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Abstract

An approach for probabilistic prediction of fatigue crack initiation lifetime of structural 

details and mechanical components is presented. The methodology applied is an extension of 

the generalized local model (GLM) to the fatigue case using the fatigue Weibull regression 

model proposed by Castillo-Canteli. First, the primary failure cumulative distribution function 

(PFCDF) of the generalized failure parameter is derived from experimental results for a given 

reference size, taking into account the non-uniform distribution of the generalized parameter 

(GP) the specimens are submitted to. The adequacy of the GP is presumed, ensuring uniqueness 

of the derived PFCDF as a material property, irrespective of the specimen shape and size, and 

the test chosen to this end. Next, the GP distribution is obtained by a finite element calculation 

and the PFCDF is applied to each finite element, considering the scale effect, to derive the 

probability of failure for the whole component. The suitability of the proposed approach is 

illustrated twice: first, assessing simulated data in a theoretical example, and second, evaluating 

experimental fatigue life results for riveted joints from the historical Fão Bridge. The PFCDF 

for the puddle iron from the bridge is calculated from standard tensile specimens, from which 

the initiation fatigue lifetime of the riveted connections is predicted and compared with the 

experimental results. In this way, the transferability from standard tests to real components is 

demonstrated.

Keywords: Generalized Local Model, Primary failure CDF, Probabilistic fatigue, Scale 

effect, Weibull distribution.
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Nomenclature

 Threshold number of cycles of the Castillo-Canteli model𝐵:

 Fatigue limit of the Castillo-Canteli model𝐶:

CDF: Cumulative distribution function

EFCDF: Experimental failure cumulative distribution function

GLM: Generalized local model

GP: Generalized parameter

N: Number of cycles

Nini: Lifetime to crack initiation 

PFCDF: Primary failure cumulative distribution function

Probability of failure 𝑃𝑓𝑎𝑖𝑙:

 Integrated probability of failure𝑃𝑖𝑛𝑡:

S: Stress

 Reference size𝑆𝑟𝑒𝑓:

SWT: Smith-Watson-Topper parameter

V:  Normalized variable of the Castillo-Canteli model)

λ: Weibull location parameter

β: Weibull shape parameter

δ: Weibull size parameter

ε: Strain



1. Introduction

Probabilistic fatigue models are indispensable to take into account the different sources of 

uncertainty inherent to fatigue lifetime analysis, which become apparent as scatter of the 

experimental data. Contrary to deterministic models, probabilistic ones provide the solution to 

extrapolate fatigue data from simple uniaxial tension or bending tests to predict lifetime of 

components or even large engineering structures, such as bridges, ensuring transferability, in 

which the scale and shape effect are important issues to be considered. It is worth mentioning 

that, besides probabilistic models, there are also deterministic models based on fractal theories 

that allow the scale effect to be taken in a natural way [1-3].

During the last decades, different probabilistic fatigue models have been proposed in the 

literature  to derive probabilistic S-N fields. Already in 1972, Bastenaire [4] proposed a method 

for the statistical evaluation of constant stress amplitude fatigue test results. After that, different 

models and improvements have been developed, such as the study of cumulative damage 

developed by Bogdanoff (1985) [5] based on the so-called B-model, or the inclusion of 

censored life data proposed by Escobar and Meeker (1999) [6].  Furthermore, other relevant 

examples of probabilistic fatigue models are presented by the works of Pascual and Meeker [7], 

Spindel and Haibach [8], and Schijve [9]. The Weibull fatigue approach proposed by Bolotin 

[10,11], denoted “half phenomenological” by the author, is derived from scalar damage 

measures, and deserve special recognition since it anticipates the Weibull regression model for 

the S-N and ε-N fields as proposed by Castillo and Canteli [12].  The latter merges as the 

solution of a functional equation, resulting from the necessary compatibility condition to be 

accomplished along the whole S-N field between both distributions, that of lifetime for given 

stress (or strain) range and that for stress (or strain) range for given lifetime. An interesting 

point is that the Bolotin model fulfils the above mentioned compatibility condition, without 

being contemplated as an initial requirement of the model by the author [10,11].



