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Abstract: Obesity has been related to an increased risk of multiple diseases in which oxidative
stress and inflammation play a role. Gut microbiota has emerged as a mediator in this interaction,
providing new mechanistic insights at the interface between fat metabolism dysregulation and obesity
development. Our aim was to analyze the interrelationship among obesity, diet, oxidative stress,
inflammation and the intestinal microbiota in 68 healthy adults (29.4% normal-weight). Diet was
assessed through a food frequency questionnaire and converted into nutrients and dietary compounds
using food composition tables. The intestinal microbiota was assessed by quantitative PCR, fecal
short chain fatty acids by gas chromatography and serum biomarkers by standard protocols. Higher
levels of malondialdehyde (MDA), C reactive protein (CRP), serum leptin, glucose, fat percentage and
the intestinal Lactobacillus group were found in the obese people. Cluster analysis of body mass index,
fat mass, glucose, LDL/HDL ratio, leptin, MDA and CRP classified the subjects into two groups.
The levels of the intestinal Bacteroides-Prevotella-Porphyromonas group were lower in the cluster and
linked to a higher pro-oxidant and pro-inflammatory status, whose individuals also had lower intake
of fruits, dried fruits, and fish. These results could be useful for designing strategies targeted to
obesity prevention.
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1. Introduction

The prevalence of obesity is growing worldwide, with nearly half a billion of the world’s
population considered to be overweight. Obesity, defined by the World Health Organization (WHO)
as an “abnormal or excessive fat accumulation”, has been associated with an increasing risk of
multiple diseases, characterized by changes in the oxidative /antioxidant balance and the presence of
subclinical inflammation [1-4], including diabetes, metabolic syndrome, hypertension, dyslipidemia
and cardiovascular disease among others [5]. Thanks to the great efforts made in obesity research
during the last decades, several genetic, environmental and lifestyle-related factors have been identified
as etiological risk elements for this condition. However, there are still factors in this equation, such as
the gut microbiota, whose contribution remains to be fully elucidated. It has been proposed that the
reduction of carbohydrates accessible to gut microbes from fiber-containing foodstuffs may resultin a
long-term reduction of microbiota diversity and in the appearance of “unhealthy” microbiomes [6-8].
Although it has not been possible to establish the directionality of this relationship, the gradual increase
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in energy intake, together with the dramatic change in the proportion of macronutrients of the Western
diet, seems to be linked with the increase of the obesity prevalence [9] mediated by changes in intestinal
microbial populations.

In contrast, the content in bioactive compounds of the Mediterranean Diet has been linked with
the prevention of obesity and metabolic syndrome, by means of restoring the intestinal microbial
balance of these patients [10,11]. An increase of the intestinal Firmicutes/Bacteroidetes ratio has been
reported in several studies with obese humans [12], in obese leptin deficient ob/ob mice [13] and
in wild-type animals receiving Western diets [14]. The benefits of dietary fiber in host health have
been reported to be partly mediated by physiological effects linked to the formation in the colon of
fecal short chain fatty acids (SCFA) produced by the microbial fermentation of complex carbohydrates.
In this regard, it is known that the major SCFA synthesized by the colonic microbiota (acetic, propionic,
and butyric) play a key role in regulating host energy balance in extra-intestinal organs, such as the
liver and adipose tissue [15,16]. In an apparently contradictory way, high levels of fecal SCFA have
been frequently found in obese subjects [17]. The specific mechanisms explaining the higher levels of
fecal SCFA in obesity still remain a matter of debate and different hypotheses have been proposed,
including: an increase on colonic fermentation due to the higher dietary intake; a higher capacity for
energy harvest by the modification of the intestinal microbial metabolic profile linked to obesity [18,19];
and the reduction of the in vivo fluxes of SCFA from the intestinal lumen to other host organs, with
accumulation in the colonic lumen [20].

