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Abstract

In this work, we study the structure of multivariable modular codes
over finite chain rings when the ambient space is a principal ideal ring. We
also provide some applications to additive modular codes over the finite
field F4.
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1 Introduction

Multivariable codes over a finite field Fq are a natural generalization of sev-
eral classes of codes, including cyclic, negacyclic, constacyclic, polycyclic and
abelian codes. Since these particular families have also been considered over
finite chain rings (e.g., over Galois rings), we proposed in [16, 17] construc-
tions of multivariable codes over them. As with classical cyclic codes over finite
fields, the modular case (i.e., codes with repeated roots) is much more difficult
to handle than the semisimple case (i.e., codes with non-repeated roots). In
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this sense, different authors have studied the properties of cyclic, negacyclic,
constacylic and polycyclic modular codes over finite chain rings. Among these
codes, those contained in an ambient space which is a principal ideal ring admit
a relatively simple description, quite close to that of semisimple codes. This
feature has been recently used in the description of abelian codes over a finite
field [9], and in the description of modular additive cyclic codes over F4 [8]. As
a natural continuation of these works, in this paper we consider the structure
of multivariable modular codes over finite chain rings when the ambient space
is a principal ideal ring.

2 Finite chain rings and codes over them

An associative, commutative, unital, finite ring R is called chain ring if it has a
unique maximal idealM and it is principal (i.e, generated by an element a). This
condition is equivalent [5, Proposition 2.1] to the fact that the set of ideals of R is
the chain (hence its name) 〈0〉 = 〈at〉 (

〈
at−1

〉
( · · · (

〈
a1
〉

= M (
〈
a0
〉

= R,

where t is the nilpotency index of the generator a. The quotient ring R = R/M
is a finite field Fq where q = pl is a prime number power. Examples of finite
chain rings include Galois rings GR(pn, l) of characteristic pn and pnl elements
(here a = p, and t = n) and, in particular, finite fields (Fq = GR(p, l)) [18].

Multivariable codes over finite chain rings, i.e., ideals of the ring R =
R[X1, . . . , Xr]/ 〈t1(X1), . . . , tr(Xr)〉, where ti(Xi) ∈ R[Xi] are monic polyno-
mials, were introduced in [16, 17]. These codes generalize the notion of mul-
tivariable codes over a finite field Fq, as presented in [21], and include well-
known families of codes over a finite chain ring alphabet. For instance cyclic
(r = 1, t1(X1) = Xe1

1 − 1), negacyclic (r = 1, t1(X1) = Xe1
1 + 1), constacyclic

(r = 1, t1(X1) = Xe1
1 + λ), polycyclic (r = 1) and abelian codes (ti(Xi) =

Xei
i − 1,∀i = 1, . . . , r) [5, 12]. Properties of multivariable codes over a finite

chain ring depend on the structure of the ambient ring R. So, in [16] a com-
plete account of codes was given when the polynomials ti(Xi) ∈ Fq[Xi] have no
repeated roots (the so-called semisimple or serial case). On the other hand, as
a first approach to the repeated-root (or modular) case, Canonical Generating
Systems [19] were considered in [17]. Unfortunately, the description is not as
satisfactory as in the semisimple case. This situation agrees with that of cyclic,
negacyclic, constacylic and polycyclic repeated-root codes. Different authors
have dedicated their efforts to provide a better understanding of these codes
over finite chain rings (see, for instance [6, 1, 22, 12]).

