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Abstract

In this thesis, a lithium ion battery cell is analyzed and modelled on MATLAB. Under lithium ion
battery there are different chemistries. The electrical and thermal performance of each chemistry
varies depending on the operating conditions. Developing a model of performance which accounts
the current rating, operating temperature and state of charge (SoC) helps to analyze the behavior of
the cell under load. Different approaches of modelling lithium ion battery cells are proposed in
literature, physics based electrochemical model and empirical (such as equivalent circuit-EEC
model) are the most discussed. In this work, empirical based EEC model is designed and simulated
for various working conditions. The model has a variable voltage source which accounts the open
circuit voltage (OCV) as a function of state of charge and temperature, a series resistor to account
the instantaneous voltage change when the cell is under load or relaxed, and parallel resister-
capacitor (RC) branches to capture the dynamics of the cell during transient. The battery cell is
exercised under different current rate, state of charge and temperature; and data is recorded for
impedance parameters identification. Curve fitting techniques are applied to determine the number
of RC branches. Two/Three RC branches are chosen based on a trade-off between fitting goodness
of the transient characteristics of the selected battery cell and the parameter identification
complexity. Trust-Region-Reflective method based on least square algorithm on Simulink
optimization toolbox is used to identify the parameters (resistor and capacitor as a function of
temperature, current rate and SoC). The cost function in the optimization problem is sum squared
error of the terminal voltage. The estimated parameter values are highly nonlinear and represented
in the model by 3D lookup tables with linear interpolation. Coulomb counting method is applied to
estimate SoC which considers temperature dependent maximum capacity of the cell. OCV is

modelled in terms of 2D lookup table with smooth interpolation, as a function of SoC and
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temperature, from measurement data using pulse charge-discharge technique with 1-hour
relaxation time. Once the impedance parameters are estimated, OCV model is improved by
estimating new data points to handle the limitation of coulomb counting SoC estimation due to
current measurement.
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Chapter 1

Introduction

This is an introduction chapter of lithium ion battery cell modelling. In this first chapter, the
motivations for modelling of lithium ion battery are discussed and related literatures are reviewed.
Objectives and scope of the work are presented.

1.1 Motivation

Emission and geopolitical concerns of fossil fuel dependency are pushing the globe to look for
alternative sources for energy production and transportation. Introducing large amount of
renewable towards the energy sector and electrifying the transportation sector beside using
optimized and energy saving technologies are the main strategies being realized as a solution for
such issues. This has opened a new era for battery storage systems as a key technology in those
sectors. The market is working towards developing high energy and power density storage systems
to meet the demand. Considering the transportation sector, electric vehicle (EV) and hybrid electric
vehicles (HEV) are now gaining popularity once again. However, the success of the technology
depends on the advancement of the storage system deployed in terms of efficiency, stability, energy
density and recharging speed. This is because of EV and HEV are needed to have longer driving
rage and shorter refilling time. Since the last decade, with safety improvement and affordable price,
lithium ion batteries have become attractive in EV and HEV application over nickel cadmium and
nickel metal hydride batteries. High specific energy, long lifetime and low self-discharge compared
to other storage systems make them preferable. Large scale lithium batteries are also being
introduced in the energy sector to improve the grid flexibility and support the renewable energy

sources.

Lithium ion batteries have sensitive operating ranges in terms of voltage and temperature.
Performance and safety are the main considerations in the design and battery operation process.
Knowing the behavior of the battery and monitoring it while running help to improve the efficiency
and lifetime. Battery management in real-time and performance analysis techniques play a key role
in this regard. System modeling plays vital for analyzing and predicting of battery behavior. Battery

storages are highly non-linear electrochemical systems and their performance isn’t like ideal energy



sources. It is governed by complex mixture of laws of thermodynamics, electrode kinetics, ion
transport and diffusion phenomena. By designing a model which considers internal and external
conditions of the system, the battery behavior can be predicted or simulated. Two approaches of
modelling are common in electrochemical battery storage systems. The first one is, deriving the
electrical and thermal property from physical laws which govern electrochemical reaction inside
the cell. It is known as Electrochemical Model (ECM) or physics based model. This approach is
more accurate, however the nonlinear partial differential equations involved in the physical laws
and having coupled parameters make the approach computationally more intensive and sometimes
difficult to solve the equations. The other approach is Electrical Equivalent Circuit (EEC) based
modelling technique, electrochemical behavior of the battery is represented using active and
passive electrical elements. A voltage source connected in series with a resistor is widely used
battery model, where the voltage source represents open circuit voltage and the resistor to model
the internal impedance. Such simple models don’t satisfy accuracy requirement in all applications
and usually one or more parallel resistor-capacitor networks are included to capture the dynamics
better. EEC battery models require characterization tests which may need expensive laboratory

equipment for parameter estimation.

The purpose of modelling can vary based on the issue being addressed. Battery Management
System (BMS), Load performance analysis and Battery design process are the main application

areas.

BMS: It is an electronic system with software algorithms to manage the operation of the
battery and protect the battery from working in undesirable conditions. BMS can be simple
or sophisticated that also performs secondary operations to satisfy the application
requirements. Compared to other type of batteries, Lithium ion batteries are not voltage
tolerant. For safe battery operation and extended life, an algorithm which estimates the
state of charge (SOC) and state of health (SOH) of the battery from voltage-current
measurement is essential. Estimation algorithms are based on the battery model. The type
of modelling and parameter estimation algorithms implemented determines the
computational requirements and accuracy of the BMS which influences the final cost of
the battery. Simplified ECM and EEC Models are popular in BMS.



Load Performance Analysis: In this regard modelling is required to simulate load
characteristics under different operating condition either in cell or battery pack level. For
instance, in ‘‘hardware in the loop’” analysis which incorporate the battery as a system
level component, the battery behavior should be modelled and implemented. Simulation

model is also needed to analyze the performance of the battery in hybrid power systems.

Battery Design: Modelling is crucial in studying electrochemical process inside the battery
cell either to design application specific battery cells or improve the performance of the
battery. Underutilization, capacity fade up and thermal runway are some of the issues
which should be considered during battery design. Multiphysics modelling approach is

common in battery design process.
1.2 Literature Review

To improve the performance of lithium ion batteries in varies applications, EEC based modelling
are proposed and used for state of charge estimation. Coulomb counting is the simplest to estimate
and implement. The technique suffers from accumulation error due to current measurement.
Voltage based SOC estimation is also applicable in some type of batteries. It is not a good option
for lithium ion batteries because of Open Circuit Voltage (OCV) curve is flat in certain rage of
SOC which makes the technique ineffective. Model based SOC estimation is the most effective
technique in battery BMS and system performance analysis. Commonly a resister and single
parallel resistor-capacitor is considered as the cell impedance. Those type of models are good
enough to capture the performance of the battery and simplify parameter estimation process.
Researchers are looking for better parameter estimation techniques. Kalman based filters, and other
novel adaptive methods are the most discussed SOC estimation techniques with model based
methods [1] [2] [3] [4]. In [5] Neural Network based model is discussed with Unscented Kalman
Filter to reduce the error in the model. Beside SOC estimations, lithium ion battery model is also
used in predicting thermal behavior. In most BMS, lumped parameter thermal modelling approach
is preferred due to its simplicity. Heat is generated inside the battery cell from two source,
electrochemical reaction and joule loss and the energy balance equation comes from the entropy
change and heating due to joule loss. Novel parametric circuit modelling for lithium ion battery
which is applied for performance simulation and thermal analysis of electric vehicles is discussed
in [6]. Non-negative least square with genetic algorithm is applied to estimate model parameters to

avoid the estimated parameters being negative. The model parametrization is done for three parallel



Resister-Capacitor (RC) EEC model. In [7] and [8] Simulink model of lithium ion battery for hybrid
power system testbed is proposed. Both [6] and [7] considered only the effect of SOC while
estimating impedance parameters, however [8] considered also current effect. A battery pack
integrated equivalent circuit and thermal model for temperature dependent embedded applications
is proposed in [9]. A single RC based EEC is used to model electrical and thermal behavior of 12
cell battery pack from 5-45°C. The model parameters are both estimated and validated only using

pulse discharge test which do not guarantee dynamic robustness of the model.

In this thesis EEC based Simulink/Simscap model is proposed. The model considers the variation
of impedance parameters with SOC, temperature and current. The model also consists of three RC
branches considering the future extension of the work to include the degradation effect of the
battery cell in the model. The parameters are estimated from modified Hybrid Pulse Power
Characterization (HPPC) test and the model is validated with Dynamic Stress Test (DST), and pulse

discharge tests beside HPPC which assured the robustness of the model.
1.3 Objective

The general objective of this work is developing a lithium ion battery model which simulates the
performance of the battery in terms of electrical, and temperature effect. It consists the following

specific objectives:

1. Review literature regarding lithium ion battery technology and modelling techniques.

2. Propose an equivalent electric circuit model for electrical and thermal simulation of the
battery cell.

3. Perform static capacity and dynamic experimental tests to collect data for the battery cell
parameter estimation and model validation.

4. Estimate the battery cell parameters at different working conditions (i.e. SOC,
temperature).

5. Prepare temperature dependant battery cell MATLAB model using Simulink and Simscape
tool boxes.

6. Validate the model at different operating conditions.

1.4 Scope of the Thesis

This thesis is the first part of developing a full MATLAB simulation package for electrical, thermal

and degradation behavior of lithium ion battery. The scope of the thesis is developing simulation
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model for the electrical behavior of the battery cell from 10 °C to 40°C temperature and up to 3C
discharge current from 0 to 100% state of charge conditions. The model also considers connecting
the cells in parallel or series for further battery pack level simulation.