The currently available evidences highlight the complex network of physiological mechanisms
underlying obesity [21]. In this scenario, the intestinal microbiota may provide new mechanistic
insights at the interface between fat metabolism dysregulation and obesity development. To the
best of our knowledge, there are no currently available interdisciplinary studies addressing the
interrelationships among obesity, diet, oxidative stress, inflammation and gut microbiota. However, a
better understanding of these interactions could be useful for the development of new approaches
for preventing and controlling obesity. Therefore, our aim was to determine differences in the
serum concentration of malondialdehyde (MDA), glucose, lipid profile, and C reactive protein (CRP),
according to the grade of obesity, to describe the gut microbial composition linked with this pathology
and to analyze the role of the diet in the possible associations among these parameters.

2. Subjects and Methods

2.1. Participants

This cross-sectional study is part of a research into diet and gut microbiota in different population
groups. The study sample comprised 68 adult volunteers 27 men and 41 women, aged from 19 to
67 years (mean + SD, 52.4 £ 11.2). Participants were recruited in Asturias Region (Northern Spain)
between the years 2009 and 2015 among subjects attending a program of the University of Oviedo for
people older than 50 years, as well as among individuals participating in a study on nutritional habits
from the Alimerka Foundation. In a personal interview, volunteers were informed of the objectives of
the study and those deciding to participate gave their fully informed written consent. Then, personal
appointments were made to collect the dietary information. Subjects were initially classified according
to their Body Mass Index (BMI) [22]. From the initial sample four subjects were excluded from cluster
analysis because no data were recorded for some of the parameters introduced as variables in our
study. Moreover, three subjects had missing values for fecal microbiota and, therefore, were not
included for further analyses. The following inclusion criteria were used: not being diagnosed of
autoimmune diseases, inflammatory bowel disease or other conditions known to affect the intestinal
function, as well as not having undergone medical treatment with oral corticoids, immunosuppressive
agents, monoclonal antibodies, antibiotics or immunotherapy or not having consumed any supplement
containing probiotics or prebiotics during the previous month. Volunteers diagnosed for diabetes
mellitus type Il were specifically excluded from the study. Ethical approval for this study was obtained
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from the Bioethics Committee of CSIC (Consejo Superior de Investigaciones Cientificas) and from
the Regional Ethics Committee for Clinical Research (“Servicio de Salud del Principado de Asturias
n°13/2010”) in compliance with the Declaration of Helsinki of 1964. All experiments were carried out
in accordance with approved guidelines and regulations.

2.2. Nutritional Assessment

Dietary intake was assessed in a personal interview by means of an annual semi-quantitative
food frequency questionnaire (FFQ) method which details 160 items and has been widely used and
validated in previous studies [23,24]. The consumption of foods was converted into energy and
macronutrients using the nutrient food composition tables developed by the Centro de Ensefianza
Superior de Nutricién y Dietética (CESNID) [25]; the intake of monosaccharides (glucose, galactose,
fructose) sucrose, starch and digestible polysaccharides and trans fatty acids was converted using
the National Nutrient Database for Standard Reference from the United States Department of
Agriculture (USDA) [26]. Information about dietary soluble and insoluble fibers was completed
from Marlett et al. [27] and phenolic intake was estimated from the Phenol Explorer database [28]. Data
about the Oxygen Radical Absorbance Capacity (ORAC) of foods was obtained from the Database
from the ORAC of Selected Foods from USDA [29]. This database reports the hydrophilic ORAC,
lipophilic ORAC and total ORAC values for 275 foods as pmol of Trolox equivalents (TE)/100 g. For
the estimation of these variables in the study sample we used the information contained in our database
regarding the daily intake of each food in g/day for all the evaluated subjects. This information has
been crossed with the data contained in the ORAC database in order to calculate the intake of ORAC
hydrophilic, lipophilic and total in pmol TE for each food and subject. Once this partial information
was available, the summary of all the hydrophilic ORAC, lipophilic ORAC and total ORAC obtained
per subject was calculated in order to estimate the total antioxidant capacity of the diet by subject.