One important feature of semisimple codes is that all of them can be gener-
ated by a single codeword, i.e., they can be regarded as principal ideals in R.
This property is not generally true in the modular case, and it partly explains
the reason why these codes are more difficult to describe. However, that of
all the ideals in R are principal is not equivalent to the semisimple condition.
Instead, it is equivalent to the fact that its nilradical is principal [4, Lemma 3].
As it was shown in [4, Theorem 2], we have the following characterization (see
also [12, Theorem 5.2], [22, Theorem 3.2], [17, Theorem 1]).
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Theorem 1. The ring R = R[X1, . . . , Xr]/ 〈t1(X1), . . . , tr(Xr)〉 is a principal
ideal ring (PIR) if and only if one of the following conditions is satisfied:

1. If R is a Galois ring GR(pn, l), then the number of polynomials for which
ti(Xi) is not square-free is at most one. Moreover, if R is not a finite field
(i.e., n > 1), and ti(Xi) is not square-free with

ti(Xi) = g(Xi)h(Xi) + au(Xi)

where g(Xi) is the square-free part of ti(Xi), then u(Xi) and h(Xi) are
coprime polynomials.

2. If R is not a Galois ring, then r = 1, and t1(X1) is square-free.

Example 1. Let us consider the ring R = Z/4Z, which is the Galois ring
GR(4, 1), and the polynomials t1(X1) = X2

1 +1 and t2(X2) = X7
2 −1. Following

Theorem 1, t1(X1) can be written as t1(X) = (X1 − 1)2 + 2X1. Since h(X1) =
X1 + 1 and u(X1) = X1 are coprime polynomials, then R = R[X1, X2]/〈X2

1 +
1, X7

2 −1〉 is a principal ideal ring. Notice that the ring R[X1]/
〈
X2

1 + 1
〉

is also
a principal ideal ring and its ideals are negacyclic codes.

The principal ideal property has been recently used in the description of
modular abelian codes over a finite field [9], and in the description of modu-
lar additive cyclic codes over F4 (i.e., additive subgroups of the ambient ring
F4[X1]/ 〈Xe1

1 − 1〉, e1 even) [8]. As a natural continuation of these works, in
this paper we consider the structure of multivariable modular codes over finite
chain rings when the ambient space is a principal ideal ring. Since this ring is
a polynomial quotient ring we will call it a principal ideal polynomial quotient
ring (PIPQR). Our aim is to achieve a complete description of them and their
properties.

3 Multivariable modular codes in PIPQRs

From now on we will restrict our attention to multivariable codes over a finite
chain ring in an ambient space R which is a PIR, i.e., to multivariable codes
in PIPQRs. We will impose the modular (or repeated-root) condition, as the
semisimple case was fully treated in [16]. Hence, from Theorem 1, R must be a
Galois ring GR(pn, l), and there exists exactly one index i = 1, . . . , r such that
ti(Xi) has repeated-roots. We shall assume w.l.o.g. that i = 1. Let t1(X1) =∏s
j=1 gj(X1)kj be the unique decomposition in powers of coprime irreducible

polynomials gj(X1) ∈ Fq[X1] of degree rj . Then, because of Hensel’s lemma [18,
Theorem XIII.4], there exist monic Gj(X1) ∈ R[X1] pair-wise coprime polyno-
mials such that t1(X1) =

∏s
j=1Gj(X1), and Gj(X1) = gj(X1)kj + puj(X1) (i.e.

t1(X1) is decomposed as a product of primary coprime polynomials). As in [12,
Section 5] we may assume w.l.o.g. that gj(X1) is monic and rjkj > deg uj(X1).

Hence, g(X1) =
∏s
j=1 gj(X1) is such that g(X1) is the square-free part

of t1(X1) = g(X1)h(X1) + pu(X1), where h(X1) =
∏s
j=1 gj(X1)kj−1, and
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u(X1) =
∑s
j=1 uj(X1)

∏
l 6=j gl(X1)kl + p∆(X1), for some ∆(X1) ∈ R[X1]. If

R is not a finite field, then the principal condition is equivalent to u(X1) =∑s
j=1 uj(X1)

∏
l 6=j gl(X1)kl nonzero and coprime with h(X1) =

∏s
j=1 gj(X1)kj−1.

This means that gj 6 | uj , whenever kj ≥ 2.
A first question that can be asked is whether it is possible to obtain analogues

of abelian codes in principal ideal group algebras [9] in this setting. The answer
is not, as the following corollary of Theorem 1 shows.