Subsequently, Correia et al. [13] have extended this model to more general damage criteria, 

by considering the Smith-Watson-Topper (SWT) parameter as a reference for the fatigue 

damage, thus leading to the probabilistic SWT versus number of cycles field (p-SWT-N). An 

extension to more general parameters of energetic character is justified in reference [14]. 

Usually, the p-S-N field (probabilistic stress versus number of cycles field), resulting from 

probabilistic Weibull fatigue models, is applied without considering the influence of the 

reference parameter distribution due to the geometry and size of the specimens tested and 

loading conditions. This even hinders a comparison between different testing programs. 

Occasionally, the length effect on the fatigue lifetime of  long elements has been explicitly 

investigated [15], but generally the influence of the varying distribution of the reference 

parameter over the specimen (usually referred to stress or strain) is neglected, leading to an 

erroneous cumulative distribution function (CDF) of failure or mistaking the reference specimen 

size. This limitation in previous models impedes a correct transference of the fatigue 

characterization resulting from small-scale specimens tested in the laboratory to the practical 

design, so that the prediction of the fatigue crack initiation life of real components and 

structures will be unreliable. 

To proceed to the fatigue lifetime forecasting of real components, the so-called primary 

failure cumulative distribution function (PFCDF) must be derived by applying the “generalized 

local model” (GLM), developed in previous works of the authors for quasi-static failure 

predictions [16-18]. The PFCDF characterizes the material failure in a probabilistic way 

representing the probability of failure for a given reference size of the material as a function of 

the generalized parameter, this being uniformly distributed over that size. The PFCDF could be 

derived from any specimen geometry and size even in the case of non-uniform distribution of 

the selected reference parameter along the specimen, so that any type of test may be adopted to 

characterize the material. In this way, the assessment of the probabilistic failure of a real 

component for any geometry, size and loading conditions is possible. 



The GLM, initially developed to predict the quasi-static failure of components made of brittle 

materials such as structural members of glass, may be extended to fatigue lifetime prediction 

based on the normalizing property of the Weibull fatigue model proposed by Castillo-Canteli 

[12], assuming validity of the weakest link principle. In particular, a probabilistic prediction of 

the fatigue crack initiation of structural details or mechanical components of engineering 

structures is feasible, taking into consideration the specimen shape and size, and the distribution 

of the critical fatigue damage parameter. The combination of both models (GLM and Weibull 

fatigue model) ensures the uniqueness of the PFCDF, which can be derived irrespective of the 

test selected to this aim. As a consequence, assuming adequacy of the fatigue damage parameter 

adopted, the probabilistic methodology proposed in this paper guarantees the transferability of 

the fatigue test results from laboratory specimens to components in a natural way adding shape 

and scale effect analysis, which is the main contribution of this paper.

This paper is organized as follows: first, a brief review of the above two models constituting 

the basis of the combined methodology presented, i.e. the GLM and the Weibull model of 

Castillo-Canteli, is exposed. Subsequently, the description of the iterative process for deriving 

the PFCDF is illustrated by a theoretical example, using simulated fatigue test data. Finally, a 

practical example, based on experimental results from fatigue tests conducted on material 

extracted from references [13,14], is presented to demonstrate the applicability of the proposed 

methodology.



2. Overview of the Weibull probabilistic fatigue model 

The Weibull probabilistic regression model, proposed by Castillo-Canteli [12], defines the S-

N or ε-N fields as hyperbolic shaped percentiles, i.e. by hyperbolic curves representing the same 

probability of failure (see Fig. 1a).

Figure 1. Illustration of the probabilistic fatigue field resulting from the Weibull model [12]: 

a) Probabilistic Generalized parameter versus Number of Cycles field (p-GP-N) and b) CDF of 

the normalized variable V.