2.3. Anthropometric Measures

At the same time of carrying out the blood extraction, between eight and nine o’clock and after
over-night fast, anthropometric measures were taken. Height was registered using a stadiometer with
an accuracy of £1 mm (Afio-Sayol, Barcelona, Spain). Subjects stood barefoot, in an upright position
and with the head positioned in the Frankfort horizontal plane. Weight was measured on a scale with
an accuracy of £100 g (Seca, Hamburg, Germany). BMI was calculated and stratified according to
the Sociedad Espafiola para el Estudio De la Obesidad (SEEDO) [22] criteria: lean—normal weight
(<25.0 kg/m?), over-weight (25.0-30.0 kg/m?), and obese (>30.0 kg/m?). Body fat percentage was
measured by bioelectrical impedance (BIA) with £1% variation, with subjects in light clothes and in
fasted state (Tanita Corporation of America, Inc., Arlington Heights, IL, USA). Basal Metabolic Rate
(BMR) was calculated by the Harris-Benedict formula [30].

2.4. Blood Biochemical Analyses

Fasting blood samples were drawn by venepuncture after a 12 h fast and collected in separate
tubes for serum and plasma. Samples were kept on ice and centrifuged (1000x g, 15 min) within
2-4 h after collection. Plasma and serum aliquots were kept at —20 °C until analyses were performed.
Plasma glucose, cholesterol, and triglycerides were determined by standard methods. Serum levels
of CRP were determined by using a CRP Human Instant ELISA kit (Ebioscience, San Diego, CA,
USA), and those of MDA with a colorimetric assay of lipid peroxidation (Byoxytech LPO-586, Oxis
International S.A., Paris, France); the within-run coefficient of variation ranged from 1.2% to 3.4%,
depending on the concentration of MDA [31].

Serum leptin was measured by a sensitive ELISA test (Human Leptin ELISA Development Kit,
900-K90 PeproTech Inc., Rocky Hill, NJ, USA) according to the manufacturer’s instructions. The
detectable concentration range was 63—4000 pg/mL. The intra-assay and interassay coefficients of
variation were 5.21% and 5.20%, respectively.
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2.5. Fecal Collection and Microbiological Analyses

Participants received detailed instructions to collect fecal samples and were provided with a sterile
container. Samples were immediately frozen at —20 °C after deposition. For analyses, fecal samples
were melted, weighed, diluted 1/10 in sterile PBS, and homogenized in a LabBlender 400 Stomacher
(Seward Medical, London, UK) for 4 min; the DNA was extracted using the QIAamp DNA stool
mini kit (Qiagen, Hilden, Germany) as previously described [32]. Quantification of different bacterial
populations that covered the major bacterial groups present in the gut microbial ecosystem (Table 1)
was performed in feces with a 7500 Fast Real-Time PCR System (Applied Biosystems, Foster City,
CA, USA) using SYBR Green PCR Master Mix (Applied Biosystems). One microlitre of template fecal
DNA (~5 ng) and 0.2 uM of each primer were added to the 25-uL reaction mixture. PCR cycling
consisted of an initial cycle of 95 °C 10 min, followed by 40 cycles of 95 °C 15 s, and 1 min at the
appropriate primer-pair temperature (Table 1). The number of cells was determined by comparing the
Ct values obtained from a standard curve constructed using the pure cultures of appropriate strains
that were grown overnight in GAM (Gifu Anaerobic Medium) medium (Nissui Pharmaceutical Co.,
Tokyo, Japan) under anaerobic conditions (Table 1). The Ct values were plotted as a linear function of
the base-10 logarithm of the number of cells calculated by plate counting. Fecal DNA extracts were
analysed and the mean quantity per gram of fecal wet weight was calculated.

Table 1. Bacterial groups, standard cultures, primers, and annealing temperatures (Tm) used for qPCR
in this study.

Microbial Target Strain Used for Standard Curve Primer Sequence 5'-3’ Tm (°C) Reference

F: CAGCACGTGAAGGTGGGGAC

Akkermansia Akkermansia muciniphila CIP 107961 R: CCTTGCGGTTGGCTTCAGAT 60 [32]
Bacteroides group Bacteroides thetaiotaomicron F: GAGAGGAAGGTCCCCCAC 60 132]
Bacteroides-Prevotella-Porphiromonas  DSMZ 2079 R: CGCKACTTGGCTGGTTCAG
e . o . F:GATTCTGGCTCAGGATGAACGC
Bifidobacterium Bifidobacterium longum NCIMB 8809 R: CTGATAGGACGCGACCCCAT 60 [32]
Faccalibacteri Faecalibacterium prausnitzi F:GGAGGAAGAAGGTCTTCGG 60 33]
aecanbactertum DSMZ 17677 R: AATTCCGCCTACCTCTGCACT
Clostridia XIVa . . F: CGGTACCTGACTAAGAAGC [32]
Blautia coccoides—Eubacterium Blautia coccoides DSMZ 935 55
rectale group R: AGTTTYATTCTTGCGAACG
Lactobacillus group Lactobacillus gasseri IPLA IF7 /5 F: AGCAGTAGGGAATCTTCCA 60 [32]