1.5 Thesis Outline

The remaining of this paper is presented as the following. Chapter two explains the state of the art
for the thesis. In this chapter, the application of energy storage system and various storage
technologies are discussed. Lithium ion battery cell modelling approaches, electrochemistry and
electric equivalent circuit based, are presented. Parameter estimation techniques for EEC model are
also explained in this chapter. The methodology of the thesis is in chapter three, which states about
the proposed model, experimental setups for data measurement and analysis and parameter
estimation of the model. The MATLAB based simulation model is developed in the fourth chapter,
which shows Simulink and Simscape techniques for modelling the open circuit voltage, state of
charge estimation and lamped RC parameters of the cell. In Chapter five simulation results are
discussed and the model is validated. Conclusion and future works are presented in chapter six.

Finally, Chapter seven and eight contains the bibliography and appendices of the work respectively.



Chapter 2

State of The Art

This is the chapter where previous knowledges and development techniques of the problem, which
is lithium ion battery cell modelling, are presented. It starts from ESS definition and Types of ESS
regarding the energy form stored. Basic characteristics and performance of each storage systems
are also stated. Various lithium ion battery technologies are presented and compared. Numerical
and empirical modelling approaches for lithium ion battery cell are reviewed. Two data
measurement techniques i.e. frequency and time domain techniques for empirical modelling are

discussed. Various SOC estimation techniques with pros and cons are also presented.
2.1 Energy Storage Systems (ESS)

Due to basic characteristic of electricity to be consumed at the time it is generated, there is a need
to store electrical energy for use on demand. The energy cannot be stored directly, however it can
be stored in other forms of energy and converted back to electricity. This brings the need for an
energy storage technology or a device which stores the electrical energy in other forms such as
chemical, potential, kinetic and thermal. EES is a key technology in utilizing world’s energy
resources effectively. It brings flexibility in providing energy at the choice of time. Nowadays there
is an emerging need for ESS in grid, transportation applications and portable devices. Reduction of
emission and being independent from fossil fuels, a need for sustainable energy source, and make

the existing grid smarter are the main driving forces towards the technology.
2.1.1 ESS Types

ESSs varies in terms of their functions, response time, and suitability for the application. The most
common classification method is based on the form of energy stored in the system [10] [11]. Figure
2-1 summarizes the classification of ESS based on the energy form. Including the technology
maturity and cost, choice of specific type of storage system for an application depends on the
maximum energy and power rating needed, required response time during charge-discharge, system
weight and volume constraints, and suitable operation temperature. Figure 2-2 describes
comparison of various energy storage technologies regarding their energy and power capacity. Not
all storage systems fulfill both energy and power requirements. Supercapacitors and super

conducting coils have good response time and can deliver high power output. However, their



energy storage capacity is low. In contrast pumped hydro and flow batteries can store large amount
of energy but their response time is lower. Most of the time characteristics of the application selects
which ESS is suitable.

Mechanical Electrochemical
* Pumped hydro storage- PHS * Secondary batteries
| Lead acid, Nickel cadmium, Nickel
* Compressed air energy storage — CAES metal hydride, lithium and sodium
sulphate
* Flywheel energy storage - FES

* Flow batteries
Redox flow, Hybrid flow

* Chemical

EleCtl:lcal Hydrogen (Electrolyser, fuel cell)
* Super/ Ultra capacitor energy storage —
SCES
] Th 1
. . . . erma
Superconducting magnetic coil energy - Sensible heat storage
storage - SMES |
Molten salt

Figure 2-1 Classification of ESS based on the energy form

The role of ESS in power sector can be seen in different stages from generation to utility and
consumer level. In generation stations, it is being used as time shifting by storing the surplus power
when it is not needed and to increase supply capacity. It also helps as a frequency control function
to improve power quality. Pumped Hydro Storage (PHS), Compressed Air Energy Storage (CAES),
traditional electrochemical batteries, flow batteries and hydrogen are among the technologies in
generation plants. In utilities, it may play as a cost saving method for storing energy during off
peak hour with less price beside keeping power quality, efficient use of the power network and
supplying power during emergency to maintain service reliability. Traditional electrochemical
batteries, Superconducting Magnetic Energy Storage (SMES), Super capacitors are used in addition
to flow batteries and CAES. Consumers may also use ESS for saving cost by time shifting the
energy due to time varying price of the electricity. It can be also considered as emergency power

source in power sensitive applications during power outage instead of power generators. Lithium



ion, lead acid, flywheel and flow batteries are preferable energy storage technologies. The other
potential application of ESS is renewable energy generation sectors.
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Figure 2-2 Comparisons of energy storage technologies [12]

Utilizing more renewable energies in the power system grid reduces the emission and fossil fuel
dependency issues. However, the energy from renewable sources such as wind and solar, is
unreliable and causes power fluctuation issue. This makes the system unable to maintain output
and meet power demand. By introducing ESS in power systems, more efficient use of renewable
energy can be realized, the issue of intermittency during grid integration of renewables is also
addressed by delivering energy only when the grid needs.

Transportation sector is one of the greatest contributor of greenhouse gas emission. In Europe
transportation sector accounts 23% from the total greenhouse gas emission based on 2015 statics
[13]. In the same year, in United state transportation represented 27% of the total emission in the
country [14]. Electrification of the transportation sector, such as electrified railways, electric and
hybrid vehicles powered by electricity, is becoming a promising alternative to alleviate dependency

of fossil fuel and improve urban life. Unlike grid and energy sector applications, electric/hybrid



electric vehicles desire high energy and power density storage systems. Driving range and charging
time are important factors for success of electric vehicles. High performance batteries are needed
to be mounted in Electric vehicles as a power source. The technology is also being improved to use
vehicle storages to power home appliances and support the grid by connecting them in the time of
need which is known as vehicle to grid application [15]. Battery storage system particularly

Lithium ion and NMH are the widely used batteries in electricity powered vehicles [16].
2.1.2 Battery Storage Systems (BSS)

Battery storage systems are electrochemical systems which includes primary, secondary and flow
batteries. Lead acid, nickel and lithium ion are widely used secondary batteries for both stationary
and non-stationary applications. Secondary batteries are rechargeable batteries which have cells
with reversible chemical reaction on charge and discharge. Anode, cathode and separator are the
main components of a battery cell. Based on the required nominal voltage and capacity, the battery
cells are connected in series and parallel. Figure 2-3 summarizes typical cell voltage and chemical

reaction on anode and cathode during charge-discharge of various rechargeable batteries.
Components of a Battery Cell

Anode: It is an electrode which releases electrons during discharge and accepts electron on charge.
It is negative on discharge and positive on charge. Efficiency, specific capacity and conductivity
are important parameters to select anode material. Stability, manufacturing simplicity and cost are

also decisive factors.

Cathode: It is an electrode which absorbs electron during discharge and release on charge. It is
positive on charge and negative on discharge. Cathode material is selected based on its voltage and

chemical stability.

Separator: it is a material which isolates the anode and electrode electrically. It allows the
movement of ions from one electrode to the other. Electrical insulation, minimum ionic resistance,
mechanical stability and prevention of particles migration are some of the required parameters for

separator materials.

Electrolyte: A nonmetallic substance placed between anode and cathode electrodes. It promotes

movement of ion between cathode and anode which makes the battery conductive. The electrolyte



of a battery consists of soluble salts, acids or other bases in liquid, gelled and dry formats. It can
be also a polymer form, like in solid-state batteries, solid ceramic and molten salts, as in the sodium-
sulfur battery. The electrolyte should be highly conductive, non-reactive with the electrode
materials and stable with operating conditions such as temperature.

Secondary batteries store and release electrical energy up to a certain number of cycles. The
maximum number of cycle and other performance characteristics of batteries vary based on the

chemistry and material in it.
Rechargeable Batteries

Lead acid battery: exploring lead-acid battery as energy storage device dates back 1800s [11]. It
is the most widely used rechargeable electrochemical storage system. It has lead dioxide (Pbo,)
cathode and sponge lead (Pb) anode, with sulfuric acid electrolyte. Lead acid batteries has fast
response time, small daily self-discharge rate and relatively high cycle efficiency. Its cost is also
low and has high reliability. It has been developed as a power source for hybrid and electric vehicle,
however its application in utility is limited due to low number of cycles.

Lithium ion battery: Lithium ion battery has a cathode made up of lithium metal oxide (such
as LiCo0,, LiFeP0O, and LiM0O,) and the anode is typically graphite carbon. The electrolyte

consists of lithium salts dissolved in organic carbonates. During charging process, the lithium-ions
travel from cathode to anode. Then lithium ions combine with external electrons and are deposited
between the carbon layers as lithium atoms. The process reverses during discharge. Lithium ion
batteries have good energy to weight ratio, no memory effect, and low self-discharge. They are
good candidate for applications need fast response time and have dimension and weight constraint.
The protection circuit and battery management system makes lithium ion batteries more expensive

than other chemical batteries.

Nickel Cadmium (NiCd): Nickel-cadmium battery contains a nickel hydroxide as positive
electrode and cadmium hydroxide as negative electrode. It has an alkaline electrolyte. NiCd battery
is robust and has high reliability and low maintenance cost. The downsides of NiCd battery are:

cadmium is toxic, resulting in environmental hazards, the battery suffers from the memory effect
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which means, the maximum capacity can be dramatically decreased when the battery is repeatedly

recharged after being only partially discharged.

Nickel Metal Hydride (NMH): NMH battery is like NiCd except hydrogen is used as electrode
instead of cadmium. It has moderate specific energy and relatively high energy density which
makes the battery better than NiCd. It has also reduced memory effect and is environmentally
friendly. It is used from portable device up to hybrid and electric vehicles and standby industrial
applications. However, it has high rate of self-discharge. The performance also decreases after a

few hundred full cycles.

