functions and the density of the
set of continuity points of both functions, we obtain that FX(x) = FY (x)
for any x ≥ δ. The same reasoning applied to condition ii), provides that
FX(x) = FY (x) for any x ≤ −δ.

Proof of Proposition 8. The condition S−(fY − fX) = 2 with sign sequence
+,−,+, implies that S−(FY −FX) = 1 with sign sequence +,− (see the proof
of Theorem 3.A.44 in Shaked and Shanthikumar (2007)). The symmetry of
the distributions implies that the crossing point is 0. Moreover, F|X|(x) =
(2FX − 2)I[0,∞)(x). Therefore S−(F|Y | − F|X|) = 0 and F|Y | ≤ F|X|, which
is the same as |X| �st |Y |. Since the mapping gδ,t : R → R with gδ,t(x) =
(x−δ)+ is increasing, we conclude that (|X|−δ)+ �st (|Y |−δ)+. That implies
(|X| − δ)+ �icv (|Y | − δ)+. Now Proposition 4 ensures that |X| �−δ,δcon |Y |,
and Proposition 6 proves the result.

Proof of Proposition 9. Let us see i). We have F(X−δ)+(x) = FX−δ(x)I[0,∞)(x) =
FX(x+δ)I[0,+∞)(x) for any x ∈ R, and the same formula holds for the random
variable Y . Thus if S−(FY −FX) ≤ 1, we obtain that S−(F(Y−δ)+−F(X−δ)+) ≤
1, and if the second number of sign changes is 1, so is the first number of sign
changes, the sequence of signs being equal. Applying Theorem 4.A.22 (b) in
Shaked and Shanthikumar (2007), we conclude that (X − δ)+ �icv (Y − δ)+.

On the other hand F(X+δ)−(x) = (1 − F(X+δ)(−x−))I[0,∞)(x) = (1 −
FX((−δ − x)−))I[0,∞)(x). As a consequence, we obtain that S−(F(Y+δ)− −
F(X+δ)−) ≤ S−(FY − FX), and if S−(F(Y+δ)− − F(X+δ)−) = 1 so is S−(FY −
FX) = 1, sharing the same sequence of signs. By Theorem 4.A.22 (b) in Shaked
and Shanthikumar (2007), we obtain that (X+δ)− �icv (Y +δ)−. Now Propo-
sition 4 implies that X �−δ,δcon Y.

In relation to ii), observe that FX(n)
= FnX . Therefore S−(FY(n)

−FX(n)
) =

S−(FY − FX). Moreover, FY(n)
− FX(n)

and FY − FX share the same sign
changes. Hence ii) is obtained by i).
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Taking into account FX(1)
= 1− (1−FX)n, statement iii) can be obtained

in a similar way.

Proof of Proposition 10. It holds that PX ◦h−1i is equal to Phi(X) with i = 1, 2.

Let f ∈ F−δ,δ0 . We have that∫
R
f(x) dPh1(X) =

∫
R
f(h1(x)) dPX

=

∫
[0,+∞)

f(h1(x)) dPX +

∫
(−∞,0)

f(h1(x)) dPX .

If x ∈ [0,+∞), we have that h1(x) ≤ h2(x) and f is increasing on that set.
On the other hand, if x ∈ (−∞, 0), then h1(x) ≥ h2(x) and on that subset the
mapping f is decreasing. As a consequence∫

[0,+∞)

f(h1(x)) dPX +

∫
(−∞,0)

f(h1(x)) dPX

≤
∫
[0,+∞)

f(h2(x)) dPX +

∫
(−∞,0)

f(h2(x)) dPX =

∫
R
f(x) dPh2(X),

which proves the result.

Proof of Proposition 11. The case α = 0 is trivial. Let α > 0. Consider T :
R→ R with T (x) = αx. It holds that PX ◦ T−1 = PαX . Let f ∈ Fαp2,αp30 . By
a change of variable,∫

R
f dPαX =

∫
R
f(x) dPX ◦ T−1 =

∫
R
f(αx) dPX .

If f ∈ Fαp2,αp30 , then f = fp1,αp2,αp3,p4,0 for some p1 < αp2 and p4 >
αp3. It is not hard to prove that the mapping x → f(αx) is the function
αfp1/α,p2,p3,p4/α,0, which belongs to the class Fp2,p30 . As a consequence∫

R
f(αx) dPX ≤

∫
R
f(αx) dPY =

∫
R
f dPαY .

Therefore αX �αp2,αp3con αY .
Now let α < 0. By the proven part we conclude that −αX �−αp2,−αp3con

−αY. Applying Proposition 5 we deduce that αX �αp3,αp2con αY .

Proof of Proposition 12. Note that the mappings of Fp2,p30 are continuous and
bounded.

Proof of Proposition 13. The stochastic order is integral which implies the
result (see Theorem 2.4.2 in Müller and Stoyan (2002)).