 This model can be extended to any kind of generalized fatigue parameters, as is the case of 

energetic ones, resulting from possible combinations of stresses and strains to define a particular 

fatigue failure criterion [9]. In this way, the relationship among a generalized parameter (GP) 

related to the crack initiation, the lifetime to crack initiation (Nini), and the probability of failure 

( ) may be expressed as:𝑃𝑓𝑎𝑖𝑙

(1)𝑃𝑓𝑎𝑖𝑙 = 1 ‒ 𝑒𝑥𝑝 [ ‒ (𝑉 ‒ 𝜆
𝛿𝑟𝑒𝑓

)𝛽]
where:

(2)𝑉 = (𝑙𝑜𝑔 𝐺𝑃 ‒ 𝐶)(𝑙𝑜𝑔 𝑁𝑖𝑛𝑖 ‒ 𝐵)
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and λ, β and  are the location, shape and scale parameters, respectively, of the Weibull 𝛿𝑟𝑒𝑓

distribution, V the normalized variable allowing the GP-N field (i.e. S-N or ε-N) to be reduced 

to a simple CDF, and B and C the two asymptotes of the Castillo-Canteli model defining the 

threshold value of lifetime and the fatigue limit, respectively. The location parameter, λ, 

represents the smallest value of  at which failure may occur. It should be noted that the 𝑉

Weibull cumulative distribution function of the normalized parameter, V, represents the 

probability of failure, Pfail for a specifically selected reference size, Sref, to which the scale factor 

is related (see Fig. 1b). Both the scale, , and shape, β,  parameters, are associated with 𝛿𝑟𝑒𝑓 𝛿𝑟𝑒𝑓

the scatter of the experimental results, being the first one related to the specimen size Sref  and 

the second one to the fracture mechanism. The conversion of that CDF to another specimen 

size, Snew, only requires the consideration of a new scale parameter defined as:

 (3)𝛿𝑛𝑒𝑤 = 𝛿𝑟𝑒𝑓 ( 𝑆𝑟𝑒𝑓

 𝑆𝑛𝑒𝑤)1/𝛽

Accordingly, the relationship between V and the probability of failure for the new size, Snew, 

becomes:

(4)𝑃𝑓𝑎𝑖𝑙, 𝑆𝑛𝑒𝑤
= 1 ‒ 𝑒𝑥𝑝 [ ‒

𝑆𝑛𝑒𝑤

𝑆𝑟𝑒𝑓 (𝑉 ‒ 𝜆
𝛿𝑟𝑒𝑓

)𝛽]
Figure 2a illustrates the influence of a change of the scale parameter on the CDF of the 

normalized variable, V, evidencing that the scatter varies inversely with the specimen size. As a 

practical consequence, the model states that under the same load conditions, the S-N fatigue 

field for larger specimens exhibits less scatter than for smaller specimens. Figure 2b shows the 

5%, 50% and 95% isoprobability failure curves for three different scale parameter values. 



The scatter and the expected number of cycles to failure are lower for larger sizes ( ) 𝛿𝑟𝑒𝑓 = 0.5

than for medium ( ) and shorter specimens ( ).𝛿𝑟𝑒𝑓 = 1.0 𝛿𝑟𝑒𝑓 = 1.5

Figure 2. Influence of the scale parameter on the probabilistic fatigue fields: a) Probabilistic 

fields of the generalized parameter versus number of cycles (p-GP-N); b) corresponding CDFs 

of the normalized variable (V). 

The Weibull regression model [12], as given in Equation (4), includes the scale effect 

allowing the experimental results for a testing program comprising different specimen sizes to 

be evaluated, providing a unique representative cumulative distribution function related to a 

chosen reference size. This model can be applied straightforwardly to cases where the 

generalized parameter shows a uniform distribution all over the specimen or component, as is 

the case of uniaxial tensile tests where the specimen section can be assumed constant. In such 

cases, the reference size, Sref, can be defined, alternatively, as the length, area or volume 

subjected to this uniform distribution of the GP. 

