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Abstract 

In this thesis, a lithium ion battery cell is analyzed and modelled on MATLAB. Under lithium ion 

battery there are different chemistries. The electrical and thermal performance of each chemistry 

varies depending on the operating conditions. Developing a model of performance which accounts 

the current rating, operating temperature and state of charge (SoC) helps to analyze the behavior of 

the cell under load. Different approaches of modelling lithium ion battery cells are proposed in 

literature, physics based electrochemical model and empirical (such as equivalent circuit-EEC 

model) are the most discussed. In this work, empirical based EEC model is designed and simulated 

for various working conditions. The model has a variable voltage source which accounts the open 

circuit voltage (OCV) as a function of state of charge and temperature, a series resistor to account 

the instantaneous voltage change when the cell is under load or relaxed, and parallel resister-

capacitor (RC) branches to capture the dynamics of the cell during transient. The battery cell is 

exercised under different current rate, state of charge and temperature; and data is recorded for 

impedance parameters identification. Curve fitting techniques are applied to determine the number 

of RC branches. Two/Three RC branches are chosen based on a trade-off between fitting goodness 

of the transient characteristics of the selected battery cell and the parameter identification 

complexity. Trust-Region-Reflective method based on least square algorithm on Simulink 

optimization toolbox is used to identify the parameters (resistor and capacitor as a function of 

temperature, current rate and SoC). The cost function in the optimization problem is sum squared 

error of the terminal voltage. The estimated parameter values are highly nonlinear and represented 

in the model by 3D lookup tables with linear interpolation. Coulomb counting method is applied to 

estimate SoC which considers temperature dependent maximum capacity of the cell. OCV is 

modelled in terms of 2D lookup table with smooth interpolation, as a function of SoC and 
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temperature, from measurement data using pulse charge-discharge technique with 1-hour 

relaxation time. Once the impedance parameters are estimated, OCV model is improved by 

estimating new data points to handle the limitation of coulomb counting SoC estimation due to 

current measurement. 
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Chapter  1  

Introduction 

This is an introduction chapter of lithium ion battery cell modelling. In this first chapter, the 

motivations for modelling of lithium ion battery are discussed and related literatures are reviewed. 

Objectives and scope of the work are presented. 

1.1 Motivation 

Emission and geopolitical concerns of fossil fuel dependency are pushing the globe to look for 

alternative sources for energy production and transportation. Introducing large amount of 

renewable towards the energy sector and electrifying the transportation sector beside using 

optimized and energy saving technologies are the main strategies being realized as a solution for 

such issues. This has opened a new era for battery storage systems as a key technology in those 

sectors. The market is working towards developing high energy and power density storage systems 

to meet the demand. Considering the transportation sector, electric vehicle (EV) and hybrid electric 

vehicles (HEV) are now gaining popularity once again. However, the success of the technology 

depends on the advancement of the storage system deployed in terms of efficiency, stability, energy 

density and recharging speed. This is because of EV and HEV are needed to have longer driving 

rage and shorter refilling time. Since the last decade, with safety improvement and affordable price, 

lithium ion batteries have become attractive in EV and HEV application over nickel cadmium and 

nickel metal hydride batteries. High specific energy, long lifetime and low self-discharge compared 

to other storage systems make them preferable. Large scale lithium batteries are also being 

introduced in the energy sector to improve the grid flexibility and support the renewable energy 

sources.  

Lithium ion batteries have sensitive operating ranges in terms of voltage and temperature. 

Performance and safety are the main considerations in the design and battery operation process. 

Knowing the behavior of the battery and monitoring it while running help to improve the efficiency 

and lifetime. Battery management in real-time and performance analysis techniques play a key role 

in this regard. System modeling plays vital for analyzing and predicting of battery behavior. Battery 

storages are highly non-linear electrochemical systems and their performance isn’t like ideal energy 
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sources. It is governed by complex mixture of laws of thermodynamics, electrode kinetics, ion 

transport and diffusion phenomena. By designing a model which considers internal and external 

conditions of the system, the battery behavior can be predicted or simulated. Two approaches of 

modelling are common in electrochemical battery storage systems. The first one is, deriving the 

electrical and thermal property from physical laws which govern electrochemical reaction inside 

the cell. It is known as Electrochemical Model (ECM) or physics based model. This approach is 

more accurate, however the nonlinear partial differential equations involved in the physical laws 

and having coupled parameters make the approach computationally more intensive and sometimes 

difficult to solve the equations. The other approach is Electrical Equivalent Circuit (EEC) based 

modelling technique, electrochemical behavior of the battery is represented using active and 

passive electrical elements. A voltage source connected in series with a resistor is widely used 

battery model, where the voltage source represents open circuit voltage and the resistor to model 

the internal impedance.  Such simple models don’t satisfy accuracy requirement in all applications 

and usually one or more parallel resistor-capacitor networks are included to capture the dynamics 

better. EEC battery models require characterization tests which may need expensive laboratory 

equipment for parameter estimation.  

The purpose of modelling can vary based on the issue being addressed. Battery Management 

System (BMS), Load performance analysis and Battery design process are the main application 

areas. 

BMS: It is an electronic system with software algorithms to manage the operation of the 

battery and protect the battery from working in undesirable conditions. BMS can be simple 

or sophisticated that also performs secondary operations to satisfy the application 

requirements. Compared to other type of batteries, Lithium ion batteries are not voltage 

tolerant. For safe battery operation and extended life, an algorithm which estimates the 

state of charge (SOC) and state of health (SOH) of the battery from voltage-current 

measurement is essential. Estimation algorithms are based on the battery model. The type 

of modelling and parameter estimation algorithms implemented determines the 

computational requirements and accuracy of the BMS which influences the final cost of 

the battery. Simplified ECM and EEC Models are popular in BMS. 
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Load Performance Analysis: In this regard modelling is required to simulate load 

characteristics under different operating condition either in cell or battery pack level. For 

instance, in ‘‘hardware in the loop’’ analysis which incorporate the battery as a system 

level component, the battery behavior should be modelled and implemented. Simulation 

model is also needed to analyze the performance of the battery in hybrid power systems.   

Battery Design: Modelling is crucial in studying electrochemical process inside the battery 

cell either to design application specific battery cells or improve the performance of the 

battery. Underutilization, capacity fade up and thermal runway are some of the issues 

which should be considered during battery design. Multiphysics modelling approach is 

common in battery design process. 

1.2 Literature Review 

To improve the performance of lithium ion batteries in varies applications, EEC based modelling 

are proposed and used for state of charge estimation. Coulomb counting is the simplest to estimate 

and implement. The technique suffers from accumulation error due to current measurement. 

Voltage based SOC estimation is also applicable in some type of batteries. It is not a good option 

for lithium ion batteries because of Open Circuit Voltage (OCV) curve is flat in certain rage of 

SOC which makes the technique ineffective. Model based SOC estimation is the most effective 

technique in battery BMS and system performance analysis. Commonly a resister and single 

parallel resistor-capacitor is considered as the cell impedance. Those type of models are good 

enough to capture the performance of the battery and simplify parameter estimation process. 

Researchers are looking for better parameter estimation techniques. Kalman based filters, and other 

novel adaptive methods are the most discussed SOC estimation techniques with model based 

methods [1] [2] [3] [4]. In [5] Neural Network based model is discussed with Unscented Kalman 

Filter to reduce the error in the model. Beside SOC estimations, lithium ion battery model is also 

used in predicting thermal behavior. In most BMS, lumped parameter thermal modelling approach 

is preferred due to its simplicity. Heat is generated inside the battery cell from two source, 

electrochemical reaction and joule loss and the energy balance equation comes from the entropy 

change and heating due to joule loss. Novel parametric circuit modelling for lithium ion battery 

which is applied for performance simulation and thermal analysis of electric vehicles is discussed 

in [6]. Non-negative least square with genetic algorithm is applied to estimate model parameters to 

avoid the estimated parameters being negative. The model parametrization is done for three parallel 
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Resister-Capacitor (RC) EEC model. In [7] and [8] Simulink model of lithium ion battery for hybrid 

power system testbed is proposed. Both [6] and [7] considered only the effect of SOC while 

estimating impedance parameters, however [8] considered also current effect. A battery pack 

integrated equivalent circuit and thermal model for temperature dependent embedded applications 

is proposed in [9]. A single RC based EEC is used to model electrical and thermal behavior of 12 

cell battery pack from 5-45°C. The model parameters are both estimated and validated only using 

pulse discharge test which do not guarantee dynamic robustness of the model. 

In this thesis EEC based Simulink/Simscap model is proposed. The model considers the variation 

of impedance parameters with SOC, temperature and current. The model also consists of three RC 

branches considering the future extension of the work to include the degradation effect of the 

battery cell in the model. The parameters are estimated from modified Hybrid Pulse Power 

Characterization (HPPC) test and the model is validated with Dynamic Stress Test (DST), and pulse 

discharge tests beside HPPC which assured the robustness of the model. 

1.3 Objective 

The general objective of this work is developing a lithium ion battery model which simulates the 

performance of the battery in terms of electrical, and temperature effect.  It consists the following 

specific objectives: 

1. Review literature regarding lithium ion battery technology and modelling techniques. 

2. Propose an equivalent electric circuit model for electrical and thermal simulation of the 

battery cell. 

3. Perform static capacity and dynamic experimental tests to collect data for the battery cell 

parameter estimation and model validation. 

4. Estimate the battery cell parameters at different working conditions (i.e. SOC, 

temperature). 

5. Prepare temperature dependant battery cell MATLAB model using Simulink and Simscape 

tool boxes. 

6. Validate the model at different operating conditions.  

1.4 Scope of the Thesis 

This thesis is the first part of developing a full MATLAB simulation package for electrical, thermal 

and degradation behavior of lithium ion battery. The scope of the thesis is developing simulation 
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model for the electrical behavior of the battery cell from 10 ºC to 40ºC temperature and up to 3C 

discharge current from 0 to 100% state of charge conditions. The model also considers connecting 

the cells in parallel or series for further battery pack level simulation. 

1.5 Thesis Outline 

The remaining of this paper is presented as the following. Chapter two explains the state of the art 

for the thesis. In this chapter, the application of energy storage system and various storage 

technologies are discussed. Lithium ion battery cell modelling approaches, electrochemistry and 

electric equivalent circuit based, are presented. Parameter estimation techniques for EEC model are 

also explained in this chapter. The methodology of the thesis is in chapter three, which states about 

the proposed model, experimental setups for data measurement and analysis and parameter 

estimation of the model. The MATLAB based simulation model is developed in the fourth chapter, 

which shows Simulink and Simscape techniques for modelling the open circuit voltage, state of 

charge estimation and lamped RC parameters of the cell. In Chapter five simulation results are 

discussed and the model is validated. Conclusion and future works are presented in chapter six. 