Corollary 1. If R = R[X1, . . . , Xr]/ 〈Xe1
1 − 1, . . . , Xer

r − 1〉 is a principal ideal
polynomial quotient ring (PIPQR), then either R is a finite field Fq (i.e., R is
a principal ideal group algebra, PIGA) or we are in the semisimple case.

Proof. If we are not in the semisimple case, then R is a Galois ring, t1(X1) =
Xe1

1 − 1 has repeated-roots, and so e1 = pl1m1, with l1 ≥ 1 and p1 6 | m1.
Besides, if R is not a finite field, then t1(X1) = g(X1)h(X1) + pu(X1), with

g(X1) = Xm1
1 −1, h(X1) = 1+Xm1

1 + · · ·+X
(pl1−1)m1

1 , u(X1) = 0. But this is a
contradiction with Theorem 1, because g(X1) is the square-free part of t1(X1),
and h(X1), u(X1) are not coprime polynomials.

As the abelian case is fully treated in [9] we will impose the condition that
R is not a group ring henceforth. Even though we cannot have abelian codes in
our setting it is interesting to mention how abelian codes in PIGAs are viewed
in [9]. In such a paper the ring R is a group algebra Fq[G] over an abelian finite
group G which is a direct product of a cyclic p−Sylow B and a complementary
subgroup A. A one-to-one correspondence between the ring Fq[G] and the group
ring S[B] (where S = Fq[A] is a semisimple group ring) is used to describe all
the codes (i.e., ideals) in the former ring (see sections II and III in [9]). We
want to use the same type of approach in our case: adjoin the semisimple part
to the base ring and use its decomposition as sum of finite chain rings [16] to
describe the original PIPQR. Let us begin this technique with the univariable
case, i.e., with the description of polycyclic codes.

Proposition 1. Let R = R[X1]/ 〈t1(X1)〉 be a PIPQR such that t1(X1) ∈
Fq[X1] has repeated-roots (in particular, R is a Galois ring GR(pn, l)). Then,
R is a direct sum of finite chain rings Rj. For each of these rings, the maximal
ideal has nilpotency index nkj and the residual field Rj is the finite field Fqrj
(q = pl).

Proof. We will follow [18] through [12] (ambient structure of polycyclic codes).

With the previous notationR =
⊕s

j=1Rj , whereRj =
〈
G̃j(X1)

〉
∼= R[X1]/ 〈Gj(X1)〉

and G̃j(X1) =
∏
l 6=j Gl(X1) [12, Theorem 5.1]. Now, with the same argu-

ment of [22, Theorem 3.2] we can say that Rj is local PIR with maximal ideal〈
pG̃j(X1) , gj(X1)G̃j(X1)

〉
=
〈
gj(X1)G̃j(X1)

〉
. Therefore Rj is a finite chain

ring and Rj ∼= Fq[X1]/ 〈gj(X1)〉 is a field extension of Fq of degree rj . Because
of the proof of [18, Lemma XVII.4], |Rj | = (qrj )

wj , where wj is the nilpotency
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index of gj(X1)G̃j(X1). But since Gj(X1) is a monic polynomial of degree kjrj ,

we have that |Rj | = (qn)
kjrj , and so wj = nkj .

Remark 1. In view of [18, Theorem XVII.5] we have the following description
of the ambient space ring R as a direct sum of finite chain rings (cf. [9, Equation
(II.5)]):

R ∼=
s⊕
j=1

Rj [X1]/
〈
γj(X1) , pn−1X

kj
1

〉
where Rj = GR(pn, lrj),and γj(X1) ∈ Rj [X1] is an Eisenstein polynomial of

degree kj of the form X
kj
1 + pfj(X1). Moreover, for each factor the set of

nonzero ideals is
{〈
piX l

1

〉
| 0 ≤ i ≤ n− 1 , 0 ≤ l ≤ kj − 1

}
Now, let us describe all possible univariable codes (cf. [16, Corollaries 3.11,

3.12]).