Sodium Sulphur/ Sodium Nickel Chloride: unlike other battery technologies, sodium-nickel-
chloride (zebra batteries) and Sodium-Sulphur batteries have a solid-state electrolyte. Sodium
Sulphur battery consists of liquid Sulphur at anode electrode and liquid sodium at cathode
electrode. The positive sodium ions are pass through the electrolyte and combines with Sulphur to
form a sodium poly-sulphide. The zebra battery has moderate specific energy, energy density,

specific power, and a high operating temperature.

Battery type Chemical reactions at anodes and cathodes Unit
voltage
Lead-acid Ph + 50?1- = PbSO, + 2e- 2.0V
PbO, + SO3~ +4H" + 2e~ <= PbS0O, + 2H,0
Lithium-ion C+ nLi* + ne— = Li,C 3.7V
LiXX05 < Li;_,XX05 + nLi* + ne-
Sodium-sulfur 2Na = 2Na' + 2e- ~2.08V
542 = ;{S]'
Nickel-cadmium Cd + 20H™ == Cd(OH), + 2e- 1.0-
2NiOOH + 2H30 + 2e~ <= 2Ni(OH), + 20H~ 13V
Nickel-metal H;O0 +e = 1/2H; + OH™ 1.0-
hydride Ni(OH), + OH™ += NiOOH + H;0 + e~ 1.3V
Sodium nickel 2Na = 2Na' + 2e- ~2.58V
chloride NiCl, + 2e~ <= Ni+2Cl~

Figure 2-3 Anode-Cathode chemical reactions and cell voltages of battery technologies [10]

Some characteristics and performance of the above battery technologies are presented and
compared in Figure 2-4. The figures in the table are based on average ratings of commercial
batteries and special batteries with above average ratings are excluded. Lithium ion batteries have

higher cell voltage and low toxicity. They have also a peak current of more than 30C. As shown in

11



the figure lead acid batteries have cycle life only from 200 to 300. Lithium batteries go up to 2000

cycles for 80% discharge.

r Li-lon |

Specifications Lead-Acid NiCd NiMH Cobalt Mang Phosph
Specific energy density (Wh/kg) 30-50 45-80 60~ 120 150 - 190 100 - 135 90 - 120
Internal resistance (mQ/V) <8.3 17-33 33-50 21-42 6.6~-20 76-15.0
Cycle life (80% discharge) 200 - 300 1,000 300 - 500 500 - 1,000 500 ~ 1,000 1,000 - 2,000
Fast-charge time (hrs.) 8-16 1 typical 2-4 2-4 1orless 1 orless
Overcharge tolerance High Moderate Low Low Low Low
Self-discharge/month (room temp.) 5-15% 20% 30% <5% <5% <5%
Cell voltage 2.0 1.2 1.2 36 38 33

Full charge Full charge
Charge cutoff voltage (V/cell) 2.40 (2.25 float) ;’;"m:; t’)’;"ﬁ'&‘;’e 42 42 36
signature signature

Discharge cutoff volts (V/cell, 1C*) 1.75 1 1 25-3.0 25-30 2.8
Peak load current** 5C 20C 5C >3C >30C >30C
Peak load current® (best result) 0.2C 1C 0.5C <1C <10C <10C
Charge temperature -20-50°C 0-45°C 0-45°C 0-45°C 0-45°C 0-45°C
Discharge temperature -20-50°C -20 - 65°C -20-65°C -20 - 60°C -20 - 60°C -20 - 60°C
Maintenance requirement (::;usa:'inz(a’?ig‘ns) :;(g.;csr?;;ey)s 6(%;‘:9:;,983)9 None None None
Safety requirements Th lly stable Th lly stable, fuses common Protection circuit mandatory
Time durability >10 years >10 years >10 years
In use since 1881 1950 1990 1991 1996 1999
Toxicity High High Low Low Low Low

**Peak load current - Maximum possible momentary discharge current, which could permanently
damage a battery

*'C’ refers to the battery capacity

Figure 2-4 Characteristics of commonly used rechargeable batteries [17]

Battery Terminologies

C-rate: It is a measure of the rate at which a battery is discharged relative to its maximum capacity.

A 1C rate means the discharge current will discharge the entire battery in 1 hour. For instance, for

a battery with a capacity of 100 Amp-hrs, this equates to a discharge current of 100 Amps.

SOC: An expression of the present battery capacity as a percentage of maximum capacity.

Depth of discharge (DOD): The percentage of battery capacity that has been discharged expressed

as a percentage of maximum capacity.

12



Nominal capacity: The energy capacity of the battery, the total Watt-hours available when the
battery is discharged at a certain discharge current from 100 percent state-of-charge to the cut-off
voltage.

Nominal voltage: The reported or reference voltage of the battery by the manufacturer, which is

considered as the “normal” voltage of the battery.

Cut-off Voltage: The minimum allowable voltage. It is this voltage that generally defines the

“empty” state of the battery.
2,13 Electrical Storages

Electrical storages include supercapacitors and super conducting coils which store energy in the

form of electric charges.

Super capacitors (Ultra capacitors): Supercapacitors consists of two electrodes, electrolyte and
a membrane in which ions can travel. The amount of energy stored depends on the surface area of
the electrode and the distance between them. The basic difference between super capacitors and
ordinary capacitors is, super capacitors use porous electrodes which increase the surface area of the
electrodes. Super capacitors may be double layer capacitors where charge storage is
electrostatically or pseudo capacitors where the charge storage is electrochemical. Hybrid types are

also available.

Super Capacitors

Double-layer Capacitors Pseudo Capacitors
Charge storage: Electrostatically Charge storage:
(Helmholtz layer) Electrochemically (Faradically)
Hybrid Capacitors

Charge storage: Electrostatically
& Electrochemically

Figure 2-5 Super capacitors based on charge storage
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SMES: stores energy using super conducting coil in the form of magnetic field. It consists of two
parts, cryogenically cooled superconducting coil and power conditioning system. The magnetic
field is created with the flow of a direct current (DC) through the coil. To maintain the system
charged, the coil must be cooled adequately. This enables the current to circulate indefinitely with
almost zero loss, and therefore, the energy remains stored in the form of a magnetic field. The
stored energy can be released back to a connected power system by converting the magnetic energy
to electricity, which is discharging the coil. The only conversion process in superconductors is from
AC to DC in the power conversion stage so it has high cycle efficiencies. This very high cycling
capacity and efficiency over short time periods make SMES very well suited to high power short
duration applications. SEMS also has the ability of fast response, however the main drawback is it
need large amount of power to keep the coil at low temperature.

Liquid Helium/ Vacuum-insulated vessel
Nitrogen

Superconducting coils
+

Refrigerator
system

LT/HT Superconducting
magnet

Figure 2-6 Typical illustration of SEMS system [18]
2.1.1 Hybrid Battery Supercapacitor Storage Systems (HBSSS)

HBSSS contains electrochemical battery for long term storage and supercapacitor to support fast
dynamics. It is shown that battery storages cannot satisfy both energy and power requirements of
all applications. Batteries in general are good to store large amount of energy, however they are
slow in transferring the energy. In contrast Supercapacitors or Super conductor coils are fast in
transferring the stored energy, effective in supporting short term peak currents. In applications
which are sensitive for both energy and power, such as renewable energies, electric vehicle and
others, both requirements can be satisfied by HBSSS. Researches are being done to optimize such
hybridization and to analyze the economic benefits [19], [20]. In [21] the hybrid battery
supercapacitor storage system is critically reviewed and compared with the well-established battery
storages (lead acid, nickel metal hydride lithium ion, ...) in terms of power quality, system

complexity, life span and system cost based on renewable and electric vehicle applications. The
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basic challenge in the hybridization is the extra cost and system reliability due to the controller
electronics needed. However, the controller and management electronic is also available even in

some battery storage systems, such as lithium ion battery, to secure safety and stability.
2.1.2 Lithium lon Battery Technologies

Lithium ion batteries are of the most popular energy storage technology since last decade due to
capability of having high energy density, high power density, high efficiency, low self-discharge
rate and long lifetime. Lithium ion battery doesn’t specify a single chemistry reaction, rather it
specifies a battery which has an insertion reaction both on the cathode and anode in which a lithium
ion acts as a charge carrier, though at the beginning it was defined only for batteries which utilizes
intercalation reaction [22]. Some chemistries are popular with their special characteristics and
performances: Lithium cobalt oxide-LCO (LiCo0, cathode) which has high specific energy with
low thermal stability, life time and specific energy; Lithium manganese oxide- LMO (LiMn,0,
cathode) or blended lithium nickel manganese cobalt oxide-NMC (LiNiMnCoO,) to improve
specific energy and life span; Lithium iron phosphate-LFP (LiFeP0O, cathode) which has good
safety characteristics; Lithium titanium oxide-LTO (Li,Tiz0,, as negative electrode) which
has long life and good safety. Table 2-1 summarizes common cathode chemistries and their
application areas including the abbreviations which they are known in research papers and

manufacturer datasheets.

Table 2-1 Lithium ion battery technologies [23]

Chemical Name Material Abbreviation Applications
Lithium cobalt oxide LiCoO, LCO Cell phones, laptops, cameras
Lithium manganese oxide LiMn,O, LMO Power tools, EVs, medical, hobbyist
Lithium iron phosphate LiFePO, LFP Power tools, EVs, medical, hobbyist
Litalum nickel manganese I NIV Go0, NMC Power tools, EVs, medical, hobbyist
cobalt oxide
Sl G e eEl LiNICoAIO, NCA EVs, grid storage
aluminum oxide
Lithium titanate LisTisO40 LTO EVs, grid storage
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Figure 2-7 lithium ion battery cell demonstration on charge and discharge [17]

Figure 2-8 compares different lithium ion battery technologies about the basic application

characteristics. The size of extension of the denser color indicates the technology good in that
dimension.