Finally, Chapter seven and eight contains the bibliography and appendices of the work respectively.  
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Chapter  2  

State of The Art 

This is the chapter where previous knowledges and development techniques of the problem, which 

is lithium ion battery cell modelling, are presented. It starts from ESS definition and Types of ESS 

regarding the energy form stored. Basic characteristics and performance of each storage systems 

are also stated. Various lithium ion battery technologies are presented and compared.  Numerical 

and empirical modelling approaches for lithium ion battery cell are reviewed. Two data 

measurement techniques i.e. frequency and time domain techniques for empirical modelling are 

discussed. Various SOC estimation techniques with pros and cons are also presented. 

2.1 Energy Storage Systems (ESS) 

Due to basic characteristic of electricity to be consumed at the time it is generated, there is a need 

to store electrical energy for use on demand. The energy cannot be stored directly, however it can 

be stored in other forms of energy and converted back to electricity. This brings the need for an 

energy storage technology or a device which stores the electrical energy in other forms such as 

chemical, potential, kinetic and thermal. EES is a key technology in utilizing world’s energy 

resources effectively. It brings flexibility in providing energy at the choice of time. Nowadays there 

is an emerging need for ESS in grid, transportation applications and portable devices. Reduction of 

emission and being independent from fossil fuels, a need for sustainable energy source, and make 

the existing grid smarter are the main driving forces towards the technology.  

 ESS Types 

ESSs varies in terms of their functions, response time, and suitability for the application. The most 

common classification method is based on the form of energy stored in the system [10] [11]. Figure 

2-1 summarizes the classification of ESS based on the energy form. Including the technology 

maturity and cost, choice of specific type of storage system for an application depends on the 

maximum energy and power rating needed, required response time during charge-discharge, system 

weight and volume constraints, and suitable operation temperature. Figure 2-2 describes 

comparison of various energy storage technologies regarding their energy and power capacity. Not 

all storage systems fulfill both energy and power requirements. Supercapacitors and super 

conducting coils have good response time and can deliver high power output. However, their 



 

7 

 

energy storage capacity is low. In contrast pumped hydro and flow batteries can store large amount 

of energy but their response time is lower. Most of the time characteristics of the application selects 

which ESS is suitable. 

 

Figure 2-1 Classification of ESS based on the energy form 

The role of ESS in power sector can be seen in different stages from generation to utility and 

consumer level. In generation stations, it is being used as time shifting by storing the surplus power 

when it is not needed and to increase supply capacity. It also helps as a frequency control function 

to improve power quality. Pumped Hydro Storage (PHS), Compressed Air Energy Storage (CAES), 

traditional electrochemical batteries, flow batteries and hydrogen are among the technologies in 

generation plants. In utilities, it may play as a cost saving method for storing energy during off 

peak hour with less price beside keeping power quality, efficient use of the power network and 

supplying power during emergency to maintain service reliability. Traditional electrochemical 

batteries, Superconducting Magnetic Energy Storage (SMES), Super capacitors are used in addition 

to flow batteries and CAES. Consumers may also use ESS for saving cost by time shifting the 

energy due to time varying price of the electricity. It can be also considered as emergency power 

source in power sensitive applications during power outage instead of power generators. Lithium 
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ion, lead acid, flywheel and flow batteries are preferable energy storage technologies. The other 

potential application of ESS is renewable energy generation sectors.   

 

Figure 2-2 Comparisons of energy storage technologies [12]  

Utilizing more renewable energies in the power system grid reduces the emission and fossil fuel 

dependency issues. However, the energy from renewable sources such as wind and solar, is 

unreliable and causes power fluctuation issue. This makes the system unable to maintain output 

and meet power demand. By introducing ESS in power systems, more efficient use of renewable 

energy can be realized, the issue of intermittency during grid integration of renewables is also 

addressed by delivering energy only when the grid needs. 

Transportation sector is one of the greatest contributor of greenhouse gas emission. In Europe 

transportation sector accounts 23% from the total greenhouse gas emission based on 2015 statics 

[13]. In the same year, in United state transportation represented 27% of the total emission in the 

country [14]. Electrification of the transportation sector, such as electrified railways, electric and 

hybrid vehicles powered by electricity, is becoming a promising alternative to alleviate dependency 

of fossil fuel and improve urban life. Unlike grid and energy sector applications, electric/hybrid 
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electric vehicles desire high energy and power density storage systems. Driving range and charging 

time are important factors for success of electric vehicles. High performance batteries are needed 

to be mounted in Electric vehicles as a power source. The technology is also being improved to use 

vehicle storages to power home appliances and support the grid by connecting them in the time of 

need which is known as vehicle to grid application [15].  Battery storage system particularly 

Lithium ion and NMH are the widely used batteries in electricity powered vehicles [16]. 

 Battery Storage Systems (BSS) 

Battery storage systems are electrochemical systems which includes primary, secondary and flow 

batteries. Lead acid, nickel and lithium ion are widely used secondary batteries for both stationary 

and non-stationary applications.  Secondary batteries are rechargeable batteries which have cells 

with reversible chemical reaction on charge and discharge. Anode, cathode and separator are the 

main components of a battery cell. Based on the required nominal voltage and capacity, the battery 

cells are connected in series and parallel. Figure 2-3 summarizes typical cell voltage and chemical 

reaction on anode and cathode during charge-discharge of various rechargeable batteries. 

Components of a Battery Cell 

Anode: It is an electrode which releases electrons during discharge and accepts electron on charge. 

It is negative on discharge and positive on charge. Efficiency, specific capacity and conductivity 

are important parameters to select anode material. Stability, manufacturing simplicity and cost are 

also decisive factors. 

Cathode: It is an electrode which absorbs electron during discharge and release on charge. It is 

positive on charge and negative on discharge. Cathode material is selected based on its voltage and 

chemical stability. 

Separator: it is a material which isolates the anode and electrode electrically. It allows the 

movement of ions from one electrode to the other. Electrical insulation, minimum ionic resistance, 

mechanical stability and prevention of particles migration are some of the required parameters for 

separator materials. 

Electrolyte: A nonmetallic substance placed between anode and cathode electrodes. It promotes 

movement of ion between cathode and anode which makes the battery conductive. The electrolyte 



 

10 

 

of a battery consists of soluble salts, acids or other bases in liquid, gelled and dry formats.  It can 

be also a polymer form, like in solid-state batteries, solid ceramic and molten salts, as in the sodium-

sulfur battery. The electrolyte should be highly conductive, non-reactive with the electrode 

materials and stable with operating conditions such as temperature. 

Secondary batteries store and release electrical energy up to a certain number of cycles. The 

maximum number of cycle and other performance characteristics of batteries vary based on the 

chemistry and material in it. 

Rechargeable Batteries 

Lead acid battery: exploring lead-acid battery as energy storage device dates back 1800s [11]. It 

is the most widely used rechargeable electrochemical storage system. It has lead dioxide (𝑃𝑏𝑜2) 

cathode and sponge lead (𝑃𝑏) anode, with sulfuric acid electrolyte. Lead acid batteries has fast 

response time, small daily self-discharge rate and relatively high cycle efficiency. Its cost is also 

low and has high reliability. It has been developed as a power source for hybrid and electric vehicle, 

however its application in utility is limited due to low number of cycles. 

Lithium ion battery: Lithium ion battery has a cathode made up of lithium metal oxide (such 

as 𝐿𝑖𝐶𝑜𝑂2, 𝐿𝑖𝐹𝑒𝑃𝑂4 and 𝐿𝑖𝑀𝑂2) and the anode is typically graphite carbon. The electrolyte 

consists of lithium salts dissolved in organic carbonates. During charging process, the lithium-ions 

travel from cathode to anode. Then lithium ions combine with external electrons and are deposited 

between the carbon layers as lithium atoms. The process reverses during discharge. Lithium ion 

batteries have good energy to weight ratio, no memory effect, and low self-discharge. They are 

good candidate for applications need fast response time and have dimension and weight constraint. 

The protection circuit and battery management system makes lithium ion batteries more expensive 

than other chemical batteries. 

Nickel Cadmium (NiCd): Nickel-cadmium battery contains a nickel hydroxide as positive 

electrode and cadmium hydroxide as negative electrode. It has an alkaline electrolyte. NiCd battery 

is robust and has high reliability and low maintenance cost. The downsides of NiCd battery are: 

cadmium is toxic, resulting in environmental hazards, the battery suffers from the memory effect 



 

11 

 

which means, the maximum capacity can be dramatically decreased when the battery is repeatedly 

recharged after being only partially discharged. 

Nickel Metal Hydride (NMH): NMH battery is like NiCd except hydrogen is used as electrode 

instead of cadmium. It has moderate specific energy and relatively high energy density which 

makes the battery better than NiCd. It has also reduced memory effect and is environmentally 

friendly. It is used from portable device up to hybrid and electric vehicles and standby industrial 

applications. However, it has high rate of self-discharge. The performance also decreases after a 

few hundred full cycles. 

Sodium Sulphur/ Sodium Nickel Chloride: unlike other battery technologies, sodium-nickel-

chloride (zebra batteries) and Sodium-Sulphur batteries have a solid-state electrolyte. Sodium 

Sulphur battery consists of liquid Sulphur at anode electrode and liquid sodium at cathode 

electrode. The positive sodium ions are pass through the electrolyte and combines with Sulphur to 

form a sodium poly-sulphide. The zebra battery has moderate specific energy, energy density, 

specific power, and a high operating temperature. 

 

Figure 2-3 Anode-Cathode chemical reactions and cell voltages of battery technologies [10] 

Some characteristics and performance of the above battery technologies are presented and 

compared in Figure 2-4. The figures in the table are based on average ratings of commercial 

batteries and special batteries with above average ratings are excluded. Lithium ion batteries have 

higher cell voltage and low toxicity. They have also a peak current of more than 30C. As shown in 
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the figure lead acid batteries have cycle life only from 200 to 300. Lithium batteries go up to 2000 

cycles for 80% discharge. 