However, fatigue tests are generally performed on specimens with varying cross-section or 

real prototypes and components, which most likely exhibit a non-uniform distribution of the 

reference parameter under the testing loads. Under these conditions, the use of the Castillo-
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Canteli model [12], according to its traditional definition, could be incorrect because it is based 

on the unique local maximum value of the reference fatigue parameter (usually stress or strain 

ranges) what implies neglecting its distribution along the specimen and, as a consequence, the 

possible scale effect. For this reason, a previous determination of the reference size (Sref) based 

on the generalized local model [16-18] applied to the particular test specimen geometry  is 

required to determine the real primary failure cumulative distribution function (PFCDF), and 

proceed subsequently to the fatigue life prediction of components. 

3. Description of the proposed methodology

3.1 Introduction to the generalized local model 

The generalized local model (GLM) [16-18] consists in an iterative procedure allowing the 

PFCDF to be obtained for a chosen generalized parameter (GP) and a specific reference size. 

The PFCDF, as already mentioned, represents the probability of failure for a given value of the 

generalized parameter, this being uniformly distributed over the reference size. Along the 

iterative process, the experimental failure cumulative distribution function (EFCDF) is 

transformed to the PFCDF, taking into account the specimen geometry and size, or even test 

modality, irrespective of the possible varying distribution exhibited by the selected generalized 

parameter (GP) during the test. In this way, the PFCDF, as related to a uniform GP distribution 

and reference size, represents a material failure property ensuring transferability of the fatigue 

properties from any specimen shape and size, and test type thus allowing a reliable probabilistic 

failure assessment of a real component for any geometry and loading conditions to be achieved.



3.2 Description of the iterative process

In the following, the iterative process applied to derive the PFCDF (Fig. 3), is illustrated by 

an example using simulated fatigue test data relative to the failure of uniaxial tensile test with 

variable section specimen, as depicted in Fig. 4. It implies the combination of the GLM and the 

Weibull regression model proposed by Castillo-Canteli [12].

Figure 3. Iterative procedure for estimation of the five parameters of the PFCDF.



The distribution of the axial stress along the specimen, this time taken as the generalized 

parameter to which failure is referred, is given as a function of the cross-sectional area (A) and 

the applied load (P):

 (5)𝐺𝑃 =
𝑃
𝐴

Figure 4. Schematic GP distribution along the specimen surface.

To simulate experimental results, a set of model parameters is assumed, namely: λ=0.5, β=3, 

=0.5, C=5.5, B=10, which implies the definition of the primary failure cumulative 𝛿𝑟𝑒𝑓

distribution function (PFCDF) (see Eq. 4). Next, an experimental program comprising forty test 

results is simulated by selecting twenty different GP ranges and generating two random fatigue 

lives. To this end, two random values in the interval 0-1 are drawn for each GP range, which are 

introduced as ordinate values into the PFCDF providing the prospective fatigue lives as 

illustrated in Fig. 5a. columns 1, 3 and 4 in Table 1 show the simulated test results obtained. A 

comparison between the S-N field resulting from the assumed PFCDF and the simulated test 

results is shown in Fig. 5b.

Once the simulated data are generated, the values of lifetime and load ranges reported in 

Table 1 are used to derive the theoretical PFCDF by applying the new methodology presented in 

this paper, and compare it with the PFCDF resulting for the parameters used to generate the 

simulated data.



Figure 5. a) Representation of the simulation process; b) Comparison between the S-N field 

resulting from the assumed PFCDF and the tests results from the simulation.

P 
(Max. Load)

Max. Value of GP 
(Critical Parameter) N1 (cycles) N2 (cycles)

100000 318.31 190586 362936
120000 381.97 103199 102376
140000 445.63 80466 71472
160000 509.30 57659 61991
180000 572.96 52682 49957
200000 636.62 42248 42814
220000 700.28 45435 37707
240000 763.94 39992 37912
260000 827.61 42789 39663
280000 891.27 37254 37115
300000 954.93 33786 37080
320000 1018.59 32932 33253
340000 1082.25 34820 32901
360000 1145.92 35441 35437
380000 1209.58 34428 32298
400000 1273.24 33710 33243
420000 1336.90 35132 33255
440000 1400.56 33422 32298
460000 1464.23 31925 33172
480000 1527.89 30413 30670

Table 1. Simulated tests based on Monte Carlo sampling technique.
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In the following, each step applied for the derivation of the PFCDF in the case of fatigue 

crack initiation is described.