R: CATGGAGTTCCACTGTCCTC

2.6. Short Chain Fatty Acids (SCFA) Analyses

The analysis of SCFA was performed by gas chromatography to determine the concentrations of
acetate, propionate and butyrate. Supernatants from 1 mL of the homogenized feces were obtained
by centrifugation and filtration as previously indicated [32,33]. A chromatograph 6890N (Agilent
Technologies Inc., Palo Alto, CA, USA) connected to a mass spectrometry detector (MS) 5973N (Agilent
Technologies) and a flame ionization detector (FID) was used for identification and quantification of
SCFA, respectively. Chromatographic conditions and SCFA analyses were carried out essentially as
described by Salazar et al. [34].

2.7. Statistical Analysis

Statistical analysis was performed using the IBM SPSS program version 22.0 (IBM SPSS, Inc.,
Chicago, IL, USA). Goodness of fit to the normal distribution was analyzed by means of the
Kolmogorov-Smirnov test. When the distribution of variables was skewed, the natural logarithm
of each value was used in the statistical test. Overall, categorical variables were summarized with
counts and percentages while continuous variables were summarized using means and standard
deviations. The chi-squared test and independent samples ¢-test were used for group comparisons
where appropriate. Differences in general characteristics, anthropometric, blood parameters, major



Nutrients 2017, 9, 551 50f 15

microbial target and SCFA were assessed in accordance to body mass index classification by means
of uni- and multivariate analyses controlling by gender or energy, as appropriate. Also, in order to
explore the association between the intestinal microbiota and SCFA with BMI, a linear regression
was conducted.

Using the program R (version 3.3.1 for Windows), a cluster analysis using the Ward’s method was
performed in order to classify the participants based on the similarity of the different obesity related
factors evaluated (BMI, percentage of fat mass, serum glucose, leptin, MDA, CRP and LDL/HDL
ratio). This is a hierarchical cluster technique done on the basis of Euclidean distances; therefore, the
centers of clusters are grounded on least squares estimation. Differences in the intake of food groups,
macronutrients and some dietary components, including antioxidants, were obtained by means of a
multivariate analysis controlling for energy intake. The conventional probability value of 0.05 was
used in the interpretation of results to indicate statistical significance.

3. Results

The general characteristics of the sample classified according to BMI are presented in Table 2.

Table 2. General characteristics of the studied population according to BMI.

Normal Weight Over Weight Obesity
BMI < 25.0 BMI 25.0-30.0 p BMI > 30.0 p
n=20 n =235 n=13
Age (years) @ 56.4 + 10.1 51.7 +11.7 0.152 47.8 +10.2 0.033
Female (%) 80.0 514 0.036 53.8 0.110
BMI (kg/mz) a 23.0+15 275+ 1.4 <0.001 34.1+27 <0.001
Energy intake (Kcal/day) 2 1958 + 537 1790 + 482 0.261 2040 =+ 548 0.681
Basal Metabolic rate 1280 + 167 1416 + 228 <0.001 1548 + 324 <0.001
(Kcal/day) 2
Sedentary lifestyle (%) 20.0 17.1 0.792 30.8 0.481
Current smokers (%) 27.8 26.5 0.729 25.0 0.978
Alcohol consumers (%) 70.0 54.3 0.252 61.5 0.614
Body fat (%) @ 262+75 35.6 £ 9.3 <0.001 51.7 £10.8 <0.001
Blood parameters
Serum glucose (mg/dL)?® 97.1 +14.2 96.0 £9.1 0.711 108 + 11.1 0.020
Triglycerides (mg/dL) ? 100 £ 47.8 117 £ 56.9 0.288 147 £91.0 0.070
LDL/HDL ratio @ 25+038 2.6 +0.8 0.869 23+0.6 0.347
Leptin (ng/mL) ? 6.1 +£43 9.2+£52 0.021 147 £ 6.8 <0.001
MDA (uM) @ 21+0.6 22409 0.700 32+16 0.012
CRP (mg/L)? 0.9+0.8 38+84 0.150 54+74 0.009

