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Combination therapy consists in the simultaneous administration of a conventional

chemotherapy drug (or sometimes, a radiotherapy protocol) together with one or more

natural bioactives (usually from plant or fungal origin) of small molecular weight. This

combination of anticancer drugs may be applied to cell cultures of tumor cells, or to

an animal model for a cancer type (or its xenograft), or to a clinical trial in patients.

In this review, we summarize current knowledge describing diverse synergistic effects

on colorectal cancer cell cultures, animal models, and clinical trials of various natural

bioactives (stilbenes, flavonoids, terpenes, curcumin, and other structural families), which

may be important with respect to diminish final doses of the chemotherapy drug, although

maintaining its biological effect. This is important as these approaches may help reduce

side effects in patients under conventional chemotherapy. Also, these molecules may

exerts their synergistic effects via different cell cycle pathways, including different ones to

those responsible of resistance phenotypes: transcription factors, membrane receptors,

adhesion and structural molecules, cell cycle regulatory components, and apoptosis

pathways.
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INTRODUCTION

CRC is the third most common cancer in men (after lung and prostate cancers) and the second
in women (after breast cancer) worldwide, with a prevalence of 10.0 and 9.2%, respectively
(Merrill and Anderson, 2011; Bray et al., 2013; Ferlay et al., 2015). CRC is also one of the leading
death causes and, despite the improvement in our knowledge in this disease achieved in recent
years, current treatments are not enough to control metastatic forms of CRC (Santandreu et al.,
2011). Surgery is the main procedure in patients with potentially curable CRC, but neoadjuvant
chemotherapy and/or radiotherapy is sometimes given before or after surgery depending on disease
stage. However, these treatment regimens are not enough to control CRC, since 30% of patients
with stage I–III and up to 65% of patients with stage IV will develop recurrent disease (van der Stok
et al., 2016), highlighting the urgency of finding new and more effective treatment schemes.

The potential of nutraceutical natural compounds such as flavonoids, anthocyanidins,
carotenoids, or terpenoids for cancer prevention has been widely investigated, and there are
many evidences supporting that moderate consumption of fruits and vegetables is correlated with
decreased risk of CRC (Fernández et al., 2016). Somemembers of these families of compounds have

http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org/Pharmacology/editorialboard
http://www.frontiersin.org/Pharmacology/editorialboard
http://www.frontiersin.org/Pharmacology/editorialboard
http://www.frontiersin.org/Pharmacology/editorialboard
https://doi.org/10.3389/fphar.2017.00109
http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2017.00109&domain=pdf&date_stamp=2017-03-14
http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive
https://creativecommons.org/licenses/by/4.0/
mailto:lombofelipe@uniovi.es
https://doi.org/10.3389/fphar.2017.00109
http://journal.frontiersin.org/article/10.3389/fphar.2017.00109/abstract
http://loop.frontiersin.org/people/398447/overview
http://loop.frontiersin.org/people/256636/overview
http://loop.frontiersin.org/people/419567/overview
http://loop.frontiersin.org/people/252027/overview


Redondo-Blanco et al. Colon Cancer Combination Therapy

the ability to modulate signaling pathways as well as to regulate
the expression of genes involved in cell cycle regulation,
differentiation, and apoptosis (Pan et al., 2011). Besides being
useful in prevention, some of these molecules could be also
helpful for the treatment of CRC, especially in combination with
other drugs.

Combination therapy allows targeting simultaneously
different pathways involved in cancer, taking advantage
of different mechanisms of action in order to reduce the
development of tumor drug resistance (Housman et al.,
2014). In the case of CRC, diverse cell cycle alterations are
involved in its establishment and development, as in the case
of chromosomal instability versions (CIN; around two-thirds
of cases), the DNA mismatch repair phenotype (around
15% of CRC cases) and other less frequent CRC versions as
abnormal DNA methylation, colon inflammation status, and
microRNA triggering effects (Colussi et al., 2013). In CIN
CRC phenotypes, for example, diverse signaling pathways
become affected, as those involving APC, β-catenin, Tcf, and
WNT proteins (Morin et al., 1997; Sparks et al., 1998). Several
studies published in recent years have shown that cancer
treatment through combinatorial approach is much more
effective than the use of drugs individually (Singh et al., 2013).
Also, chemosensitization by means of phytochemicals, based
on the use of a natural compound to increase the activity
of a drug through modulation of its resistance pathways, is
one of the strategies proposed to overcome chemoresistance,
one of the main challenges in CRC treatment (Amiri et al.,
2013).

Combinations of two drugs onto a biological system may
produce improved (synergistic), reduced (antagonistic), or
identical (additive) effects compared to their effects when acting
separately. Since combinatorial approach to cancer treatment
with natural compounds is a promising way to avoid resistances
(by affecting more than one target) and to enhance the potency
of chemotherapy (through chemosensitization; Majumdar et al.,
2009; Gupta et al., 2011), it is necessary for researchers to
mathematically assess the nature of these interactions between
molecules. This is often made by using the Chou-Talay
combination index (CI), based on the median-effect equation:
CI = a/A + b/B (Chou and Talalay, 1984). A and B are,
respectively, the doses of drug A (alone) and B (alone) needed
to produce a specified effect while a and b is the dose in
combination that produces the same effect. CI shows an additive
interaction between two drugs when it is equal to 1, synergism
when CI < 1, and antagonism when CI > 1 (Tallarida,
2002).

STILBENES

Resveratrol (Figure 1A) is a stilbene found in more than 70
plant species, including edible plants such as grapes, raspberries,
blueberries, or peanuts, and the Japanese knotweed (Polygonum
cuspidatum), which contains the highest naturally occurring
levels of this molecule (Burns et al., 2002). Resveratrol is a
phytoalexin, a natural inhibitor of cell proliferation, synthesized

by plants in response to environmental stress and pathogenic
invasion (Singh et al., 2013).

Since the publication in 1997 of the chemopreventive activity
of topically applied resveratrol in a mouse model of skin
cancer (Jang et al., 1997), this natural compound has been
extensively studied for the prevention and also treatment of
many diseases, including CRC. The promising in vitro results
of these studies have made resveratrol one of the natural
compounds that have attracted more attention in recent times,
even among mainstream media. For example, resveratrol can
interfere with some hallmarks of cancer, protecting against both
tumor initiation and cancer progression by interfering with
cytochrome P450 isoenzymes, inhibiting cyclooxygenase (COX)
enzymes and decreasing DNA binding activity of NF-kB, which
is usually upregulated in cancer. Resveratrol can also mimic the
effects of caloric restriction and protect against metabolic disease,
through activation of the SIRT1 histone deacetylase and AMPK
(Gescher et al., 2013; Carter et al., 2014).

Beyond its potential usefulness in cancer chemoprevention
or even treatment, recent studies have shown that resveratrol
can exert synergistic activities used in combination with other
chemotherapeutic agents (Table 1). This would allow to establish
a new and more effective treatment with fewer side effects (Singh
et al., 2013). An overview of the studies published to date
analyzing combinations of resveratrol with antitumor drugs is
reviewed below.

Combinations of resveratrol and quercetin have been shown
to synergistically induce apoptosis in the MOLT-4 leukemia cell
line (Mertens-Talcott and Percival, 2005). Based on this study,
the effects of different concentrations of a 1:1 combination of
quercetin and resveratrol on the HT-29 CCR cell line were
analyzed, focusing on its effect on Sp transcription factors, usually
overexpressed in tumors. The combination of both compounds
induced apoptosis in the HT-29 line, decreasing RNA and protein
levels of survivin, Sp1, Sp3, and Sp4, in a pathway in which the
microRNA-27a appears to be involved. It should be noted that in
this study no synergistic effect can be detected between the two
compounds since all the tests were carried out with combinations
of both compounds and their effects alone were not analyzed (Del
Follo-Martinez et al., 2013).

Using an azoxymethane-induced mouse model of colon
carcinogenesis, recent studies showed that a combination of
resveratrol and grape seed extract reduced the incidence of
tumors as much as the nonsteroidal anti-inflammatory drug
sulindac, without occurrence of toxicity. In addition, in vitro
assays performed with isolated human colon cancer stem cells
(CSCs) showed that this combination of compounds suppressed
proliferation, sphere formation and nuclear translocation of β-
catenin through the downregulation of c-Myc and cyclin D,
downstream proteins ofWnt/β-catenin pathway (Reddivari et al.,
2016).

In 2004, it was discovered that resveratrol sensitizes
HCT116 CRC cells to 5-Fluorouracil (5-FU; Fulda and
Debatin, 2004). The first experiments were conducted in
SHEP neuroblastoma cells, finding that resveratrol induces
apoptosis in cooperation with several antitumor drugs (VP16,
doxorubicin, cytarabine, actinomycin D, taxol, or methotrexate).
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FIGURE 1 | Chemical structures of bioactive stilbenes and flavonoids described in the text. (A) Resveratrol, (B) pterostilbene, (C) isoliquiritigenin, (D)

apigenin, (E) chrysin, (F) quercetin, (G) oroxylin, (H) kaempferol, (I) genistein, (J) flavopiridol, (K) silibinin, (L) scutellarin, (M) EGCG.

Interestingly, pretreatment with resveratrol prior to exposure
of these antitumor drug was more effective than concurrent or
subsequent treatment. In order to test the role of p53 in the
chemosensitizing effect of resveratrol, additional experiments
were performed with wild-type p53 and p53-deficient HCT116
CRC cells. Pretreatment with 30 µM resveratrol for 24 h
increased apoptosis induced by 5-FU (at 10, 30, and 100
µM during the next 24 h) on both cell lines. These results
suggest that resveratrol can induce cell cycle arrest and
apoptosis independently of p53 status (Fulda and Debatin,
2004). Nevertheless, other researchers have reported that p53
upregulation could play an important role on the synergistic
effect between resveratrol and etoposide, a topoisomerase II
inhibitor used as an antineoplastic drug (Amiri et al., 2013).