 

**Peak load current - Maximum possible momentary discharge current, which could permanently 

damage a battery 

*’C’ refers to the battery capacity 

Figure 2-4 Characteristics of commonly used rechargeable batteries [17] 

Battery Terminologies 

C-rate: It is a measure of the rate at which a battery is discharged relative to its maximum capacity. 

A 1C rate means the discharge current will discharge the entire battery in 1 hour. For instance, for 

a battery with a capacity of 100 Amp-hrs, this equates to a discharge current of 100 Amps. 

SOC: An expression of the present battery capacity as a percentage of maximum capacity. 

Depth of discharge (DOD): The percentage of battery capacity that has been discharged expressed 

as a percentage of maximum capacity. 
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Nominal capacity: The energy capacity of the battery, the total Watt-hours available when the 

battery is discharged at a certain discharge current from 100 percent state-of-charge to the cut-off 

voltage. 

Nominal voltage: The reported or reference voltage of the battery by the manufacturer, which is 

considered as the “normal” voltage of the battery. 

Cut-off Voltage: The minimum allowable voltage. It is this voltage that generally defines the 

“empty” state of the battery. 

 Electrical Storages 

Electrical storages include supercapacitors and super conducting coils which store energy in the 

form of electric charges. 

Super capacitors (Ultra capacitors): Supercapacitors consists of two electrodes, electrolyte and 

a membrane in which ions can travel. The amount of energy stored depends on the surface area of 

the electrode and the distance between them. The basic difference between super capacitors and 

ordinary capacitors is, super capacitors use porous electrodes which increase the surface area of the 

electrodes. Super capacitors may be double layer capacitors where charge storage is 

electrostatically or pseudo capacitors where the charge storage is electrochemical. Hybrid types are 

also available.  

 

Figure 2-5 Super capacitors based on charge storage 
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SMES: stores energy using super conducting coil in the form of magnetic field. It consists of two 

parts, cryogenically cooled superconducting coil and power conditioning system. The magnetic 

field is created with the flow of a direct current (DC) through the coil. To maintain the system 

charged, the coil must be cooled adequately. This enables the current to circulate indefinitely with 

almost zero loss, and therefore, the energy remains stored in the form of a magnetic field. The 

stored energy can be released back to a connected power system by converting the magnetic energy 

to electricity, which is discharging the coil. The only conversion process in superconductors is from 

AC to DC in the power conversion stage so it has high cycle efficiencies. This very high cycling 

capacity and efficiency over short time periods make SMES very well suited to high power short 

duration applications. SEMS also has the ability of fast response, however the main drawback is it 

need large amount of power to keep the coil at low temperature. 

 

Figure 2-6 Typical illustration of SEMS system [18] 

 Hybrid Battery Supercapacitor Storage Systems (HBSSS) 

HBSSS contains electrochemical battery for long term storage and supercapacitor to support fast 

dynamics. It is shown that battery storages cannot satisfy both energy and power requirements of 

all applications. Batteries in general are good to store large amount of energy, however they are 

slow in transferring the energy. In contrast Supercapacitors or Super conductor coils are fast in 

transferring the stored energy, effective in supporting short term peak currents. In applications 

which are sensitive for both energy and power, such as renewable energies, electric vehicle and 

others, both requirements can be satisfied by HBSSS. Researches are being done to optimize such 

hybridization and to analyze the economic benefits [19], [20]. In [21] the hybrid battery 

supercapacitor storage system is critically reviewed and compared with the well-established battery 

storages (lead acid, nickel metal hydride lithium ion, …) in terms of power quality, system 

complexity, life span and system cost based on renewable and electric vehicle applications. The 



 

15 

 

basic challenge in the hybridization is the extra cost and system reliability due to the controller 

electronics needed. However, the controller and management electronic is also available even in 

some battery storage systems, such as lithium ion battery, to secure safety and stability. 

 Lithium Ion Battery Technologies 

Lithium ion batteries are of the most popular energy storage technology since last decade due to 

capability of having high energy density, high power density, high efficiency, low self-discharge 

rate and long lifetime.  Lithium ion battery doesn’t specify a single chemistry reaction, rather it 

specifies a battery which has an insertion reaction both on the cathode and anode in which a lithium 

ion acts as a charge carrier, though at the beginning it was defined only for batteries which utilizes 

intercalation reaction [22]. Some chemistries are popular with their special characteristics and 

performances: Lithium cobalt oxide-LCO (𝐿𝑖𝐶𝑜𝑂2 cathode) which has high specific energy with 

low thermal stability, life time and specific energy; Lithium manganese oxide- LMO (𝐿𝑖𝑀𝑛2𝑂4 

cathode) or blended lithium nickel manganese cobalt oxide-NMC (𝐿𝑖𝑁𝑖𝑀𝑛𝐶𝑜𝑂2) to improve 

specific energy and life span; Lithium iron phosphate-LFP (𝐿𝑖𝐹𝑒𝑃𝑂4 cathode) which has good 

safety characteristics; Lithium titanium oxide-LTO  (𝐿𝑖4𝑇𝑖5𝑂12 𝑎𝑠 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑑𝑒) which 

has long life and good safety. Table 2-1 summarizes common cathode chemistries and their 

application areas including the abbreviations which they are known in research papers and 

manufacturer datasheets. 

Table 2-1 Lithium ion battery technologies [23] 
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Figure 2-7 lithium ion battery cell demonstration on charge and discharge [17] 

Figure 2-8 compares different lithium ion battery technologies about the basic application 

characteristics. The size of extension of the denser color indicates the technology good in that 

dimension.    

 

Figure 2-8 Comparison of lithium ion battery technologies [23] 
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2.2 Electrical Modelling of Lithium Ion Cell 

The electrochemical and thermal behavior of lithium ion cells vary under different operating 

conditions. Lithium battery cells are voltage sensitive, cells should operate under specified voltage 

limits and temperature ranges. For better battery management and performance analysis, having a 

model with high accuracy is important.  Two approaches of modelling are used in literature: 

Electrochemical (physics based) and Equivalent Electric Circuit (empirical based) model. Various 

modelling approaches are also under each category which differs in their level of details.  The 

choice of a battery model type requires a trade-off in model complexity and accuracy. In some 

literature mathematics based artificial intelligent techniques like Neural Network are also proposed. 

 Electrochemical Models (ECMs) 

In this approach, the system model is derived from non-equilibrium thermodynamics transport and 

reaction equations based on concentrated solution theory. The electrochemical dynamics of the 

battery is represented by partial differential equations which represents the physical phenomena 

inside the cell during charging/discharging. ECMs are very helpful to analyze the effect of physical 

properties and particle distributions in the battery performance. Charge transfer, circuit potential, 

diffusion, and double layer effect are the main physical phenomena for electrothermal 

characterization of a battery cell.  Doyle, Fuller and Newman originally developed Pseudo 2 

Dimensional (P2D) electrochemical dynamic model for a single material electrode [24]. However 

due to the computational burden and difficulty in solving system’s partial differential equations, it 

is not easy to apply the model in advanced control and management systems. Since then different 

approximation and assumptions are considered to reduce structural complexity and simplify 

parameter identification process. Pade and Parabolic approximations [25] are some of the 

techniques used by researchers to achieve confined and physically meaningful electrochemical 

model. ECM approach is based on Butler-Volmer equation, Porous electrode theory, concentrated 

solution theory and potential drop in the solid conducting phase which is described by ohms’ law. 

Porous electrode theory is the earliest for mathematical framework of non-equilibrium 

thermodynamics of porous electrode [26]. It is based on Butler-Volmer reaction kinetics equation, 

shown in equation 2-1, which describes the Faradaic current density. The equation explains the 

relation of current on each electrode with the electrode potential and reaction kinetics. It defines 

the electrochemical dynamics on the electrodes surface. Researchers are also proposed a modified 



 

18 

 

porous electrode theory using modified Butler-Volmer equation and classic porous electrode 

equations to find thermodynamically consistent equation for their model. 

𝒋 = 𝒋𝟎. {𝒆
𝜶𝒂𝒛𝑭

𝑹𝑻
(𝝓𝒔−𝝓𝒆−𝑼𝒐𝒄)

− 𝒆−
𝜶𝒄𝒛𝑭

𝑹𝑻
(𝝓𝒔−𝝓𝒆−𝑼𝒐𝒄} (2-1)                                

𝒋𝟎 = 𝑲(𝑪𝒆)𝜶𝒂(𝑪𝒔,𝒎𝒂𝒙 − 𝑪𝒔,𝒔𝒖𝒓𝒇)(𝑪𝒔,𝒔𝒖𝒓𝒇)
𝜶𝒄 (2-2)                                                                                          

Where, j is electrode current density (𝐴/𝑚2), 𝑗𝑜 exchange current density (𝐴/𝑚2), E 

electrode potential (V), 𝐸𝑒𝑞 equilibrium potential (V), K absolute temperature (K), z 

number of electrons involved in the reaction, F Faraday’s constant, R universal gas 

constant, 𝛼 charge transfer coefficient (anode and cathode),  

𝐶𝑒 concentration in electrolyte, 𝐶𝑠 concentration in solid phase, and ƞ activation 

overpotential. 

ƞ = 𝝓𝒔 − 𝝓𝒔 − 𝑼𝒐𝒄 (2-3)                                                                                  

The exchange current density, 𝑗0 depends on the lithium ion concentration in the electrode and 

electrolyte. This value can be approximated as a constant if the battery is excited with low 

amplitude current during electrochemical impedance spectroscope analysis [27].  

The open circuit potential of the anode and cathode can be derived from Nernst equation as shown 

in below. It can be also approximated by linear functions or higher order polynomials to fit the 

property. 

𝑬𝒄𝒆𝒍𝒍 = 𝑬𝒄𝒆𝒍𝒍
𝒐 −

𝑹𝑻

𝒛𝑭
𝒍𝒏𝑸𝒓 (2-4)                                                                            

Where, 𝐸𝑐𝑒𝑙𝑙  is the cell potential, 𝐸𝑐𝑒𝑙𝑙
𝑜  standard cell potential, 𝑄𝑟 is reaction quotient. 

Species conservation of lithium ion and charge both in electrolyte and solid phase including the 

initial and boundary conditions are also governing relations in electrochemical based modelling. 