Lithium-nickel- Lithium-nickel Lithium-manganese
cobalt-aluminum (NCA) manganese-cobalt (NMC) spinel (LMO)

Specific energy Specific energy

Cost

Life spx\ - Safety

Life span
Performance Porformance
Lithium titanate Lithium-iron
(LTO) phosphate (LFP)
Specific energy Specific energy

Safety

Performance

Figure 2-8 Comparison of lithium ion battery technologies [23]
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2.2 Electrical Modelling of Lithium lon Cell

The electrochemical and thermal behavior of lithium ion cells vary under different operating
conditions. Lithium battery cells are voltage sensitive, cells should operate under specified voltage
limits and temperature ranges. For better battery management and performance analysis, having a
model with high accuracy is important. Two approaches of modelling are used in literature:
Electrochemical (physics based) and Equivalent Electric Circuit (empirical based) model. Various
modelling approaches are also under each category which differs in their level of details. The
choice of a battery model type requires a trade-off in model complexity and accuracy. In some

literature mathematics based artificial intelligent techniques like Neural Network are also proposed.
2.2.1 Electrochemical Models (ECMs)

In this approach, the system model is derived from non-equilibrium thermodynamics transport and
reaction equations based on concentrated solution theory. The electrochemical dynamics of the
battery is represented by partial differential equations which represents the physical phenomena
inside the cell during charging/discharging. ECMs are very helpful to analyze the effect of physical
properties and particle distributions in the battery performance. Charge transfer, circuit potential,
diffusion, and double layer effect are the main physical phenomena for electrothermal
characterization of a battery cell. Doyle, Fuller and Newman originally developed Pseudo 2
Dimensional (P2D) electrochemical dynamic model for a single material electrode [24]. However
due to the computational burden and difficulty in solving system’s partial differential equations, it
is not easy to apply the model in advanced control and management systems. Since then different
approximation and assumptions are considered to reduce structural complexity and simplify
parameter identification process. Pade and Parabolic approximations [25] are some of the
techniques used by researchers to achieve confined and physically meaningful electrochemical
model. ECM approach is based on Butler-Volmer equation, Porous electrode theory, concentrated
solution theory and potential drop in the solid conducting phase which is described by ohms’ law.
Porous electrode theory is the earliest for mathematical framework of non-equilibrium
thermodynamics of porous electrode [26]. It is based on Butler-VVolmer reaction kinetics equation,
shown in equation 2-1, which describes the Faradaic current density. The equation explains the
relation of current on each electrode with the electrode potential and reaction kinetics. It defines

the electrochemical dynamics on the electrodes surface. Researchers are also proposed a modified
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porous electrode theory using modified Butler-Volmer equation and classic porous electrode

equations to find thermodynamically consistent equation for their model.

aqgzF aczF

e RT (d’s_d’e_uoc) — e RT (d’s“d’e_UaC} (2'1)

j=Jo
jO = K(Ce)aa (Cs,max - Cs,surf) (Cs,surf)ac (2'2)

Where, j is electrode current density (4/m?), j, exchange current density (4/m?), E
electrode potential (V), E., equilibrium potential (V), K absolute temperature (K), z
number of electrons involved in the reaction, F Faraday’s constant, R universal gas

constant, a charge transfer coefficient (anode and cathode),

C. concentration in electrolyte, C; concentration in solid phase, and # activation
overpotential.

n=¢s—¢s— U, (2-3)

The exchange current density, j, depends on the lithium ion concentration in the electrode and
electrolyte. This value can be approximated as a constant if the battery is excited with low

amplitude current during electrochemical impedance spectroscope analysis [27].

The open circuit potential of the anode and cathode can be derived from Nernst equation as shown

in below. It can be also approximated by linear functions or higher order polynomials to fit the

property.
RT
Ecen = Ecen — 7 InQ; (2-4)
Where, E..;; is the cell potential, EZ,;; standard cell potential, Q, is reaction quotient.

Species conservation of lithium ion and charge both in electrolyte and solid phase including the
initial and boundary conditions are also governing relations in electrochemical based modelling.
The schematic of one-dimensional (pseudo 2 dimensional-P2D) model is shown in Figure 2-9
which comprises porous negative and positive electrode, separator and electrolyte. While the
battery is discharging, lithium ions diffuse to the surface of the electrode to make electrochemical

reaction and join the electrolyte, then the ions travel to the other side of the solid electrode via
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diffusion and migration by crossing the separator and intercalate themselves. P2D is successful
electrochemical model to describe the conservation of mass and charge both in solid and electrolyte
phase which is based on fixed particle radius [28]. Concentration of lithium ions also affected by
the diffusion inside the active materials (anode and cathode). This diffusion behavior in electrodes
is explained by Fick’s second law which is stated in equation 2-6 and 2-7 for mass (lithium ions)

conservation in the solid and electrolyte phase.

aC(xrt) Ds @ ( o aCs(x,1t) )
at  rZar (r ar ) (2-5)
Boundary conditions:
ac aC —j
er:O =0, Ds?lrst = aF (2-6)

Where, C, is the concentration in solid phase, D, diffusion coefficient, x is the dimension
of the cell as shown in figure 1, r radius of the spherical particle, j rate of electrochemical

reaction in the solid phase, and t is time.
Conservation of lithium ion in the electrolyte phase is also stated as:

Negative and positive electrode;

3 _ 0 (peffdCe) 4 112 ; }
Ee 6t_6t(De ax)+ FJ (2-7)
Separator;
9C. _ 0 (peff9Ce .
Ee 9t ~at (De ax) (2-8)
Boundary conditions:
Current collector interface:
ac, ac,
E|x=0 =Y |x=Lcc =0 (2-9)

Negative electrode separator interface:
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Celx:L{ = Ce|x=L; (2-10)

ac, ac,
[l o It = o’ o L (2-11)
Positive electrode separator interface:
Celx:Li',’ = Celx:L; (2-12)
ac, ac,
Dg”;hg = Diﬁﬁh; (2-13)
Charge conservation in the solid phase (electrodes) is described using ohm’s law:
9 (gefr o —j 2-14
= (071~ ps(x,) ) - j(x, 1) (2-14)
With boundary conditions:
AP 0P 1
_O.eff ox |x=0 = +a'eff ox |x=Lcc = Z (2-15)
a¢s I¢s
x| x=Ln = 5y |x=Lo+Ls (2-16)

Where, ¢, is the potential of electrode, ®// is effective electrode conductivity.

Parameters in the above equations are either experimentally determined or estimated. Finding
analytical solutions for the above coupled partial differential equations is complicated because of
electrochemical parameter variation in each domain and necessity of spatial discretization to
convert PDE to Ordinary Differential Equations (ODE) [29]. Using numerical methods, the PDEs
can be reduced in to ODEs and then to algebraic differential equations for solving the above system
equations [25]. The detail electrochemical model could have more than six state variables [30] [31],
including the solid electrode potential, electrolyte potential, anode and cathode lithium ion
concentration, lithium ion concentration in the electrolyte, ionic current in the electrolyte and

Faradaic current density between active material in the electrode and electrolyte.
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Figure 2-9 Schematic of the lithium ion battery electrochemical model and discharge

reaction equation for LFP [6].

However, models with high computational efficiency while maintaining acceptable precision is

realistic. In literature, several works are proposed to reduce electrochemical models. Those

researches are mainly focused on either on reducing computational complexity of solving lithium

ion

concentration in solid electrode particle or reducing the complexity of the electrochemical

model. Single Particle Model (SPM) which has one partial differential equation and an algebraic

equation is most practical [31]. SPM assumes the current to the battery is small and the electrolyte

has large conductivity. In [30] simpler electrochemical model based on SPM with two differential

algebraic equations and one algebraic equation is also proposed, in which the lithium ion

concentration in the electrodes is represented by a polynomial function with respect to the particle

radius. A transfer function type of simplified electrochemical model is also proposed in [29] which

is based on modified boundary conditions and Pade approximation technique of the electrolyte

diffusion equation. Some researchers like [30] ignored the electrolyte diffusion dynamics to

simplify the mathematical computation, which limits applicability of the model in high current

condition. However, others consider the multiphase effect of the lithium ion batteries. In [32]

modified boundary condition for electrolyte diffusion equation is proposed to decouple the PDEs.
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Beside developing analytical or numerical solution for electrochemical models to find voltage
current relation of the battery cell, Electrochemistry based impedance models are also proposed in
which the equivalent impedance for each thermodynamic phenomenon is calculated from the
electrochemistry of the cell. The models consider the electrochemical impedance due charge
transfer reaction, diffusion in the electrodes, effect of ion concentration, double layer effect and
insulation film growth. The electrical parameter values are calculated or determined from the
physical parameters of the cell like diffusion coefficient, concentration in electrolyte and solid
phase. Those types of model are less complex than numerically solved electrochemical models, and

still retains some physical parameters of the cell.
2272 Equivalent Electric Circuit (EEC) Models

Models based on equivalent electrical circuits are widely used in battery management and system
level control algorithms due to their less computational effort. EEC is an empirical based model
which contains active and passive electrical components to evaluate the battery performance.
Varies equivalent circuit models are proposed in the literature. The choice of the equivalent circuit
mainly depends on the battery chemistry and the level of detail characteristics considered. It
depends on the trade-off needed between model accuracy and parameter identification simplicity.
Figure 2-10 shows a typical representation of a battery cell impedance property with equivalent
electric impedance elements. Charge transfer reaction, diffusion of lithium in the active electrode
material and electrolyte, double layer effect and contact resistance between electrically conducting
material are the main properties to be accounted for representing the battery characteristics in to
electrical circuit equivalent [16]. This typical model assumes Solid Electrolyte Interface (SEI) film
growth is only in the anode side and thin film in cathode side. Due to the rough electrode surface,
the porous electrodes have a double layer effect with capacitance dispersion which better described
by constant phase elements (CPE), a capacitance property with two degrees of freedom, instead of
ideal capacitor. The diffusion dynamics of active materials in solid electrodes could be represented

by Warburg impedance (W,).
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Figure 2-10 Typical equivalent circuit representation of cell components [8].