Resveratrol also sensitizes HT-29 and SW620 CRC cell lines
to cytotoxic oxidative stress induced by 5-FU, by inhibiting
their endogenous antioxidant capacity (Santandreu et al., 2011).
Moderate resveratrol concentration (15 µM) in combination
with very low 5-FU (0.5 µM) concentration causes a significant
inhibition of cell proliferation, migration, and cell cycle arrest at

S phase, leading to apoptosis in HCT-116 cells. The same study
provides evidence suggesting that its mechanism of action may
be related with the activation of the MAPK pathway through
upregulation of p-JNK and p-p38, with no p-ERK changes
(Mohapatra et al., 2011). Similar results were found in a study
with etoposide resistant HT-29 cells, where resveratrol was able
to chemosensitize HT-29 cells promoting cell cycle inhibition,
reactive oxygen species (ROS) generation, AMPK activation, and
apoptosis induction (Hwang et al., 2007a).

Inter-cellular junctions could play an important role in
the synergism observed between resveratrol and 5-FU, a
drug which can induce an increase of mesenchymal features
and loss of epithelial ones in CRC cells; those related to
cancer proliferation, motility, drug resistance and metastasis.
Resveratrol chemosensitizes CRC cells to 5-FU through
inhibition of EMT (epithelial–mesenchymal transition) factors
(vimentin and SNAI2 proteins), up-regulation of intercellular
junctions (desmosomes, gap and tight junctions, and adhesion
molecules such as E-cadherin) and by down-regulation of NF-kB
pathway (Table 1; Buhrmann et al., 2015).
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TABLE 1 | Summary of main in vitro and in vivo synergistic effects of combinations of stilbenes and chemotherapeutic compounds against CRC.

References Tested

molecule

In combination

with

Experimental model Main result Proposed mechanism

Ali and Braun, 2014 Resveratrol Mitomycin C CRC cell culture (primary

cell lines from resected

colorectal tumors)

Synergistic suppression of cell

proliferation by resveratrol and

Mitomycin C

Up-regulation of p21WAF1/CIP1

Amiri et al., 2013 Resveratrol Etoposide CRC cell culture

(HCT-116)

Synergistic effect of resveratrol on

etoposide

Up-regulation of TP53
expression

Buhrmann et al., 2015 Resveratrol 5-Flourouracil CRC cell culture

(HCT-116, SW480) in a

3D-alginate

microenviroment

Synergistic activity between

resveratrol and 5-Fu decreasing

viability and inducing apoptosis

Up-regulation of desmosomes,

gap and tight junction adhesion

molecules. Inhibition of EMT

factors. Down-regulation of

NF-kB activation

Kaminski et al., 2014 Resveratrol Oxaliplatin CRC cell culture (Caco-2) Positive: CRC cells

chemosensitization by resveratrol.

Synergistic activity of resveratrol

and oxaliplatin inhibiting CRC cell

growth

Induction of cell death

Kumazaki et al., 2013 Resveratrol 5-Fluorouracil CRC cell culture (DLD-1,

SW480, COLO201)

Synergistic enhancement of

growth inhibition and apoptosis

Up-regulation of miR-34a

expression causing a

down-regulation of E2F3

Majumdar et al., 2009 Resveratrol Curcumin CRC cell culture

(HCT-116) and mouse

xenograft CRC models

Synergism between curcumin and

resveratrol inhibiting growth of

CRC cells in vitro and in vivo

Attenuation of NF-κB activity.

Inhibition of constitutive

activation of EGFR

Mohapatra et al., 2011 Resveratrol 5-Fluorouracil CRC cell culture

(HCT-116)

Synergistic induction of apoptosis Cell cycle arrest in S phase,

enhanced DNA damage

Santandreu et al., 2011 Resveratrol 5-Fluorouracil CRC cell culture (HT-29,

SW620)

Positive: Resveratrol sensitize CCR

cells to 5-Fluorouracil

Increase in oxidative stress,

inactivation or down-regulation

of redox-sensitive proteins

Yang S. et al., 2015 Resveratrol Oxaliplatin CRC cell culture

(HCT-116, HT-29) and

mouse xenograft CRC

model

Synergistic effect of resveratrol and

oxaliplatin in a miR-34c dependent

manner

Up-regulation of miR-34c

Fulda and Debatin, 2004 Resveratrol 5-Fluorouracil CRC cell culture

(HCT-116) and other

human cancer cell lines

Positive: Resveratrol sensitizes

CRC cells for subsequent

treatment with 5-Fu

Cell cycle arrest and apoptosis

by downregulation of surviving,

irrespective of p53 status

Hwang et al., 2007a Resveratrol Etoposide CRC cell culture (HT-29) Positive: Resveratrol

chemosensitizes CRC cells for

subsequent treatment with

etoposide

inhibition of cell growth,

increase of ROS generation,

activation of AMPK, induction

of apoptosis

Tolba and

Abdel-Rahman, 2015

Pterostilbene 5-Fluorouracil CRC cell culture

(HCT-116, Caco-2)

Synergistic effect of pterostilbene

on cytotoxic effects of 5-FU

Supression of Akt and ERK

phosphorylation. Increase of

FOXO-1 and p27kip1 levels

A new mechanism based on miR-34a has been also described
which may partially explain the synergistic inhibition of HCT116
growth induced by resveratrol and 5-FU. Here, resveratrol
promoted suppression of PI3K/Akt and MAPK Erk1/2 signaling
pathways and upregulation of miR-34a expression, which
downregulates E2F3 gene expression and its downstream target
Sirt1 gene (Kumazaki et al., 2013).

Other recent study shows that resveratrol chemosensitizes
HT-29 and HCT-116 CRC cells to oxaliplatin through up-
regulation of miR-34c, which in turn knocked down its target
KITLG. This result was confirmed in xenograft mice, where
the combination treatment with oxaliplatin and resveratrol
was more effective inhibiting tumor growth than individual
treatments (Yang S. et al., 2015). Also, resveratrol and oxaliplatin

combinations synergistically inhibit cell growth of Caco-2 CRC
cells via apoptosis and necrosis induction (Kaminski et al., 2014).

Mitomycin C is another drug that can be potentially enhanced
by resveratrol. Unlike mitomycin C, resveratrol can induce
p21WAF1/CIP1 overexpression regardless of p53 status, and a
combined treatment of these two compounds has inhibited
synergistically the proliferation of mitomycin C-resistant CRC
cells (Ali and Braun, 2014).

Pterostilbene (Figure 1B), a structural analog to resveratrol,
characterized by the presence of two methoxy groups instead of
resveratrol hydroxyl groups, is able to enhance 5-FU treatment in
CRC cells. This synergistic effect is stronger in Caco-2 cells, which
express higher levels of ER-β (estrogen receptor beta) compared
with HCT116 cells (Tolba and Abdel-Rahman, 2015).
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Despite all these promising features of resveratrol as
chemopreventive, chemotherapeutic and chemosensitizer agent,
clinical trials and other in vivo evidences suggest that there
may be limitations in clinical application, mainly due to
its low systemic availability. Between 70 and 80% of orally
consumed resveratrol is quickly absorbed via passive diffusion
in the enterocytes. After that, conjugated resveratrol derivatives
(glucuronides and sulfates) are rapidly formed, and only 2%
of unmodified trans-resveratrol is found in the blood, reaching
its maximum concentration between 30 and 60 min after
ingestion (Carter et al., 2014). For example, a single 25mg
dose of resveratrol results in a 2 mM (490 ng/mL) serum
peak for resveratrol and all of its metabolites, with only
trace amounts of unmodified resveratrol (<5 ng/mL; Walle
et al., 2004). Furthermore, it has been observed that resveratrol
absorption and pharmacokinetics are strongly influenced by food
matrix (Rotches-Ribalta et al., 2012) and by its metabolism by
gastrointestinal microbiota (Bode et al., 2013). Also, resveratrol
dosage in patients and volunteers over 1 g per day has shown
gastrointestinal adverse effects such as diarrhea, flatulence,
nausea, and abdominal pain (Brown et al., 2010). Anyway,
resveratrol and its metabolites have been identified in normal and
tumor colorectal human tissue samples, in higher concentrations
than those found in blood samples after intake doses of
0.5–1 g/day. Thus, colorectum is a suitable target tissue for
chemoprevention and combination therapy by oral resveratrol,
as observed concentrations in this tissue are able to produce
pharmacological effects (Patel et al., 2010).

FLAVONOIDS

Flavonoids are one of the most numerous and widely distributed
family of bioactive compounds in plants. These polyphenolic
secondary metabolites are essential for plants morphology and
physiology. Flavonoids are involved in flowers, seeds, stems, and
leaves pigmentation, as well as in its growth and reproduction
(to attract pollinators), while at the same time they protect
plants against microbial infections and ultraviolet radiation
(Harborne and Williams, 2000). Chemically, flavonoids are
characterized by showing a 15-C skeleton (structured as C6-
C3-C6) with two phenyl aromatic rings (A and B) plus one
heterocycle aromatic ring (ring C), all of them tailored with
one or more hydroxyl groups (Manach et al., 2004). Flavonoids
are further subdivided into several subgroups depending on the
degree of substitution: chalcones (as isoliquiritigenin); flavanones
(as naringenin), flavones (as apigenin and luteolin), flavonols
(as quercetin and kaempferol), flavanols (as epigallocatechin),
isoflavones (as genistein), and anthocyanins. Flavonoids are
the largest group of diet polyphenols, with more than 4,000
representatives (Manach et al., 2004; Kumar and Pandey, 2007).

Although, flavonoids are not necessary nutrients for well-
being in the short-term, there are several evidences that claim that
a moderate intake has beneficial long-term health effects. These
compounds, the same as stilbenes, are powerful antioxidants that
prevent the appearance of tumors, cardiovascular diseases and
osteoporosis, improve cognitive functions and diabetes; or have

phytoestrogenic, anti-inflammatory, antibacterial, or antiviral
actions, having therefore a strong impact on human health
(Kumar and Pandey, 2013).