The schematic of one-dimensional (pseudo 2 dimensional-P2D) model is shown in Figure 2-9 

which comprises porous negative and positive electrode, separator and electrolyte. While the 

battery is discharging, lithium ions diffuse to the surface of the electrode to make electrochemical 

reaction and join the electrolyte, then the ions travel to the other side of the solid electrode via 
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diffusion and migration by crossing the separator and intercalate themselves. P2D is successful 

electrochemical model to describe the conservation of mass and charge both in solid and electrolyte 

phase which is based on fixed particle radius [28]. Concentration of lithium ions also affected by 

the diffusion inside the active materials (anode and cathode). This diffusion behavior in electrodes 

is explained by Fick’s second law which is stated in equation 2-6 and 2-7 for mass (lithium ions) 

conservation in the solid and electrolyte phase. 

𝝏𝑪𝒔(𝒙,𝒓,𝒕)

𝝏𝒕
=

𝑫𝒔

𝒓𝟐

𝝏

𝝏𝒓
(𝒓𝟐 𝝏𝑪𝒔(𝒙,𝒓,𝒕)

𝝏𝒓
) (2-5)                                                                    

Boundary conditions: 

𝝏𝑪𝒔

𝝏𝒕
|𝒓=𝟎 = 𝟎, 𝑫𝒔

𝝏𝑪𝒔

𝝏𝒕
|𝒓=𝑹𝒔 =

−𝒋

𝒂𝑭
(2-6)                                                              

Where, 𝐶𝑠 is the concentration in solid phase, 𝐷𝑠 diffusion coefficient, 𝑥  is the dimension 

of the cell as shown in figure 1, 𝑟 radius of the spherical particle, 𝑗  rate of electrochemical 

reaction in the solid phase, and 𝑡 is time.  

Conservation of lithium ion in the electrolyte phase is also stated as: 

Negative and positive electrode; 

𝜺𝒆
𝝏𝑪𝒆

𝝏𝒕
=

𝝏

𝝏𝒕
(𝑫𝒆

𝒆𝒇𝒇 𝝏𝑪𝒆

𝝏𝒙
) +

𝟏−𝒕+
𝟎

𝑭
𝒋 (2-7)                                                              

Separator; 

𝜺𝒆
𝝏𝑪𝒆

𝝏𝒕
=

𝝏

𝝏𝒕
(𝑫𝒆

𝒆𝒇𝒇 𝝏𝑪𝒆

𝝏𝒙
) (2-8)                                                                   

Boundary conditions: 

 Current collector interface:  

 

𝝏𝑪𝒆

𝝏𝒕
|𝒙=𝟎 = 𝟎,

𝝏𝑪𝒆

𝝏𝒕
|𝒙=𝑳𝒄𝒄

= 𝟎 (2-9)

Negative electrode separator interface: 
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𝑪𝒆|𝒙=𝑳𝒏
+ = 𝑪𝒆|𝒙=𝑳𝒏

− (2-10)                                             

𝑫𝒆
𝒆𝒇𝒇 𝝏𝑪𝒆

𝝏𝒕
|𝑳𝒏

+ = 𝑫𝒆
𝒆𝒇𝒇 𝝏𝑪𝒆

𝝏𝒕
|𝑳𝒏

− (2-11)                                                                    

Positive electrode separator interface:   

𝑪𝒆|𝒙=𝑳𝒑
+ = 𝑪𝒆|𝒙=𝑳𝒑

− (2-12)                                                                                 

𝑫𝒆
𝒆𝒇𝒇 𝝏𝑪𝒆

𝝏𝒕
|𝑳𝒑

+ = 𝑫𝒆
𝒆𝒇𝒇 𝝏𝑪𝒆

𝝏𝒕
|𝑳𝒑

− (2-13)       

Charge conservation in the solid phase (electrodes) is described using ohm’s law: 

𝝏

𝝏𝒙
(𝝈𝒆𝒇𝒇 𝝏

𝝏𝒙
𝝓𝒔(𝒙, 𝒕)) − 𝒋(𝒙, 𝒕) (2-14)                                              

With boundary conditions: 

−𝝈𝒆𝒇𝒇 𝝏𝝓𝒔

𝝏𝒙
|𝒙=𝟎 = +𝝈𝒆𝒇𝒇 𝝏𝝓𝒔

𝝏𝒙
|𝒙=𝑳𝒄𝒄

=
𝑰

𝑨
(2-15)                                            

𝝏𝝓𝒔

𝝏𝒙
|𝒙=𝑳𝒏

=
𝝏𝝓𝒔

𝝏𝒙
|𝒙=𝑳𝒏+𝑳𝒔

(2-16)                                                                        

Where, 𝜙𝑠 is the potential of electrode, 𝜎𝑒𝑓𝑓 is effective electrode conductivity. 

Parameters in the above equations are either experimentally determined or estimated. Finding 

analytical solutions for the above coupled partial differential equations is complicated because of 

electrochemical parameter variation in each domain and necessity of spatial discretization to 

convert PDE to Ordinary Differential Equations (ODE) [29].  Using numerical methods, the PDEs 

can be reduced in to ODEs and then to algebraic differential equations for solving the above system 

equations [25]. The detail electrochemical model could have more than six state variables [30] [31], 

including the solid electrode potential, electrolyte potential, anode and cathode lithium ion 

concentration, lithium ion concentration in the electrolyte, ionic current in the electrolyte and 

Faradaic current density between active material in the electrode and electrolyte.  
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Figure 2-9 Schematic of the lithium ion battery electrochemical model and discharge 

reaction equation for LFP [6]. 

However, models with high computational efficiency while maintaining acceptable precision is 

realistic. In literature, several works are proposed to reduce electrochemical models. Those 

researches are mainly focused on either on reducing computational complexity of solving lithium 

ion concentration in solid electrode particle or reducing the complexity of the electrochemical 

model. Single Particle Model (SPM) which has one partial differential equation and an algebraic 

equation is most practical [31]. SPM assumes the current to the battery is small and the electrolyte 

has large conductivity. In [30] simpler electrochemical model based on SPM with two differential 

algebraic equations and one algebraic equation is also proposed, in which the lithium ion 

concentration in the electrodes is represented by a polynomial function with respect to the particle 

radius. A transfer function type of simplified electrochemical model is also proposed in [29] which 

is based on modified boundary conditions and Pade approximation technique of the electrolyte 

diffusion equation. Some researchers like [30] ignored the electrolyte diffusion dynamics to 

simplify the mathematical computation, which limits applicability of the model in high current 

condition. However, others consider the multiphase effect of the lithium ion batteries. In [32] 

modified boundary condition for electrolyte diffusion equation is proposed to decouple the PDEs.  
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 Beside developing analytical or numerical solution for electrochemical models to find voltage 

current relation of the battery cell, Electrochemistry based impedance models are also proposed in 

which the equivalent impedance for each thermodynamic phenomenon is calculated from the 

electrochemistry of the cell. The models consider the electrochemical impedance due charge 

transfer reaction, diffusion in the electrodes, effect of ion concentration, double layer effect and 

insulation film growth. The electrical parameter values are calculated or determined from the 

physical parameters of the cell like diffusion coefficient, concentration in electrolyte and solid 

phase. Those types of model are less complex than numerically solved electrochemical models, and 

still retains some physical parameters of the cell. 

 Equivalent Electric Circuit (EEC) Models 

Models based on equivalent electrical circuits are widely used in battery management and system 

level control algorithms due to their less computational effort. EEC is an empirical based model 

which contains active and passive electrical components to evaluate the battery performance. 

Varies equivalent circuit models are proposed in the literature. The choice of the equivalent circuit 

mainly depends on the battery chemistry and the level of detail characteristics considered. It 

depends on the trade-off needed between model accuracy and parameter identification simplicity. 

Figure 2-10 shows a typical representation of a battery cell impedance property with equivalent 

electric impedance elements. Charge transfer reaction, diffusion of lithium in the active electrode 

material and electrolyte, double layer effect and contact resistance between electrically conducting 

material are the main properties to be accounted for representing the battery characteristics in to 

electrical circuit equivalent [16]. This typical model assumes Solid Electrolyte Interface (SEI) film 

growth is only in the anode side and thin film in cathode side. Due to the rough electrode surface, 

the porous electrodes have a double layer effect with capacitance dispersion which better described 

by constant phase elements (CPE), a capacitance property with two degrees of freedom, instead of 

ideal capacitor. The diffusion dynamics of active materials in solid electrodes could be represented 

by Warburg impedance (𝑊𝑎).  
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Figure 2-10 Typical equivalent circuit representation of cell components [8]. 

Representing all those impedance effects in EEM increase system and parameter estimation 

complexity, and models with less number of impedance elements are implemented in most 

applications by compromising system accuracy. Figure 2-11 shows simplified and compact 

representation which is known as Randel’s model. To make the simulation of the model interactable 

Warburg impedance in the model can be represented by numbers of parallel RC branches. For exact 

equivalence of the transformation infinite number of RC networks are needed, however often finite 

numbers are used considering only certain frequency ranges. Effect of diffusion layer capacitance 

is small and often neglected in the model. Hence, the final model will have series electrolyte and 

charge transfer resistance with numbers of RC networks. Beside Randel’s model, various 

topologies of those impedances interconnection in equivalent circuit form are also developed.  

 

  

Figure 2-11 Randel’s model 
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The objective of EEC modelling approach is trying to emulate the dynamic behavior of operating 

battery cell; hence any combination of impedances could be acceptable as far as it gives less 

computational and parameter estimation effort with acceptable accuracy for the dynamic 

performance in any operating conditions. The simplest model contains a voltage source and single 

resistor which represents the irreversible loss in the cell. First and second order Thevenin models, 

as shown in Figure 2-12, are widely used in BMS and other performance modelling applications.  

The model contains three main parts to have a better footprint of the battery cell; dependent voltage 

source to represent the open circuit voltage as a function of SOC, Ohomic resistance in series for 

electrolyte resistance and electrode conductivity, and one or more branch of parallel resistor and 

capacitor to approximate charge transfer and diffusion processes in the cell. The number of parallel 

RC branches can be determined from the empirical data of the battery cell using a curve fitting or 

other techniques. Two RC branches can give a good fit for most cell performances, however up to 

five RC branches could be used to capture the aging effect of the cell precisely [33] [34]. The SOC 

is calculated as voltage value across a capacitor in parallel with current dependent current source. 

The capacitance value is the maximum charge capacity of the battery cell in Ampere-second. A 

parallel resistance with the capacitor can also be considered to account self-discharge of the cell.  

Partnership for a New Generation of Vehicles (PNGV), a research cooperation in U.S. was also 

proposed another EEC model shown in Figure 2-13 [35], which is a Thevenin type model with a 

series capacitance to capture the variation of OCV with SOC. The relation between OCV with SOC 

can be also represented by lookup table without adding capacitance in series.  