STEP 1: Experimental testing program

 First, the proposed methodology requires carrying out a set of fatigue failure tests in the 

laboratory recording the load ranges applied and the corresponding number of cycles until 

failure. In this example, as mentioned above, 40 tests were simulated as initial values to start the 

iterative process (see Table 1).

STEP 2: Distribution of the critical parameter

The load data resulting from the previous step are used to determine the local distribution of 

the generalized parameter all over each specimen. An analytical expression of the GP 

distribution, as presumed in a former work [19], is not required since the GLM methodology 

allows the GP distribution to be found numerically (e.g. by means of FEM), and to be 

subsequently used for the calculation of the failure probability [20]. In the present case, the GP 

distribution, identified with local axial stresses, is obtained using Eq. (5).

STEP 3: Estimation of the equivalent size for a test failure

The equivalent size, Seq,i , is defined as the size that subjected uniformly to the maximum 

value of the GP occurring at the test failure, provides the same probability of failure than that 

arising by the real specimen subjected to the actual varying distribution of the GP at failure. It 

may be found as:

 (6)𝑆𝑒𝑞,𝑖 =‒ 𝑙𝑜𝑔 (1 ‒ 𝑃𝑖𝑛𝑡,𝑖)𝑆𝑟𝑒𝑓[ 𝛿𝑟𝑒𝑓

𝑉𝑖 ‒ 𝜆]𝛽



where Pint,i is the integrated probability for the i-specimen at failure, which results as the 

combination of the probabilities of failure, denoted , for all the elements being part of  𝑃𝑓𝑎𝑖𝑙,  ∆𝑆𝑖𝑗

the specimen according to the relation:

(7) 𝑃𝑖𝑛𝑡,𝑖 = 1 ‒ ∏(1 ‒ 𝑃𝑓𝑎𝑖𝑙,  ∆𝑆𝑖𝑗
) = 1 ‒ ∏(𝑒𝑥𝑝 [ ‒

∆𝑆𝑖𝑗

𝑆𝑟𝑒𝑓 (𝑉𝑖𝑗 ‒ 𝜆

𝛿 )𝛽])
where  and  are the size and the normalized variable, respectively, the latter being ∆𝑆𝑖𝑗 𝑉𝑖𝑗

dependent on the generalized parameter, GPij, for the j-element of the i-specimen.

Obviously, the value of cannot be estimated from Eq. (6) and (7) in the first iteration, 𝑆𝑒𝑞,𝑖 

because it depends both on the values of B, C and on the three Weibull parameters, which are 

still unknown for the time being. For that reason, should be randomly assigned in the first 𝑆𝑒𝑞,𝑖 

iteration.  In order to reduce the number of iterations, an initial estimate of  close to 80% of 𝑆𝑒𝑞,𝑖

the real specimen size can be adopted to start the iteration process.

STEP 4: Estimation of the parameters B and C

Although all tested specimens exhibit the same size and geometry, the varying GP 

distributions are specific for any of the load values at failure. Accordingly, the transformation of 

those varying GP distributions at failure into the corresponding equivalent uniform GP 

distributions for the different specimens implies a particular equivalent size for each specimen 

tested. For this reason, B and C must be determined by minimizing the least square equation 

proposed in reference [12] with respect to B, C and , , …  for different sizes:𝜇1 𝜇2 𝜇𝑡

 (8)𝑄 =  ∑𝑛
𝑖 = 1(𝑙𝑜𝑔 𝑁𝑖 ‒ 𝐵 ‒  

𝜇𝑖

𝑙𝑜𝑔 𝐺𝑃𝑖 ‒ 𝐶)2

where  is the median value for each of the different specimen sizes, n is the sample size and 

 and  are the maximum value of the critical parameter and the number of cycles to failure 𝐺𝑃𝑖 𝑁𝑖

for the i-th specimen, respectively. 