Isoliquiritigenin
Isoliquiritigenin (Figure 1C), a chalcone originated from dried
roots of several Glycyrrhiza species (licorice plants), exhibits
antioxidant, estrogenic, and anti-tumor activities (Guo et al.,
2008). It has shown synergistic effect in combination with
cisplatin in a xenograft mice model for CRC using CT-26
mouse CRC cells. In this mice model, an oral dose of 1 mg/kg
of this chalcone, plus an intraperitoneal cisplatin injection of
5 mg/kg were able to reduce 79% the tumor growth. Also,
addition of isoliquiritigenin to this cisplatin treatment was able
to reduce liver and kidney damage, as transaminases (AST, ALT),
creatinine and blood urea nitrogen levels were kept at normal
concentrations, in contrast with control cisplatin treatment.
With respect to oxidative damage, this combination therapy
with isoliquiritigenin reduced nitric oxide serum levels, lipid
peroxidation and GSH levels, in contrast to cisplatin treatment
alone (Table 2; Lee et al., 2008). This point is very interesting,
as major hepatic damages caused by cisplatin are bound to
increased oxidative damage due to depletion in GSH levels
and an increase in malonaldehyde and membrane peroxidation.
Cisplatin treatment is also associated to increased serum levels
of transaminases and bilirubin, two important markers for
hepatic damage, following histopathological changes as necrosis
and hepatocytes degeneration with infiltration of inflammatory
cells around portal vein (Caro and Cederbaum, 2004; Dasari
and Tchounwou, 2014). Increased liver damage due to cisplatin
has been observed in patients with higher expression levels
of cytochrome P450-2E1 (Caro and Cederbaum, 2004). The
reduction achieved in cisplatin doses, if transferred to in vivo
experiments, would contribute to a potential reduction in
side effects caused by this drug, which usually are associated
to ototoxicity, gastrotoxicity, myelosuppression, hepatotoxicity
(due to ROS causing a reduction in GSH levels and an increase
in malonaldehyde), cardiotoxicity (due to depletion in cardiac
myocytes of lactate dehydrogenase and creatine kinase, following
membrane peroxidation in these cells), and nephrotoxicity (due
to inhibition of carnitine synthesis and its reabsorption by the
proximal tube; Dasari and Tchounwou, 2014)(Figure 3).

Apigenin
Apigenin (Figure 1D) is one of the most widely distributed
flavones in fruits and vegetables, such as parsley, Chinese
cabbage, bell pepper, garlic, celery, and guava (Manach et al.,
2004). It is a chemopreventive agent that has been shown to
present strong cytostatic and anti-angiogenic effects in vitro
(Hirano et al., 1989; Engelmann et al., 2002). In vitro, apigenin
induces growth inhibition, cell cycle arrest, and apoptosis in CRC
cells (Zhong et al., 2010; Lee Y. et al., 2014; Yang L. et al., 2015).
Moreover, apigenin is a strong inhibitor of ABC transporters
(ATP-Binding Cassette), which are responsible for the increase in
the efflux of chemotherapeutic drugs in the lumen (apical) face of
colonocytes, thereby significantly reducing its bioavailability and
leading to its active detoxification (Katayama et al., 2007). Finally,
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TABLE 2 | Summary of main in vitro and in vivo synergistic effects of combinations of flavonoids and chemotherapeutic compounds against CRC.

References Tested

molecule

In combination

with

Experimental model Main result Proposed mechanism

Horinaka et al., 2006 Apigenin TRAIL CRC cell culture (DLD-1) Synergistic potentiation of

TRAIL-induced apoptosis

Up-regulation of DR5

Shao et al., 2013 Apigenin ABT-263

(Navitoclax)

CRC cell culture

(HTC-116) and SCID mice

bearing HTC-116

xenografts

Synergistic induction of apoptosis,

antagonism effect on

ABT-263-induced Mcl-1

up-regulation and greater tumour

growth inhibition

Down-regulation of Mcl-1,

inhibition of PI3K/AKT pathway

and ERK phosphorylation

Yoshida et al., 2008 Kaempferol TRAIL CRC cell culture (SW480

and DLD-1)

Positive: Increase in apoptotic

induction in a kaempferol-dose

dependent manner

Up-regulation of DR5

Li et al., 2010 Chrysin TNFα CRC cell culture

(HCT-116)

Positive: Increase in cell death Inhibition of TNFα-induced

NF-κβ activation

Khan et al., 2012 Chrysin Cisplatin Wistar rats Positive: Prophylactic effect against

colon toxicity

Reducing oxidative stress

Ding et al., 2012 Chrysin TRAIL CRC cell culture (HT-29) Positive: Enhanced TRAIL-induced

cell death

Suppression of c-FLIP and

up-regulation of DR5

León et al., 2015 Chrysin Vanadyl cation CRC cell culture (HT-29) Positive: Cell cycle arrest in G2/M

phase

Decrease in GSH levels

Hwang et al., 2005 Genistein 5-FU CRC cell culture (HT-29) Synergistic effect on cell growth

blocking

Over-expression of

pro-apoptotic p53 and p21,

down-regulation of Glut-1 and

down-regulation of COX-2

Hu et al., 2014 Genistein Cisplatin CRC cell culture (HT-29) Positive: Inhibited cell growth and

induced apoptosis in an additive

manner

Inhibition of TK

Park et al., 2001 Genistein Dexamethasone CRC cell culture (Colo320

HSR)

Synergistic effect on blocking cell

cycle

Increase in p21 levels

Son et al., 2013 Genistein Radiotherapy BALB/c mice bearing

CT26 xenografts

Positive: Less non-tumorigenic

apoptotic cells and improved

morphological changes in healthy

intestinal tissue

Activation of antioxidant

systems

Gruca et al., 2014 Genistein Radiotherapy CRC cell culture

(HCT-116)

Synergistic effect on clonogenic

survival

Enhanced EGFR inhibition and

prolonged inhibition of AKT

and ERK

Kumazaki et al., 2013;

Wubetu et al., 2015

EGCG 5-FU CRC cell culture (DLD-1,

SW480 and COLO201)

Synergistic growth suppression Regulation of ABC

transporter-related genes

Saldanha et al., 2014 EGCG Sodium butyrate CRC cell culture (HT-29) Synergistic induction of apoptosis Down-regulation of survivin

Ohishi et al., 2002 EGCG Sulindac Azoxymethane colon

cancer induction in rats

Synergistic induction of apoptosis Enhanced inhibition of COX-2

Ambrosini et al., 2008 Flavopiridol SN-38 HCT116 cell line Synergistic effect on the apoptotic

effects of SN-38

Down-regulation of Rad51 by

p53 and Cdk9 inhibition.

Darpolor et al., 2011 Flavopiridol Irinotecan Mice xenograft (HCT116) Improves tumor response Reduces cytokine activity

Fornier et al., 2007 Flavopiridol Docetaxel Phase I trial Partial responses and a complete

response in one patient

Unknown

Guo et al., 2006 Flavopiridol Docetaxel and

5-FU

Mice xenograft (HCT116) Significant decrease in a tumor

volume

Unknown

Motwani et al., 2001 Flavopiridol SN-38 Mouse xenograft model Flavopiridol enhances a reduction in

tumors

The effect is produced by p21

Colombo et al., 2011 Silymarin Doxorubicin and

paclitaxel

LoVo cell line Synergistic effect in LoVo cells and

additive in LoVo/DX

Low expression of p-gp pump

León et al., 2015 Silymarin Vanadium

compounds

HT29 cell line Improves cytotoxic effect Inhibits topoisomerase IB

activity and NF-κB

Tsai et al., 2015 Silibinin Metformin COLO205 cell line Reduction cell viability more than

60%

Increase caspase 3 activation

and AIF expression

(Continued)
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TABLE 2 | Continued

References Tested

molecule

In combination

with

Experimental model Main result Proposed mechanism

Psahoulia et al., 2007 Quercetin TRAIL Caco-2, SW620 and

HT29 cell lines

Sensitizes the cells to the treatment Distribution of death factors in

raft domains that are the

initiators of apoptosis

Xavier et al., 2011 Quercetin 5-FU Co115 and HCT15 cell

lines

Enhances apoptosis more than 100

times

The effect is mediated by p53

Osman et al., 2015 Luteolin Aspirin Colorectal cancer in rats Highly significant reduction in polyps

number and size

Enhance inhibition the

inflammatory response

Chan et al., 2009 Scutellarin 5-FU HCT116 cell line A significant increase in apoptosis

levels

p53-regulated caspase-6

activation mechanism

Lee et al., 2008 Isoliquiritigenin Cisplatin Mice xenograft (CT26) Reduce 79% tumor growth and

reduces adverse effects

Mechanism in combination is

unknown

Ha et al., 2012 Oroxylin 5-FU HT29 cell line and mice

xenografts (HT29)

Reduce 66% tumor growth and

shows synergistic effects in HT29

cell line

Inhibition of COX-2 gene

expression

Cheah et al., 2014 Procyanidins 5-FU Caco-2 cell line Increase cytotoxicity Unknown

apigenin is also responsible for NAG-1 [Nonsteroidal Anti-
inflammatory Drug (NSAID) Activated Gene-1] overexpression
in CRC cells, a member of the TGF-B (Transforming Growth
Factor-B) superfamily which shows pro-apoptotic and antitumor
activities (Yang et al., 2014). In fact, apigenin increases in a
dose-dependent way in CRC cells, both in vivo and in vitro,
NAG-1 and p53 expression, reducing intestinal tumor load and
number (Zhong et al., 2010). Therefore, apigenin has a promising
application as a safe antitumor agent. However, it has a modest
antitumor activity against cancer cells when used alone, so new
strategies are needed in order to enhance its effectiveness, as those
based on combination therapy of this flavonoid with CRC drugs.

CD26 is a multifunctional cell-surface protein that is involved
in the suppression of pathways responsible for tumor growth
and metastasis. In fact, CD26 is down-regulated in several types
of tumors including colon cancer and this protein is normally
expressed in the epithelial cells of the human colon. Therefore,
compounds which enhance CD26 levels are expected to have
antitumor potential.