Representing all those impedance effects in EEM increase system and parameter estimation
complexity, and models with less number of impedance elements are implemented in most
applications by compromising system accuracy. Figure 2-11 shows simplified and compact
representation which is known as Randel’s model. To make the simulation of the model interactable
Warburg impedance in the model can be represented by numbers of parallel RC branches. For exact
equivalence of the transformation infinite number of RC networks are needed, however often finite
numbers are used considering only certain frequency ranges. Effect of diffusion layer capacitance
is small and often neglected in the model. Hence, the final model will have series electrolyte and
charge transfer resistance with numbers of RC networks. Beside Randel’s model, various

topologies of those impedances interconnection in equivalent circuit form are also developed.
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Figure 2-11 Randel’s model
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The objective of EEC modelling approach is trying to emulate the dynamic behavior of operating
battery cell; hence any combination of impedances could be acceptable as far as it gives less
computational and parameter estimation effort with acceptable accuracy for the dynamic
performance in any operating conditions. The simplest model contains a voltage source and single
resistor which represents the irreversible loss in the cell. First and second order Thevenin models,
as shown in Figure 2-12, are widely used in BMS and other performance modelling applications.
The model contains three main parts to have a better footprint of the battery cell; dependent voltage
source to represent the open circuit voltage as a function of SOC, Ohomic resistance in series for
electrolyte resistance and electrode conductivity, and one or more branch of parallel resistor and
capacitor to approximate charge transfer and diffusion processes in the cell. The number of parallel
RC branches can be determined from the empirical data of the battery cell using a curve fitting or
other technigues. Two RC branches can give a good fit for most cell performances, however up to
five RC branches could be used to capture the aging effect of the cell precisely [33] [34]. The SOC
is calculated as voltage value across a capacitor in parallel with current dependent current source.
The capacitance value is the maximum charge capacity of the battery cell in Ampere-second. A
parallel resistance with the capacitor can also be considered to account self-discharge of the cell.
Partnership for a New Generation of Vehicles (PNGV), a research cooperation in U.S. was also
proposed another EEC model shown in Figure 2-13 [35], which is a Thevenin type model with a
series capacitance to capture the variation of OCV with SOC. The relation between OCV with SOC

can be also represented by lookup table without adding capacitance in series.
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Figure 2-12 Two RC branch Thevenin model.
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2.3 Thermal Model of Lithium ion Battery

Temperature and voltage ranges are the key limiting factors of lithium ion battery. There is a safe
temperature limit for each type of batteries on charge and discharge. Excluding some specialties,
lithium ion batteries can be charged from 5 to 45°C and the permissible discharge temperature is
from -20°C to 60°C [36]. At higher temperature charge and discharge performance is good but it
affects the battery lifetime. The capacity and performance vary with the operating temperature and
internal thermal conditions of the cell. Capacity of lithium ion batteries can decrease up to 95%
when the battery is operating below -10°C compared with 20°C [37]. The state of health of the
battery is also adversely affected by the battery temperature. To maximize the lifetime of the
battery, temperature difference inside the cell should be less than 5°C [38]. Degradation effect of
temperature on the battery cell parts are studied by different researchers. For instance, [39]
discussed the effect of elevated temperature on the negative electrode (anode), thermal aging of the
electrolyte and electrolyte-electrode interface is investigated by [40] and [41] [42] respectively. For
a better battery thermal management regarding safety and lifetime, modeling thermal behavior of

a battery at cell and pack level is essential.

Since operating temperature and thermal distribution inside have been found as a factor on the
battery performance, different thermal modelling approaches are proposed in literature. Energy
balance equations, heat generation equations and boundary condition for different heat transfer
possibilities (radiation, conduction, convection) are the basic backgrounds to drive computational
relation for thermal behavior of the battery. In [43] some of the thermal modelling methods are
reviewed and compared in terms of computational intensity and accuracy. Computational and
analytical thermal models from two-dimensional transient finite element analysis to lumped

capacitance thermal models are based on the energy balance differential equations. Internal heat
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generation is part of the energy balance equation which comes mainly from overpotential and
entropy change of the system. Heat generation from overpotential depends on the operating
temperature and current however heat generation due to change in entropy depends on state of
charge of the battery. Lumped capacitance thermal modelling (one dimensional approach)
considers the transient thermal distribution of the system is spatially the same and only depends on
time which assumes transient conduction is much faster than heat transfer across the boundary of

the system. For good approximation of the model the ratio of heat transfer resistance inside and at

the surface which is known as Biot number should be much less than 1(i.e. B; = % <<1 where Bi

is Biot number, h is convection heat transfer coefficient-W/mK, Lc length of the system across the
heat transfer-m, k is conduction heat transfer coefficient- W/m?K). However, in two-dimensional
finite element analysis based model the spatial thermal distribution of the system is considered
based on the material involved inside it which will be governed by differential equations and the
problem will be solved using finite number of elements by minimizing the error. Detailed analysis

of both methods and other approaches are discussed in depth in the above reference.
2.4 Data Measurement Techniques for EEC Models Parameter Estimation

Parameters of EEC model are estimated either using frequency domain or time domain data points.
To have frequency domain data of the battery cell, Electrochemical Impedance Spectroscopy (EIS)
is the popular impedance measuring device for electrochemical systems. The internal impedance
of the cell is measured for a frequency range of mHz to kHz to capture slow and fast system
dynamics. Time domain analysis is done from recorded terminal voltage using
charging/discharging current pulses with proper relaxation. If simple battery model is appropriate
for the application, electrical parameters of the EEC model can be extracted from manufacture
datasheet values and graphs, like in [44], though the model will not be accurate enough regarding
its transient behavior. The accuracy of EEC model highly depends on how the battery cell is
exercised during experimental data collection. Batteries degrade because of usage, life cycle stress
and other stability conditions. Destructive and nondestructive measurements can be done to observe
the degradation characteristics of the battery. Electrical characterization tests such as EIS,
charge/discharge cycling and OCV are nondestructive measurements. Furthermore, the internal
structure of the battery can be explored through ultrasonic transduction, neutron imaging, and X-
ray microscopy. Destructive tests need stripping the cell and directly observing changes in the

electrode morphology [45].
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24.1 Frequency Domain Measurement — EIS Characterization Technique

EIS has been used to characterize the electrochemical dynamics of batteries and other
electrochemistry based systems for measuring the electrochemical impedance at different
frequencies. The electrochemical impedance is usually measured by applying AC voltage (DC
voltage is also possible) to the system and measuring the current or the vice versa. For non-linear
system like lithium battery the applied AC signal should be small to treat the response as a linear
system. As shown in equations 2-18 and 2-19, voltage E(t) can be measured for battery cell current
I(t). From Ohms law, the ratio of the voltage to the current is a complex relation with amplitude
and phase which represents the impedance effect of the cell. Equation 2-20 and Figure 2-14 explains

this voltage-current relation.
E(t) = Eysin(wt) (2-17)
I(t) = Iysin(wt — ¢) (2-18)

Where, w = 2nf, f is the frequency of voltage and current applied.

-

NI
NN

LN
NN

phazse—shift

Figure 2-14 AC voltage and current for EIS [46]

_@ _ Egpsin(wt) sin(wt)
Z(t) - 1(t) - Igsin(wt—¢) - 40 sin(wt—¢)

=Zy(cose + jsing) (2-19)

EIS impedance data may be represented either in Nyquist or Bode plot. Having the EIS response
of the electrochemical system, the data is compared with the equivalent circuit response for
calculation of passive electric circuit elements. In Nyquist plot, real and imaginary part of the
impedance is represented by a point at a single frequency which is not shown explicitly. However,

in bode plot the magnitude and phase of the impedance response is represented in different plot,
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and the frequency is explicit. Electrical behavior of simple electrochemistry shown in Figure 2-15
as Randel’s electric circuit can be approximated using a double layer capacitance, electron transfer
resistance and uncompensated electrolyte resistance. The horizontal distance of the semicircle from
the imaginary axis represents the series resistance. If the impedance characteristic is as shown in
Figure 2-17, the data can be fitted by Randel’s equivalent model with Warburg impedance. At low

frequency, the impedance has a constant phase which can be modelled by Warburg impedance,
Aw
Gw) /2

where A4,, is the Warburg coefficient and w working frequency. At the middle frequency,

the Nyquist plot is semi-circular approximated by parallel resister capacitor network. When the
frequency gets higher and higher the imaginary part of the impedance becomes negligible which
has only resistive property. At higher frequencies, the Nyquist plot might have negative imaginary
part also which shows the inductive property of the cell. Adding resistor-inductor parallel network
or other possible combination of resistors and inductors in the equivalent circuit will handle this
characteristic. Detailed explanation of EIS technique for modeling different electrochemical system
is found in [46]. The electrochemical impedance should be measured at different operating
conditions i.e. Temperature, SoC and Capacity rate to get the impedance footprint of the battery
cell at those conditions. Curve fitting technique is applied to estimate electrical parameters of each

branches of the Nyquist plots.
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Figure 2-15 Simplified Electrochemistry and Equivalent Randle’s Circuit [47]
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Figure 2-16 Bode and Nyquist plot from EIS [47]
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Figure 2-17 Typical Nyquist plot and electrical circuit equivalent of each subpart
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Time Domain Measurement -

charge/discharge Current

Data of dynamics for the battery cell can be also extracted from the pulsed and relaxed terminal
voltage response. A pulse charge/discharge current is applied to the cell and terminal voltage is
measured. The battery cell can be exercised using different charge-discharge strategies. Pulse
charge-discharge, HPPC, DST are common methods [48]. Figure 2-19 shows a typical pulse
discharge pulse and relaxation voltage response. If response is zoomed as in Figure 2-20, the system

impedance can be approximated by a resister in series with RC elements. series equivalent
. . . . A
resistance of the cell is estimated from the voltage step AV; using Ohm’s law: Ry = % where |,

is the magnitude of discharge current. The transient part of the voltage response AV, can be
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approximated by one or more numbers of parallel RC branches. Thermal effect of the system can
be captured by performing the experimental test at different operating temperatures. During
modelling, the electric circuit parameters should be estimated and a relation should be developed.
Lookup table and exponential nonlinear equations are used, however the first one is more

convenient.
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Figure 2-18 (a) Typical HPPC test profile for full SoC range (b) HPPC test profile at
specific SOC
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Figure 2-19 Pulse discharge test
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2.5 SOC Estimation Techniques