Corollary 2. If R = R[X1]/ 〈t1(X1)〉 is a PIPQR such that t1(X1) ∈ Fq[X1]
has repeated-roots (in particular, R is a Galois ring GR(pn, l)), then any code
K C R is a sum of ideals of the form〈

pijgj(X1)cj G̃j(X1)
〉
,

where (ij , cj) = (n, 0) or 0 ≤ ij ≤ n − 1 , 0 ≤ cj ≤ kj − 1 , 1 ≤ j ≤ s. Hence,
there exists a family of polynomials H1, . . . ,Hn ∈ R[X1] such that

K =
〈
H1, pH2, . . . , p

n−1Hn

〉
=

〈
n−1∑
i=0

piHi+1

〉
(1)

Moreover,
|K| = |R̄|

∑s
j=1 rj(nkj−cj−ijkj)

and there exist
∏s
j=1(nkj + 1) repeated-root codes in R.

Example 2. (Example 1 cont’d). In the special case of R[X1]/〈X2
1 +1〉, we have

g1(X1) = X1 − 1, G1(X1) = t1(X1) and G̃1 = 1. Moreover, since (X1 − 1)2 ≡
2X1 mod t1(X1) and X1 is a unit in R, the ideal 〈(X1 − 1)2〉 is equal to 〈2〉.
So, R[X1]/〈X2

1 + 1〉 is a finite chain ring with ideals (i.e.negacyclic codes)

R[X1]/〈X2
1 + 1〉 )< X1 − 1 >)< 2 >)< 2(X1 − 1) >) 0.

In the following result we adjoin the semisimple part to the ring R in order
to describe the original PIPQR with the help of Proposition 1.

Theorem 2. Let R = R[X1, . . . , Xr]/ 〈t1(X1), . . . , tr(Xr)〉 be a PIPQR such
that t1(X1) ∈ Fq[X1] has repeated-roots (in particular, R is a Galois ring

GR(pn, l)). Then R is a direct sum of finite chain rings RC,j [X1]/
〈
γj(X1), pn−1X

kj
1

〉
,

where RC,j is a Galois extension of the coefficient ring R and γj(X1) is an
Eisenstein polynomial of degree kj.
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Proof. The ring R is isomorphic to the tensor product

R[X1]/〈t1(X1)〉 ⊗ (R[X2, . . . , Xr]/〈t2(X2), . . . , tr(Xr)〉) .

Since t2(X2), · · · , tr(Xr) have simple roots only, from [16, Theorem 3.9], there
exists an isomorphism

ϕ :
⊕
C∈C

QC −→ R[X2, . . . , Xr]/〈t2(X2), . . . , tr(Xr)〉

where
C = {{(µq

s

2 , . . . , µ
qs

r ) | s ∈ N} | ti(µi) = 0, i = 2, . . . , r} (2)

is the set of all cyclotomic classes of the roots of t2(X2), · · · , tr(Xr). Each QC =
GR(pn, l·|C|) is a Galois extension ofR contained inR[X2, . . . , Xr]/〈t2(X2), . . . , tr(Xr)〉.
Then, since t1(X1) ∈ R[X1], ϕ induces an isomorphism

ϕ̂ :
⊕
C∈C

QC [X1]/〈t1(X1)〉 −→ R.

As a consequence of Proposition 1, R can be written as a direct sum of finite

chain rings RC,j [X1]/
〈
γj(X1) , pn−1X

kj
1

〉
, where RC,j is a Galois extension of

QC and so, of R.

Now, we can generalize Corollary 2 to the multivariable case.