It has been shown that apigenin alone is able to cause an
increase of 56.3% in the cell surface abundance and activity
of CD26 in different CRC cell lines (HT-29 and HRT-18),
so some authors have studied whether this flavone is able to
enhance the up-regulation in CD26 cell surface expression of
irinotecan, 5-FU and oxaliplatin, that are three chemotherapeutic
agents used for the treatment of colorectal cancer. In the case
of 5-FU and oxaliplatin, no specific interaction was reported
with the action of apigenin; however, the ability of apigenin to
potentiate CD26 was much more robust when was combined
with increasing concentrations of irinotecan, generating a 4.2-
fold increase in the potency of this drug (with a reduction of EC50

for irinotecan from 4.68 to 1.26 µg/mL). An interaction was also
observed when the experimental design was reversed, adding a
fixed dose of irinotecan to a series of apigenin concentrations,
increasing by 30 times the capacity of apigenin to enhance CD26
expression, lowering its EC50 from 32.8 to 1.10 µM. Therefore,

it was observed that in the case of irinotecan (a topoisomerase
I inhibitor), but not of 5-FU or oxaliplatin, there is a specific
interaction with the action of apigenin due to a cross-talk in the
mechanism of action of apigenin with irinotecan, as apigenin
is able to inhibit toposimorease I-DNA complex which overlaps
with the primary mechanism of action of irinotecan (Lefort and
Blay, 2011). This presupposes that part of the mechanism of
action of apigenin is intimately related to topoisomerases.

TRAIL (tumor necrosis factor-related apoptosis-inducing
protein), a member of the TNF superfamily, is able to induce
apoptosis through interaction with the death receptor 5 (DR5),
whose expression is regulated by the tumor suppressor p53.
TRAIL is not toxic in normal cells because non-neoplastic
cells express high levels of decoy receptors (DcR) for TRAIL,
which could interfere with TRAIL signaling; it shows acquired
resistance in cancer cells (Almasan and Ashkenazi, 2003; Du
et al., 2016).

Apigenin induces the expression of DR5 in a dose-dependent
manner preventing the degradation of this protein by acting
as a proteasome inhibitor and increasing its expression in the
membrane, so this up-regulation of DR5 acts in a synergic form
sensitizing to the treatment with exogenous soluble recombinant
human tumor necrosis factor-related apoptosis-inducing ligand
(TRAIL) in CRC DLD-1 cells, showing a greater apoptotic effect
than the treatment with TRAIL alone. As said before, TRAIL is
an attractive candidate for cancer therapy because it selectively
induces apoptosis in cancer cells, and it has been shown that
combination of TRAIL with apigenin did not induce expression
of DR5 protein and enhanced TRAIL-induced apoptosis in
normal human PBMCs cells (Horinaka et al., 2006). Therefore,
the combined treatment of apigenin and TRAIL is a promising
anticancer therapy.

Diverse anti-apoptotic proteins as Bcl-XL, Bcl-2, Bcl-w, and
Mcl-1 can prevent cell death in tumor cells. ABT-263 (Navitoclax)
is a novel oral inhibitor for Bcl-2 family proteins, acting as a Bcl-2
homology 3 (BH3) mimetic, and leading to apoptosis, except in
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tumor cells with Mcl-1 overexpression (Tolcher et al., 2015). As
apigenin induces apoptosis in tumor cells bymodulating different
kinds of signaling pathways, including downregulation of Mcl-
1 mRNA (Shi et al., 2015), this apigenin Mcl-1 downregulation
may enhance the ABT-263 antitumor activity (Shao et al., 2013;
Erdogan et al., 2016). Furthermore, the inhibitory effect of
apigenin on ERK phosphorylation levels is significant when CRC
HCT116 cells are cotreated with ABT-263 (Shao et al., 2013).
All these findings were verified in vivo in a SCID mice model
bearing HCT116 xenografts, in which treatment with ABT-
263 or apigenin alone resulted in a 30% inhibition of tumor
growth compared with untreated control, but this percentage was
increased to 70% by combination therapy, with decreased Mcl-1
levels as well as phosphorylated prosurvival mediators ERK or
AKT (Table 2; Shao et al., 2013).

Summing up, both apigenin and ABT-263 alone induced low
apoptosis rates in HCT116, DLS1, SW48, HT29, and HCT-8
tumor cells, but in combination therapy, an increase of 80%
in apoptosis was recorded via a caspase dependent mechanism.
The combination index of these combinations was below 1.0,
indicating a synergistic effect (Shao et al., 2013).

Chrysin
Chrysin (Figure 1E) is another flavone found in honey, propolis,
and various plant extracts such as chamomile and blue passion
flower (Passiflora caerulea; Renuka et al., 2016). Chrysin has
multiple biological activities, including antitumor effects in
diverse cancer cell lines and tumor animal models (Kasala et al.,
2015).

Several studies in SW480 CRC cells have shown that this
flavone is able to induce cell cycle arrest at G2/M transition
in a dose-dependent manner. Combination of chrysin plus
apigenin doubled the proportion of SW480 cells in G2/M arrest;
indicating that both flavones cooperate in slowing down tumor
progression (Wang et al., 2004). In vitro studies on DLD1 CRC
cells have demonstrated a chemoprotective effect of chrysin
due to induction of AhR activity (Aryl Hydrocarbon Receptor)
accompanied by p21 overexpression, a cell cycle important
inhibitor (Ronnekleiv-Kelly et al., 2012). At early tumorigenesis
stages, chrysin shows a chemopreventive activity by modulating
normal cryptal cells proliferation and by activating apoptosis in
aberrant cryptal cells (as those generated in an azoxymethane
animal model for CRC). These activities are carried out by
downregulating PCNA (Proliferating Cell Nuclear Antigen) and
growth factors such as IGF-1 (Miyamoto et al., 2006, 2010; Kasala
et al., 2015).

Tumor necrosis factor-alpha (TNF-α) is a pro-inflammatory
cytokine with a wide range of biological activities also including
both cell progression and death. These TNFα conflicting
activities rely on TNF receptor 1 (TNFR1) activation of two
different pathways: a caspase cascade for induction of apoptotic
events, and nuclear transcription factor kappa-β (NF-kβ), which
is a cell survival mechanism. Generally, most tumor cells are
refractory to TNFα-induced apoptosis if they keep a working
NF-kβ pathway (Chen and Goeddel, 2002; Karin et al., 2004).
But chrysin sensitizes HCT116 CRC cells (highly resistant to
TNFα apoptosis induction) toward TNFα-induced apoptosis due

to its blocking of NF-kβ/caspase 8 pathway, by downregulating
its trigger, c-FLIP-I (Li et al., 2010). Combination therapy with
chrysin and TNFα together showed a 40% increase in cell death
compared to monotherapy, due to caspase 8 activation (Table 2;
Chen et al., 2004; Romier et al., 2008; Li et al., 2010).

TRAIL binding to death receptors as DR5 results in adaptor
protein FADD (Fas-associated protein with death domain)
and procaspase 8 or 10 recruitment, which then activate this
death pathway. The main negative regulator of this pathway
is the cellular caspase-8 (FLICE) inhibitory protein (c-FLIP).
Its overexpression causes resistance to this apoptotic process,
thereby limiting the therapeutic use of TRAIL. In order to
overcome these resistances, a combination with TRAIL pathway
sensitizers targeting c-FLIP expression may be a promising
approach. In this sense, chrysin is able to suppress c-FLIP
expression and to enhance DR5 expression in HT-29 cells,
enhancing TRAIL-induced cell death in CRC cells (Ding et al.,
2012).

Flavonoids antioxidant activity can also reduce chemotherapy
side effects. Cisplatin generates a wide variety of ROS that interact
with DNA, lipids, and proteins in CRC cells, including Pt-
DNA adducts that hinder cell division and DNA synthesis/repair,
leading to apoptotic events (Dasari and Tchounwou, 2014).
In this sense, the prophylactic effect of chrysin against colon
toxicity due to cisplatin was tested in Wistar rats, confirming
a protective effect by reducing oxidative stress (Khan et al.,
2012). Although, cisplatin is not used in CRC patients’ treatment,
these experiments in rats show interesting effects of chrysin with
respect to ROS inducing agents.

With a similar action to cisplatin, vanadium compounds are
considered a new class of non-platinum metal compounds with
eventual low toxicity, although they are not used in clinical
praxis. In vitro, these compounds inhibit cell cycle even at low
doses, by generating ROS, which leads to DNA cleavage and
apoptosis. Chrysin complexation with vanadyl cation increased
antitumor activity in HT-29 cells (cell cycle arrest in G2/M
transition) compared to the monotherapy treatment. Chrysin
vanadate complex reduced to 56% the HT-29 cell survival
vs. 88% in the case of cisplatin. This chrysin potentiating
effect may be due to a reduction in GSH levels, one of the
most important antioxidant defenses in mammals (León et al.,
2015). In order to avoid gastrointestinal damage in preclinical
trials, different vanadium complexes have been generated with
flavonoids (Evangelou, 2002).

Scutellarin
Scutellarin is a glycoside of the flavone scutellarein (Figure 1F),
isolated from the traditional Chinese medicine plant Scutellaria
barbata (Xing et al., 2011). It has been used in HCT116 cells as
chemosensitizing agent (at 100 µM) combined with resveratrol
(at 200 µM) and 5-FU (at 500 µM). These experiments showed
an increase in apoptosis, due co caspase 6 activation, which was
absent in p53 (−/−) versions of this cell line (Chan et al., 2009).

Oroxylin
Oroxylin A is a O-methylated flavone (Figure 1G) extracted from
the herb Scutellariae radix. Oroxylin A inhibits iNOS and COX-2
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gene expression by blocking NF-κB. Also, this flavone inhibits
LPS-induced NF-kB activation by blocking IκB degradation, the
protein which usually binds NF-kB in the cytosol, keeping it in its
inactive form (Chen et al., 2000).

Combination of oroxylin A with 5-FU (1:5) both in vivo and
ex vivo in a CRC model using HT-29 cells showed a synergistic
action, with COX-2 inhibition and increased ROS generation,
which led to HT-20 sensitization to 5-FU. 5-FU IC50 in HT-
29 is 4.63 mmol/L, but when combined with oroxylin A, this
value diminishes to 764 µmol/L. To corroborate this synergistic
effect, in a nude mice xenograft model for HT-29, 100 mg/kg
oroxylin A plus 20 mg/kg 5-FU showed a 66% tumor size
decrease, in comparison with 36 and 42% reduction in the
monotherapies, respectively (Table 2; Ha et al., 2012). Therefore,
oroxylin combination therapy could be a valuable tool in order to
reduce 5-FU doses and subsequent in vivo side effects.