SOC is a measure of the remaining capacity of the battery cell with respect to a reference capacity,
usually the nominal capacity of the cell. A nominal capacity is a value given by the manufacturer
which represents the maximum amount of charge can be stored in the cell. However, this definition
is not always true since the capacity of the cell varies at different operating temperature and cell
age. Open circuit voltage and cell impedance parameters have nonlinear relation with SOC.
Estimating SOC is a challenge in battery world since there is no direct way to measure it. It is also
a very important parameter for battery control strategy in BMS. Determining SOC of the cell
through the operating range is also vital for battery modelling accuracy. Various techniques are
proposed to estimate SOC from the simplest and most famous one, Coulomb counting to Adaptive

methods based on Artificial intelligent techniques.
2.5.1 Coulomb Counting (Book keeping) Method

The remaining capacity can be calculated by accumulating the charge transferred in and out of the
battery during charge and discharge. This calculation is needs knowing the initial capacity of the
cell. SOC is expressed in percentage form as shown in equation 2-21 below by integrating the
charge/discharge current through the operating range and accumulating the value in a memory,

where C,, is nominal capacity and 1) is the columbic efficiency. This technique highly relied on the
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current measurement accuracy and initial SOC estimation. Because of the integrator, the error
accumulates, and the estimated value may drift from the real SOC if the measurement noise is
significant. However, due to the simplicity it is implemented in most BMS, battery modelling and

other battery performance analysis.
SoC(t) = SoCo — o [, i(t)dt (2-20)

252 Open Circuit Voltage (OCV) Based

State of charge can be also estimated from the voltage measurement, which is nonlinear relation
between open circuit voltage and SOC as shown in Figure 2-21. The voltage measurement is
approximated by nonlinear function or a lookup table and implemented for SOC prediction.
However, the estimation may be inaccurate because of the battery voltage varies with temperature
and operating rate. Measuring the open circuit voltage is not also an easy task which needs long
relaxation time after discharge or charge for corresponding SOC calculation point. The voltage
characteristics has also hysteresis effect during charge transfer which influences the estimation
accuracy. Some lithium battery technologies have also flat SOC-voltage relation which makes
using this technique inefficient for those types of batteries.

Charge - Discharge Profile
4.3Volts——

Charge e
N i

Discharge

Battery Voltage

2.2 Volts——

!
0 309
State of Charge % 100%

Figure 2-21 Charge-discharge SoC voltage relation
253 Adaptive Methods (closed loop):

Several adaptive techniques such as Kalman filter, Fuzzy logic, Neural network or other recursive
methods are proposed for SoC estimation. These techniques have better accuracies due to their

closed loop strategy.
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Kalman Filters (KF): KF is an algorithm extensively used in system control and performance
analysis for estimating unmeasured states of the system. It is robust in handling measurement
uncertainties and system disturbances. The algorithm has state predicting and correcting stages. It
assumes a linear Gaussian state space relation of the system. It is not efficient for nonlinear state
space model and non-gaussian disturbance distribution. However, it has different variants to
support nonlinear systems: Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF). In
EKF the system, state space model is approximated by Gaussian random variable and the nonlinear
system model is approximated by first order linear model using Taylor series propagation. The
approximation may lead to large error or divergence of the actual and estimated state variables if
the noise distribution is far from Gaussian or due to the first order approximation. UKF algorithm
improves the efficiency by using deterministic sampling approach instead of first order
approximation of the nonlinear system. The system distribution is represented by sample points
which completely captures the system mean and covariance.

Kalman filter based algorithms require state space representation of the cell model as state and

output equations in discrete form.
X1 = [, wp, wi) (2-21)
Yie = 9(Xp, Uy, V) (2-22)

Where X is state variables and y output variables, f is transition matrix and g is measurement matrix,
w and v are system and measurement noises respectively. Though specific state space
representation for SOC estimation depends on the type of battery cell model chosen, basically it
includes coulomb counting based SOC equation with state disturbance as state equation and cell
terminal voltage/OCV relation with measurement noise as output equation to formulate the state
space model. For instance, for EEC model with series resistor and 2-RC networks the state space
model can be formulated as:

nigAt

SOCyyq = SOC; — 2~

+wy, (2-23)

Vi = OCV(SOCk) + Vro + VRrc1 + Vg2 + Vi (2-24)
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The output equation V,, requires the relation between OCV and SOC which is a challenge in SOC
estimation process. Various approaches from linear to more complex relations are proposed in
literature, the one shown in equation 2-25 is known as Nernst Model [49].

Ky
s0C;,

oCv(SoC,) = Ky — —— — K,S0C;, + K3In(SOC}) + K,1n(1 — SOC}) (2-25)

Where;
Xk = SOCk,yk = Vk, Up = ik (2'26)

In EKF algorithm, the state space equation should be linearized and approximated by first order

equation as a general form.
Xk+1 = Axk + Buk + ka (2'27)
Yk = ka + Rvk (2'28)

Where A is state matrix, B input matrix, H output matrix, Q system error covariance matrix, R
measurement error covariance matrix, P estimation error covariance, and K is Kalman gain. The

implementation of the algorithm has two basic steps, prediction and correction stages.

Prediction Step (Time Update):
Xy = AX;_q + Buy_4 (2-29)

P,: = APk_lAT + Q (2'30)

Kalman Gain Calculation:

Ky = PyHT(HPyHT + R)"" (2-31)

Correction Step (Measurement Update):
Xk = X + K (yr — HX}) (2-32)

P, = (I - K H)P;, (2-33)
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The algorithm needs also the initial estimates of the state (X;) i.e. SOC, and the state error
covariance matrix P, . Detailed information of using Kalman filters for SOC estimation is found in
[1] and [5].

Artificial Neural Network: it is an artificial intelligent technique with a mathematical model
consists of interconnected artificial neurons to estimate the dynamics of a system based on some
historical data that is taken from experiments. ANN has hidden, input and output layers. The
number of hidden layer may be any number; however, two hidden layers are usually enough to
train most of the dynamic systems. One hidden layer is also good enough to capture the system
dynamics. Each layer contains nodes. The nodes in the hidden layers have activation functions
which transform the input signal into output signal. The layers are connected by weights which will
be determined during the training of the neural network based on function minimization. Those
weight values contain information about the dynamics of the trained system. Two configurations
of ANN are available: Feedforward or Feedback configuration. In feedforward signals travel only
in forward direction however in feedback ANN signals also travel backward from output to input
neurons. In literature ANN is proposed to estimate SOC for battery management system. Data for
the training can be collected from the battery charge discharge profile under different working
conditions including temperature and capacity rate. Though it is highly data and training dependent,
some researchers claim as it has better dynamic performance and stability for SOC estimation. In
[50], ANN is compared with Kalman filter and the author showed EKF performs good if the battery

and noise models are accurate and ANN perform good if the training is accurate.

Inputs

Figure 2-22 ANN with one hidden layer and an input output layer [50]
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Chapter 3

Methodology

This chapter contains the methods applied to model lithium ion battery cell based on experimental
data measured in the lab. It consists the proposed model, experimental setups and test profiles.

Estimated parameters and simulation model are also presented.
3.1 Performance Model Structure

Current, I

Depth of

Voltage,|V Discharge| DOD

Power,

Cell internal
temperature, T

Ambient
Temperature, Ta

State of Health,
SOH

Figure 3-1 Typical battery cell model structure

Performance model of a lithium ion battery cell includes electrical, thermal and aging behaviors.
Figure 3-1 explains a typical interaction of those three models to simulate those behaviors. The
electrical model simulates voltage-current characteristics of the cell as a function of SOC, internal
temperature, current rate and its state of health (SOH). The thermal model predicts the cell internal
temperature considering current rate and working temperature. SOH of the cell is calculated from

the aging model which is a function of depth of discharge (DOD) profile and cell temperature. The
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main challenge in lithium battery cell modelling is the physical parameters in it are coupled and
vary nonlinearly with the operating temperature, current rate and state of charge of the cell. In this
work, the effect of working temperature (T), current rating (1) and variations with SOC is modelled
empirically. Experimental tests are done to capture those effects from the battery cell terminal

voltage-current relation.
3.2 Proposed Model

Temperature dependent EEC based model of a lithium ion battery cell is proposed as shown in
Figure 3-2. The electrochemical impedance characteristics of the cell is approximated by electrical
circuit elements. OCV is modelled with a variable voltage source to handle the variation SOC and
temperature. Instantaneous voltage-drop or rise of the cell during discharge and charge is modelled
with a resistor connected in series with OCV. The resister represents the electrolyte and current
collector resistive effect in the cell. Time dependent voltage change due to charge transfer and mass
transport inside the cell is captured with parallel RC circuits. A single or more RC circuit network
can capture dynamic behavior of the cell. Curve fitting techniques are applied to determine the
number of parallel RC circuits for capturing the system dynamics with high fidelity and low
parameter estimation complexity based on preliminary experimental data. Table 3-1 shows curve
fit comparison results with different number of RC elements on MATLAB curve fitting tool. Single
RC element is not good enough to handle the fast dynamics and shows high residual error. More
than one RC elements have good fitting. Fitting accuracy increases with number of RC impedance
elements however number of parameters to be estimated increase. Sum Square Error (SSE), Root
Mean Square Error (RMSE) and number of parameters (coefficients) are considered for
comparison. Three RC parallel elements are considered to model electrothermal behavior of the
cell with a trade of between fitting accuracy and parameter estimation. Considering the proposed
model, on discharge cell terminal voltage V; and current I;;5 are related as shown in equation 3.4,

where V. is OCV, V,, , V4, V, and V3 voltage drops on impedance elements.