2 Results from univariate analysis were adjusted by gender and presented as mean =+ standard deviation. Differences
in categorical variables were examined using chi-squared analysis and presented as percentage (%). BMI, body
mass index. LDL, low-density lipoprotein. HDL, high-density lipoprotein. MDA, malondialdehyde. CRP, C reactive
protein. p value was calculated using normal weight volunteers as reference.

As was expected, obese subjects had significantly higher basal metabolic rate, percentage of fat
mass, serum glucose, leptin, MDA and CRP than normal weight volunteers. Regarding the fecal
microbial composition and the microbial metabolic activity (SCFA), the levels of Lactobacillus group
and acetate concentrations were directly related with the grade of obesity (Table 3).

To explore whether the fecal microbiota may be related with the pro-oxidant and pro-inflammatory
status frequently linked to obesity, subjects were classified into clusters performed by jointly
considering values for BMI, fat mass, serum glucose, LDL/HDL ratio, serum leptin, MDA and
CRP. This approach established two independent groups of individuals, thereafter referred to as
cluster I (n = 38) and cluster II (n = 26) (Figure 1).
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Table 3. Differences in fecal short chain fatty acids (SCFA) concentration and major microbial groups
according to BMI (kg/m?) and results of linear regression analyses to estimate their association

with BML
Normal Weight  Over Weight Obesity BMI
BMI < 25.0 BMI 25.0-30.0 BMI > 30.0
n=20 n=31 n=13 R> B 4
Model 1. Fecal SCFA concentration (mM)
Acetate 35.7 £ 14.6 38.0 +16.8 46.6 £17.0 0.081 0.282  0.025
Propionate 144+ 65 13.7 £ 6.7 171482 0.022 0.136  0.288
Butyrate 11.6 £ 8.7 103+ 6.4 123 +9.0 0.047 0.040 0.748
Model 2. Microbial target(log n®
cells/gram of faeces)
Akkermansia 63+22 56+ 1.6 56+21 0.026 —0.143 0.264
Bacteroides-Prevotella-Porphyromonas 88+ 13 89+11 82+12 0.067 —0.245 0.052
Bifidobacterium 77£20 82+08 82+07 0.090 0.126  0.305
Clostridia cluster XIVa group 77+£17 82+13 84+1.1 0.048 0.150  0.236
Lactobacillus group 57+13 60+11 6.7+£09* 0.194 0.256  0.029
Faecalibacterium prausnitzii 73+£1.0 75+£1.0 7.7+£09 0.024 0.152  0.233

Results derived from multivariate analysis are presented as mean =+ standard deviation. Variables included in
model 1: acetate, propionate, butyrate and energy; model 2: Akkermansia, Bacteroides-Prevotella-Porphyromonas,
Bifidobacterium, Clostridia cluster XIVa, Lactobacillus group, Faecalibacterium prausnitzii and energy. Linear regression
analyses are adjusted by energy; R?, coefficient of multiple determination; 3, standardized regression coefficient.
*p <0.05.

Color Key

L
\I |
g

CRP

MDA

% Body Fat
Glucose

LDL/HDL ratio

Figure 1. Dendogram clustering based on individual body composition, serum glucose, lipid profile,
and oxidative stress biomarkers. The heatmap shows the dendrogram classification for clusters, based
on C reactive protein (CRP), malondialdehyde (MDA), LDL/HDL ratio, serum leptin, Body Mass Index
(BMI), body fat percentage and serum glucose (columns). Colors in the vertical bar at the left of the
heatmap identify Cluster I (red) and Cluster II (blue).
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Cluster II was characterized by higher BMI and body fat together with higher concentration
of serum glucose, MDA and CRP. The LDL/HDL ratio and serum leptin, however, did not show
significant differences between both clusters (Table 4).

Table 4. Differences in the parameters used for cluster analyses.