Kaempferol
Kaempferol (Figure 1H) is a flavonol present in black tea,
broccoli, propolis, grapefruit, and other plant sources. This
compound has a marked antitumor potential on different types
of cancer cells (Gutiérrez-del-Río et al., 2016). In CRC cells,
it induces p53-dependent growth inhibition and, at the same
time, apoptosis by inducing cytochrome c mitochondrial release
and caspase-3 cleavage activation (Li W. et al., 2009; Lee H. S.
et al., 2014b). In HT-29 cells, this flavonol induces apoptosis and
inhibits IGF-IR and ErbB3 signaling (Lee H. S. et al., 2014a).
Kaempferol is also able to induce G1 and G2/M cell cycle arrest
by inhibiting the activity of CDK2, CDK4, and Cdc2 (Cho et al.,
2013).

Monotherapy with kaempferol or TRAIL alone showed a
slight effect on apoptosis induction in SW480 and DLD-1
CRC cells, while the combination therapy induced a dramatic
apoptosis increase in a kaempferol dose-dependent manner.
This means that kaempferol is able to sensitize these CRC cells
to TRAIL-induced apoptosis. Interestingly, this combination
of drugs showed very low cytotoxicity in PBMC normal cells
(Yoshida et al., 2008).

Quercetin
Quercetin (Figure 1I) is an ubiquitous flavonol in nature, where
it is found in onion, apples, and many other vegetables and
fruits. Quercetin inhibits RASA1 expression in CRC cell lines,
avoiding RAS activation and therefore its proliferative effects
(Ranelletti et al., 2000). Quercetin was combined with TRAIL for
treatment of three CRC cell lines, Caco-2 (adenoma), SW-620,
and HT-29 (adenocarcinomas); demonstrating that this flavonol
is a potent sensitizer to TRAIL-induced apoptosis in a synergistic
manner (SW-620 and HT-29), whereas this combination resulted
in an additive effect in the case of adenoma cells (Caco-2). These
pro-apoptotic effects seem to be associated with a membrane
distribution of quercetin in lipid rafts domains, regions which
are rich in cholesterol, sphingolipids, and TRAIL death receptors.
This membrane distribution could be the initiator for signal
cascades causing TRAIL-mediated apoptosis (Psahoulia et al.,
2007).

Quercetin has been also used in combination with 5-FU in
vitro, treating CO115 (p53 positive) and HCT15 (p53 negative)
CRC cell lines. This combination of drugs showed higher
apoptosis levels in CO115 cell line, in a synergistic manner, but
an additive effect in HCT15 cells. This enhanced apoptosis was
even higher than with 100 times higher 5-FU concentration in
monotherapy. p53may elicit this synergistic pro-apoptotic effects
by enhancing caspase 3 activation and diminishing Bcl-2 (anti-
apoptotic) levels. This involvement of p53 is reinforced when a
siRNA is used to silence p53 expression in CO115 cells, losing the
synergistic effect of this combination of drugs (Table 2; Xavier
et al., 2011).

Epigallocatechin
(-)-Epigallocatechin-3-gallate (EGCG, Figure 1J) is the major
polyphenolic constituent of green tea, representing 200–300
mg/brewed cup (Singh et al., 2011). The antitumor effects of
this and other flavanols are widely supported by epidemiological,
in vitro, animal and clinical studies (Singh et al., 2011). For
example, different concentrations of grape seed extracts [rich in
(-)-epicatechin] were tested in combination with 5-FU 100µM in
Caco-2 cells, showing a slightly synergistic effect on cell apoptosis
(Cheah et al., 2014).

EGCG and related compounds are able to inhibit several
critical signal transduction pathways in cancer cells. For example,
EGCG inhibits multiple RTKs (Receptor Tyrosine Kinase) as
the IGF/IGF1R system, EGFR, and HER2 receptors, which play
key roles in CRC cell proliferation (Shimizu et al., 2005; Adachi
et al., 2008, 2009). EGCG also blocks cell proliferation and cell
migration in CRC cells, by inhibiting the signaling pathway TF
(Tissue Factor)/VIIa/PAR2 (Protease-Activated Receptor 2) that
usually mediates ERK1/2 phosphorylation and final activation
of the pro-inflammatory NF-kβ. This lower activity of the
transcription factor NF-kB induces an up-regulation of caspase-
7 and a down-regulation of MMP-9 matrix metalloprotease
expression, affecting proliferation and migration of tumor cells
(Table 2; Zhou et al., 2012).

Furthermore, EGCG is an epigenetic regulator, which
contributes to degradation of DNMT3A (DNAMethyltransferase
3A) and HDACs (Histone Deacetylases) through a process of
ubiquitination in CRC cells sensitive to methylation. These
effects, together with histones deacetylation, are very important
epigenetic mechanisms in tumorigenesis, as they are responsible
for silencing various tumor suppressor genes and other ones
involved in cell cycle regulation and apoptosis (Moseley et al.,
2013). Therefore, EGCG is able to restore the expression of genes
involved in tumor suppression such as RXRalpha (Retinoid X
Receptor alpha) that are silenced by epigenetic processes in tumor
cells (Morris et al., 2016).

Also, it is remarkable the effect exerted by EGCG at the level
of CSCs, downregulating Notch signaling, a membrane receptor,
which is directly involved in the differentiation and proliferation
of CRC stem cells (Jin et al., 2013).

Based on these anti-proliferative, anti-metastatic and
epigenetic activities for EGCG, its effectiveness in combination
with anticancer drugs has been tested. The combination of
5-FU with EGCG resulted in a synergistic growth inhibition in

Frontiers in Pharmacology | www.frontiersin.org 9 March 2017 | Volume 8 | Article 109

http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive


Redondo-Blanco et al. Colon Cancer Combination Therapy

several human CRC cell lines (DLD-1, SW480, and COLO201)
(Kumazaki et al., 2013). The same combination on HT-29 and
HTC-116 CRC cells reduced cell viability significantly compared
with the monotherapies. The EGCG potentiating effect on the
5-FU is supposed to be due to a downregulation in the expression
of ABC transporters, which causes higher intracellular 5-FU
concentrations (Hwang et al., 2007b; Wubetu et al., 2015).

Sodium butyrate is a non-toxic compound naturally produced
in the colon after microbial fermentation of dietary fiber, which
shows strong antitumor effects only on transformed colonocytes.
Combination of EGCG and sodium butyrate on HT-29 tumor
cells caused a synergistic reduction in survivin protein and
mRNA levels, an anti-apoptotic protein highly expressed in CRC
(Saldanha et al., 2014).

Another compound inducing apoptosis in tumor colonocytes,
sulindac, is a NSAID inhibiting COX-1 (expressed constitutively
in all tissues) and COX-2 (highly expressed in CRC and
induced by cytokines). Although, sulindac has side effects due
to this broad cyclooxygenases inhibition, its combination with
EGCG reduces them due to an enhanced inhibition of COX-
2 (Suganuma et al., 1999). This synergistic effect has been also
observed in rats developing CRC by induction with the chemical
inducer azoxymethane (Ohishi et al., 2002).

Genistein
Genistein (Figure 1K) is an isoflavone which can be found in
high concentrations in soybeans, lentils, beans, and chickpeas.
Numerous epidemiological studies have reported a negative
correlation between the incidence of CRC and diets rich
in soybean (Spector et al., 2003; Rossi et al., 2006). This
isoflavone has a growing interest as a pro-apoptotic agent
because of its specific and almost exclusively activity against
tumor cells (as CRC) rather than normal ones (Marín et al.,
2015). Genistein acts by increasing the expression of pro-
apoptotic proteins as Bax or p21 (Yu et al., 2004), by inhibiting
NF-kβ (Luo et al., 2014) and topoisomerase II (Mizushina
et al., 2013), by regulating ERB expression (Pampaloni et al.,
2014), by suppressing the carcinogen induction of WNT/β-
catenin signaling pathway (Zhang et al., 2013), by increasing
the expression of antioxidant enzymes such as glutathione
peroxidase (Ganai and Farooqi, 2015), and by preventing human
CRC metastases due to MMP2 metalloproteases inhibition
(Xiao et al., 2015). All these activities can be exploited
by combinatory approaches in order to prevent or to treat
CRC.

As it has been mentioned above, 5-FU is widely used in
the treatment of solid tumors such as CRC, but its main
clinical limitation is the development of resistant phenotypes
by the over-expression of anti-apoptotic proteins or cell
proliferation factors. In order to overcome this resistance
problems, a combinated treatment with genistein on HT-29
cells resistant to 5-FU showed a significant reduction in cell
viability compared to the monotherapy. These experiments
demonstrated a synergistic effect on cell growth inhibition
by over-expression of pro-apoptotic p53 and p21 genes and
downregulation of survival genes such as Glut-1. However,
the main mechanism involved in this combination was due

to COX-2 expression inhibition (Hwang et al., 2005). In
a similar way, combination of genistein with cisplatin also
inhibited cell growth and induced apoptosis in a synergistic
manner in HT-29 CRC cells, by inhibiting tyrosine kinases
(Hu et al., 2014). Finally, combination with dexamethasone
also shows synergistic effects by increasing p21 levels in
Colo320 HSR cells, inhibiting their growth (Park et al.,
2001).

Together with chemotherapy, radiotherapy also plays a
crucial role in the treatment of rectal cancer, however, in
more than 70% of patients, it causes side effects on the
gastrointestinal system, as mucositis due to the generation
of free radicals by ionizing radiation, which causes oxidative
damage to normal colonocytes. A solution to this problem
would be to combine radiotherapy with natural radioprotective
agents (Jagetia, 2007). In this sense, the remarkable antioxidant
activity of genistein, combined with its ability to activate
antioxidant pathways, makes it a perfect candidate to protect
against radiation cellular damage. Following this hypothesis,
CT26 CRC cells were injected into BALB/c mice, and animals
were treated with radiotherapy in the abdominal area. After
a combination with genistein, this isoflavone reduced the
apoptosis in normal cells and improved morphological changes
in healthy intestinal mucosa. Also, tumors size was lower in
mice subjected to combination therapy (Table 2; Son et al.,
2013).