The main problem in the minimization process of this function lays in the fact that the 

number of equivalent sizes obtained equals the number of specimens tested. This means that, in 

the case of N tests, the number of the parameters to be optimized in Eq. (8), taking into account 

B and C,  is N+2, so that a good estimate of B and C cannot be achieved using this method. 

To solve this problem, similar equivalent sizes are grouped at staggered intervals, as shown 

in Fig. 6. In this way, the number of variables implied in the problem is lowered thus 𝜇𝑡 

expediting the convergence of the model.

Figure 6. Sorted equivalent sizes.

STEP 5: Estimation of the Weibull parameters 

Once B and C are determined, it is possible to calculate the dimensionless variable  and the 𝑉𝑖

integrated probability Pint for each specimen using Eqs. (2) and (7), respectively. Thereafter, the 

test results are sorted in ascending order, and the corresponding values of Pint are assigned to 

them. 

Finally, the probability of failure for each of the specimens can be obtained using a plotting 

point position rule, as the Bernard’s one given by:

 (9)𝑃𝑓𝑎𝑖𝑙 =
𝑖 ‒ 0.3

𝑁 + 0.4
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After having determined the probability of failure Pfail, the equivalent size Seq,i and the 

maximum value of Vi for each specimen, the values of λ, β and δ are fitted using Eq. (4) [21].

STEP 6: Quality degree of the solution obtained

The five parameters of the Weibull regression model define the PFCDF of the material, 

which allows the failure probability for any type of component and load to be determined. Thus, 

the PFCDF can be applied to compute the probability of failure of the experimental results 

performed. Obviously, the resulting PFCDF from the first iteration does not provide a good 

estimation of p-GP-N or V-p curves, because the calculated values of the equivalent sizes are 

not still accurate. 

However, after some iterations, the values of the parameters B, C, λ, β and δ remain 

practically constant from one iteration to the next one. Thus, the resulting p-GP-N and V-p 

curves could be considered the final solution (see Fig. 7).

Figure 7. Comparison between the PCDFF assumed and that obtained from simulated 

experimental results.
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As can be seen at Fig.7, the methodology proposed provides a good estimation for the 

PFCDF related with the normalized variable V but also for the probabilistic lifetime field.  The 

coincidence between the assumed and fitted PFCDF and p-GP-N percentiles demonstrates that 

the model is useful to derive the fatigue PFCDF as a material characteristic, taking into account 

the local values of the GP at failure conditions, thus permitting the consideration of the size 

effect in the evaluation of experimental results.

The fitting process is fulfilled when the absolute variation of the sum of all the parameters 

intervening in the definition of the GP-N field, i.e. the Weibull parameters and B and C as 

asymptotic parameters, becomes less than a prescribed small threshold value,  : 

 (10)|𝜆𝑖 ‒ 𝜆𝑖 ‒ 1| + |𝛽𝑖 ‒ 𝛽𝑖 ‒ 1| + |𝛿𝑖 ‒ 𝛿𝑖 ‒ 1| + |𝐵𝑖 ‒ 𝐵𝑖 ‒ 1| + |𝐶𝑖 ‒ 𝐶𝑖 ‒ 1| <  𝜀

Otherwise, the iterative process continues returning to step 3.

4. Example of application 

This section illustrates the practical application of the proposed methodology. It consists in 

the probabilistic prediction of the fatigue crack initiation lifetimes for real riveted joints based 

on the PFCDF obtained from fatigue tests performed in the laboratory using standard dog-bone 

specimens made of the original material from the bridge. For the derivation of the PFCDF the 

non-uniform stress and strain distributions at the riveted joints are taken into account.

The material (puddle iron) was extracted from the Fão road bridge [22,23], built at the end of 

19th century to cross the Cávado River at Esposende, in the northwest region of Portugal, upon 

the design of Abel Maria Mota (Fig. 8).  



4.1. Material properties 

Some original side diagonals of the bridge were replaced by new ones during the rehabilitation 

of the Fão bridge some years ago, allowing the extraction of original material (puddle iron) to 

be used in the experimental program. Tables 2 and 3 summarize, respectively, the main 

mechanical properties and the chemical composition of the material, evaluated by spark 

emission spectrometry technique [22].