Corollary 3. If R = R[X1, . . . , Xr]/ 〈t1(X1), . . . , tr(Xr)〉 is a PIPQR such that
t1(X1) ∈ Fq[X1] has repeated-roots (in particular, R is a Galois ring GR(pn, l)).
Let us suppose that for each C ∈ C (see equation (2)),

t1(X1) =

s∏
j=1

sj,C∏
m=1

GCj,m(X1)

is the decomposition of t1(X1) as the product of primary coprime polynomials

in QC [X1] (i.e. GCj,m(X1) = gCj,m(X1)kj , where gCj,m(X1) ∈ Fq|C| [X1] is irre-
ducible). Then any code K C R is a sum of ideals of the form

ϕ̂
(〈
pij,mgCj,m(X1)cj,mG̃Cj,m(X1)

〉)
,

where (ij,m, cj,m) = (n, 0) or 0 ≤ ij,m ≤ n − 1 , 0 ≤ cj,m ≤ kj − 1 , 1 ≤
m ≤ sj,C , 1 ≤ j ≤ s , C ∈ C. Hence, there exists a family of polynomials
H1, . . . ,Hn ∈ R[X1, . . . , Xr] such that

K =
〈
H1, pH2, . . . , p

n−1Hn

〉
=

〈
n−1∑
i=0

piHi+1

〉
(3)

Moreover,

|K| = |R̄|
∑

C∈C
∑s

j=1

∑sj,C
m=1 deg gCj,m(nkj−cj,m−ij,mkj)

and there exist
∏
C∈C

∏s
j=1(nkj + 1)sj,C repeated-root codes in R.
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The results on the Hamming distance of linear codes (and in particular of
serial multivariable codes) over finite chain rings contained in [10, Section 2.1],
[20, Section 4] and [17, Theorem 2] can be applied in this context to multivariable
codes in PIPQRs. However, because of the special simple description of these
codes, we can use the same ideas of [16, Section 3.3] to compute their Hamming
distance.

Proposition 2. In the conditions of Corollary 3, d(K) = d(L), where L is the
code

〈
H1, . . . ,Ht

〉
in Fq[X1, . . . , Xr]/

〈
t1(X1), . . . , tr(Xr)

〉
.

Hence, the results on the Hamming distance of the codes L (i.e, on multi-
variable codes with repeated-roots over a finite field) which can be found in [21]
can be lifted to our codes.

Example 3. (Example 1 cont’d). The factorization of X7
2 −1 = (X2−1)(X3

2 +
2X2

2 +X2+3)(X3
2 +3X2

2 +2X2+3) into basic irreducible polynomials over Z/4Z
provides the following decomposition of R (see Theorem 2)

R ∼= R[X1]/〈X2
1 + 1〉 ⊕GR(4, 3)[X1]/〈X2

1 + 1〉 ⊕GR(4, 3)[X1]/〈X2
1 + 1〉.

Each summand is a finite chain ring (cf. Example 2), and so any negacyclic
code can be written as the direct sum of three ideals.

Let us consider the code K = 〈(X1 − 1)(X4
2 + X3

2 − 3X2
2 + 2X2 + 3)〉. The

polynomial X4
2 +X3

2 − 3X2
2 + 2X2 + 3 is, up to units, an orthogonal idempotent

of R. Namely, it generates the third summand of the previous decomposition.
Since (X1 − 1)2 ≡ 2X1 mod t1(X1) and X1 is a unit of R, we deduce that
K = 〈H1, 2H2〉 with H1 = (X1−1)(X4

2+X3
2−3X2

2+2X2+3) and H2 = X4
2+X3

2−
3X2

2 + 2X2 + 3 (see Corollary 3). Thus, the code 〈H1, H2〉 contains a codeword
with Hamming weight 4 and, by Proposition 2, the Hamming distance of K is at
most 4. Direct computations with Sage [23] show that this is the actual minimum
distance of the code. On the other hand, observe that the Hamming distance of
the code K = 〈(X1+1)(X4

2 +X3
2 +X2

2 +1)〉CZ/2Z[X1, X2]/
〈
(X1 + 1)2, X7

2 + 1
〉

is 8 (to see this, apply the isometry of [21, Proposition 45] and check [3, Table
1]).