The epidermal growth factor receptor (EGFR) plays a very
important role in tumor progression because binding of its
ligands initiates a cascade of intracellular phosphorylations
that ultimately triggers genes associated with cell proliferation,
survival, or invasion. This receptor is over-expressed in tumor
cells and diverse drugs inhibit this tyrosine kinase, although
resistance phenotypes usually appear after irradiation (Singh
et al., 2016). Interestingly, pretreatment with genistein during 24
h before irradiation was able to perform a synergistic effect on
irradiated HTC116 cells survival (CI < 0.7), due to an enhanced
EGFR inhibition (Gruca et al., 2014).

Silymarin
Silymarin is a flavolignan extract from milk thistle (Sylibum
marianum). This flavolignans mixture contains silibinin (silybin
A and B, the most active compounds, Figure 1L), isosilybin (A,
B), silydianin, and silychrystin (Lee et al., 2006). Silybins induce
cell cycle arrest and apoptosis by acting on cyclin dependent
kinases (CDKs).

Silymarin has been tested in combination with doxorubicin
and paclitaxel against CRC cells, in a cell line sensitive to
doxorubicin (LoVo) and its multidrug resistant isogenic version
(LoVo/DX). Twenty-four hour prior to treatment with both
drugs, silymarin was used in these cells, showing a synergistic
effect in LoVo cell line, but not in LoVo/DX cells, where
an additive effect was observed. This additive effect may
be valuable when dealing with in vivo experiments, as any
contribution to reduce doxorubicin doses would also reduce its
side effects, mainly associated to cardiotoxicity (Figure 3). This
cardiotoxicity is due to formation of iron-related free radicals,
as well as damages to mitochondrial NAD(P)H oxidase complex
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(Thorn et al., 2011). Silymarin causes higher intracellular drug
concentrations in LoVo cells due to a repression of P-gp pump (P-
glycoprotein, MDR1). However, in LoVo/DX cells, the strong P-
gp overexpression prevents this sensitizing effect (Colombo et al.,
2011).

Silibinin also enhances metformin antiproliferative effects.
Combination of this antidiabetic agent at 10 mmol/L plus
100 µmol/L of silibinin in COLO205 CRC cell line showed a
synergistic inhibition of 60% in cell survival, which did not affect
normal HCoEpiC cells. Monotherapy at these concentrations
had no effects. This combination of drugs increased caspase 3
activation and AIF expression, resulting in apoptosis activation
by extrinsic and mitochondrial ways. A role for the PTEN/Akt
pathway in this apoptosis induction in cancer cells was
also observed, with increased PTEN levels and decreased
phosphorylated protein kinase B (p-Akt) (Table 2; Tsai et al.,
2015).

Vanadium (IV) complexes have been tested in combination
with silibinin and chrysin against HT-29 cell line, showing
increased cytotoxic effects at 100 µM vanadyl ion in comparison
with monotherapies (280 µM vanadyl). In this combination,
chrysin induces cell cycle arrest in G2/M transition, while
silibinin induces apoptosis due to caspases activation and NF-κB
inhibition (León et al., 2015).

Flavopiridol
Flavopiridol (Alvocidib, Figure 1M) is a semi-synthetic
flavonoid-like derivative, generated from rohitukine, an alkaloid
from the bark of Dysoxylum binectariferum, a tree from India
(Kelland, 2000). Flavopiridol inhibits cyclin-dependent kinases
(CDKs), targeting the ATP-binding pocket of their catalytic
subunit, as Cdk1, Cdk2, Cdk4, Cdk6, Cdk7, and Cdk9. Also, it
inhibits other kinases like PKA, PKC, Erk-1, EGFR, and other
receptor associated protein kinases. Flavopiridol blocks cell cycle
in G1/S and G2/M transitions by lowering expression levels of
cyclin D1, p27Kip1, and p21Waf1/Cip1. Low cyclin D1 levels cause a
reduction in Cdk4 concentration, leading to an accumulation of
hypophosphorylated retinoblastoma protein (Rb), which causes
cell cycle arrest. Low p27Kip1 or p21Waf1/Cip1 levels also cause a
reduction in Cdk2 concentration, inducing cell cycle arrest in
G1phase and inhibiting EEF1B2 elongation factor, which blocks
RNApol II transcription of Newcomb (2004).

Flavopiridol is a potent apoptosis inducer in tumor cells,
via the mitochondrial pathway (release of cytochrome c or
caspases activation), but also via AIF (apoptosis-inducing factor)
pathway (Achenbach et al., 2000). This pro-apoptotic effect is
enhanced as flavopiridol also inhibits Akt activation, leading to
NF-κB inactivation and therefore to an inhibition of proliferation
processes (Takada and Aggarwal, 2004). Therefore, this flavonoid
derivative triggers apoptosis and at the same time inhibits
proliferation.

Irinotecan, a semisynthetic analog of the natural alkaloid
camptothecin, and SN-38, the irinotecan bioactive metabolite,
prevents DNA from unwinding by inhibiting topoisomerase 1.
Combination of SN-38 treatment followed by flavopiridol in
HCT116 cell line and its null isogenic p53 (−/−) equivalent
showed apoptosis induction only in the p53 wild type cell

line. Here, p53 produced Rad51 mRNA downregulation, a gene
coding for a DNA-repair protein (Ambrosini et al., 2008).

In a mouse xenograft model with HCT116 cell line, irinotecan
treatment followed by flavopiridol showed a significant decrease
in tumor growth compared to monotherapies. This study
suggests changes in the choline kinase activity and decreased
phosphocholine (Motwani et al., 2001; Darpolor et al., 2011).
Since diarrhea is one of the most common side effect associated
to irinotecan treatment, this synergistic effect among flavopiridol
and irinotecan may be a valuable combination for preventing
or reducing this gastrointestinal toxicity associated to this
camptothecin derivative (Fuchs et al., 2003) (Figure 3).

Sequential treatment with docetaxel, flavopiridol, and 5-FU
in HCT116 cell line showed an 8-fold increase in caspase
activity, with much lower increase if the three compounds
were added simultaneously, in pairs or separately. Using this
triple combination in mice xenografts with HCT116 caused a
decrease in tumor volume by 95% (50% reduction for single drug
treatment, 70% reduction for two drugs combination; Table 2;
Guo et al., 2006).

A phase I trial of weekly, sequential docetaxel followed
by flavopiridol (after 4 h first treatment) in patients with
advanced solid tumors showed that this combination of drugs
was well tolerated, with one dose-limiting toxicity occurring at
70 mg/m2 flavopiridol. Docetaxel common toxicity effects are
mostly associated to neutropenia (Ho and Mackey, 2014). Also,
one complete response was observed in a patient with pancreatic
carcinoma, as well as four partial responses in pancreatic (1),
breast (2), and ovarian (1) tumors. Stable disease was observed
in ten patients (27 patients in total; Fornier et al., 2007).

TERPENES

Another large and diverse class of organic compounds where
some of them have shown a promising role against CRC in
combination with other drugs are the terpenes. Terpenes
are the structurally most diverse class of all plant and fungal
bioactive metabolites, with more than 50,000 molecules.
All terpenes derive from the condensation of dimethylallyl
diphosphate (DMAPP) and isopentenyl diphosphate (IPP)
precursors, which may be linked together “head to tail”
to form linear chains or may be arranged to form rings
(Klein-Marcuschamer et al., 2007). Terpenes are classified,
according to the number of biosynthetic isoprene units, in
monoterpenes (10 carbon atoms, C10), sesquiterpenes (C15),
diterpenes (C20), triterpenes (C30), and tetraterpenes (C40)
(Misawa, 2011). In addition, terpenes that have undergone
oxidation steps are called terpenoids. Some examples are
essential oils such as limonene (C10, flavoring agent), vitA
(C20), β-carotene (C40), and steroids (C30, cholesterol,
testosterone).

Artesunate
Artesunate (Figure 2C) is the hemisuccinate ester of artemisin,
a sesquiterpene found in Artemisa annua (a traditional Chinese
herb), widely used for malaria treatment as ROS inducer
in the Plasmodium parasite (Meshnick, 2002). Artesunate is
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FIGURE 2 | Chemical structures of bioactive terpenoids and other compounds described in the text. (A) geraniol, (B) irofulven, (C) artesunate, (D) triptolide,

(E) ursolic acid, (F) ginsenoside, (G) celastrol, (H) betulinic acid, (I) fucoxanthin, (J) curcumin, (K) gossypol.

cytotoxic in HCT116 cells, inducing a cell cycle arrest at
G1, due to cyclin D1 downregulation and p21 overexpression.
The treatment of these CRC cells with artesunate (1.9µM)
or oxaliplatin (another agent also causing ROS stress in
cells, together with other alkylating activities on DNA; 4µM)
causes 50% cell killing. However, the same effect can be
obtained with a combination of just 0.65µM artesunate plus
1.6µM oxaliplatin, which reinforces the used of artesunate
as a possible adjuvant chemotherapy molecule (Liu et al.,
2011).

Geraniol
The monoterpene geraniol (Figure 2A) is a main component in
commercially important essential oils (rose, lemon, etc.), with
wide use in perfumes. In vitro combination of geraniol (150µM,
IC30) plus 5-FU (0.25µM, IC30) on Caco-2 cells increased the
cell death in comparison with monotherapy, causing over 20%
reductions cell survival. In a tumor xenograft model for TC118
CRC cell line, combination of geraniol (150 mg/kg) plus 5-FU

(40 mg/kg) showed a clear 83% reduction in tumors size, whereas
monotherapies with these concentrations caused only 26 and
30% tumor reductions, respectively (Carnesecchi et al., 2004).

In a CRC animal model using the mutagen
dimethylhydrazine, oral geraniol (25mg/100 g) was administered
in order to test its effects in CRC prevention at early stages
(aberrant crypt foci reduction in colon mucosa, ACF). After 9
weeks, a significant 37% reduction in colon ACF was observed
with respect to control animals, together with enhanced
apoptosis parameters. This protection was also accompanied
by a 30% reduction in the cellular levels of Bcl-2 in geraniol
treated animals, an anti-apoptotic protein, whose low levels may
explain the geraniol antitumor effect in colon mucosa (Table 3).
These results may open the path to the study of other non-cyclic
monoterpenes as antitumor agents (Vieira et al., 2011).