           

Figure 2-12 Two RC branch Thevenin model. 
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Figure 2-13 PNGV equivalent circuit model 

2.3 Thermal Model of Lithium ion Battery 

Temperature and voltage ranges are the key limiting factors of lithium ion battery. There is a safe 

temperature limit for each type of batteries on charge and discharge. Excluding some specialties, 

lithium ion batteries can be charged from 5 to 45°C and the permissible discharge temperature is 

from -20°C to 60°C [36]. At higher temperature charge and discharge performance is good but it 

affects the battery lifetime. The capacity and performance vary with the operating temperature and 

internal thermal conditions of the cell. Capacity of lithium ion batteries can decrease up to 95% 

when the battery is operating below -10°C compared with 20°C [37]. The state of health of the 

battery is also adversely affected by the battery temperature. To maximize the lifetime of the 

battery, temperature difference inside the cell should be less than 5°C [38]. Degradation effect of 

temperature on the battery cell parts are studied by different researchers. For instance, [39] 

discussed the effect of elevated temperature on the negative electrode (anode), thermal aging of the 

electrolyte and electrolyte-electrode interface is investigated by [40] and [41] [42] respectively. For 

a better battery thermal management regarding safety and lifetime, modeling thermal behavior of 

a battery at cell and pack level is essential.  

Since operating temperature and thermal distribution inside have been found as a factor on the 

battery performance, different thermal modelling approaches are proposed in literature. Energy 

balance equations, heat generation equations and boundary condition for different heat transfer 

possibilities (radiation, conduction, convection) are the basic backgrounds to drive computational 

relation for thermal behavior of the battery. In [43] some of the thermal modelling methods are 

reviewed and compared in terms of computational intensity and accuracy. Computational and 

analytical thermal models from two-dimensional transient finite element analysis to lumped 

capacitance thermal models are based on the energy balance differential equations. Internal heat 



 

26 

 

generation is part of the energy balance equation which comes mainly from overpotential and 

entropy change of the system. Heat generation from overpotential depends on the operating 

temperature and current however heat generation due to change in entropy depends on state of 

charge of the battery. Lumped capacitance thermal modelling (one dimensional approach) 

considers the transient thermal distribution of the system is spatially the same and only depends on 

time which assumes transient conduction is much faster than heat transfer across the boundary of 

the system. For good approximation of the model the ratio of heat transfer resistance inside and at 

the surface which is known as Biot number should be much less than 1(i.e. 𝐵𝑖 =
ℎ𝐿𝑐

𝑘
 <<1 where Bi 

is Biot number, h is convection heat transfer coefficient-W/𝑚𝐾, Lc length of the system across the 

heat transfer-m, k is conduction heat transfer coefficient- W/𝑚2𝐾). However, in two-dimensional 

finite element analysis based model the spatial thermal distribution of the system is considered 

based on the material involved inside it which will be governed by differential equations and the 

problem will be solved using finite number of elements by minimizing the error. Detailed analysis 

of both methods and other approaches are discussed in depth in the above reference. 

2.4 Data Measurement Techniques for EEC Models Parameter Estimation 

Parameters of EEC model are estimated either using frequency domain or time domain data points. 

To have frequency domain data of the battery cell, Electrochemical Impedance Spectroscopy (EIS) 

is the popular impedance measuring device for electrochemical systems. The internal impedance 

of the cell is measured for a frequency range of mHz to kHz to capture slow and fast system 

dynamics. Time domain analysis is done from recorded terminal voltage using 

charging/discharging current pulses with proper relaxation. If simple battery model is appropriate 

for the application, electrical parameters of the EEC model can be extracted from manufacture 

datasheet values and graphs, like in [44], though the model will not be accurate enough regarding 

its transient behavior. The accuracy of EEC model highly depends on how the battery cell is 

exercised during experimental data collection. Batteries degrade because of usage, life cycle stress 

and other stability conditions. Destructive and nondestructive measurements can be done to observe 

the degradation characteristics of the battery. Electrical characterization tests such as EIS, 

charge/discharge cycling and OCV are nondestructive measurements. Furthermore, the internal 

structure of the battery can be explored through ultrasonic transduction, neutron imaging, and X-

ray microscopy. Destructive tests need stripping the cell and directly observing changes in the 

electrode morphology [45]. 
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 Frequency Domain Measurement – EIS Characterization Technique 

EIS has been used to characterize the electrochemical dynamics of batteries and other 

electrochemistry based systems for measuring the electrochemical impedance at different 

frequencies. The electrochemical impedance is usually measured by applying AC voltage (DC 

voltage is also possible) to the system and measuring the current or the vice versa. For non-linear 

system like lithium battery the applied AC signal should be small to treat the response as a linear 

system. As shown in equations 2-18 and 2-19, voltage E(t) can be measured for battery cell current 

I(t). From Ohms law, the ratio of the voltage to the current is a complex relation with amplitude 

and phase which represents the impedance effect of the cell. Equation 2-20 and Figure 2-14 explains 

this voltage-current relation.  

𝑬(𝒕) = 𝑬𝟎𝐬𝐢𝐧(𝝎𝒕) (2-17)                                                           

𝑰(𝒕) = 𝑰𝟎𝐬𝐢 𝐧(𝝎𝒕 − 𝝓) (2-18)                                                           

Where, 𝜔 = 2𝜋𝑓, 𝑓 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑎𝑛𝑑 𝑐𝑢𝑟𝑟𝑒𝑛𝑡  𝑎𝑝𝑝𝑙𝑖𝑒𝑑. 

 

Figure 2-14 AC voltage and current for EIS [46] 

𝒁(𝒕) =
𝑬(𝒕)

𝑰(𝒕)
=

𝑬𝟎𝐬𝐢 𝐧(𝝎𝒕)

𝑰𝟎𝐬𝐢 𝐧(𝝎𝒕−𝝓)
= 𝒁𝟎

𝐬𝐢 𝐧(𝝎𝒕)

𝐬𝐢 𝐧(𝝎𝒕−𝝓)
= 𝒁𝟎(𝒄𝒐𝒔𝝓 + 𝒋𝒔𝒊𝒏𝝓) (2-19)        

EIS impedance data may be represented either in Nyquist or Bode plot. Having the EIS response 

of the electrochemical system, the data is compared with the equivalent circuit response for 

calculation of passive electric circuit elements. In Nyquist plot, real and imaginary part of the 

impedance is represented by a point at a single frequency which is not shown explicitly. However, 

in bode plot the magnitude and phase of the impedance response is represented in different plot, 
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and the frequency is explicit. Electrical behavior of simple electrochemistry shown in Figure 2-15 

as Randel’s electric circuit can be approximated using a double layer capacitance, electron transfer 

resistance and uncompensated electrolyte resistance. The horizontal distance of the semicircle from 

the imaginary axis represents the series resistance. If the impedance characteristic is as shown in 

Figure 2-17, the data can be fitted by Randel’s equivalent model with Warburg impedance. At low 

frequency, the impedance has a constant phase which can be modelled by Warburg impedance, 

𝐴𝑤

(𝑗𝜔)
1

2⁄
 where 𝐴𝑤 is the Warburg coefficient and 𝜔 working frequency. At the middle frequency, 

the Nyquist plot is semi-circular approximated by parallel resister capacitor network. When the 

frequency gets higher and higher the imaginary part of the impedance becomes negligible which 

has only resistive property. At higher frequencies, the Nyquist plot might have negative imaginary 

part also which shows the inductive property of the cell. Adding resistor-inductor parallel network 

or other possible combination of resistors and inductors in the equivalent circuit will handle this 

characteristic. Detailed explanation of EIS technique for modeling different electrochemical system 

is found in [46]. The electrochemical impedance should be measured at different operating 

conditions i.e. Temperature, SoC and Capacity rate to get the impedance footprint of the battery 

cell at those conditions. Curve fitting technique is applied to estimate electrical parameters of each 

branches of the Nyquist plots. 

                          

Figure 2-15 Simplified Electrochemistry and Equivalent Randle’s Circuit [47] 
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Figure 2-16 Bode and Nyquist plot from EIS [47] 

 

Figure 2-17 Typical Nyquist plot and electrical circuit equivalent of each subpart 

 Time Domain Measurement - Measuring Terminal Voltage from 

charge/discharge Current 

Data of dynamics for the battery cell can be also extracted from the pulsed and relaxed terminal 

voltage response. A pulse charge/discharge current is applied to the cell and terminal voltage is 

measured. The battery cell can be exercised using different charge-discharge strategies.  Pulse 

charge-discharge, HPPC, DST are common methods [48]. Figure 2-19 shows a typical pulse 

discharge pulse and relaxation voltage response. If response is zoomed as in Figure 2-20, the system 

impedance can be approximated by a resister in series with RC elements. series equivalent 

resistance of the cell is estimated from the voltage step Δ𝑉1 using Ohm’s law: 𝑅0 =  
Δ𝑉1

𝐼
 where I, 

is the magnitude of discharge current. The transient part of the voltage response Δ𝑉2 can be 

2.20

2.40

2.60

2.80

3.00

3.20

3.40

3.60

-3.00 -2.00 -1.00 0.00 1.00 2.00 3.00 4.00 5.00 6.00

Log Freq (Hz)

L
o
g
 M

o
d
u
lu

s
  

(O
h
m

)

-70.00

-60.00

-50.00

-40.00

-30.00

-20.00

-10.00

0.00

10.00

P
h
a
s
e
 (

D
e
g
re

e
)

-2.00E+02

3.00E+02

8.00E+02

1.30E+03

1.80E+03

2.30E+03

0.00E+00 5.00E+02 1.00E+03 1.50E+03 2.00E+03 2.50E+03 3.00E+03 3.50E+03

Real (Ohm)

-I
m

a
g
 (

O
h
m

)

ω = 
1

𝑅𝑝𝐶𝑑𝑙
 

𝑅𝑠 𝑅𝑠 + 𝑅𝑐𝑡 



 

30 

 

approximated by one or more numbers of parallel RC branches. Thermal effect of the system can 

be captured by performing the experimental test at different operating temperatures. During 

modelling, the electric circuit parameters should be estimated and a relation should be developed. 

Lookup table and exponential nonlinear equations are used, however the first one is more 

convenient. 