Cluster I Cluster I1
n=38 n=26 P
BMI (kg/m2) 252 4+27 30.3+£4.3 <0.001
Body fat (%) 30.5 £+ 8.0 42.3+13.3 <0.001
Blood parameters
Serum glucose (mg/dL) 92.7 £ 8.2 108.2 + 10.9 <0.001
LDL/HDL ratio 2.6 £0.8 25+08 0.921
Leptin (ng/mL) 82+5.1 10.8 £ 6.4 0.074
MDA (uM) 20+ 0.6 28+13 0.001
CRP (mg/L) 09+09 6.7 +10.4 0.001

Univariate analysis was adjusted by gender and presented as mean + standard deviation. LDL, low-density
lipoprotein. HDL, high-density lipoprotein. MDA, malondialdehyde. CRP, C reactive protein.

When we compared the microbiota variables between both groups no significant differences were
found for most of the microbial groups and SCFA studied, except for acetate, which displayed higher
fecal concentration in cluster II, and the Bacteroides group whose levels resulted higher in cluster I
(Table 5).

Table 5. Differences in fecal SCFA and major microbial groups between clusters.

Cluster I Cluster II
n =37 n=24
Model 1. Fecal SCFA concentration (mM)
Acetate 35.8 +14.8 448 +£17.7*
Propionate 140+ 6.7 162+£73
Butyrate 111 £8.0 11.8 £77
Model 2. Microbial target (log n° cells/gram of feces)
Akkermansia 6.0+18 56+22
Bacteroides-Prevotella-Porphyromonas 9.0+1.0 83+13*
Bifidobacterium 81+09 79+138
Clostridia cluster XIVa group 79+14 82+14
Lactobacillus group 6.0+1.1 6.1+13
Faecalibacterium prausnitzii 74+09 75+09

Results derived from multivariate analysis are presented as mean =+ standard deviation. Variables included in
model 1: acetate, propionate, butyrate and energy; model 2: Akkermansia, Bacteroides-Prevotella-Porphyromonas,
Bifidobacterium, Clostridia cluster XIVa, Lactobacillus group, Faecalibacterium prausnitzii and energy. * p < 0.05.

With the above information, and in order to evaluate whether differential daily consumption
of foods may be related with the pro-oxidant and pro-inflammatory status linked to obesity, food
groups and nutrient intake profiles were compared between clusters I and II (Figure 2). Cluster II
was characterized by a profile with a higher intake of oils and fats, sweetened foods and sauces and
lower intake of fruits, dried fruits, and fish, representative of a Western pattern (Figure 2A). Among
nutrients, higher intake of sucrose and lower intake of fiber and total animal protein was observed in
individuals from cluster II (Figure 2B,C).
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Figure 2. Radar plot representing differences in the daily intake of (A) major food groups (g/day);
(B) macronutrient and fiber (g/day) and (C) detailed carbohydrate and fibers (g/day) among clusters.

Cluster I (n = 38), Cluster II (n = 26). Multivariate regression analyses were adjusted by energy intake
(Kcal/day). * p < 0.05.

The intake of major antioxidants among clusters was also investigated (Table 6). Subjects from
cluster II obtained lower total antioxidant capacity from diet, both for water soluble and fat soluble
antioxidant compounds (hydrophilic and lipophilic ORAC, respectively). This group also had lower
intake of total carotenoids, vitamin C, total polyphenols and flavonoids than cluster I.