Irofulven
Irofulven (Figure 2B) is a semi-synthetic derivative of illudin S, a
sesquiterpene isolated from the mushroom Omphalotus illudens.
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TABLE 3 | Summary of main in vitro and in vivo synergistic effects of terpenoids and other compounds in combination with chemotherapeutic

compounds against CRC.

References Tested

molecule

In combination

with

Experimental model Main result Proposed mechanism

Carnesecchi et al.,

2004; Vieira et al., 2011

Geraniol 5-FU Caco-2 cell line Synergistic: 20% reduction in cell

survival

Down-regulation of Bcl-2

Carnesecchi et al.,

2004

Geraniol 5-FU Mice xenograft (TC118) Synergistic: 80% reduction in

tumor size

Unknown

Serova et al., 2006 Irofulven Oxaliplatin HT-29 cell line Synergistic: reduced cell survival Unknown

Britten et al., 1999 Irofulven Irinotecan Mice xenograft (HT-29) Synergistic: tumor size reduction Unknown

Liu et al., 2011 Artesunate Oxaliplatin HCT116 cell line Synergistic: 50% cell killing ROS induction

Liu et al., 2014 Triptolide Oxaliplatin SW480 cell line Synergistic: 62% cell killing Apoptosis induction, blocking of

β-catenin translocation to

nucleus

Liu et al., 2014 Triptolide Oxaliplatin Mice xenograft (SW480) Synergistic: 60% tumor growth

reduction

Unknown

Koh et al., 2012;

Prasad et al., 2012

Ursolic acid Radiotherapy CT26 and HCT116 cell

lines

Synergistic: 55% cell killing Apoptosis induction, caspase 3

activation, ROS increase, GSH,

NF-kB and Bcl-2 reductions

Wang et al., 2015 Ginsenolides 5-FU Mice xenograft (HCT116) Synergistic: reduced tumor size G1 arrest

Kim et al., 2009 Ginsenolides Docetaxel HCT116 cell line Synergistic: increased cell death NF-kB inhibiton, Bcl-2 repression

Zhu et al., 2010 Calastrol TRAIL SW620 cell line Synergistic: increased cell killing Apoptosis induction

Jung et al., 2007 Betulinic acid 5-FU, oxaliplatin,

irinotecan

SNU-C5 cell line Synergistic: increased cell killing,

reduction in chemoresistance

Apoptosis induction (caspase 3)

Li et al., 2007 Curcumin Oxaliplatin Lo-Vo cell line Synergistic: growth inhibition Unknown

Anitha et al., 2014 Curcumin 5-FU HT-29 Synergistic: increased cells killing Apoptosis induction

Murakami et al., 2013 Curcumin Turmerones CRC mouse model

(dimethyl-hydrazine)

Synergistic: tumor size reduction Apoptosis induction

Yue et al., 2016b Curcumin Bevacizumab Mice xenograft (HT-29) Synergistic: tumor size reduction Apoptosis induction

Zhang et al., 2003; Lan

et al., 2015

Gossypol 5-FU Mice xenograft (HT-29) Synergistic: tumor size reduction Apoptosis induction, chemical

sensitization

It shows potent growth inhibition on a wide variety of human
solid tumor cell lines and primary tumor cell types. In vivo testing
has demonstrated excellent dose-related antitumor activity in
several human tumor mice xenograft models.

Combination of irofulven with radiation or chemotherapeutic
agents such as paclitaxel, irinotecan, 5-FU, mitomycin C,
thiotepa, topotecan, and cisplatin have produced additive and/or
synergistic inhibition of cellular proliferation in a variety of
tumor types. With respect to CRC, simultaneous exposure
to irofulven and cisplatin is at least additive for HCT116
cells, whereas simultaneous exposure to irofulven and 5-FU is
additive for HT-29 cells and synergistic for the irofulven-resistant
HCT116 cell line (Poindessous et al., 2003). Combination of
irofulven with oxaliplatin also led to synergistic activity in HT-
29 cell line (Serova et al., 2006). In a mice xenograft model for
HT-29 cells, combination of irofulven and irinotecan, significant
reduction in tumor weights occurred with partial responses in
nearly all of the animals and some animals achieving complete
responses (Table 3; Britten et al., 1999).

Triptolide
Triptolide (Figure 2D) is a diterpene from Tripterygium wilfordii
tree, used as anti-inflammatory and antitumor in traditional
Chinese medicine. Individual treatments with triptolide or

oxaliplatin during 48 h in SW480 cell line showed IC50

values of 16.7 ng/mL and 20.8µg/mL, respectively. However,
in combination with 10µg/mL oxaliplatin, 8 ng/mL of this
diterpene was able to induce 62% apoptosis. This synergistic
effect was due to an inhibition of nuclear translocation of the
transcription factor β-catenin under combinatory conditions,
causing that this cell progression factor remains accumulated in
the cytoplasm. Also, in a mice xenograft model for this cell line,
combination of triptolide (0.1 mg/kg) with oxaliplatin (5 mg/kg)
also showed this synergistic effect, reducing tumors growth by
60% (Table 3). This positive effect was not accompanied by a
significant increase in ALT and AST transaminases (biomarkers
for hepatic damage) nor in blood urea nitrogen (biomarker for
renal damage; Liu et al., 2014). In a similar way, combination
of triptolide (0.15 mg/kg) plus 5-FU (12 mg/kg) in another
xenograft model with HT-29 cell line caused a reduction of
96% tumor growth for 3 weeks treatment, with no side effects
observed (Tang et al., 2007). These results open the way for the
use of triptolide in the treatment of solid tumors in preclinical
trials (Jiang et al., 2001; Fidler et al., 2003).

Ursolic Acid
The triterpene ursolic acid (Figure 2E) is found in diverse herb
species as basil and rosemary. This antioxidant compound is able
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FIGURE 3 | Chemotherapy compounds that have been mentioned in this work and their main side effects.

to modulate cellular redox status in normal cells, but in tumor
cells it exerts pro-oxidative action. This is an important fact when
dealing with tumor cells and radiotherapy, as ionizing radiation
works by increasing cell oxidative damage in transformed cells,
leading to apoptosis. In this sense, radio-resistance status can be
avoided or reverted by using drugs able to increase ROS and its
mitochondrial, DNA and membranes damages.

Using in vitro experiments with CT26 mouse CRC cells,
a synergistic effect has been described for a combination of
ursolic acid plus radiotherapy, where apoptosis was enhanced
55%, via caspase 3 activation. In these co-treated tumor
cells, it was observed higher peroxides formation, lower
GSH levels and extended mitochondrial damage (Koh et al.,
2012). These pro-apoptotic effects of ursolic acid have been
reproduced in other CRC cell lines as HCT116, where this
compound was able to reduce the pro-inflammatory NF-kB
cytokine, the pro-metastatic MMP-9 matrix metalloprotease,
and the survival effectors Bcl-2 and survivin. All these changes
in expression of key cancer modulators were reinforced
when conducting these in vitro experiments with ursolic
acid and capecitabine together (Table 3; Prasad et al.,
2012).

In a mouse xenograft model with HCT116 cells, combination
of ursolic acid with capecitabine caused a 68% reduction in tumor
volume, also diminishing distant metastasis to lung around 60%
(Prasad et al., 2012).

Ginsenosides
Panaxadiol is a ginsenosides (Figure 2F) triterpene found
both in ginseng (Panax ginseng) and in notoginseng (Panax
pseudoginseng). Previous studies have shown the antitumor
activities of these compound on several cell lines and their
targeting on multiple cancer signaling pathways (Park et al.,
1999; Jin et al., 2003; Gao et al., 2013). Notoginseng extract,
which contains high amounts of ginsenosides, enhances 5-
FU induced apoptosis in human CRC cells (Wang et al.,
2007a,b). Looking for specific bioactive components in these
extracts, panaxadiol was found to be the component which
caused enhanced apoptosis in HCT116 cell line (Li X. L.
et al., 2009). Similar results were obtained with protopanaxadiol,
another ginseng metabolite that significantly enhanced 5-FU
effects on HCT116 cells by inducing arrest in G1 phase and
apoptosis. These in vitro data were confirmed by using an
in vivo mice xenograft model, showing that protopanaxadiol
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and 5-FU co-administration very significantly reduced the
tumor size in a dose-related manner (Table 3; Wang et al.,
2015).

Another member of this family, ginsenoside Rg3, is able
to repress NF-kB expression in HCT116 cell line, leading to
apoptosis, with a IC50 value of 100µM.NF-kB is usually activated
in these and other tumor cells. Twenty-four hour combination
of 50µM ginsenoside R3 plus 5µM docetaxel in this cell
line resulted in a synergistic NF-kB inhibition, absent in the
monotherapy experiments at these concentrations. This pro-
apoptosis effect was due to Bcl-2 repression and expression of the
pro-apoptotic proteins caspase 3 and Bax, which demonstrated
the chemosensitization of these tumor cells to docetaxel in the
presence of ginsenosides R3 (Kim et al., 2009).

Celastrol
Celastrol (Figure 2G) is a triterpene from the bark of the T.
wilfordii tree. This compound inhibits the heat shock protein
HSP90, blocking its interaction with Cdc37. TRAIL addition
to cultures of SW620 CRC cells shows an IC50 value of 423.5
ng/mL, whereas this parameter is reduced to only 121.1 ng/mL
in the presence of 2µM celastrol during 72 h, due to apoptosis
induction via caspase 3; therefore, celastrol shows a synergistic
effect in combination with TRAIL (Zhu et al., 2010).