Figure 8. The Fão riveted metallic bridge [22].

Young Modulus 
(GPa)

Yield Strength
(MPa)

Ultimate tensile 
Strength (MPa)

Elongation at 
fracture (%)

Reduction in cross 
section (%)

198.7 220 359 23 13

Table 2. Tensile properties of the material from Fão bridge
. 

C Mn Si P S
0.09 0.13 0.06 0.14 0.007

Table 3. Chemical composition of the material, puddle iron (% weight)



4.2. Experimental results and calculation of the PFCDF

Two different experimental programs were performed: a) 35 uniaxial tension/compression 

tests were carried out under strain control using dog-bone specimens (see Fig.9), according to 

the ASTM E606 standard [24], and b) 15 riveted joint tests (see Fig.10).

Figure 9. Uniaxial smooth dog-bone specimen: technical representation (dimensions in mm).

Figure 10. Double shear riveted joints: (left) technical representation (dimensions in mm) and 

(right) photograph of some riveted joints [25,26].

Though two different strain ratios (R=0 and R=1) are considered in the first experimental 

program, all results are fitted to a unique PFCDF following the procedure described above after 



verifying that the influence of that parameter on the final fatigue life results become negligible 

[15]. The reference size is related to the central surface area of the specimen, while the 

generalized parameter is identified with the uniaxial strain range measured during the fatigue 

tests according to the experience of previous works using this material [25,26]: 

GP=  [strain] (11)𝑆𝑟𝑒𝑓 = 806  𝑚𝑚2 ∆𝜀𝑎

Although the experimental results from this practical application are disseminated in the 

literature as total fatigue lifetimes, and the methodology proposed in the paper is only applicable 

to fatigue crack initiation, different numerical analyses performed by FEM [27] prove that the 

total fatigue life of these specimens is mainly determined by the crack initiation phase, so that 

the propagation phase may be neglected. The application of the methodology described in the 

previous section to the puddle iron from the Fão bridge leads to the following model 

parameters: B = 0, C=3.57, λ=12.82, β=7.12 and δ=11.53. The resulting fatigue GP field, i.e. the 

iso-probability or percentile curves, and the PFCDF are shown in Fig. 11.

Figure 11. PFCDF for the Puddle Iron of the Fão Bridge obtained by smooth specimens 

subjected to uniaxial load. 
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4.3. Prediction of failure for the riveted joints

The PFCDF obtained is used to derive the probabilistic fatigue crack initiation fields for the 

riveted joint shown in Fig. 10. To compute the local elastoplastic strains in the riveted 

connection, a three-dimensional FE model is applied using the ANSYS® commercial code [27] 

(Fig. 12). Taking advantage of the existing symmetry, only 1/8 of the geometry is modelled. 

Additionally, a convergence study is performed to minimize the mesh influence on results, 

whereby that represented in the Fig. 12 is the final one adopted in the FE analysis.  According to 

the solution already studied by the authors for this riveted joint [13], a friction coefficient of 0.3 

is assumed between the specimen plates of the rivet connection and a low clamping stress 

(25MPa) is supposed to be provided by the rivet. More details about the mesh, contact model 

and rivet clamping effects application can be found in reference [26]. With the aim of obtaining 

the probabilistic fatigue crack initiation field, 15 different nominal tensile stresses are applied in 

the simulation: ={50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200}MPa. ∆𝜎𝑗

As recommended in reference [28], the Twice Yield Method (TWM) is applied to extract the 

local elastoplastic strain ranges at each load level as a more efficient procedure, from a 

numerical point of view, than a cycle-by-cycle elastoplastic analysis.

Figure 12. Finite element mesh of the 1/8 of the riveted joint [26].