Example 4. As a variation of the previous example, let us take the same ambi-
ent space R and construct the code L generated by the codeword (X1− 1)(X3

2 +
2X2

2 +X2 − 1). This code can be seen as a product code of the negacyclic code
generated by X1 − 1 and the (punctured) Z4−base linear code of the Kerdock
code of length 16.

Example 5. (Generalized Kerdock code) Let R = Z/4Z and S = GR(22,m),
with m prime, a Galois extension of R. Let U = 1 + 2R = 〈η1〉 be the group
of units of R. Let λ ∈ S be a generator of Γ∗(S), with Γ(S) the Teichmüller
coordinate set of S, and let Tr : S → R be the trace function of S onto R.
According to [11],

K =

{
2m−1∑
i1=0

1∑
i2=0

((Tr (ξλi1) + β)ηi2)Xi1
1 X

i2
2 | ξ ∈ S, β ∈ R

}

7



is an ideal of the ambient space R[X1, X2]/〈X2m−1
1 − 1, X2

2 − 1〉 known as gen-
eralized Kerdock code. We can regard the ambient space as a direct sum of rings
of the form T [X2]/〈X2

2−1〉, with T a suitable Galois extension of R. Such rings
are not principal ideal rings, since their nilradical, 〈2, X2 + 1〉, is not principal
(see [13, Proposition 4.4]). Thus, the generalized Kerdock code is not a PIPQR.
Also, notice that X2

2−1 = (X2−1)2−2(X2−1) and so, statement 1 of Theorem
1 is not satisfied.

4 Additive modular codes over F4 from PIPQRs

Additive modular codes over F4 can be used to construct quantum error correct-
ing codes, as shown in [15]. However, except in very special cases (for instance,
the univariable cyclic modular codes annalyzed in [8], the description of such
codes seems quite difficult. As an application of the study of the multivari-
able codes of the previous section, we obtain a complete description of additive
modular codes in PIPQRs.

In the framework presented in [15], additive modular codes can be seen asA2-
additive submodules of the algebraA4, whereAq = Fq[X1, . . . , Xr]/〈t1(X1), . . . , tr(Xr)〉
and t1(X1), . . . , tr(Xr) have coefficients in F2. Since the finite field Fq, with
q = 2, 4, is the Galois ring GR(2, r) with r = 1, 2 respectively, the algebra Aq is
a PIPQR if and only if the polynomials t2(X2), . . . , tr(Xr) are square-free. In
such a case, from Corollary 3, the algebra Aq can be decomposed into a direct
sum of ideals (see also [15, Theorem 1]). Let us recall some definitions and
results from [14] in order to describe such a decomposition.

The set C2 of 2−classes of the roots of t2(X2), · · · , tr(Xr) (take q = 2 in
equation (2)) is a disjoint union of two subsets according to their relation to
the set C4 of 4−classes (take q = 4 in the same equation). The first subset,
Co2 , contains the classes C2(µ) such that C2(µ) ∈ C4, i.e., classes with odd
cardinality. The second subset, Ce2 , contains the classes that split in C4, i.e,
those C2(µ) with even cardinality such that C2(µ) = C4(µ) ∪ C4(µ2).

Theorem 3. Let Aq = Fq[X1, . . . , Xr]/〈t1(X1), . . . , tr(Xr)〉, q = 2, 4, be a
PIPQR such that ti(Xi) ∈ F2[Xi] for all i = 1, . . . , r, and such that only t1(X1)
has repeated-roots. Let us suppose that for each C ∈ C2 the polynomial t1(X1)
factorizes as the product of primary coprime polynomials in F2|C| [X1] as (cf.
Corollary 3)

t1(X1) =

s∏
j=1

(
sj,C∏
m=1

gCj,m(X1)

)kj
Then:

1. A2 is a direct sum of finite chain rings KCj,m ∼= F
2
|C| deg gC

j,m
[Z]/〈Zkj 〉.