 

Figure 2-18 (a) Typical HPPC test profile for full SoC range (b) HPPC test profile at 

specific SOC 

 

Figure 2-19 Pulse discharge test 
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Figure 2-20 Terminal voltage response of a battery cell for pulse discharge current and 

relaxation 

2.5 SOC Estimation Techniques 

SOC is a measure of the remaining capacity of the battery cell with respect to a reference capacity, 

usually the nominal capacity of the cell. A nominal capacity is a value given by the manufacturer 

which represents the maximum amount of charge can be stored in the cell. However, this definition 

is not always true since the capacity of the cell varies at different operating temperature and cell 

age. Open circuit voltage and cell impedance parameters have nonlinear relation with SOC. 

Estimating SOC is a challenge in battery world since there is no direct way to measure it. It is also 

a very important parameter for battery control strategy in BMS. Determining SOC of the cell 

through the operating range is also vital for battery modelling accuracy. Various techniques are 

proposed to estimate SOC from the simplest and most famous one, Coulomb counting to Adaptive 

methods based on Artificial intelligent techniques. 

 Coulomb Counting (Book keeping) Method 

The remaining capacity can be calculated by accumulating the charge transferred in and out of the 

battery during charge and discharge. This calculation is needs knowing the initial capacity of the 

cell. SOC is expressed in percentage form as shown in equation 2-21 below by integrating the 

charge/discharge current through the operating range and accumulating the value in a memory, 

where 𝐶𝑛 is nominal capacity and ƞ is the columbic efficiency. This technique highly relied on the 
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current measurement accuracy and initial SOC estimation. Because of the integrator, the error 

accumulates, and the estimated value may drift from the real SOC if the measurement noise is 

significant. However, due to the simplicity it is implemented in most BMS, battery modelling and 

other battery performance analysis. 

𝑺𝒐𝑪(𝒕) = 𝑺𝒐𝑪𝟎 −
ƞ

𝑪𝒏
∫ 𝒊(𝒕)𝒅𝒕

𝒕

𝒕𝟎
(2-20)                              

 Open Circuit Voltage (OCV) Based  

State of charge can be also estimated from the voltage measurement, which is nonlinear relation 

between open circuit voltage and SOC as shown in Figure 2-21. The voltage measurement is 

approximated by nonlinear function or a lookup table and implemented for SOC prediction. 

However, the estimation may be inaccurate because of the battery voltage varies with temperature 

and operating rate. Measuring the open circuit voltage is not also an easy task which needs long 

relaxation time after discharge or charge for corresponding SOC calculation point. The voltage 

characteristics has also hysteresis effect during charge transfer which influences the estimation 

accuracy. Some lithium battery technologies have also flat SOC-voltage relation which makes 

using this technique inefficient for those types of batteries. 

 

Figure 2-21 Charge-discharge SoC voltage relation 

 Adaptive Methods (closed loop):  

Several adaptive techniques such as Kalman filter, Fuzzy logic, Neural network or other recursive 

methods are proposed for SoC estimation. These techniques have better accuracies due to their 

closed loop strategy. 
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Kalman Filters (KF): KF is an algorithm extensively used in system control and performance 

analysis for estimating unmeasured states of the system. It is robust in handling measurement 

uncertainties and system disturbances. The algorithm has state predicting and correcting stages. It 

assumes a linear Gaussian state space relation of the system. It is not efficient for nonlinear state 

space model and non-gaussian disturbance distribution. However, it has different variants to 

support nonlinear systems: Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF). In 

EKF the system, state space model is approximated by Gaussian random variable and the nonlinear 

system model is approximated by first order linear model using Taylor series propagation. The 

approximation may lead to large error or divergence of the actual and estimated state variables if 

the noise distribution is far from Gaussian or due to the first order approximation. UKF algorithm 

improves the efficiency by using deterministic sampling approach instead of first order 

approximation of the nonlinear system. The system distribution is represented by sample points 

which completely captures the system mean and covariance.  

Kalman filter based algorithms require state space representation of the cell model as state and 

output equations in discrete form. 

𝒙𝒌+𝟏 = 𝒇(𝒙𝒌, 𝒖𝒌, 𝒘𝒌) (2-21)                                                              

𝒚𝒌 = 𝒈(𝒙𝒌, 𝒖𝒌, 𝒗𝒌) (2-22)                                                                 

Where x is state variables and y output variables, f is transition matrix and g is measurement matrix, 

w and v are system and measurement noises respectively. Though specific state space 

representation for SOC estimation depends on the type of battery cell model chosen, basically it 

includes coulomb counting based SOC equation with state disturbance as state equation and cell 

terminal voltage/OCV relation with measurement noise as output equation to formulate the state 

space model. For instance, for EEC model with series resistor and 2-RC networks the state space 

model can be formulated as: 

𝑺𝑶𝑪𝒌+𝟏 = 𝑺𝑶𝑪𝒌 −
ƞ𝒊𝒌𝜟𝒕

𝑪
+ 𝒘𝒌 (2-23)                                                      

𝑽𝒌 = 𝑶𝑪𝑽(𝑺𝑶𝑪𝒌) + 𝒗𝑹𝟎 + 𝒗𝑹𝑪𝟏 + 𝒗𝑹𝑪𝟐 + 𝒗𝒌 (2-24)                            
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The output equation 𝑉𝑘 requires the relation between OCV and SOC which is a challenge in SOC 

estimation process. Various approaches from linear to more complex relations are proposed in 

literature, the one shown in equation 2-25 is known as Nernst Model [49]. 

𝑶𝑪𝑽(𝑺𝑶𝑪𝒌) = 𝑲𝟎 −
𝑲𝟏

𝑺𝑶𝑪𝒌
− 𝑲𝟐𝑺𝑶𝑪𝒌 + 𝑲𝟑 𝐥𝐧(𝑺𝑶𝑪𝒌) + 𝑲𝟒𝐥 𝐧(𝟏 − 𝑺𝑶𝑪𝒌) (2-25)               

Where; 

𝒙𝒌 = 𝑺𝑶𝑪𝒌, 𝒚𝒌 = 𝑽𝒌, 𝒖𝒌 = 𝒊𝒌 (2-26) 

In EKF algorithm, the state space equation should be linearized and approximated by first order 

equation as a general form. 

𝒙𝒌+𝟏 = 𝑨𝒙𝒌 + 𝑩𝒖𝒌 + 𝑸𝒘𝒌 (2-27)                                                       

𝒚𝒌 = 𝑯𝒙𝒌 + 𝑹𝒗𝒌 (2-28)                                                             

Where A is state matrix, B input matrix, H output matrix, Q system error covariance matrix, R 

measurement error covariance matrix, P estimation error covariance, and K is Kalman gain. The 

implementation of the algorithm has two basic steps, prediction and correction stages. 

Prediction Step (Time Update): 

�̂�𝒌
− = 𝑨�̂�𝒌−𝟏

− + 𝑩𝒖𝒌−𝟏 (2-29)                                                             

𝑷𝒌
− = 𝑨𝑷𝒌−𝟏𝑨𝑻 + 𝑸 (2-30)                                                                    

Kalman Gain Calculation: 

𝑲𝒌 = 𝑷𝒌
−𝑯𝑻(𝑯𝑷𝒌

−𝑯𝑻 + 𝑹)
−𝟏

(2-31)                                                              

Correction Step (Measurement Update): 

�̂�𝒌 = �̂�𝒌
− + 𝑲𝒌(𝒚𝒌 − 𝑯�̂�𝒌

−) (2-32)                                                 

𝑷𝒌 = (𝑰 − 𝑲𝒌𝑯)𝑷𝒌
− (2-33)                                                       
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The algorithm needs also the initial estimates of the state (𝑥0
−) i.e. 𝑆𝑂𝐶0 and the state error 

covariance matrix 𝑃0
−. Detailed information of using Kalman filters for SOC estimation is found in 

[1] and [5]. 

Artificial Neural Network:  it is an artificial intelligent technique with a mathematical model 

consists of interconnected artificial neurons to estimate the dynamics of a system based on some 

historical data that is taken from experiments. ANN has hidden, input and output layers. The 

number of hidden layer may be any number; however, two hidden layers are usually enough to 

train most of the dynamic systems. One hidden layer is also good enough to capture the system 

dynamics. Each layer contains nodes. The nodes in the hidden layers have activation functions 

which transform the input signal into output signal. The layers are connected by weights which will 

be determined during the training of the neural network based on function minimization. Those 

weight values contain information about the dynamics of the trained system. Two configurations 

of ANN are available: Feedforward or Feedback configuration. In feedforward signals travel only 

in forward direction however in feedback ANN signals also travel backward from output to input 

neurons. In literature ANN is proposed to estimate SOC for battery management system. Data for 

the training can be collected from the battery charge discharge profile under different working 

conditions including temperature and capacity rate. Though it is highly data and training dependent, 

some researchers claim as it has better dynamic performance and stability for SOC estimation. In 

[50], ANN is compared with Kalman filter and the author showed EKF performs good if the battery 

and noise models are accurate and ANN perform good if the training is accurate.  

 

Figure 2-22 ANN with one hidden layer and an input output layer [50] 
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Chapter  3  

Methodology 

This chapter contains the methods applied to model lithium ion battery cell based on experimental 

data measured in the lab. It consists the proposed model, experimental setups and test profiles. 

Estimated parameters and simulation model are also presented. 

3.1 Performance Model Structure 

 

Figure 3-1 Typical battery cell model structure 

Performance model of a lithium ion battery cell includes electrical, thermal and aging behaviors. 

Figure 3-1 explains a typical interaction of those three models to simulate those behaviors. The 

electrical model simulates voltage-current characteristics of the cell as a function of SOC, internal 

temperature, current rate and its state of health (SOH). The thermal model predicts the cell internal 

temperature considering current rate and working temperature. SOH of the cell is calculated from 

the aging model which is a function of depth of discharge (DOD) profile and cell temperature. The 
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main challenge in lithium battery cell modelling is the physical parameters in it are coupled and 

vary nonlinearly with the operating temperature, current rate and state of charge of the cell. In this 

work, the effect of working temperature (T), current rating (I) and variations with SOC is modelled 

empirically. Experimental tests are done to capture those effects from the battery cell terminal 

voltage-current relation. 