In order to elucidate the role of the fecal microbiota in the observed associations, differences
in some biomarkers related to obesity according to the tertiles formed with the fecal levels of
Bacteroides-Prevotella-Porphyromonas (log n° cells/gram of feces) were assessed (Figure 3). Higher
serum concentrations of MDA were found across the tertiles of Bacteroides-Prevotella-Porphyromonas in
relation with the decrease in abundance of this microbial group.
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Table 6. Differences in the intake of the major dietary antioxidants between clusters.
Cluster I Cluster II
n=38 n=26 P
ORAC, hydrophilic (umol TE/day) 10367 + 6641 6089 + 4179 0.004
ORAC, lipophilic (umol TE/day) 244 £+ 193 138 £+ 103 0.011
ORAC, Total (umol TE/day) 10609 + 6790 6229 + 4224 0.004
Selenium (pg/day) 123 +40.3 115+ 43.6 0.250
Total carotenoids (ug/day) 2391 £ 1538 1660 £ 1001 0.034
v-Tocopherol (mg/day) 26+1.1 21+£22 0.249
Vitamin C (mg/day) 222 +196 131 £+ 102 0.021
Vitamin E (mg/day) 10.1 +4.1 12.7 £ 8.2 0.063
Total polyphenols (mg/day) 2057 4+ 1076 1553 + 975 0.043
Total flavonoids (mg/day) 435 + 291 303 + 232 0.049
Total phenolics (mg/day) 198 £ 192 224 £ 236 0.626
Flavanols (mg/day) 222 £ 187 189 + 194 0.505
Results adjusted by energy derived from multivariate analysis are presented as mean =+ standard deviation. ORAC,

Oxygen radical absorbance capacity. TE, Trolox equivalents.

104

p=0223

1o
3
% 100
g
5 98
g 96
2
)
: 94
50N
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<84 84-94 >94
Bacteroides-Prevotella-Porphyromonas terttiles (log ncells/gram of faeces)
4
p=0.018

3 .
s .
S
<2
a)
=

1

0

<84 84-94 >9.4

Bacteroides-Prevotella-Porphyromonas tertiles (log No. cells/gram of feces)
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Bacteroides-Prevotella-Porphyromonas tettiles (log n°cells/gram of faeces)

Figure 3. Differences in blood parameters related to obesity according to the levels of
Bacteroides-Prevotella-Porphyromonas tertiles (log n° cells/gram of feces). Bars represent mean and
whiskers standard error derived from univariate analysis adjusted by energy. MDA, malondialdehyde.
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4. Discussion

In line with previous evidence from other authors, an association between obesity and higher
serum concentrations of leptin [35], MDA [3,36], CRP [3] and glucose was corroborated in our
study. However, our work also provides novel insight into the differences found in some intestinal
bacterial groups related to BMI and obesity-associated oxidative stress and inflammation in the general
population. Furthermore, the identification of different dietary patterns in overweight and obese
people, who have a more pro-oxidant and inflammatory status than the normal-weight group, points
to the potential interest of designing strategies based on the consideration of the impact of a balanced
diet (with high content of antioxidants in comparison with fats and refined sugars) on the microbiota,
in order to improve or prevent obesity-associated disorders.

In recent years, hyperleptinemia has also been identified as an independent risk factor for
cardiovascular disease and myocardial infarction [37,38] directly linked to inflammation [39] and
oxidative stress [3,35]. In the present study, we have found that leptin level increased proportionally
with the degree of obesity (Table 2) and is positively correlated with adiposity (Pearson correlation
with the percentage of fat mass r = 0.590, p < 0.001, data not shown), its serum concentration being
similar to that previously reported by other authors [40,41]. Higher serum levels of MDA and CRP
have been previously reported in obesity and metabolic syndrome [42] and have also linked obesity to
alterations in the lipoprotein particles profile as well as to increased lipid peroxidation, during which
the MDA is one of the most abundant products formed [43-47]. In this way, our results regarding levels
of MDA are in-line with previous findings and the levels of CRP corroborate studies relating to the
presence of obesity with chronic low-grade inflammation [48]. In our sample the mean concentrations
of MDA and CRP were higher in obese than in overweight and normal-weight groups, however the
range observed for MDA was far from the cutoff points associated with increased risk of mortality by
different causes [49]. It should be noted in the interpretation of these results that we have excluded
people with cancer, autoimmune, or digestive diseases, as these are linked to oxidative stress. Despite
the fact that the mechanisms linking oxidative damage to adipose tissue dysfunction remain largely
unknown, we suggest that the MDA values determined in this study could reflect the degree of adipose
oxidative stress [50]. Moreover, in agreement with our results, an increasing body of evidence supports
the notion that diets high in glucose and fats, as occurs in obesity, may activate inflammatory signalling
pathways in cells, potentially by increasing oxidative stress [51-54].