Proof of Proposition 14. Clearly X−δ �st X−δ+a. Then X−δ �icv X−δ+a.
Observe that (X−δ)+ = X−δ a.s. and (X+a−δ)+ = X+a−δ a.s. Moreover,
(X + δ)− = 0 = (X + a+ δ)− a.s. Proposition 4 proves the result.
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Proof of Proposition 15. In accordance with Proposition 5, X �−δ,δcon X +
b is equivalent to −X �−δ,δcon −X − b. Now the result is a consequence of
Proposition 14.

Proof of Proposition 16. A generator of the bidirectional order is the set F =
{ f : R → R | f is bounded, increasing in (0,∞), decreasing in (−∞, 0) and
with minimum at the point 0 } (Proposition 5 in López-Dı́az (2010)). Observe

that F−δ,δ0 ⊂ F , which leads to the result.

Proof of Proposition 17. By Proposition 16, X �bd Y implies X �−δ,δcon Y for
any δ > 0.

Now suppose that X �−δ,δcon Y for any δ > 0. The condition X �bd Y is
the same as FX −FY pivots at 0, that is, FX(t)−FY (t) ≥ 0 for any t ≥ 0 and
FX(t) − FY (t) ≤ 0 for any t < 0. Assume that X �bd Y is false. Therefore
there exists t0 ≥ 0 with FX(t0) < FY (t0), or there is t0 < 0 satisfying that
FX(t0) > FY (t0). Consider now the first possibility. By the right continuity of
distribution functions, we can assume that t0 > 0. For the same reason, there
exists ε > 0 such that FX < FY on (t0, t0 + ε), which is a contradiction with
Proposition 3 i). The case of the existence of t0 < 0 with FX(t0) > FY (t0),
can be analyzed in the same way, using ii) in Proposition 3. Thus we conclude
that X �bd Y .

Proof of Proposition 18. We have that X �peak Y implies that X − EX �bd
Y−EY (Corollary 9 in López-Dı́az (2010)). The result follows from Proposition
16.

Proof of Proposition 19. The relation X �w Y is equivalent to X − X ′ �bd
Y − Y ′ (Corollary 10 in López-Dı́az (2010)), and so we have the result.

Proof of Proposition 20. The sequences of mappings {(x−1/m)+}m and {(x+
1/m)−}m are increasing. By the Monotone Convergence Theorem, limmE((X−
1/m)+) = E(limm(X−1/m)+) = EX+ and limmE((X+1/m)−) = E(limm(X+
1/m)−) = EX−. On the other hand, limm(X − 1/m)+ = X+ and limm(X +
1/m)− = X− in the weak convergence since we have the pointwise conver-
gence. The same results are satisfied by random variable Y .

By Proposition 4 in this manuscript, Theorem 1.5.9 in Müller and Stoyan
(2002) and the relation between �icx and �icv, we conclude that X+ �icv Y+
and X− �icv Y−.

If X and Y are negative a.s., then Y+ = 0 = X+ a.s., X− = −X and
Y− = −Y a.s., and so we conclude that Y �icx X. When X and Y are
positive a.s., Y− = 0 = X− a.s., X+ = X and Y+ = Y a.s., which implies
that X �icv Y.

Proof of Corollary 5. It is a consequence of Proposition 20 and Theorem 1.5.3
in Müller and Stoyan (2002).
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Proof of Example 5. Proposition 19 in López-Dı́az (2010) reads that σX ≤ σY
implies that X − µX �bd Y − µY , and as a consequence of Proposition 16 we
deduce that X − µX �−δ,δcon Y − µY .

Let us see the converse. We have that X − µX �−δ,δcon Y − µY . Suppose
that σY < σX . By the proven part, we obtain that Y − µY �−δ,δcon X − µX .
Applying Proposition 7, we deduce that FX−µX

(t) = FY−µY
(t) for any t ∈

(−∞,−δ] ∪ [δ,+∞). By Proposition 3 and the First Fundamental Theorem
of Calculus, we deduce that the density mappings of X − µX and Y − µY
are the same on (−∞,−δ] ∪ [δ,+∞), and so σX = σY , which contradicts the
assumption σY < σX . Therefore σX ≤ σY .

Proof of Example 6. Lemma 1 in Finner et al. (2007) reads that the density
mappings of X and Y satisfy that S−(fY − fX) = 2 and the sign sequence is
+,−,+. Now the result follows from Proposition 8.

Proof of Example 7. Lemma 1 and Theorem 3 in Finner et al. (2007) imply
that S−(fY − fX) = 2 and the sign sequence is +,−,+. Proposition 8 proves
the result.

Proof of Proposition 21. The result follows from Example 5, note that Xt ∼st
N(rXt, σX

√
t) and Yt ∼st N(rY t, σY

√
t).

Proof of Proposition 22. Proposition 21 reads that σY ≥ σX if and only if
Xt− rXt �−δ,δcon Yt− rY t for any t ∈ [0, T ] and any δ > 0. Now take p2 = k− δ
and p3 = k+δ with k ∈ R and δ > 0 in Proposition 1, which proves the result.