. _L_ V1 _
V1= €1 RiCq B-1)
. _L_ V2 _
Uy = s RyCs (3 2)
. _L_ V1 _
V3 = 6 T RaCs (3-3)
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Figure 3-2 Proposed EEC battery cell model
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Figure 3-3 Experimental data and 1RC, 2RC, 3RC and 4RC model curve fit
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Table 3-1 Curve fit results comparison

Model RC SSE R-Square RMSE Number of

Networks
Coefficients

1RC 0.0106 0.7034 0.0017 2
2RC 5.6052e-4 0.9843 3.9464e-4 4
3RC 1.2884e-4 0.9964 1.8924e-4 6
4RC 9.2893e-5 0.9974 1.6075e-4 8

SOC estimation is the backbone of the model, Coulomb counting technique is implemented as
shown in Figure 3-4 using variable capacitor based electrical circuit. The capacitance of the
capacitor represents the maximum Amp-second (maximum cell capacity) which is a function of
temperature. The self-discharge and hysteresis effect of the cell is ignored in the model to minimize

model complexity and their effect is little.

+ L SoC
: A~ c(m

SoC mterms of voltage :
SoC()=SoC(t0)-1/C(T))idt

Figure 3-4 SOC estimation circuit
3.3 Experiment Setups

Battery test experiment is done using BaSyTec battery test platform in Cegasa Portable Energy
battery test laboratory. Temperature chamber is used to control the ambient temperature during the

test. The setup is as shown in Figure 2-1.
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Figure 3-5 BaSyTec Battery test system

The experiment is time domain based which captures the transient voltage characteristics of the
cell at different temperature (T), current (1) and SOC. The battery test device has enough technical

resolution and precision to capture the cell dynamics which is detailed in Table 3-2 below.

Table 3-2 BaSyTec battery test system specifications [51]

Type 25A

Resolution 0.ImV/ImA

Precision 1mv/50mA upto 25A
100mA per each 50A

Time resolution 1us

Rise time 2ms

Minimum pulse length 10ms

The experiment includes static capacity and dynamic tests for impedance parameter and SOC
estimations. Both tests are done using LFP lithium ion battery cell. The cell major technical

specifications are attached in the appendix section of this paper.
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3.3.1 Static Capacity Test

The purpose of the test is to calculate the maximum capacity of the cell at the required working
conditions. The test is performed in the following procedure:

1. Use anew battery cell and fully charge it with Constant Current Constant VVoltage (CCCV)
method.

2. Discharge the cell with 0.5C current rate (manufacturer recommended value)

3. Repeat charge-discharge cycle until the capacity stabilizes with less than 1% change after
three cycles, if the cell is new. The cell capacity increased slightly for the first few cycles
because of the solid electrolyte interface (SEI) effect in the new cell.

4. Calculate the maximum capacity.

Maximum capacity of the cell varies with working ambient temperature. Capacity test is performed

at different temperature which considered as break points in the modelling.
332 Dynamic Test

In the dynamic test, the transient voltage characteristics of the cell is measured at various working
conditions. During the test, up to 1C on charge and 3C on discharge maximum current rates are
considered. Those values are given as the maximum current limitations on charge-discharge of the

cell by the manufacturer of the cell under experiment.

From fully charge condition of the cell, current profile as shown in Figure 3-6 is applied. It is a
customized HPPC profile. Terminal voltage of the cell is recorded with 1-second voltage resolution.
0.2C, 0.5C, 1C, 2C, 3C discharge and 0.2C, 0.4C, 0.6C, 0.8C, 1C charge current pulses are
considered. The experiment is repeated at all temperature break points (i.e. 0°C,10°C, 20°C, 30°C,
40°C) and SOC break points (i.e. 100%, 98%, 94%, 90%, 80%, 70%, 60%, 50%, 40%, 30%, 20%,
10%, 6%, 4%, 2%, 0%) considered. The customized HPPC current profile is summarized as:

1. Discharge the battery cell with 0.2C for 20 seconds and pause it for 1hour (relaxation
time for the electrochemical reaction).

Charge it with 0.2C for 20 seconds and pause lhour.

Discharge it with 0.5C for 20 seconds and pause 1lhour.

Charge it with 0.4C for 25 second and pause 1hour.

o > 0 Dd

Discharge it with 1C for 20 seconds and pause 1hour.
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6. Charge it with 0.6C for 30 second with and pause 1hour.

7. Discharge it with 2C for 20 seconds and pause 1lhour.

8. Charge it with 0.8C for 50 second and pause 1hour.

9. Discharge it with 3C for 20 seconds and pause 1lhour.

10. Charge it with 1C for 60 second and pause 1lhour.

11. Then discharge the cell with 0.5C to the next SOC breakpoint

12. The test is repeated for different temperature points to capture the temperature effect.

From the measured terminal voltage, OCV-SOC relation is also calculated. Voltage value at the

end of the relaxation time is considered as OCV, assuming the cell fully recovered from polarization

during discharge/charge.
4 T T
Charge
2 - -
0.2C 0.4C ‘ 0.6C 0.8C 1C
0+ I ‘
2. 0.5C 1C 2 3C
€
2
34 Discharge 1
B 4
-8
10 I I L 1 1
0 0.5 1 15 2 2.5 3 3.5 4
time (seconds) «10*

Figure 3-6 Battery cell dynamic test current profile

3.4 Data Analysis and Parameter Estimation
The measured data shows that the cell voltage characteristics varies due to temperature and SOC
variation. Figure 3-7 is terminal voltage recorded during HPPC test at 10°C and 40°C. This is

mainly due to change of OCV and cell impedance parameters. Therefore, this variation of
impedance parameters should be estimated and included in the model.
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Figure 3-7 Cell terminal voltage during dynamic test at 10°C and 40°C

Hence, the main task in EEC modelling is the parameter estimation step for the proposed model.
Least square (LS) minimization method is common to find optimal parameters of a model either
based on sum squared or absolute error. In LS problem, the sum of the square of the errors between
the measured data points and the model function values is minimized iteratively by updating the
model parameters. In this work MATLAB/Simulink optimization tool is used to estimate
impedance parameters. It has various optimization methods and algorithms implemented within it.
Gradient descent, Nonlinear least square, pattern and simplex searches are the algorithm methods
included. The algorithm might be Levenberg-Marquardt, Trust-region-Reflective or other.
Levenberg-Marquardt is a standard technique to solve non-linear least square problems. It is a curve
fitting method combining two minimization methods; the Gradient decent and Gaussian methods.
Gradient descent method minimizes the sum of the squared errors by updating the parameters in
the steepest-descent direction. However, Gauss-Newton method minimize the sum of the squared
errors by assuming the least squares function is locally quadratic, and finding the minimum of the
guadratic. The Levenberg-Marquardt method is more like a gradient-descent method when the
parameters are far from their optimal value, and acts more like the Gauss-Newton method when
the parameters are close to their optimal value. The problem formulation and numerical
implementation of the algorithm is detailed in [22]. Trust-region-Reflective is a minimization
approach based on trust region, not a line search algorithm. Here, the problem is approximated by
a simple function within the neighborhood of the data point, and that neighborhood is the trust

region. This trust region is adjusted from iteration to iteration. If the approximated model fits the
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original problem well the trust region can be enlarged, otherwise if the approximation is bad the
trust region should be reduced. The method is strongly associated with approximation [52].
Levenberg-Marquardt method has a limitation of handling bound constraints and Trust-region-
Reflective methods doesn’t solve undetermined systems. Figure 3-8 shows some windows of the
graphic user interface of MATLAB optimization toolbox. Parallel pool option in the toolbox is also
selected during estimation to use all local works in the computer which makes the estimation
process faster. Trust-region-Reflective is chosen as optimization method since the impedance
parameters to be estimated are bounded. The resistance and capacitance values should be greater
than zero which enforce bounded constraints in the optimization problem. Since the training data
for the whole SOC range is big, the parameter estimation is done separately for each SOC break
points separately and finally the estimated parameters are collected. Detail explanation of how to
use MATLAB optimization toolbox to estimate parameters in a Simulink model is explained in the

toolbox user’s guide [53].
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Figure 3-8 MATLAB Optimization Toolbox GUI snapshot
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3.5 Simulink Implementation of the Model
3.5.1 Model Subsystems

Simulation model of the battery cell is as shown from Figure 3-9 to Figure 3-11. The model consists
of three parts: impedance, SOC estimation and OCV model. The impedance subsystem is variable
resistor and capacitor elements with 3D lookup tables.
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Figure 3-9 Model top level system
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Figure 3-10 Model subsystems
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Figure 3-11 OCV and SOC estimation subsystems detail

It is also applicable to connect the cell model in parallel or/and series and simulate battery pack
level behavior, but in this work the model is not validated for battery pack level which will be done

in the future work.

Figure 3-12 6X3 cell battery pack model

The model also has mask parameters or graphic user interface (GUI) as shown in Figure 3-13. It
helps to change model parameters easily, like change the initial state of charge and ambient

temperature and capacity of the battery cell.
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Figure 3-13 Model GUI (parameter mask)

352 Estimated Parameters

Maximum Cell Capacity: Maximum cell capacity as a function of temperature which is extracted

from static capacity test is described in Table 2-1. It shows that the cell capacity increases with

ambient temperature.