3.2 Proposed Model 

Temperature dependent EEC based model of a lithium ion battery cell is proposed as shown in 

Figure 3-2. The electrochemical impedance characteristics of the cell is approximated by electrical 

circuit elements. OCV is modelled with a variable voltage source to handle the variation SOC and 

temperature. Instantaneous voltage-drop or rise of the cell during discharge and charge is modelled 

with a resistor connected in series with OCV. The resister represents the electrolyte and current 

collector resistive effect in the cell. Time dependent voltage change due to charge transfer and mass 

transport inside the cell is captured with parallel RC circuits. A single or more RC circuit network 

can capture dynamic behavior of the cell. Curve fitting techniques are applied to determine the 

number of parallel RC circuits for capturing the system dynamics with high fidelity and low 

parameter estimation complexity based on preliminary experimental data. Table 3-1 shows curve 

fit comparison results with different number of RC elements on MATLAB curve fitting tool. Single 

RC element is not good enough to handle the fast dynamics and shows high residual error. More 

than one RC elements have good fitting. Fitting accuracy increases with number of RC impedance 

elements however number of parameters to be estimated increase. Sum Square Error (SSE), Root 

Mean Square Error (RMSE) and number of parameters (coefficients) are considered for 

comparison. Three RC parallel elements are considered to model electrothermal behavior of the 

cell with a trade of between fitting accuracy and parameter estimation. Considering the proposed 

model, on discharge cell terminal voltage 𝑉𝑡 and current 𝐼𝑑𝑖𝑠  are related as shown in equation 3.4, 

where 𝑉𝑜𝑐 is OCV, 𝑉0 , 𝑉1, 𝑉2  and 𝑉3 voltage drops on impedance elements. 

�̇�𝟏 =
𝒊

𝑪𝟏
−

𝒗𝟏

𝑹𝟏𝑪𝟏
(3-1)                                                                                           

�̇�𝟐 =
𝒊

𝑪𝟐
−

𝒗𝟐

𝑹𝟐𝑪𝟐
(3-2)                                                                                   

�̇�𝟑 =
𝒊

𝑪𝟑
−

𝒗𝟏

𝑹𝟑𝑪𝟑
(3-3)                                                                                        
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𝑽𝒕 = 𝑽𝒐𝒄 − 𝒗𝟎 − 𝒗𝟏 − 𝒗𝟐 − 𝒗𝟑 (3-4)                                                              

𝑽𝒕 = 𝑽𝒐𝒄 − 𝑰𝒅𝒊𝒔𝑹𝟎 − 𝑰𝒅𝒊𝒔𝑹𝟏 (𝟏 − 𝒆
−𝒕

𝑹𝟏𝑪𝟏
⁄ ) − 𝑰𝒅𝒊𝒔𝑹𝟐 (𝟏 − 𝒆

−𝒕
𝑹𝟐𝑪𝟐

⁄ ) − 𝑰𝒅𝒊𝒔𝑹𝟑 (𝟏 − 𝒆
−𝒕

𝑹𝟑𝑪𝟑
⁄ ) (3-5)   

        

  Figure 3-2 Proposed EEC battery cell model 

 

Figure 3-3 Experimental data and 1RC, 2RC, 3RC and 4RC model curve fit 
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Table 3-1 Curve fit results comparison 

Model RC 

Networks 

SSE R-Square RMSE Number of  

Coefficients 

1 RC 0.0106 0.7034 0.0017 2 

2 RC 5.6052e-4 0.9843 3.9464e-4 4 

3 RC 1.2884e-4 0.9964 1.8924e-4 6 

4 RC 9.2893e-5 0.9974 1.6075e-4 8 

SOC estimation is the backbone of the model, Coulomb counting technique is implemented as 

shown in Figure 3-4 using variable capacitor based electrical circuit. The capacitance of the 

capacitor represents the maximum Amp-second (maximum cell capacity) which is a function of 

temperature. The self-discharge and hysteresis effect of the cell is ignored in the model to minimize 

model complexity and their effect is little. 

 

Figure 3-4 SOC estimation circuit 

3.3 Experiment Setups 

Battery test experiment is done using BaSyTec battery test platform in Cegasa Portable Energy 

battery test laboratory. Temperature chamber is used to control the ambient temperature during the 

test. The setup is as shown in Figure 2-1. 
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Figure 3-5 BaSyTec Battery test system 

The experiment is time domain based which captures the transient voltage characteristics of the 

cell at different temperature (T), current (I) and SOC. The battery test device has enough technical 

resolution and precision to capture the cell dynamics which is detailed in Table 3-2 below.  

Table 3-2 BaSyTec battery test system specifications [51] 

 

The experiment includes static capacity and dynamic tests for impedance parameter and SOC 

estimations. Both tests are done using LFP lithium ion battery cell. The cell major technical 

specifications are attached in the appendix section of this paper. 

Type  25A 

Resolution  0.1mV/1mA 

Precision 1mv/50mA upto 25A 

100mA per each 50A 

Time resolution 1μs 

Rise time 2ms 

Minimum pulse length 10ms 
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 Static Capacity Test 

The purpose of the test is to calculate the maximum capacity of the cell at the required working 

conditions. The test is performed in the following procedure: 

1. Use a new battery cell and fully charge it with Constant Current Constant Voltage (CCCV) 

method. 

2. Discharge the cell with 0.5C current rate (manufacturer recommended value) 

3. Repeat charge-discharge cycle until the capacity stabilizes with less than 1% change after 

three cycles, if the cell is new. The cell capacity increased slightly for the first few cycles 

because of the solid electrolyte interface (SEI) effect in the new cell. 

4. Calculate the maximum capacity. 

Maximum capacity of the cell varies with working ambient temperature. Capacity test is performed 

at different temperature which considered as break points in the modelling. 

 Dynamic Test 

In the dynamic test, the transient voltage characteristics of the cell is measured at various working 

conditions. During the test, up to 1C on charge and 3C on discharge maximum current rates are 

considered. Those values are given as the maximum current limitations on charge-discharge of the 

cell by the manufacturer of the cell under experiment. 

 From fully charge condition of the cell, current profile as shown in Figure 3-6 is applied. It is a 

customized HPPC profile. Terminal voltage of the cell is recorded with 1-second voltage resolution. 

0.2C, 0.5C, 1C, 2C, 3C discharge and 0.2C, 0.4C, 0.6C, 0.8C, 1C charge current pulses are 

considered. The experiment is repeated at all temperature break points (i.e. 0°C,10°C, 20°C, 30°C, 

40°C) and SOC break points (i.e. 100%, 98%, 94%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%, 

10%, 6%, 4%, 2%, 0%) considered. The customized HPPC current profile is summarized as: 

1. Discharge the battery cell with 0.2C for 20 seconds and pause it for 1hour (relaxation 

time for the electrochemical reaction). 

2. Charge it with 0.2C for 20 seconds and pause 1hour. 

3. Discharge it with 0.5C for 20 seconds and pause 1hour. 

4. Charge it with 0.4C for 25 second and pause 1hour. 

5. Discharge it with 1C for 20 seconds and pause 1hour. 
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6. Charge it with 0.6C for 30 second with and pause 1hour. 

7. Discharge it with 2C for 20 seconds and pause 1hour. 

8. Charge it with 0.8C for 50 second and pause 1hour. 

9. Discharge it with 3C for 20 seconds and pause 1hour. 

10. Charge it with 1C for 60 second and pause 1hour. 

11. Then discharge the cell with 0.5C to the next SOC breakpoint  

12. The test is repeated for different temperature points to capture the temperature effect. 

From the measured terminal voltage, OCV-SOC relation is also calculated. Voltage value at the 

end of the relaxation time is considered as OCV, assuming the cell fully recovered from polarization 

during discharge/charge. 

 

Figure 3-6 Battery cell dynamic test current profile 

3.4 Data Analysis and Parameter Estimation 

The measured data shows that the cell voltage characteristics varies due to temperature and SOC 

variation.  Figure 3-7 is terminal voltage recorded during HPPC test at 10°C and 40°C. This is 

mainly due to change of OCV and cell impedance parameters. Therefore, this variation of 

impedance parameters should be estimated and included in the model. 
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Figure 3-7 Cell terminal voltage during dynamic test at 10°C and 40°C 

Hence, the main task in EEC modelling is the parameter estimation step for the proposed model. 

Least square (LS) minimization method is common to find optimal parameters of a model either 

based on sum squared or absolute error. In LS problem, the sum of the square of the errors between 

the measured data points and the model function values is minimized iteratively by updating the 

model parameters. In this work MATLAB/Simulink optimization tool is used to estimate 

impedance parameters. It has various optimization methods and algorithms implemented within it. 

Gradient descent, Nonlinear least square, pattern and simplex searches are the algorithm methods 

included. The algorithm might be Levenberg-Marquardt, Trust-region-Reflective or other. 

Levenberg-Marquardt is a standard technique to solve non-linear least square problems. It is a curve 

fitting method combining two minimization methods; the Gradient decent and Gaussian methods. 

Gradient descent method minimizes the sum of the squared errors by updating the parameters in 

the steepest-descent direction. However, Gauss-Newton method minimize the sum of the squared 

errors by assuming the least squares function is locally quadratic, and finding the minimum of the 

quadratic. The Levenberg-Marquardt method is more like a gradient-descent method when the 

parameters are far from their optimal value, and acts more like the Gauss-Newton method when 

the parameters are close to their optimal value. The problem formulation and numerical 

implementation of the algorithm is detailed in [22]. Trust-region-Reflective is a minimization 

approach based on trust region, not a line search algorithm. Here, the problem is approximated by 

a simple function within the neighborhood of the data point, and that neighborhood is the trust 

region. This trust region is adjusted from iteration to iteration. If the approximated model fits the 
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original problem well the trust region can be enlarged, otherwise if the approximation is bad the 

trust region should be reduced. The method is strongly associated with approximation [52]. 

Levenberg-Marquardt method has a limitation of handling bound constraints and Trust-region-

Reflective methods doesn’t solve undetermined systems. Figure 3-8 shows some windows of the 

graphic user interface of MATLAB optimization toolbox. Parallel pool option in the toolbox is also 

selected during estimation to use all local works in the computer which makes the estimation 

process faster. Trust-region-Reflective is chosen as optimization method since the impedance 

parameters to be estimated are bounded. The resistance and capacitance values should be greater 

than zero which enforce bounded constraints in the optimization problem. Since the training data 

for the whole SOC range is big, the parameter estimation is done separately for each SOC break 

points separately and finally the estimated parameters are collected. Detail explanation of how to 

use MATLAB optimization toolbox to estimate parameters in a Simulink model is explained in the 

toolbox user’s guide [53]. 