Proof of Proposition 23. We will prove the result by means of Proposition 3.
Let z ≤ −δ. We have that FX′t(z) = P (X ′t ≤ z) = P (Xt ≤ cert+z). Assume

that z satisfies that cert + z > 0, that is, −cert < z, otherwise the above
probability is equal to 0. Take mz = ln(1 + z/cert), thus cert + z = cert+mz .
The above probability satisfies that

P (Xt ≤ cert + z) = P (Xt ≤ cert+mz ) = P (−1

2
σ2
Xt+ σXBt ≤ mz)

= P (Bt ≤
1

2
σXt+

mz

σX
) = FBt

(
1

2
σXt+

mz

σX
).

The same result holds for the process (Y ′t )t∈[0,T ].
Suppose that condition ii) in Proposition 3 holds.

Recall that Bt ∼st B̃t ∼st N(0,
√
t). By the continuity of FBt and FB̃t

we
obtain that

1

2
σXt+

m−δ
σX

≤ 1

2
σY t+

m−δ
σY

, that is, 0 ≤ (σY − σX)(
t

2
−m−δ

1

σXσY
).

Observe that m−δ = ln(1+(−δ)/cert) is negative, and so σY ≥ σX . Conversely,
if σY ≥ σX then

FBt
(
1

2
σXt+

mz

σX
) ≤ FB̃t

(
1

2
σY t+

mz

σY
)
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for any z ≤ −δ since mz is negative, and so condition ii) in Proposition 3 is
satisfied. Therefore statement ii) in Proposition 3 is equivalent to σY ≥ σX .
Now take z ≥ δ. We have that FX′t(z) = P (X ′t ≤ z) = P (Xt ≤ cert + z) =
P (Xt ≤ cert+mz ), where mz = ln(1 + z/cert), note that in this case mz > 0.
Thus

P (Xt ≤ cert+mz ) = P (−1

2
σ2
Xt+ σXBt ≤ mz)

= P (Bt ≤
1

2
σXt+

mz

σX
) = FBt

(
1

2
σXt+

mz

σX
).

Assume that condition i) in Proposition 3 is satisfied. By the right continuity
of distribution functions, we obtain that

1

2
σXt+

mδ

σX
≥ 1

2
σY t+

mδ

σY
, that is, 0 ≥ (σY − σX)(

t

2
− mδ

σxσY
).

Since σY ≥ σX by the first part of the proof, we conclude that mδ ≥
t
2σXσY , that is, δ ≥ cert(e

t
2σXσY − 1). Conversely, if δ ≥ cert(e

t
2σXσY − 1),

that is, mδ ≥ t
2σXσY , then mz ≥ mδ ≥ t

2σXσY for any z ≥ δ, and so
FBt(

1
2σXt+ mz

σX
) ≥ FB̃t

( 1
2σY t+ mz

σY
), which concludes i) in Proposition 3, and

so the proof of the result.

Proof of Proposition 24. It follows applying Proposition 23 and Proposition 1.

Proof of Proposition 25. Statement i) is clear.
In relation to ii), the real mapping on R given by x → Sxp1,p2,k1,k2 is

increasing for any p1, p2, k1, k2 ∈ R with p1 ≤ p2. Therefore X �st Y implies
that ESXp1,p2,k1,k2 ≤ ES

Y
p1,p2,k1,k2

for all p1, p2, k1, k2 ∈ R with p1 ≤ p2.

Conversely, note that ESXp1,p2,k1,k2 = πX(p1) − πX(p2) + k2 − k1. Thus,

ESXp1,p2,k1,k2 ≤ ESYp1,p2,k1,k2 for all p1, p2, k1, k2 ∈ R with p1 ≤ p2, implies
that πX(p1)− πX(p2) ≤ πY (p1)− πY (p2). That is πY − πX is decreasing. By
Theorem 1.5.13 in Müller and Stoyan (2002), we obtain that X �st Y.

Statment iii) follows from Theorem 1.5.7 in Müller and Stoyan (2002).
For the last statement, note that the real mapping on R defined by x →

ST xp,k1,k2 is convex for any p, k1, k2 ∈ R. Thus X �cx Y leads to ESTXp,k1,k2 ≤
ESTYp,k1,k2 for all p, k1, k2 ∈ R.

For the converse, take k1 = k2 = 0. Now note that limp′→−∞
1
2 (STXp,0,0 +

STXp′,0,0−(p−p′)) = CXp,0. Since E(STXp,0,0+STXp′,0,0) ≤ E(STYp,0,0+STYp′,0,0) for

any p, p′ ∈ R, the Dominated Convergence Theorem implies that E(CXp,0) ≤
E(CYp,0). By Theorem 1.5.7 in Müller and Stoyan (2002), X �icx Y holds.

On the other hand, since STXp,0,0 = (X − p)+ + (p − X)+ we obtain

that limp→−∞ STXp,0,0 + p = X and limp→+∞ STXp,0,0 − p = −X. By the

Dominated Convergence Theorem, we have that limp→−∞E(STXp,0,0) + p =

EX and limp→+∞E(STXp,0,0) − p = −EX. Therefore we deduce that EX =
EY, which in conjunction with X �icx Y implies that X �cx Y.
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