2. A4 is a direct sum of ideals ICj,m which are free KCj,m−modules of rank 2.

3. Any additive modular code D is direct sum of subcodes DCj,m which are

KCj,m−submodules of ICj,m.
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Proof. 1. This is a direct consequence of Proposition 1 and Theorem 2.

2. The proof depends on the cardinality of each class C ∈ C2, and the degree
of the polynomial gCj,m(X1).

(a) If C ∈ Co2 and gCj,m(X1) has odd degree, then C ∈ C4 and gCj,m(X1)
is also irreducible in F4|C| [X1]. Therefore, because of Proposition
1, there exists an ideal ICj,m ∼= F

4
|C| deg gC

j,m
[Z]/〈Zkj 〉 in A4, which is

clearly a free KCj,m−module of rank 2.

(b) If C ∈ Co2 and gCj,m(X1) has even degree, then C ∈ C4 and gCj,m(X1)

splits as the product of two irreducible polynomials gCj,m,1(X1), gCj,m,2(X1)

of the same degree 1
2 deg gCj,m in F4|C| [X1]. Therefore, because of

Proposition 1, there exists an ideal in A4

ICj,m = ICj,m,1 ⊕ ICj,m,2 ∼=
(
F
4
|C| 1

2
deg gC

j,m
[Z]/〈Zkj 〉

)2
which can be seen as a free KCj,m−module of rank 2 (cf. [15, Propo-
sition 3]).

(c) If C ∈ Ce2 , then C = D ∪ E, with D,E ∈ C4, and |D| = |E| = |C|
2 .

Hence, gCj,m(X1) is also irreducible in F4|D| [X1], and so there exists
an ideal in A4

ICj,m = IDj,m ⊕ IEj,m ∼=
(
F
4

|C|
2

deg gC
j,m

[Z]/〈Zkj 〉
)2

which again is a free KCj,m−module of rank 2.

3. The proof is similar to [14, Theorem 2].

Let us illustrate this theorem with a concrete example. It provides, via [2,
Theorem 2], a way to construct a quantum-error-correcting code with parame-
ters [[8, 4, 2]]. This code has an optimal distance for its length and dimension
according to [7], and it can be fully described as an additive modular code in a
PIPQR as we shall see now.

Example 6. Consider the binary polynomials t1(X1) = (X1 + 1)2, t2(X2) =
X2

2 +X2 + 1. Theorem 3 give us an isomorphism A2
∼= F4[Z]/〈Z4〉 (here F4 =

F2[X2], and Z = X1 + 1), and a direct sum decomposition A4
∼= F4[Z]/〈Z4〉 ⊕

wF4[Z]/〈Z4〉. The additive modular code D generated by the codeword c =
w + w2X1 + wX2

1 + w2X3
1 can be seen as the submodule 〈Z2 + wZ3〉 ≤ A4.

Magma computations [23] show that this code is self-orthogonal w.r.t. bilinear
form considered in [14, Section 4], and that the smallest weight of the codewords
in D⊥ \D is 2. This provides the conditions to construct the [[8, 4, 2]] quantum-
error-correcting code mentioned above.

As an application of this theorem we will finally count the number of additive
modular codes in PIPQRs.

9



Corollary 4. Under the hypothesis of the previous theorem:

1. The total number of additive modular codes in A4 is

∏
C∈C2

s∏
j=1

sC,j∏
m=1

(
1 + kj +

(
2δ

C
j,m + 1

2δ
C
j,m − 1

)(
2kjδ

C
j,m − 1

2δ
C
j,m − 1

− kj + 2kjδ
C
j,m − 1

))

where δCj,m = |C|deg gCj,m(X1).

2. Of these, only

∏
C∈C2

s∏
j=1

sC,j∏
m=1

(
1 +

(
2δ

C
j,m + 1

2δ
C
j,m − 1

)
(2kjδ

C
j,m − 1)

)

codes can be generated by a single codeword.

3. Any of those codes can be generated at most by two codewords.

Proof. Combine Theorem 3 and [15, Theorem 3].
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