 

Figure 3-8 MATLAB Optimization Toolbox GUI snapshot 
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3.5 Simulink Implementation of the Model 

 Model Subsystems 

Simulation model of the battery cell is as shown from Figure 3-9 to Figure 3-11. The model consists 

of three parts: impedance, SOC estimation and OCV model. The impedance subsystem is variable 

resistor and capacitor elements with 3D lookup tables. 

 

Figure 3-9 Model top level system 

 

Figure 3-10 Model subsystems 
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Figure 3-11 OCV and SOC estimation subsystems detail 

It is also applicable to connect the cell model in parallel or/and series and simulate battery pack 

level behavior, but in this work the model is not validated for battery pack level which will be done 

in the future work.  

 

Figure 3-12 6X3 cell battery pack model 

The model also has mask parameters or graphic user interface (GUI) as shown in Figure 3-13.  It 

helps to change model parameters easily, like change the initial state of charge and ambient 

temperature and capacity of the battery cell. 
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Figure 3-13 Model GUI (parameter mask) 

 Estimated Parameters 

Maximum Cell Capacity: Maximum cell capacity as a function of temperature which is extracted 

from static capacity test is described in Table 2-1. It shows that the cell capacity increases with 

ambient temperature. 

Table 3-3 Maximum cell capacity at different temperature 

 

OCV: open circuit voltage of the cell is collected from the dynamic test at each SOC and ambient 

temperatures is plotted as 2D graph shown below in Figure 3-14 and Figure 3-15. From fully charge 
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up to 35% SOC, higher temperature has higher OCV value. However, this is not true when SOC 

goes below that. 

 

Figure 3-14 2D plot of OCV as a function of temperature and state of charge 

 

Figure 3-15 OCV at different temperature 
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Cell Impedance Parameters: 

From the estimated results, it is difficult to draw a conclusion about the trend of the parameter 

values as a function of SOC or current. This is because the objective of the estimation algorithm is 

to minimize the sum squared error of the cost function considering any combinations of the 

parameters. The only constraint is the parameters should positive since they represent physical 

electrical impedance elements. However, series resistance is higher at lower SOC level of the 

battery cell, specially SOC less than 10%. The value of 𝑅0 also increase with the current value as 

a general trend. The estimated impedance parameters are shown from Figure 3-16 to Figure 3-22. 

 

 

Figure 3-16 𝑹𝟎 at different ambient temperature points 
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Figure 3-17 𝑹𝟏 at different ambient temperature points 

 

 

Figure 3-18 𝑪𝟏 at different ambient temperature points 
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Figure 3-19 𝑹𝟐 at different ambient temperature points 

 

 

Figure 3-20 𝑪𝟐 at different ambient temperature points 
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Figure 3-21 𝑹𝟑 at different ambient temperature points 

 

 

Figure 3-22 𝑪𝟑 at different ambient temperature points 
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Chapter  4  

Result and Discussion  

In this chapter, model simulation results are compared with measured values and model 

performance is commented. The model is also validated using new experimental date from HPPC, 

DST and Pulse Discharge profiles. 

4.1 Effect of SOC estimation, Number of model RC networks and temperature on 

terminal voltage 

 SOC Estimation Result for HPPC Profile 

SOC is estimated using coulomb counting technique. Figure 4-1 shows the calculated SOC from 

the current profile and estimated from the measured current. The error between those two SOC is 

in Figure 4-2. The difference is high at the current transition points. It is partially the current shoots 

of charging/discharging device and the limitation in sampling rate. The error introduces 

proportional cell terminal voltage error since the model parameters depend on cell SOC. 

 

Figure 4-1 SOC estimated and calculated 
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Figure 4-2 % SOC Error between estimated and calculated 

 Number of RC Networks 

In Figure 4-3 measured voltage is compared with model simulated voltage with different 

number of RC networks. Model with 3RC network has good performance for both high 

and low frequency. 
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Figure 4-3 Measured & model simulated voltage with different number of RC networks at 

40°C 

 

Figure 4-4 Measured & model simulated voltage with different number of RC networks at 

40°C (zoomed) 
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 Temperature Effect 

Operating ambient temperature has effect on the cell terminal voltage. Both OCV and impedance 

parameters are affected by temperature. Figure 4-5 compared the measured terminal voltage at 

40°C and Model simulation considering the ambient temperature far from 40°C. at it is shown in 

the figure considering working temperature in modelling improves the model performance well. At 

low SOC the effect is significant. 

 

Figure 4-5 Effect of temperature correction on the model accuracy 
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Figure 4-6 Effect of temperature correction on the model accuracy (zoomed) 

4.2 Model and Measured Values Comparison 

HPPC test data is compared with measured data at different temperature points from 98%-2% SOC 

range. 

@Temperature = 10°C 
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Figure 4-7 Measured and estimated terminal voltage at 10°C 

 

Figure 4-8 Measured and estimated terminal voltage at 10°C zoomed at 60% SOC (left) and 

3C current rate (right) 

The error between measured and model value is high at the current transient instants, however the 

mean sum squared error is lower than 10mv. The error also gets higher for SOC range less than 

10%. This is because of the change in VOC in this range is higher. This error can be reduced by 

increasing the number of SOC breakpoints in the range. 

 

Figure 4-9 Voltage error at 10°C 
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@Temperature = 20°C 

 

Figure 4-10 Measured and estimated terminal voltage at 20°C 

 

Figure 4-11 Measured and estimated terminal voltage at 20°C zoomed at 90% SOC (left) 

and 3C current rate (right) 
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Figure 4-12 Voltage error at 20°C 

@Temperature = 30°C 

 

Figure 4-13 Measured and estimated terminal voltage at 30°C  
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Figure 4-14 Measured and estimated terminal voltage at 30°C zoomed at 60% SOC (left) 

and 3C current rate (right) 

 

Figure 4-15 Voltage error at 30°C 
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Figure 4-16 Voltage error at 30°C (zoomed) 

@Temperature = 40°C 

 

Figure 4-17 4-18Measured and estimated terminal voltage at 40°C 
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Figure 4-19 Measured and estimated terminal voltage at 40°C zoomed at 50% SOC (left) 

and 3C current rate (right) 

 

Figure 4-20 Voltage error at 40°C 

4.3 Model Validation  

The proposed model is validated with new measurement data from HPPC, DST and pulse discharge 

tests. 

 Hybrid pulse power characterization (HPPC) 

A new HPPC test is done at 30C and the model validation result is shown in Figure 4-21  from 

100% to 80% SOC. 
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Figure 4-21 HPPC model validation at 30°C 

 

Figure 4-22 HPPC model validation at 30°C zoomed at 94% SOC (left) and at 3C current 

rate (right) 
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Figure 4-23 Voltage error for HPPC model validation at 30°C 

 

Figure 4-24 Voltage error for HPPC model validation at 30°C (zoomed) 

 Dynamic Stress Test (DST) 

The model is tested with DST current profile shown in Figure 4-25 to validate the dynamic 

robustness of the model. Figure 4-25 shows customized current profile for validation and Figure 

4-26 is measurement and model response for full discharge of the cell at 30°C. The model is also 
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validated with the same current profile at 35°C and 40°C. As it is shown from the figures below, 

the model performs good during validation except for low SOC of the cell. 

 

Figure 4-25 Customized DST current profile 

 

Figure 4-26 DST model validation at 30°C 
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Figure 4-27 DST model validation at 30°C (zoomed) 

 

Figure 4-28 Voltage error for DST model validation at 30°C 
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Figure 4-29 Voltage error for DST model validation at 30°C (zoomed) 

 

Figure 4-30 DST model validation at 35°C (100-0%SOC discharge) 
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Figure 4-31 DST model validation at 35°C (100%-55%SOC discharge) 

 

Figure 4-32 Voltage error for DST model validation at 35°C (100%-55%SOC discharge) 
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Figure 4-33 DST model validation at 40°C (100-0%SOC discharge) 

 

Figure 4-34 Voltage error for DST model validation at 40°C 
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 Pulse Discharge  

The model is also validated on pulse discharge currents shown in Figure 4-35 for fully 

discharge of the cell at 30C°. 

 

Figure 4-35 Pulse discharge model validation at 30°C 

 

Figure 4-36 Pulse discharge model validation at 30°C (zoomed) 
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Figure 4-37 Voltage error for pulse discharge model validation at 30°C 



 

73 

 

Chapter  5  

Conclusion and Future Work 

5.1 Conclusion 

In this thesis, MATLAB simulation model is developed for lithium ion battery cell based on 

experimental data. Hybrid pulse power characterization test is performed to collect data for 

parameter estimation. The model is an EEC which consists of a variable voltage source in series 

with a resister and three parallel RC networks. State of charge, temperature and current dependent 

impedance parameters are considered in the model. The model parameters are represented in 

lookup table form. MATLAB optimization toolbox is applied to estimate the final value of the 

parameters based on least square minimization techniques. The model is finally validated using 

dynamic stress and pulse discharge experimental tests. Simulink/Simscape based is lithium ion 

battery cell simulation model is developed as the main contribution of the work.   

The focus of the work was developing temperature dependent battery cell model for pack and 

system level simulation. Lithium ion is now common in many applications as a power source from 

portable device to huge storage systems. The model can be used to simulate the performance of a 

lithium ion battery in various applications including hybrid power systems. 

5.2 Future Work 

The modelling approach implemented is empirical. Hence, the estimated parameters of the model 

are highly dependent on the quality of the experimental data. The performance and robustness of 

the model can be improved by exercising the battery well during experiment to capture the battery 

dynamics better. The way parameters estimated for the system is, the estimation is done for single 

SOC and temperature point with different cell current on charge and discharge. The parameters are 

collected to form full matrix. This is due to the limitation of estimating to many parameters with 

too much data points in the optimization toolbox. The accuracy of the model can be increased by 

estimating parameters at fixed charge-discharge current and temperature with full SOC range. 

The model developed assumes the battery cells under experiment are ‘new’ which means that the 

they exercised only few numbers of cycles. However, as the number of cycles increase the electrical 

and thermal behavior of the battery cell changes. To consider this degradation effect in the model, 
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it needs lifetime experimental data of the cell. The experimental test to analyze the degradation 

effect of the cell usually needs long time. In the future work this effect will be included by 

performing the necessary experimental tests. 
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Appendix A 

 LFP Battery Cell Technical Specifications 

 

Figure 7-1 Cell appearance and dimension 

 

Figure 7-2 Battery cell major technical parameters 
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