In recent years, it has been repeatedly reported that the gut microbiota in obese humans is
different to that of lean people, both in terms of diversity and in the relative abundance of the
dominant phyla Bacteroidetes and Firmicutes [55-60]. The different bacterial populations assessed in
this study (Akkermansia, Bacteroides-Prevotella-Porphyromonas, Bifidobacterium, Clostridia cluster XIVa
group (Lactobacillus group and Faecalibacterium prausnitzzi) represent more than 95% of the overall
phylogenetic types of the human intestinal microbiota [8]. Our data identify the microorganisms
related to Lactobacillus as a potential risk factor related with obesity. This result, that would have been
surprising a few years ago, is in good agreement with some recent studies reporting higher levels
of Lactobacillus in obese children [56] and adults [61]. Despite not reaching statistical significance,
our results show a trend towards reduced levels of the Bacteroides-group in obese subjects. These
observations are in good agreement with the increased Firmicutes/Bacteroidetes ratio [12] and the
reduced Bacteroides levels repeatedly reported in obese subjects [57,60]. In addition, we found the
majority of intestinal SCFA (acetate) to be another risk factor, with its levels increasing with BMI,
which is in agreement with the higher levels of SCFA observed in obese subjects by other authors [15].
At this point, and based on the ability of the intestinal microbiota to act as an endocrine organ [50,56]
we wonder to what extent this microbial ecosystem could be acting as a link between diet, systemic
inflammation, metabolic dysfunction and obesity [62,63].

In this scenario, the traditional statistical analysis which considers the variables independently
may be unrealistic when applied to complex biological systems; such is the case with obesity, in
which there is a wide range of interrelated variables and mutually supporting disturbances. Therefore,
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we have gone one step further by evaluating the differences in the microbiota and dietary levels
in those individuals in which different obesity-related factors occur together. The analyses of these
obesity-related factors separated the individuals into two clusters. One of them (Cluster II) comprised
the obese/over-weight participants showing higher serum concentrations of glucose, MDA and CRP.
Interestingly, the negative association between Bacteroides and obesity reported previously by other
authors [57,60,64] was also identified in our study when individuals were classified in clusters, while
the association of Lactobacillus with obesity (BMI > 30) did not raise statistical significance when also
considering oxidative stress and inflammation related parameters.

Both obesity and dietary patterns have been shown to be related to changes in gut microbiota
composition [65,66]. Therefore, when analyzing the differences in diets between clusters I and I, it was
not surprising that the higher intake of fat and oils and sweetened foods, suggestive of consuming a
highly palatable diet, was associated with the presence of a chronic pro-inflammatory and pro-oxidant
status linked to overweight and obese subjects from cluster II [67-73]. The mechanisms by which
dietary components may produce changes at the microbiota level remain largely unknown. However,
considering both our results and the evidence from experimental studies with germ free animals
receiving a diet high in fats and sucrose, it is likely that the impact of these foods in obesity and related
pathologies is mediated through microbiota modulation [74]. This is supported by the fact that we
found an inverse association between the levels of MDA and those of the Bacteroides group.

In addition, the reduced intake of fruits, which have a known anti-obesogenic effect, could be also
linked to changes in the microbiota composition. Vegetables and fruits were the major dietary sources
of pectin in our cohort [23] which can be metabolized in the colon by bacteria such as Bacteroides
resulting in the production of SCFA [75] that may exert different beneficial effects on the host [76].
Moreover, in our studied population, vegetables and fruits were also the main sources of vitamin C
and carotenoids, compounds that have a known anti-inflammatory activity and also provide other
bioactive compounds, such as polyphenols, that are involved in the regulation of some metabolic
conditions linked to obesity [77,78] and inflammation [78]. Considering these preliminary results, we
hypothesize that the Bacteroides group could act as a mediator in antioxidant metabolism, playing a
key role in some of the health effects attributed to these compounds.

The limited sample size of this study may have somewhat hampered our ability to detect other
significant associations. Moreover, although FFQ is the most suitable tool to describe long-term habits,
its ability to accurately quantify the dietary intake is limited. In addition, fecal SCFA measurements
comprise only the 5% to 10% that is not absorbed in the colon [75]. These facts underline the difficulty
of drawing firm conclusions from the studies conducted in this area of research.
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