Betulinic Acid
Betulinic acid (Figure 2H) is an anti-inflammatory and
antimalarial triterpene isolated from diverse plants, as Betula
pubescens tree (birch) and many others. This compound
exerts apoptosis through caspase 3 induction in SNU-C5
CRC cell line with IC50 value of 1µg/mL. Three resistance
variants were originated from this cell line, showing increased
resistance to 5-FU (total resistance, instead IC50 of 6µg/mL
in parental cell line), irinotecan (5.55-fold IC50 instead of
IC50 of 18µg/mL in parental cell line), and oxaliplatin (total
resistance, instead IC50 of 100µg/mL in parental cell line).
These three resistant variants were more sensitive to betulinic
acid alone than the parental cell line, but more interestingly,
combination of betulinic acid plus 5-FU reverted apoptosis
induction in the 5-FU resistant cells. A similar reversion
effect was observed with a combination of betulinic acid plus
oxaliplatin in oxaliplatin-resistant cells. These results clearly
demonstrate that in some cases it is possible to circumvent
acquired chemoresistance by combination therapy of anticancer
drugs with chemosensitizers as betulinic acid (Jung et al.,
2007).

Fucoxanthin
Fucoxanthin (Figure 2I) is a tetraterpenoid carotenoid found
in the edible macroalga Undaria pinnatifida, which has been
associated to prevention of CRC (Kim et al., 1998). In vitro
studies with Caco-2 cell line have shown that this carotenoid is
able to induce apoptosis after 72 h exposure at 22.6µM. This
apoptosis induction was due to an 80% reduction in Bcl-2 protein
levels, a survival factor (Hosokawa et al., 2004).

CURCUMIN

Curcumin (Figure 2J) is a diarylheptanoid found in
turmeric (Curcuma longa) that is frequently described as
a chemopreventive agent for CRC (Chauhan, 2002; Goel
et al., 2008; Prasad et al., 2014). Curcumin protects against
chemically induced intestinal tumorigenesis in mice and rats
(Huang et al., 1992, 1994; Rao et al., 1993; Kim et al., 1998;
Kawamori et al., 1999) and prevents adenoma development
in the gastrointestinal tract of apc(±) mice, a model of
human familial adenomatous polyposis (Perkins et al.,
2002).

A combination of liposomal curcumin with oxaliplatin in
vitro at equimolar concentrations resulted in no significant
enhanced growth inhibition compared with monotherapies
results. However, 4:1 molar ration combinations in LoVo cells
resulted in a synergistic effect. However, there was no synergistic
effect for both drugs in vivo using Colo205 and LoVo mice
xenografts (Li et al., 2007).

Dasatinib is a potent Src and Abl kinases inhibitor. Curcumin
showed synergistic effect with this inhibitor in HCT116 and
HT-29 cells under FOLFOX treatment (5-FU, leucovorin plus
oxaliplatin) resistant phenotype. This combination of drugs is
preferred to single agent regimens, as oxaliplatin alone, which
has limited activity. FOLFOX inhibited cellular growth, invasion
and colonosphere formation and also reduced CSCs populations
as evidenced by the decreased expression of their specific
markers (CD133, CD44, CD166, and ALDH; Nautiyal et al.,
2011).

Different studies have also reported the potential
enhancement of 5-FU antitumor efficacy in combination
with curcumin/hexahydrocurcumin, both in vitro (Du et al.,
2006; Srimuangwong et al., 2012a) and in vivo (Srimuangwong
et al., 2012b). Curcumin can potentiate as well the pro-apoptotic
and anti-metastatic effects of capecitabine, a prodrug that is
enzymatically converted to 5-FU in the body (Kunnumakkara
et al., 2009). In a recent phase I clinical trial using a combination
of curcumin with FOLFOX, this combination of drugs enhanced
anti-proliferative effects in patient-derived explants, indicating
that curcumin can reduce CRC cells survival (Patel et al.,
2008; James et al., 2015). Oxaliplatin treatment causes
neurosensory toxicity and paresthesia, but combination
therapy with FOLFOX regimen leads to common neutropenia,
neurotoxicity, and diarrhea (Braun and Seymour, 2011)
(Figure 3).

Curcumin is relatively safe for normal cells, but it can
induce tumor apoptosis by different pathways (Hanif et al.,
1997; Ravindran et al., 2009; Kantara et al., 2014), as it has
demonstrated in several clinical trials (Bar-Sela et al., 2010;
Gupta et al., 2013). However, its poor bioavailability is still
regarded as a major problem for its therapeutic use (Anand
et al., 2007). One approach to enhance curcumin absorption
by colonocytes, to increase in vitro bioactivity and in vivo
bioavailability is nanoencapsulation. This promising process
reduces the non-selective exposure of this nutraceutical and
improves the plasma half-life of the drug (Tsai et al., 2011; Yallapu
et al., 2012). For example, 5-FU and curcumin were individually
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entrapped in chemically modified chitosan nanoparticles that
were characterized for its in vitro hemocompatibility, drug
release profile, cellular internalization, in vitro combinatorial
antitumor effects in HT-29 cells and plasma concentration
time profile by pharmacokinetics (in Swiss Albino mouse
model). These experiments demonstrated that nanoparticles
were blood-compatible, the release profile over a period
of 4 days was sustained, the antitumor effects on CRC
cells were enhanced and the plasma concentrations of
both components in the mouse model were improved and
prolonged up to 72 h, longer than bare drugs (Anitha et al.,
2014).

A synergistic combination of curcumin and resveratrol has
been also described. Both agents, acting together, inhibited the
constitutive activation of EGFRs and IGF-1R in HCT-116 CRC
cells. A test with a mice xenograft mouse model of CRC showed
that the combination of resveratrol and curcumin (at doses of 50
and 500 mg/kg, respectively, administered by gavage for 3 weeks)
is highly effective in inhibiting tumor growth and stimulating
apoptosis of CRC cells in vivo, through attenuation of NF-κB
activity (Table 1; Majumdar et al., 2009).

Turmerones are several structurally related non-polar
sesquiterpenes found in turmeric ethanol extracts, which
could increase curcumin accumulation inside colonocytes, but
this curcumin-free fraction also exhibits biological activities.
Pharmacokinetic results showed that plasma curcumin levels in
mice fed with turmeric extract were the highest ones (Aggarwal
et al., 2013; Yue et al., 2016b). Interestingly, the combination
of curcumin and turmerones abolishes tumor formation when
fed to a dimethyl-hydrazine-initiated and DSS-promoted mouse
model of CRC (Murakami et al., 2013). Also, in a HT-29
tumor xenograft mice model, feeding with turmeric ethanol
extract caused a greater tumor size reduction than feeding with
curcumin (Yue et al., 2016a,b). The presence of turmerones
increases curcumin accumulation inside colonocytes and
could enhance curcumin antitumor activity in mice models.
Bevacizumab is a monoclonal antibody targeting vascular
endothelial growth factor. It has been used in combination with
turmeric ethanol extract (including curcumin) for treatment
of mice harboring HT-29 xenografts. Also, a combination
therapy of turmeric extract plus bevacizumab treatment
significantly inhibited tumor growth. These inhibitory effects
were comparable with those of FOLFOX plus bevacizumab, with
no observable side-effect induced by turmeric extract treatment
while significant side effects were found in FOLFOX-treated
mice (Table 3; Yue et al., 2016b). Potential synergistic effects
of turmerones, curcumin, and bevacizumab could eventually
allow a future reduction in this antibody dosage to patients,
if applied in clinic. This would lead to reduction/prevention
of some rare side effects associated to bevacizumab therapy,
as thrombosis, arterial hypertension, proteinuria, perforation
of the gastrointestinal tract, or nasal septum, wound healing
abnormalities (which may lead to postoperative bleeding in
CRC surgery), irreversible leuco-encephalopathy syndrome,
allergic skin rash, and hypersensitivity reactions (including
flashing, pruritus, arterial hypertension, rigors, broncho-
constriction, chest pain, and sweats). These side effects also

include rare spontaneous delayed (sometimes even several
months after surgery) leakage from colon or rectal anastomosis
after treatment with bevacizumab (Pavlidis and Pavlidis,
2013).

GOSSYPOL

Gossypol (Figure 2K) is a natural phenolic aldehyde derived
from the cotton plant (Gossypium). Its antitumor properties
have been studied in a variety of tumors since the 1980s, being
currently evaluated in phase I and II clinical trials for its use as
a single agent or in combination with other antitumor agents in
a variety of hematologic, lymphoid, and solid tumors. Gossypol
inhibits cell proliferation and induces apoptosis and autophagy
in a variety of CRC cell lines. Also, it inhibits CRC growth in a
mouse xenograft model after oral administration (Zhang et al.,
2003; Lan et al., 2015). Gossypol sensitizes the antitumor activity
of 5-FU, causing a synergistic cytotoxic effect in HT-29, HCT116,
and RKO cells, compared with monotherapies (Table 3; Yang D.
et al., 2015).

CONCLUSIONS

As a general rule, designing of combinations involving a
traditional chemotherapy drug (or radiotherapy protocol) plus
one or more natural bioactive compounds (including in some
cases well-known nutraceuticals), could be a promising approach
in order to potentially achieve improvements in the partial
or complete remission of CRC tumors; and at the same time
this could minimize side effects which could be associated
with this drug treatment or radiotherapy (neutropenia, diarrhea,
cardiotoxicity, nephrotoxicity, hepatotoxicity, etc.) (Figure 3).
Most synergistic effects of these combinations have been
reported in in vitro and using animal tumor models and are
due to antioxidant bioactivity, apoptosis induction (via the
mitochondrial or extrinsic pathways) and/or cell cycle arrest (at
any checkpoint).

These beneficial effects due to the addition of a natural
bioactive to the canonical drug treatment, are enhanced by
the fact that these natural compounds and nutraceuticals can
reinforce the drug effective concentration, which is needed in
order to achieve the same therapeutic result. Also, interestingly,
in some cases, addition of the bioactive compound may
allow to overcome the intrinsic or acquired chemo- or radio-
resistance occurring in some tumor cells, as these plant or
fungal compounds may modulate simultaneously diverse target
pathways in the neoplastic cell, overcoming those altered cell
regulatory routes which may be responsible for a particular
resistance mechanism.

Finally, in many cases, these bioactives are small molecular
weight compounds present in medicinal plants and foods,
which would allow their potential easy oral administration,
independently of painful or stressful administration methods
(peritoneal, catheters, etc.). In the specific case of CRC therapy,
this is a fact of enormous importance, as these molecules can
easily reach the transformed colon mucosa cells.
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