After computing the elastoplastic strain range field, the number of cycles related to a certain 

global probability of failure for each load level is obtained with the equation:

 (12)𝑃𝑓𝑎𝑖𝑙, 𝑗 = 1 ‒ ∏𝑛
𝑖 = 1(𝑒𝑥𝑝 [ ‒

∆𝑆𝑖

𝑆𝑟𝑒𝑓 ((𝑙𝑜𝑔 ∆𝜀𝑖𝑗 ‒ 𝐶)(𝑙𝑜𝑔 𝑁 ‒ 𝐵) ‒ 𝜆

𝛿 )𝛽])
where B, C, λ, β, δ and  are the Weibull parameters as fitted above, is the local 𝑆𝑟𝑒𝑓 𝜀𝑖𝑗 

elastoplastic strain range of the finite element i related to the nominal stress range ,  is the ∆𝜎𝑗 ∆𝑆𝑖

size of the element i, and  is the selected global probability of failure for the specimen j. 𝑃𝑓𝑎𝑖𝑙, 𝑗

Figure 13 depicts the prediction of the p-S-N field for the riveted joint. The good agreement 

between the predicted failure probabilities of the rivet joint resulting from Eq. (12) and the 

experimental results tested in the laboratory demonstrates the satisfactory applicability of the 

model from a simple PFCDF to a case with a complex distribution of the critical parameter.
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Figure 13. Comparison between the p-S-N field predicted for fatigue crack initiation of riveted 

connections and experimental results for different stress ranges.



Finally, it is emphasized that this methodology also allows the hazard maps for the riveted 

joint to be determined making use of Eq. (4). The hazard maps, typically created for the analysis 

of natural disasters, are graphs that highlight the areas being affected or becoming vulnerable to 

a certain type of failure, providing visual information on the probability of occurrence of this 

phenomenon at each particular point of the studied space. Occasionally, they are also used to 

display the failure hazard of mechanical and structural components as a distribution of the 

generalized parameter for the critical acting load. Accordingly, the same concept can be 

extended to any structural fatigue design when the PFCDF is known, because the local 

probability of crack initiation may be estimated from the stress, strain or any other GP 

distribution, which represents conveniently the fatigue damage process. Thereby, in the example 

of application presented in this paper, each local value of the strain range is related to the 

probability of failure taking into account the size of the elements pertaining to the mesh 

designed. Figure 14 illustrates the strain range map and the hazard map for the central plate of 

the riveted joint, this being the critical one. Since only the fatigue crack initiation is envisaged, 

only surface values are represented in Fig. 14. 

 

Figure 14. a) Strain range distribution (left) and b) the corresponding hazard maps 

(distribution of ( )) for a riveted joint subjected to a = 170 MPa during 50,000 𝐿𝑜𝑔(𝑃𝑓𝑎𝑖𝑙 ∆𝜎

cycles.

GP ))𝐿𝑜𝑔(𝑃𝑓𝑎𝑖𝑙



In the design stage, but also along the lifetime of the component, the hazard maps complement 

the information provided by the global probability of failure. Thus, while the latter informs 

whether the component fulfills the safety requirements as a whole, the former permits the 

identification of the local critical points in the current design giving advice about the possible 

convenience of improving such weak points by proceeding to a local redesign of the component.

5. Conclusions

A methodology, based on the generalized local approach and the Weibull model proposed by 

Castillo-Canteli, is applied to derive the primary failure cumulative distribution function for 

prediction of fatigue crack initiation. The approach is applicable to any kind of test, irrespective 

of the specimen size and geometry or load type, allowing a suitable and reliable consideration of 

the statistical size effect.

The methodology represents an extension of the local methodology applied to quasi-static 

failure prediction of brittle materials. In addition, it takes into account the local value of a 

generalized parameter, suitably selected for fatigue crack initiation, as obtained from a finite 

element calculation, without requiring an analytical description of the distribution. It is worth 

mentioning that the methodology presented in this paper is applicable to any fatigue failure 

criterion.  

In this way, higher generality is achieved by applying this model in comparison with other 

current solutions. This represents an important advance for fatigue life prediction because the 

influence of the distribution of this parameter rather than only the maximum value of the critical 

parameter is considered in the fatigue lifetime prediction.

An extension of the proposed methodology to the prediction of the total fatigue life of 

components, including the fatigue crack propagation phase, would require the consideration of 

the volume size effect by integration of a convenient fatigue crack propagation law.
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