Table 3-3 Maximum cell capacity at different temperature

Temperature (C) Max. Cell Equivalent
Capacity (mAh) Capacitance (F)
0 3250 11700
10 3300 11880
20 3310 11916
30 3318 11945
40 3360 12096

OCV: open circuit voltage of the cell is collected from the dynamic test at each SOC and ambient
temperatures is plotted as 2D graph shown below in Figure 3-14 and Figure 3-15. From fully charge



up to 35% SOC, higher temperature has higher OCV value. However, this is not true when SOC

goes below that.

w
N

OCV (volts)
w

N
©

I
o o

100

60
40

Temprature (°C) 0 o0 SoC (%)

Figure 3-14 2D plot of OCV as a function of temperature and state of charge
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Figure 3-15 OCV at different temperature
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Cell Impedance Parameters:

From the estimated results, it is difficult to draw a conclusion about the trend of the parameter
values as a function of SOC or current. This is because the objective of the estimation algorithm is
to minimize the sum squared error of the cost function considering any combinations of the
parameters. The only constraint is the parameters should positive since they represent physical
electrical impedance elements. However, series resistance is higher at lower SOC level of the
battery cell, specially SOC less than 10%. The value of R, also increase with the current value as

a general trend. The estimated impedance parameters are shown from Figure 3-16 to Figure 3-22.
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Figure 3-16 R, at different ambient temperature points
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Chapter 4

Result and Discussion

In this chapter, model simulation results are compared with measured values and model
performance is commented. The model is also validated using new experimental date from HPPC,
DST and Pulse Discharge profiles.
4.1 Effect of SOC estimation, Number of model RC networks and temperature on
terminal voltage
4.1.1 SOC Estimation Result for HPPC Profile

SOC is estimated using coulomb counting technique. Figure 4-1 shows the calculated SOC from
the current profile and estimated from the measured current. The error between those two SOC is
in Figure 4-2. The difference is high at the current transition points. It is partially the current shoots
of charging/discharging device and the limitation in sampling rate. The error introduces

proportional cell terminal voltage error since the model parameters depend on cell SOC.

100
90 -
80 - -
70 - =
60 [ -

S

O 50 =

o

12}
40 - -
30 - .
20 [~ | -
10 L"'—"LrLr‘ —
o I I I I Ul

0 1 2 3 4 5 6
Time (seconds) x10%

Figure 4-1 SOC estimated and calculated
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Figure 4-2 % SOC Error between estimated and calculated
4.1.2 Number of RC Networks

In Figure 4-3 measured voltage is compared with model simulated voltage with different
number of RC networks. Model with 3RC network has good performance for both high

and low frequency.
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Figure 4-3 Measured & model simulated voltage with different number of RC networks at
40°C
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Figure 4-4 Measured & model simulated voltage with different number of RC networks at
40°C (zoomed)
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413 Temperature Effect

Operating ambient temperature has effect on the cell terminal voltage. Both OCV and impedance
parameters are affected by temperature. Figure 4-5 compared the measured terminal voltage at
40°C and Model simulation considering the ambient temperature far from 40°C. at it is shown in
the figure considering working temperature in modelling improves the model performance well. At
low SOC the effect is significant.
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Figure 4-5 Effect of temperature correction on the model accuracy
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Figure 4-6 Effect of temperature correction on the model accuracy (zoomed)

4.2 Model and Measured Values Comparison

HPPC test data is compared with measured data at different temperature points from 98%-2% SOC

range.
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Figure 4-7 Measured and estimated terminal voltage at 10°C
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Figure 4-8 Measured and estimated terminal voltage at 10°C zoomed at 60% SOC (left) and
3C current rate (right)

The error between measured and model value is high at the current transient instants, however the
mean sum squared error is lower than 10mv. The error also gets higher for SOC range less than
10%. This is because of the change in VOC in this range is higher. This error can be reduced by

increasing the number of SOC breakpoints in the range.
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Figure 4-9 Voltage error at 10°C
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@Temperature = 20°C
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Figure 4-11 Measured and estimated terminal voltage at 20°C zoomed at 90% SOC (left)

and 3C current rate (right)
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Figure 4-12 Voltage error at 20°C
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Figure 4-13 Measured and estimated terminal voltage at 30°C
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Figure 4-14 Measured and estimated terminal voltage at 30°C zoomed at 60% SOC (left)

and 3C current rate (right)
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Figure 4-15 Voltage error at 30°C
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@Temperature = 40°C
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Figure 4-17 4-18Measured and estimated terminal voltage at 40°C
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Figure 4-19 Measured and estimated terminal voltage at 40°C zoomed at 50% SOC (left)
and 3C current rate (right)
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Figure 4-20 Voltage error at 40°C
4.3 Model Validation

The proposed model is validated with new measurement data from HPPC, DST and pulse discharge

tests.

43.1 Hybrid pulse power characterization (HPPC)

A new HPPC test is done at 30C and the model validation result is shown in Figure 4-21 from

100% to 80% SOC.
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Figure 4-22 HPPC model validation at 30°C zoomed at 94% SOC (left) and at 3C current

rate (right)
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Figure 4-23 Voltage error for HPPC model validation at 30°C
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Figure 4-24 Voltage error for HPPC model validation at 30°C (zoomed)

Dynamic Stress Test (DST)

The model is tested with DST current profile shown in Figure 4-25 to validate the dynamic

robustness of the model. Figure 4-25 shows customized current profile for validation and Figure

4-26 is measurement and model response for full discharge of the cell at 30°C. The model is also
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validated with the same current profile at 35°C and 40°C. As it is shown from the figures below,
the model performs good during validation except for low SOC of the cell.

. Dynamic stress test (DST) current profile
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Figure 4-25 Customized DST current profile
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Figure 4-26 DST model validation at 30°C
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Figure 4-27 DST model validation at 30°C (zoomed)
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Figure 4-28 Voltage error for DST model validation at 30°C
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Figure 4-29 Voltage error for DST model validation at 30°C (zoomed)
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Figure 4-30 DST model validation at 35°C (100-0%SOC discharge)
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Terminal voltage at 35°C (DST validation from 100-55%SOC)
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Figure 4-31 DST model validation at 35°C (100%-55%SOC discharge)
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Figure 4-32 Voltage error for DST model validation at 35°C (100%6-55%SOC discharge)
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Figure 4-33 DST model validation at 40°C (100-0%SOC discharge)
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Figure 4-34 Voltage error for DST model validation at 40°C
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4.3.3 Pulse Discharge

The model is also validated on pulse discharge currents shown in Figure 4-35 for fully
discharge of the cell at 30C°.
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Figure 4-35 Pulse discharge model validation at 30°C
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Figure 4-36 Pulse discharge model validation at 30°C (zoomed)
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Figure 4-37 Voltage error for pulse discharge model validation at 30°C
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, MATLAB simulation model is developed for lithium ion battery cell based on
experimental data. Hybrid pulse power characterization test is performed to collect data for
parameter estimation. The model is an EEC which consists of a variable voltage source in series
with a resister and three parallel RC networks. State of charge, temperature and current dependent
impedance parameters are considered in the model. The model parameters are represented in
lookup table form. MATLAB optimization toolbox is applied to estimate the final value of the
parameters based on least square minimization techniques. The model is finally validated using
dynamic stress and pulse discharge experimental tests. Simulink/Simscape based is lithium ion
battery cell simulation model is developed as the main contribution of the work.

The focus of the work was developing temperature dependent battery cell model for pack and
system level simulation. Lithium ion is now common in many applications as a power source from
portable device to huge storage systems. The model can be used to simulate the performance of a

lithium ion battery in various applications including hybrid power systems.
5.2 Future Work

The modelling approach implemented is empirical. Hence, the estimated parameters of the model
are highly dependent on the quality of the experimental data. The performance and robustness of
the model can be improved by exercising the battery well during experiment to capture the battery
dynamics better. The way parameters estimated for the system is, the estimation is done for single
SOC and temperature point with different cell current on charge and discharge. The parameters are
collected to form full matrix. This is due to the limitation of estimating to many parameters with
too much data points in the optimization toolbox. The accuracy of the model can be increased by

estimating parameters at fixed charge-discharge current and temperature with full SOC range.

The model developed assumes the battery cells under experiment are ‘new’ which means that the
they exercised only few numbers of cycles. However, as the number of cycles increase the electrical

and thermal behavior of the battery cell changes. To consider this degradation effect in the model,
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it needs lifetime experimental data of the cell. The experimental test to analyze the degradation
effect of the cell usually needs long time. In the future work this effect will be included by
performing the necessary experimental tests.
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Appendix A
LFP Battery Cell Technical Specifications

Item Dimension (mm)
Diameter(d) 26.2+0.1
Height(H) 65.6:0.4

Figure 7-1 Cell appearance and dimension

No. Item Standard Note
1 Standard Capacity 3200mAh 0.5C.( current value of 3200mA at 1C)
2 Capacity Range 3100~3300mAh 0.5C
3 Standard Voltage 32V
4 Alteman_ng Internal <30mQ with PTC
Resistance
Cut-off - . s ,
. . 3.65£0.05V constant current charge to 3.65V at 0.5C,
Charge Voltage = .
5 Conditions Cutofl constant voltage charge to stop until
\ 0.01C 0.01C mA
Current
6 DischargeCut-off Voltage 2.5V
] TR . 100% DOD, the residual capacity is no
/ Cyele Characteristic 2000 times less than 80% of rated capacity at 1C rate.
g Max. C 011t131110us Discharge 9 6A
Current
9 Pulse Discharge Current I5A, 5s
. o - Charge:0°C~55°C
10 Working Temperature Discharge:-20°C~60°C
11 Storage Temperature -20°C ~ 45°C
12 Battery Weight 86 g (Approx.)

Figure 7-2 Battery cell major technical parameters
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